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In the first part of the paper we study solitonic properties of the Calabi-Yau vacua of the string theory.

We observe that the Calabi-Yau threefolds of the string theory may be thought of as Neveu-

Schwarz–Neveu-Schwarz (NS-NS) objects whose masses are proportional to 1=g2s . In the second part,

which is the main part of this paper, we propose, based on the viewpoint that our three-dimensional space

is a stack of Bogomol’nyi-Prasad-Sommerfield (BPS) D3-branes located at the conifold singularity of the

Calabi-Yau threefold, a new mechanism to address the cosmological constant problem in the framework

of the conventional compactifications, where the n-form fluxes including NS-NS three-form are all turned

off. In this mechanism the four-dimensional cosmological constant � appears as two types, NS-NS type

and R-R type, of vacuum energies on the brane plus supersymmetry breaking term, which constitute a

brane action density Îbrane, and sum of these three terms of Îbrane are forced to vanish by field equations so

that � adjusts itself to zero as a result. Also in this mechanism the d ¼ 4 supersymmetry is broken in the

brane region, while still maintaining � ¼ 0. The supersymmetry breaking occurs as a result of the gauge

symmetry breaking of the R-R four-form arising at the quantum level. The substance of the supersym-

metry breaking term is a vacuum energy density (of the brane region) arising from the quantum excitations

with components along the transverse directions to the D3-brane. We generalize the above mechanism to

the case of the flux compactifications where the fluxes are all turned on to stabilize the moduli. In the

generalized theory � appears as Îbrane plus the scalar potentialV scalar for the moduli, in contrast to the case

of the ordinary flux compactifications where � is simply given byV scalar. Also in this theory any nonzero

V scalar arising from perturbative or nonperturbative corrections is gauged away by the gauge arbitrariness

of Îbrane and the condition � ¼ 0. So � is again expressed only as a brane action density as before, or it

simply vanishes by the cancellation between Îbrane and V scalar.
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I. INTRODUCTION

Background vacua of the ten-dimensional superstring
theory are described by a product of the maximally sym-
metric four-dimensional spacetime and the internal dimen-
sions compactified on a Calabi-Yau threefold. Such a
compactification is appropriate because it admits SUð3Þ
holonomy which yields unbroken N ¼ 1 supersymmetry
in four dimensions. The moduli spaces of Calabi-Yau
manifolds usually contain certain limit points, the coni-
folds, which are identified as transition points where the
moduli spaces of two distinct Calabi-Yau manifolds meet
[1,2]. Thus the conifolds commonly occur in the moduli
spaces of Calabi-Yau manifolds in such a way that each
moduli space of the Calabi-Yau manifold generally con-
tains a single point corresponding to the conifold, and the
geometry of this conifold is relatively simple to the other
Calabi-Yau spaces.1 This is why string-inspired brane
world models have considered configurations of D3-branes
located at conifold singularities [3,4].

In brane world models a stack of D3-branes is identified
with our three-dimensional external space, which is assumed
to be dynamical. Recently, however, there was a conjecture
that fundamental background brane immanent in our space-
timemay perhaps be NS-NS type brane, rather thanD-brane.
In [5] it was argued that in (pþ 3)-dimensional string theory
the existence of NS-NS type p-brane is essential to obtain
background geometries R2 or R2=Zn on the transverse di-
mensions, and the usual codimension-2 brane solutions with
these background geometries already contain NS-NS type
brane implicitly in their ansatz. Similar thing happens in the
case of codimension-1 brane solutions as well. In [6] the
authors have studied codimension-1 brane solutions of
the five-dimensional models compactified on S1=Z2. They
showed that in string theoretical setup the existence of
the background NS-branes are indispensable to obtain flat
geometry M4 � S1=Z2, and without these branes the five-
dimensional metric becomes singular everywhere.
In these lines of study it would be important to check the

case of the ten-dimensional full-fledged string theory2 as a
final confirmation of the given conjecture. Indeed Calabi-
Yau vacua of the ten-dimensional string theory give an
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1Such an each moduli space of the Calabi-Yau manifold is

usually taken as a single Calabi-Yau space.

2Aside from the F-theory this may correspond to the theory of
codimension-n branes with n � 3.
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indication of the similar behavior associated with NS5-
branes. Remarkably, there were observations [4,7] that two
intersecting NS5-branes can be thought of as a T-dual
configuration of the conifold singularity. For instance in
[4] the authors have considered two IIA configurations of
D4-brane suspended between two NS5-branes, i.e., one
with two parallel NS5-branes and another with two
orthogonal NS5-branes. They have qualitatively shown
that under T-duality the former corresponds to a IIB metric
of D3-brane plus a Taub-Newman-Unti-Tamburino
(Taub-NUT) space in the transverse directions, while the
later corresponds to that of D3-brane at a conifold singu-
larity. In the absence of D3-brane the latter case implies
that the conifold singularity is T-dual to a configuration of
two orthogonal NS5-branes.

A pair of T-dual configurations are just two different
geometrical realizations (in the Calabi-Yau target space) of
the same conformal field theory, and in this sense they are
recognized to be physically equivalent even though they
are topologically distinct in general. Thus in the framework
of the conformal field theory the conifold singularity of the
Calabi-Yau space becomes equivalent to the background
configuration with two intersecting NS5-branes, and since
the moduli spaces of the Calabi-Yau manifolds always
contain conifold singularities we are inclined to say that the
NS5-branes are involved at any rate in the background vacua
of the string theory and further the background vacua of the
string theory may include NS5-branes implicitly in their
Calabi-Yau ansatz. Indeed in Sec. III we observe that the
generic compact Calabi-Yau threefolds of the string theory
contain n couples of intersecting Kaluza-Klein (KK) mono-
poles, the T-dual counterparts of the NS5-branes, at the
singularities and each of these intersecting KK monopoles
can be thought of as an NS-NS type soliton with mass
proportional to 1=g2s .

The first part of this paper is mainly concerned with this
issue though it is continued to the cosmological constant
problem in the second part. In the second part, which is the
main part of this paper, we propose a new mechanism to
address the cosmological constant problem, based on the
viewpoint that our three-dimensional space is a stack of
BPS D3-branes located at the conifold singularity of the
Calabi-Yau threefold. In Secs. IV–VII, we first consider the
case of the conventional compactifications where the
n-form fluxes including NS-NS three-form are all turned
off. In this case we find that the four-dimensional cosmo-
logical constant � appears as two types, NS-NS type and
R-R type, of vacuum energies on the brane plus the super-
symmetry breaking term, which constitute a brane action

density Îbrane, and sum of these three terms of Îbrane are
forced to vanish by field equations so that � adjusts itself to
zero as a result. Also in this mechanism the d ¼ 4 super-
symmetry is broken in the brane region, while still main-
taining � ¼ 0. The supersymmetry breaking occurs as a
result of the gauge symmetry breaking of the R-R

four-form arising at the quantum level. So the brane region
is locally anomalous. But the total anomaly of the brane
region turns out to vanish by the condition � ¼ 0.
The primary cause of the supersymmetry breaking is

these anomalies for the string fields with support on the
D3-brane, and the substance of the supersymmetry breaking
term in the action is a vacuum energy density (of the brane
region) arising from the quantum excitations with compo-
nents along the transverse directions to the D3-brane. In
Sec. IX it is argued that the supersymmetry breaking in
the conventional compactifications gives a mass to the
dilaton which is estimated to be m2

� � gsm
2
s , where ms is

the fundamental mass scale of the string theory. Also since
m� can be roughly identified with msp, the typical mass

scale of the Standard Model superpartners, one obtains
m2

sp � gsm
2
s from the above equation.

It is also argued in Sec. VII B that the configuration with
broken supersymmetry is more favored than the other with
an unbroken supersymmetry. These two configurations are
equally qualified for a solution to the field equations, but
the former is more favored by the action principle than the
latter because the former takes lower values of the total
action than the latter. For this matter a different possible
viewpoint is also briefly presented at the end (the fourth
last paragraph) of Sec. IX.
In Sec. VIII we finally generalize the above mechanism

to the case of the flux compactifications where the fluxes
are all turned on to stabilize the moduli. In the generalized

theory � appears as a sum of two terms, Îbrane and the scalar
potential V scalar for the moduli, in contrast to the case of
the ordinary flux compactifications where � is simply

given by V scalar. Among these two terms Îbrane depends
on gauge parameters and therefore it is arbitrary. Beside
this, it is shown in Sec. VIII C that � is always required to
vanish by field equations. So from all this one finds that any
nonzeroV scalar arising from the perturbative or nonpertur-
bative corrections is gauged away by the gauge arbitrari-

ness of Îbrane and the condition � ¼ 0. As a result � is again
expressed only as a brane action density, or it simply

vanishes by the cancelation between V scalar and Îbrane.

II. CONIFOLD AS AN NS-NS SOLITON

Consider a configuration of background fields GMN , �
and BMN of the NS-NS sector. The target space action for
these background fields is given by

I10¼ 1

2�2
10

Z
d10x

ffiffiffiffiffiffiffiffi�G
p

e�2�

�
R10þ4ðr�Þ2� 1

2 �3!H
2
3

�
;

(2.1)

where H3 ( � dB2) is the field strength of the NS-NS
two-form BMN . In the absence of NS5-branes BMN and
consequently H3 all vanish. In this configuration I10
admits Ricci-flat solutions and one of which takes the
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form ds210 ¼ ds20123 þ ds2conifold where ds2conifold represents

the conifold metric

ds2conifold ¼ dr2 þ r2d�2
1;1; (2.2)

where

d�2
1;1 ¼

1

9

�
dc þX2

i¼1

cos�id�i

�
2

þX2
i¼1

1

6
ðd�2i þ sin 2�id�

2
i Þ (2.3)

is an Einstein metric representing the base of the cone.
Under T-duality along the isometry direction c , (2.2)

turns into

ds2T-dual¼dr2þ 9

r2
dc 2þr2

X2
i¼1

1

6
ðd�2i þsin2�id�

2
i Þ (2.4)

plus two-form field contribution Bc�i
which is given by

cos �i. The T-dual metric (2.4) cannot be Ricci flat because
the right-hand side of the Einstein equation contains a matter
field contribution arising from Bc�i

. Equation (2.4) is not

only non-Ricci flat, but it is very singular. The scalar curva-
ture calculated from (2.4) is given by R ¼ 16=r2, which
goes to infinity as r goes to zero. Thus the T-duality trans-
formation shows that the conifold metric is equivalent to a
sum of non-Ricci-flat singular metric and NS5-branes de-
scribed by Bc�i

, which is reminiscent of the codimension-1

[6] and codimension-2 [5] braneworldmodels where each of
the flat geometries of the transverse spaces can be formally
expressed as a sum of singular metric andNS-NS type brane.

Though (2.4) is T-dual to (2.2) it breaks the supersymme-
try completely. In general the localized metric of the form
(2.2) does not preserve the supersymmetry under T-duality
transformation [8]. In many cases, and in particular if we
want supersymmetric solution, it is more convenient to
consider the T-dual configurations of smeared NS5-branes.
Let us consider a configuration of intersecting n NS5�
NS50-branes extended along NS5 ¼ ð012345Þ and NS50 ¼
ð012389Þ respectively and smeared except for one overall
transverse direction, x7. This configuration preserves 1=4
supersymmetries [9] and the metric takes the form:

ds2NS�NS0 ¼ ds20123 þH2
NSds

2
67 þHNSðds245 þ ds289Þ; (2.5)

where HNS is the harmonic function for the n-coincident
NS5-branes, HNS ¼ 1þ njx7j, and the NS-NS three-form
field strengths are given by H645 ¼ H689 ¼ n. Under
T-duality along x6 it turns into delocalized metric of the
conifold. Omitting ds20123 it reads

ds2conifold ¼ H2
NSds

2
7 þH�2

NS ðds6 þ B64ds4 þ B68ds8Þ2
þHNSðds245 þ ds289Þ; (2.6)

where B46 ¼ nx5 and B86 ¼ nx9.
The metric (2.6) suggests that the conifold geometry is

due to an NS-NS type extended object because it contains

the harmonic function for the NS5-branes which originally
appears in the metric for the NS5-brane. To see this
more precisely consider a simpler configuration of a single
NS5-brane extended along (012345)-directions:

ds2NS ¼ ds2012345 þHNSds
2
6789 (2.7)

and nonzero antisymmetric background B6i (i ¼ 7, 8, 9),
where HNS ¼ 1þ 1=r2. Now we compactify x6 to take
T-duality. Under T-duality along x6, (2.7) turns into [10]

ds2KK ¼ ds2012345 þ ds2Taub�NUT; (2.8)

where ds2Taub�NUT is the four-dimensional Taub-NUT

metric

ds2Taub�NUT ¼ H�1
NS ðds6 þ!idsiÞ2 þHNSds

2
789; (2.9)

where !i ¼ B6i with
~r� ~! ¼ � ~rHNS, but HNS is now

given by HNS ¼ 1þ 1=r because the number of non-
compact transverse directions has been reduced to three in
(2.9). (2.8) describes the Kaluza-Klein monopole which can
be identified as a five-dimensional object extended along
(012345). Also since it contains HNS, we suspect that the
KK monopole is also an NS-NS type five-brane just like the
NS5-brane.
To convince ourselves that the KK monopole is really an

NS-NS object let us calculate the mass of the KK mono-
pole described by (2.8). For the metric (2.8), the first term
in (2.1) can be converted into an action for the five-
dimensional KK monopole:

I5KK ¼ 1

16�GK

Z
d5x

ffiffiffiffiffiffiffiffiffiffi�g5
p

e�2�̂R5; (2.10)

where 16�GK ¼ 2�2
10g

2
s=VolðNS5Þ with Vol(NS5) being

volume of the five-brane extended along (12345), and �̂ is

defined by e�̂ ¼ e�=gs so that e
�̂ ! 1 as r ! 1. (2.10) is

identical with the action in [11] except that
ffiffiffiffiffiffiffiffiffiffi�g5

p
is replaced by

ffiffiffiffiffiffiffiffiffiffi�g5
p

e�2�̂. The mass of the monopole per

unit volume of the five-brane is therefore

m ¼ 1

ð2�Þ5
m8

sR
2

g2s
; (2.11)

where ms is the string mass scale defined by 2�2
10 ¼

ð2�Þ7=m8
s , and R is the radius of the compact dimension

ds6. (2.11) shows that the mass density m of the monopole
is proportional to 1=g2s as expected, which suggests that
the KK monopole is an NS-NS type soliton just like the
NS5-brane.
Turning back to (2.8), introduce a D3-brane with world-

volume along (0123) on the geometrical singularity of the
Taub-NUT space. The metric for this configuration will be
(see [4]):

ds2KK�D ¼H�1=2
D ds20123þH1=2

D ½ds245þH�1
NS ðds6þ!idsiÞ2

þHNSds
2
789�; (2.12)
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where HD is the harmonic function for the D3-brane. The
harmonic function for the Dp-brane, HD ¼ 1þ gs=r

7�p,
contains an additional parameter gs as compared with that
for the NS5-brane.3 Hence in the limit gs ! 0, the effect of
D-brane on the background geometry disappears and the
geometry of the transverse dimensions is entirely deter-
mined by the configuration of NS5-branes. Indeed (2.12)
reduces to (2.8) in the limit gs ! 0 which again shows that
the (extended source of the) KKmonopole is a pure NS-NS
type 5-brane whose mass density is proportional to g�2

s just
like the NS5-brane. The above example shows that changes
of internal geometries caused by D-branes necessarily
contain the factor gs in the metric through the harmonic
function HD, and conversely if the geometry does not
contain gs in the metric we may suspect that it could be
caused by NS-NS type objects.

The same story goes on for the conifold case too. The
configuration of a D3-brane at the conifold singularity is
given by

ds2conifold�D ¼ H�1=2
D ds20123 þH1=2

D ½H2
NSds

2
7 þH�2

NS

� ðds6 þ B64ds4 þ B68ds8Þ2
þHNSðds245 þ ds289Þ�: (2.13)

In the limit gs ! 0 (2.13) reduces to (2.6). So we suspect
that the conifold geometry described by (2.6) may be
thought of as being caused by NS-NS objects because it
does not contain gs in the metric. The metric (2.6) can be
converted back into the localized metric by replacing the
Cartan basis 1-forms ofR2�R2 by those of S2�S2 (see [9]):

dx4;8 ! sin �1;2d�1;2; dx5;9 ! d�1;2: (2.14)

As a result (2.6) becomes (2.2) which is also independent of
gs, suggesting that the conifold geometry (2.2) is also
caused by NS-NS objects.

III. CALABI-YAU THREEFOLDS
AS NS-NS OBJECTS

Since the conifold is T-dual to intersecting NS5-branes
and KK monopole is T-dual counterpart of NS5-brane, one
naturally expects that the conifold may be identified with a
configuration of intersecting KKmonopoles. This is indeed
the case. The authors of [4] observed that the conifold can
be thought of as an asymptotically locally Euclidean
(ALE) fibration over a P1, where the fibers are given by
a family of ALE spaces parameterized by the coordinate of
P1. In complex coordinates the conifold is described by a
quadric in C4:

ðz1Þ2 þ ðz2Þ2 þ ðz3Þ2 þ ðz4Þ2 ¼ 0: (3.1)

This equation can be rewritten as

Y2
i¼1

ðz1 � �iÞ2 þ z22 þ z23 ¼ 0 (3.2)

with �i given by �1 ¼ � and �2 ¼ �� , where � ¼ iz4. (3.2)
describes an A1 ALE space R4=Z2 (blown up by P1)
which is just the Eguchi-Hanson (EH) space represented
by the metric [12]

ds2EH ¼
�
1� a4

r4

��1
dr2 þ r2

4

�
1� a4

r4

�
ðdc þ cos �d�Þ2

þ r2

4
ðd�2 þ sin 2�d�2Þ; (3.3)

where the size a2 of the EH space depends linearly on
�ð¼ iz4Þ.
In a new coordinate system (3.3) can be transformed into

a two center Gibbons-Hawking metric [13], which how-
ever is identical with two-center Taub-NUT space near the
singularity of the ALE space. Also the distance between
two centers in the Taub-NUT space varies linearly as a
function of z4 since it is linearly proportional to a2 (see
[13]), and therefore it varies linearly as a function of z4 and
the locus of these two centers, which is a set of two sections
on the fibered space R4=Z2 � P1, may be identified as two
intersecting KK monopoles. In this way one finds that near
the singularity the conifold can be identified with two
intersecting KK monopoles which intersect at the conifold
singularity given by z1 ¼ z2 ¼ z3 ¼ z4 ¼ 0. This confirms
the conjecture that the conifold geometry is caused by an
NS-NS type extended source.
Now let us turn to the Calabi-Yau threefolds. As men-

tioned already the moduli spaces of Calabi-Yau manifolds
usually contain conifolds as transition points where moduli
spaces of two distinct Calabi-Yau manifolds meet. Indeed
the conifold itself is a singular noncompact Calabi-Yau
threefold, and we might say that a set of N such conifolds
join with some other regions to constitute a regular compact
Calabi-Yau manifold in the sense that the generic Calabi-
Yau threefolds usually contain singularities which locally
look like the conifold. In order to see this a little more in
detail let us briefly review some of the first section of [1].
The simplest example of the nonsingular complete in-

tersection Calabi-Yau threefold is

4 4 1

1 1 1

" #
2

�168

:

This is a projective variety defined by the homogeneous
equations

XðxÞy1 þUðxÞy2 ¼ 0; VðxÞy1 þ YðxÞy2 ¼ 0; (3.4)

where X, U and V, Y are any general quartic and linear
polynomials in the homogeneous coordinates of P4

respectively.

3More generally the harmonic function for the n coincident
Dp-branes takes the form HD ¼ 1þ ngs=r

7�pþ the terms lin-
ear in gs, where we have set �0 ¼ 1.
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4 4 1

1 1 1

" #
2

�168

is nonsingular because it is a small resolution of

4 5

� �
1

�200

which is defined by a quintic hypersurface in P4. Indeed
for nonvanishing homogeneous coordinates, y’s, of P1,
(3.4) implies

XY �UV ¼ 0; (3.5)

which defines the simplest Calabi-Yau threefold

4 5
h i

1

�200
:

4 5
h i

1

�200

is singular and has a number of isolated nodes at the points
where XðxÞ, YðxÞ, UðxÞ, VðxÞ all vanish simultaneously.
For generic X, Y,U, V the number of nodes is 16 because X
and U are quartic polynomials.

The above X, Y, U, V can be taken as coordinates in C4

describing the conifold with singularity being located at
X ¼ Y ¼ U ¼ V ¼ 0. Thus at each of 16 nodes the coni-
fold singularity develops, and the neighborhoods of these
16 points can be identified as conifolds which smoothly
join to the main body to constitute the compact Calabi-Yau

4 5
h i

1

�200
:

Indeed the generic compact Calabi-Yau threefolds usually
contain certain numbers of conifolds at the singularities in
such a way that the entire topology is characterized by the
Hodge number h1;1 and some negative values of �. Also
since each conifold is made of two intersecting KK mono-
poles we finally observe that the Calabi-Yau threefolds are
also NS-NS objects in the sense that they contain numbers
of NS-NS solitons with mass proportional to 1=g2s .

IV. THE FOUR-DIMENSIONAL
COSMOLOGICAL CONSTANT

The fact that the conifolds of the Calabi-Yau threefolds
of the string theory can be thought of as NS-NS solitons
with mass proportional to 1=g2s is important in addressing
the cosmological constant problem. The cosmological con-
stant problem is one of the most mysterious problems in
the area of the theoretical high energy physics. Though it is
very complicated problem [14], its main point may be
simply summarized as why the cosmological constant �
of the four-dimensional spacetime is so small despite the
enormous contributions to the vacuum energy arising from
the quantum fluctuations of SM fields.

One of the most promising candidates for the solution to
this problem may be found from the brane world models

where the intrinsic curvature of the brane is a priori zero.
But in these models the whole vacuum energy including
quantum fluctuations of SM-fields always contributes to
changing the internal geometry because the geometry of
the four-dimensional spacetime is already fixed to have a
zero cosmological constant from the beginning [15,16].
Thus the geometry of the internal space is now expected
to be severely disturbed by the quantum fluctuations, which
then leads to a severe disturbance of the observed coupling
constants. This problemmay be naturally solved by accept-
ing the viewpoint that the conifolds of the internal Calabi-
Yau space are NS-NS solitons made of two intersecting KK
monopoles which themselves are NS-NS solitons. As is
the case with the usual solitons the NS-NS solitons are very
heavy and rigid because their masses are proportional to
1=g2s , and as a result the effect of the vacuum fluctuations
exerting on the internal geometry is highly suppressed by
the factor of g2s in the equations of motion [17].
Though the solitonic interpretation of the Calabi-Yau

space has an important consequence, it alone is not enough
to explain the smallness of the cosmological constant com-
pletely. Because the four-dimensional Planck mass, Mpl, is

inversely proportional to gs [see (4.27)], the g
2
s-suppression

caused by the heaviness of the NS-NS type soliton only
suggests a value�ð	4=M2

plÞ for �, where 	 is a mass scale

at which the symmetry of the theory is broken. So if we take
the supersymmetry on the brane as a broken symmetry of
the theory, 	 will be about4 �TeV and therefore (	4=M2

pl)

takes the value �ðTeVÞ4=ð1019 GeVÞ2, which is certainly
too large to be a correct value for the present �. In order to
obtain much smaller value for � we may need an entirely
new additional mechanism. In the following sections we
propose a new mechanism with which to solve the cosmo-
logical constant problem. As the beginning of the discussion
we first consider the conventional compactifications where
the n-form fluxes stabilizing the moduli are all turned off.
Consider a configuration of D3-brane extended along

(0123) at the conifold singularity,5 and assume that the
D3-brane is basically a BPS state. The total action for this
configuration is given by the sum Itotal ¼ Ibulk þ Ibrane with

Ibulk ¼ 1

2�2
10

Z
d10x

ffiffiffiffiffiffiffiffi�G
p

�
�
e�2�½R10 þ 4ðr�Þ2� � 1

2 � 5!F
2
5

�
; (4.1)

and

4But see also Sec. IX where	 (>msp) is estimated to be	2 >
gsm

2
s , according to which 	 could be much larger than the

conventional scale of order �TeV.
5In the following discussion, for simplicity, we will consider a

configuration with a single D3-brane, instead of a stack of
n-coincident D3-branes, located at the conifold singularity. But
there is no essential difference between these two cases and the
extension is trivial.
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Ibrane ¼ �
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det jG	
j

q
Tð�Þ þ	0

Z
A4; (4.2)

where F 5 is a self-dual five-form, the field strength of
the R-R four-form A4, and G	
 is a pullback of GMN to

the four-dimensional brane world. Also Tð�Þ represents the
tension of the D3-brane, so at the tree level it is simply
Tð�Þ ¼ T0e

��. But if we include quantum corrections it
becomes Tð�Þ ¼ T0e

�� þ �vacð�Þ, where �vacð�Þ repre-
sents the quantum correction terms and it is identified
with the (NS-NS sector) vacuum energy density of the
three-dimensional space. Similarly, 	0 represents the
R-R charge of the D3-brane, which is electric under A4.
If we include quantum corrections, 	0 turns into 	ð�Þ
which is 	ð�Þ ¼ 	0 þ �	ð�Þ where �	ð�Þ is an R-R
counterpart of �vacð�Þ and therefore represents the quan-
tum correction terms. See case III of Sec. V for the details.

Now we introduce a general ansatz for the ten-
dimensional metric as

ds210 ¼ eAðr̂Þds26 þ eBðr̂Þg	
ðxÞdx	dx
; (4.3)

where

ds26 ¼ dr̂2 þ R2ðr̂Þd�2
1;1 � hmnðyÞdymdyn (4.4)

is the metric of the internal dimensions, while
g	
ðxÞdx	dx
 is the metric of the four-dimensional space-

time. In the above metric eAðr̂Þ is an extra degree of freedom
which could have been absorbed into ds26, so it can be taken
arbitrarily as wewish. The ansatz for the R-R four-form, on
the other hand, is given by

A4 ¼ 
ðr̂Þ ffiffiffiffiffiffiffiffiffiffi�g4
p

dt ^ dx1 ^ dx2 ^ dx3; (4.5)

where g4 is the determinant of the four-dimensional metric
g	
ðxÞ. (4.5) is an appropriate ansatz for A4 because it is

consistent with the homogeneous and isotropic geometry
of the four-dimensional spacetime.

As mentioned above, F 5 is a (anti-) self-dual five-form,
and we may write it as

F 5 ¼ F5 � i	F5; (4.6)

where F5 is the field strength of A4,

F5 ¼ dA4 ¼ ffiffiffiffiffiffiffiffiffiffi�g4
p ð@r̂
Þdr ^ dt ^ dx1 ^ dx2 ^ dx3;

(4.7)

and 	F5 is its dual,

	F5 ¼ �e2A�2B
ffiffiffiffiffi
h6

p ð@r̂
Þdc ^ d�1 ^ d�1 ^ d�2 ^ d�2;

(4.8)

where h6 is the determinant of hmnðyÞ. We see that (4.6)
satisfies the (anti-) self-duality condition i	F 5 ¼ �F 5,

but at this point we are not allowed to do this. Imposing
a self-duality condition on the action would result in the
wrong field equations. When F 5 is given by (4.6), F 2

5

contains two terms, one from F5 and another from 	F5.

These two terms take the same form when they are
expressed in terms of @r̂
, and this gives twice the term
F2
5 in the action, which will be a double consideration

and will lead to wrong field equations. A way out of this
difficulty is to setF 2

5 simply asF 2
5 ¼ F2

5 in the action (4.1)

and postpone imposing the self-duality condition until we
find the whole solutions to the field equations [18]. Thus
we impose the self-duality condition on the solution (not
on the action) simply as a supplementary constraint, and in
this case the dynamics of 	F5 is governed by the dual

action which is given by (4.1) plus (4.2) but where F5

and A4 are replaced by their duals [19].

Now we set e� ¼ gse
�̂ and choose

A ¼ �̂� B: (4.9)

Then the total action is converted into

Ibulk ¼ 1

2�2
10g

2
s

�Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p

R4ðg	
Þ
�

�
�Z

d6y
ffiffiffiffiffi
h6

p
e�̂�2B

�
þ 1

2�2
10g

2
s

�Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p �

�
�Z

d6y
ffiffiffiffiffi
h6

p �
R6ðhmnÞ � ð@�̂Þ2 þ 2ð@�̂Þð@BÞ

� 2ð@BÞ2 þ g2s
2
e2�̂�4Bð@r̂
Þ2

��
(4.10)

plus

Ibrane ¼
�Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p ��
�

Z
d6y

ffiffiffiffiffi
h6

p
e2BTð�Þ�6ð ~̂rÞ

þ
Z

d6y
ffiffiffiffiffi
h6

p
	ð�Þ
ðr̂Þ�6ð ~̂rÞ

�
; (4.11)

where the delta function �6ð ~̂rÞ is defined by
R
d6yffiffiffiffiffi

h6
p

�6ð ~̂rÞ ¼ 1. We see that each term of the total action
appears as a product of four-dimensional and six-
dimensional actions, and we can obtain four-dimensional
and six-dimensional field equations separately from the
total action.
Let us first consider the field equations defined on the

six-dimensional internal space. They are obtained from the
six-dimensional effective action Itotal=½

R
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p �, where

Itotal is given by (4.10) plus (4.11). We have

�H þ g2s
4
e2�̂�4B
02 � 1

2
e�̂�2B�þ 10

�
R02

R2
� 1

R2

�
¼ 0;

(4.12)

4
R00

R
þH �g2s

4
e2�̂�4B
02�1

2
e�̂�2B�þ6

�
R02

R2
� 1

R2

�
¼ 0;

(4.13)
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1

R5
ðR5�̂0Þ0 ¼ 2�2

10g
2
s

�
e2B

�
Tð�Þ þ @Tð�Þ

@�

�

� @	ð�Þ
@�


ðr̂Þ
�
�6ð ~̂rÞ; (4.14)

1

R5
ðR5B0Þ0 � g2s

2
e2�̂�4B
02 � 1

2
e�̂�2B�

¼ 2�2
10g

2
s

�
e2B

�
Tð�Þ þ 1

2

@Tð�Þ
@�

�

� 1

2

@	ð�Þ
@�


ðr̂Þ
�
�6ð ~̂rÞ; (4.15)

where the ‘‘prime’’ denotes the derivative with respect to r̂,

and H and � are defined, respectively, by H � 1
2 �̂

02 �
�̂0B0 þ B02 and � ¼ ½R d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p

R4�=½
R
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p �.

Among these equations, the first two are the Einstein
equations,6 while the last two are linear combinations of

the equations for �̂ and B. The Einstein equations do not
contain the delta-function terms on the right-hand sides.
This must be so because Tð�Þ and 	ð�Þ do not couple to
hmn [see (4.2)] and the determinant

ffiffiffiffiffi
h6

p
introduced in

(4.11) is merely artificial. In any case, apart from the field
equation for 
ðr̂Þ, the above four equations constitute a
complete set of linearly independent field equations to
solve.

The field equation for 
ðr̂Þ is given by

1

R5

d

dr̂

�
e2�̂�4BR5 d


dr̂

�
¼ 2�2

10	ð�Þ�6ð ~̂rÞ; (4.16)

which, upon integration, gives

@r̂
 ¼ 2�2
10	D

VolðBÞ
e�2�̂þ4B

R5
; ð	D � 	ð�ð0ÞÞÞ; (4.17)

whereVolðBÞ represents the volume of the base of the cone

with unit radius:VolðBÞ ¼ R
�5 with �5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det jĥabj

q
dc ^

d�1 ^ d�1 ^ d�2 ^ d�2, and where ĥab is defined by

d�2
1;1 ¼ ĥabdy

adyb. From (4.8) and (4.17) one finds

1

2�2
10

Z 	F5 ¼ 	D; (4.18)

which confirms the fact that 	D is an R-R electric charge

carried by a D3-brane located at ~̂r ¼ 0. 	D, on the other
hand, becomes a magnetic charge in the dual theory in
which F 5 is given in terms of 	F5. The magnetic charge

associated with 	F5 of the dual theory is also defined by

(4.18), and therefore 	D becomes a self-dual charge—the

charge being both electric and at the same time magnetic—
once the self-duality condition is imposed.
Let us introduce a new coordinate r defined by dr̂=R5 ¼

dr=r5. In terms of the coordinate r the six-dimensional
metric (4.4) becomes

ds26 ¼
�
R

r

�
10
�
dr2 þ

�
r

R

�
8
r2d�2

1;1

�
; (4.19)

which reduces to the conifold metric (2.2) when R ¼ r.
Using (4.17) one finds that the set of four linearly indepen-
dent field equations (4.12)–(4.15) can be rewritten in the
covariant form as

r2 lnR� 4

R2

�
R

r

�
10 � 1

4
e�̂�2B

�
R

r

�
10
� ¼ 0; (4.20)

r2�̂¼ 2�2
10g

2
s

�
e2B

�
Tð�Þþ@Tð�Þ

@�

�
�@	ð�Þ

@�

ðrÞ

�
�6ð ~rÞ;
(4.21)

r2B� 1

2
e�2�̂þ4B q

2
D

r10
� 1

2
e�̂�2B

�
R

r

�
10
�

¼ 2�2
10g

2
s

�
e2B

�
Tð�Þ þ 1

2

@Tð�Þ
@�

�

� 1

2

@	ð�Þ
@�


ðrÞ
�
�6ð~rÞ; (4.22)

�H þ 1

4
e�2�̂þ4B q

2
D

r10
� 1

2
e�̂�2B

�
R

r

�
10
�

þ 10

R2

�
R02 �

�
R

r

�
10
�
¼ 0; (4.23)

where qD ¼ 2�2
10gs	D=VolðBÞ, and r2 is the Laplacian

r2 ¼ ð1=r5Þðd=drÞðr5d=drÞ defined on the conifold (so
�6ð ~rÞ is now normalized by

R
r5dr�5�

6ð~rÞ ¼ 1). Also H
is defined as before, but now the prime denotes the deriva-
tive with respect to r instead of r̂. Note that (4.20) has been
obtained by adding (4.12), (4.13), and (4.23) is a rewrite
of (4.12).
Now we turn to the four-dimensional field equation,

which is just the Einstein equation defined on the four-
dimensional spacetime. In order to find themwe rewrite the
total action in the form

Itotal ¼ 1

2�2

�Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p

R4ðg	
Þ � 2�
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p �
;

(4.24)

where � is defined by

� ¼ ��2½Îbulk þ Îbrane�; (4.25)

where

6Equations (4.12) and (4.13) are, respectively, the rr and �i�i
components of the Einstein equation obtained in the orthonormal
frame. But in the orthonormal frame the �i�i- and c c -
component equations are precisely identical to the
�i�i-component equation, and consequently we have only two
independent Einstein equations, (4.12) and (4.13).
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Îbulk ¼ 1

2�2
10g

2
s

Z
d6y

ffiffiffiffiffi
h6

p �
R6ðhmnÞ�ð@�̂Þ2þ2ð@�̂Þð@BÞ

�2ð@BÞ2þg2s
2
e2�̂�4Bð@
Þ2

�
; (4.26)

and Îbrane ¼ Ibrane=½
R
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p �, which is the brane action

per unit volume of the four-dimensional spacetime. Also in
(4.24), 2�2 is defined by

1

2�2
¼ 1

2�2
10g

2
s

Z
d6y

ffiffiffiffiffi
h6

p
e�̂�2B; (4.27)

which is identified as an inverse square of the four-
dimensional Planck mass, 2�2 ¼ 1=M2

pl. Since (4.24)

yields the Einstein equation R	
�1
2g	
R4þ�g	
¼0,

the above � is identified as the four-dimensional cosmo-
logical constant, and one finds that � ¼ 4� from the
definition of �.

To evaluate �, substitute (4.20) and (4.23) into (4.26)
and useZ

d6y
ffiffiffiffiffi
h6

p
R6ðhmnÞ

¼
Z

r5dr�5

�
�10r2 lnRþ 20

R2

�
R02 þ

�
R

r

�
10
��

;

(4.28)

together with

@r
 ¼ qD
gs

e4B�2�̂

r5
; (4.29)

and (4.27). Then we obtain

Îbulk ¼ �3�=4�2; (4.30)

and from (4.25),

� ¼ �2

2
Îbrane; (4.31)

where we have used the relation � ¼ 4�. Equation (4.31)
shows that � is just (the value of) the brane action density
times the inverse square of the Planck massMpl. The brane

action, which is a world-volume action of the D-brane,
consists of two terms. Equation (4.11) shows that the first

term (� IðNSÞbrane) is the Dirac-Born-Infeld action representing

the coupling of D-brane to the closed string fields G	
 and

� of the NS-NS sector. The second term (� IðRÞbrane) is an R-

R counterpart of the first term since it represents a coupling
of D-brane to the R-R four-form A4. We need this term if
the D3-brane is a BPS state.

IðNSÞbrane contains the tension of the D3-brane Tð�Þ ¼
T0e

�� þ �vacð�Þ, where �vacð�Þ takes the form
�vacð�Þ ¼ P1

n¼0 �ne
n�. Then from (4.11) and (4.31) [and

assuming that e2B �Oð1Þ], the value of � arising from �vac

in IðNSÞbrane is expected to be �	4=M2
pl, where 	 is the large-

momentum cutoff at which the supersymmetry is broken.

So if we take 	� TeV (also see footnote 4), 	4=M2
pl will

be of an order ðTeVÞ4=ð1019 GeVÞ2, which is too large to
be a correct value for the present �. In our case, however,

there is another contribution to � coming from IðRÞbrane which

is also expected to be of the same order as that of the first
term. So we expect that the near-vanishing � can be
obtained if these two terms cancel each other. In the next
section we will show that this is indeed the case.

V. VANISHING � AND THE SUPERSYMMETRY
OF THE BULK REGION

In the previous section we have found that the four-
dimensional cosmological constant � is given by Ibrane
times a constant ð1=M2

plÞ½
R
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p ��1. But Ibrane con-

sists of two parts, IðNSÞbrane and IðRÞbrane, which suggests that the

vacuum energies on the brane must also appear in two
types, NS-NS type and R-R type. In this section we will
show that � is forced to vanish by field equations and the
vanishment of � requires that the two types of vacuum
energies on the brane cancel to all orders of gs. Also the
cancelation between NS-NS and R-R vacuum energies
leads to a constant dilaton, � ¼ 0, in the bulk region.
So the supersymmetry is not broken in the bulk region
even under vacuum fluctuations on the brane.

A. case I

To start the discussion let us go back to the field
equations (4.20)–(4.23), and consider the simplest situation
in which we have only a background conifold geometry.
Since D3-brane has not been introduced yet, the tension
and charge both vanish: Tð�Þ ¼ 	ð�Þ ¼ 0 (qD ¼ 0), and
the field equations are trivially solved by7

RðrÞ ¼ r; �̂ðrÞ ¼ BðrÞ ¼ 0; � ¼ 0: (5.1)

So from (4.3) and (4.19) [also see (4.9)] one obtains ds210 ¼
ds20123 þ ds2conifold with � ¼ 0, which coincides with the

given configuration as it should be.
The configuration of the case I preserves some unbroken

supersymmetry because the dilaton � (as well as other
fields) vanishes there. In ten-dimensions the supersymme-
try variation of the dilatino always contains a first deriva-
tive of �. In the absence of two-form gauge fields (and
in the absence of R-R zero-form for the type IIB)8 the

7Note that (5.1) is the only solution to (4.20)–(4.23), which
accords with an assumption that the background internal space
around the D3-brane is a conifold (RðrÞ ¼ r) of the Calabi-Yau
threefold. Indeed in Sec. VIIIC it is precisely shown that for the
given action (8.14) � must satisfy � ¼ 0. Since (4.10) is a simple
case of (8.14) the corresponding solution of (4.10) must also
satisfy � ¼ 0. So (5.1) is the only correct solution to the given
field equations.

8This, together with H3 ¼ 0, precisely coincides with our
configuration under discussion.
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variations of the fermion fields are given, to a leading order
in gs, by

9

�c m ¼ Dm�
 1

8
�npHmnp�;

��� ¼
�
��m@m�� 1

12
�mnpHmnp

�
�;

(5.2)

where cM and �� are gravitino and dilatino, respectively.

Thus in the absence of H3 the supersymmetry is unbroken
when � is constant.10 As a result the case I preserves 1=4
supersymmetry because the background is compactified on
a Calabi-Yau. Thus for instance in the type IIB the unbro-
ken supersymmetry of the case I will be N ¼ 2, d ¼ 4
after reduction.

B. case II

Next we introduce a D3-brane at the conifold singularity,
but the quantum corrections (the vacuum energy) are still
neglected at this point. In the case II the tension and charge
are respectively given by Tð�Þ ¼ T0e

�� and 	ð�Þ ¼ 	0,
and therefore qD ¼ q0 where q0 ¼ 2�2

10gs	0=VolðBÞ. The
solution to (4.20) and (4.21) however takes the same form as
that of the case I because (4.20) does not include any Tð�Þ
or 	ð�Þ (and qD) term, and the right-hand side of (4.21)
vanishes for the given Tð�Þ and 	ð�Þ. So except for BðrÞ,
the solution RðrÞ ¼ r, �̂ðrÞ ¼ 0 and � ¼ 0 of the case I
will still be the right solution for the case II either as long as
the equations

r2 ln�� 2
q20
r10

� ¼ 2cB�
6ð~rÞ; (5.3)

and �
d

dr
ln�

�
2 � 4

q20
r10

� ¼ 0; (5.4)

which follow (after setting RðrÞ ¼ r, �̂ðrÞ ¼ 0 and � ¼ 0)
from the remaining equations (4.22) and (4.23), admit a

nonsingular solution. In (5.3) and (5.4), � ¼ e4B�2�̂ (with

�̂ ¼ 0) and

cB ¼ 2�2
10gs�

1=2ð0ÞT0: (5.5)

The solution satisfying both (5.3) and (5.4) can be ob-
tained as follows. The solution to (5.3) takes the form [20]

�ðrÞ ¼ a0
½X� X�1�2 ; ðX ¼ e�ð�=4Þ½c0þðr0=rÞ4�Þ; (5.6)

where c0 and r0 are constants, and (assuming that �> 0)

a0 ¼ 4�2r80
q20

; � ¼ cB
r40VolðBÞ

: (5.7)

But since �ðrÞ ’ a0X
2 ’ a0 exp ½�ð�=2Þðr0=rÞ4� as r ! 0,

�ðrÞ goes to zero as r ! 0, and from (5.5) one finds that cB
and consequently � both vanish. Since � vanishes, (5.6)
reduces to

�ðrÞ ¼
�
1þ Q0

r4

��2 � H�2
D ;

�
Q0 � q0

4

�
; (5.8)

where c0 and r0 have been so adjusted as to satisfy the
asymptotic requirement �ðrÞ ! 1 as r ! 1. Note that (5.8)
still satisfies the boundary condition �ðrÞ ! 0 as r ! 0.
Equation (5.8) is obviously the harmonic function for the

D3-brane sinceQ0 is proportional to gs. Indeed it coincides
with the usual harmonic function for the D3-brane if we
take Q0 ¼ gs�

02. Also one can check that (5.8) satisfies the
remaining equation (5.4) as well. After all, the solution for
the case II, which is a classical (on-shell) solution for
the configuration of D3-brane located at the conifold
singularity, is summarized as

RðrÞ ¼ r; e�̂ðrÞ ¼ 1;

eBðrÞ ¼
�
1þ Q0

r4

��1=2
; � ¼ 0:

(5.9)

The metric is therefore written as

ds210 ¼ H�1=2
D ½�dt2 þ d~x23� þH1=2

D ½dr2 þ r2d�2
1;1�;

(5.10)

which is the usual D3-brane metric and coincides with
(2.13) of Sec. II as well.

Also since� vanishes the two terms IðNSÞbrane and I
ðRÞ
brane must

cancel to satisfy � ¼ 0. This is indeed the case and we can
show it as follows. For Tð�Þ ¼ T0e

�� and 	ð�Þ ¼ 	0,
Ibrane is simply

Ibrane¼
�Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p �Z
r5dr�5

�
� 1

gs
�1=2T0þ	0


�
�6ð~rÞ:
(5.11)

But using (4.29) and (5.9) one finds that


ðrÞ ¼ 1

gs

�
1þQ0

r4

��1 ¼ 1

gs
�1=2ðrÞ: (5.12)

So (5.11) vanishes if T0 ¼ 	0. Namely � ¼ 0 is automati-
cally satisfied if the D3-brane is a BPS state. This agrees
with the requirement that the nonzero cosmological
constant on the D-brane should arise from the quantum
fluctuations, not from the D-brane itself. Since we have
ignored the quantum corrections in the case II, � and
consequently � must vanish as in (5.9).
The case II preserves some unbroken supersymmetry

because the dilaton is constant, and it would be half of
that of the case I because the D3-brane will reduce the

9In the type I the terms with Hmnp in both �c m and ��� are
absent. And in the heterotic type the Hmnp term in �c m appears
with the spin connection term which however vanishes as �0 ! 0.
10It is well known [18] that in the type IIB supergravity the
supersymmetry requires A ¼ �B, and therefore �̂ ¼ 0
from (4.9).
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supersymmetry into a half. Thus the unbroken supersym-
metry expected for the type IIB will be N ¼ 1, d ¼ 4
after reduction.

C. case III

In the case III we still consider the configuration of
D3-brane located at the conifold singularity, but now the
tension and charge of the D3-brane include quantum
correction terms: Tð�Þ ¼ T0e

�� þ �vacð�Þ and 	ð�Þ ¼
	0 þ �	ð�Þ. Since sum of two terms of Ibrane vanishes at
the tree level of the D3-brane (case II), the substantial
contribution to � must come from the quantum correction
terms,

� ¼ �2

2
½�QI

ðNSÞ
brane þ �QI

ðRÞ
brane�=

�Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p �

: (5.13)

Though �QI
ðNSÞ
brane and �QI

ðRÞ
brane in (5.13) are caused by the

quantum fluctuations, they themselves are classical
(on-shell) quantities just like the vacuum energy densities
�vac and �	. �vac and �	 are both macroscopic quantities
obtained by integrating local fluctuations all over the
four-dimensional spacetime. So they are somethings like
spacetime averages of the local fluctuationswhich aremicro-
scopic quantum phenomena. Since they are all on-shell
quantities they must satisfy the field equations through �.
As mentioned in Sec. IV the change in � caused by �vac in

�QI
ðNSÞ
brane is expected to be of anorder�ðTeVÞ4=ð1019 GeVÞ2,

and this must be canceled anyway by the change of the

second term, �QI
ðRÞ
brane, in order to obtain near-vanishing �

(more precisely it is �ðmilli-eVÞ4=ð1019 GeVÞ2Þ. �QI
ðRÞ
brane

due to quantum fluctuations really occurs as follows.

At the classical level IðRÞbrane is given by an electric cou-

pling of the R-R four-form to the four-dimensional world

volume of the D3-brane: IðRÞbrane ¼ 	0

R
A4. But this can be

rewritten as

IðRÞbrane ¼
1

4!

Z
d4xA	0	1	2	3

J	0	1	2	3 ; (5.14)

where J	0	1	2	3 is the world volume current density of
the D3-brane,

J	0	1	2	3 ¼ 	0�
�0�1�2�3

�
@X	0

@x�0

�
� � �

�
@X	3

@x�3

�
: (5.15)

At the classical level J	0	1	2	3 is just a solitonic current
density, J

	0	1	2	3

sol , representing classical world volume

dynamics of D3-brane. In that case X	ðxÞ’s in (5.15) stand
for classical fields, X	

cl ðxÞ, defined on the world volume of

the D3-brane, and for the embedding X	
cl ðxÞ ¼ x	, J0123sol is

simply	0. At the quantum level, however, X	ðxÞ’s include
fluctuations and we have to separate each of them into a
classical part and the fluctuation, X	 ¼ X	

cl þ X	0. By this
separation J	0	1	2	3 can be written as J	0	1	2	3 ¼
J	0	1	2	3

sol þ h�	0	1	2	3
vac i where J	0	1	2	3

sol is the classical

current density as mentioned above, while h�	0	1	2	3
vac i is

an R-R counterpart of �vac representing quantum correc-
tions arising from the fluctuations on the D3-brane. Finally
denoting J0123sol and h�0123

vac i by 	0 and �	ð�Þ, respectively,
one can rewrite (5.14) as

IðRÞbrane ¼
�Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p �Z
r5dr�5	ð�Þ
ðrÞ�6ð ~rÞ; (5.16)

which is just the second term of (4.11) and where 	ð�Þ ¼
	0 þ �	ð�Þ. Equation (5.16) shows that �QI

ðRÞ
brane is due to

�	ð�Þ, the R-R counterpart of �vac.
Let us go back to the field equations (4.20)–(4.23), where

Tð�Þ and 	ð�Þ are now given by Tð�Þ ¼ T0e
�� þ �vac

and 	ð�Þ ¼ 	0 þ �	ð�Þ. The field equation (4.20) does
not change and still can be solved by RðrÞ ¼ r and � ¼ 0.
So � must vanish by (4.20). Upon setting RðrÞ ¼ r and
� ¼ 0 the remaining field equations can be recast into

r2�̂ ¼ �c��
6ð~rÞ; (5.17)

r2 ln�� 2
q2D
r10

� ¼ 2ðcB þ �cBÞ�6ð ~rÞ; (5.18)

�
d

dr
ln�

�
2 � 4

q2D
r10

�þ 4

�
d�̂

dr

�
2 ¼ 0; (5.19)

where � ¼ e4B�2�̂ and cB ¼ 2�2
10gs�

1=2ð0ÞT0 as before

but �cB and �c� are

�cB ¼ 2�2
10gs�

1=2ð0Þe��vacj�¼�ð0Þ;

�c� ¼ 2�2
10g

2
s

�
1

gs
�1=2ð0Þe�

�
�vac þ @�vac

@�

�

� @�	

@�

ð0Þ

�
�¼�ð0Þ

: (5.20)

Equations (5.18) and (5.19) have the same form as (5.3) and
(5.4) except that the constants q0 and cB are replaced by qD
and cB þ �cB. Using cB þ �cB ! 0, one obtains

�ðrÞ ¼
�
1þ QD

r4

��2
;

�
QD � qD

4

�
; (5.21)

and from (4.29),


ðrÞ ¼ 1

gs

�
1þ QD

r4

��1 ¼ 1

gs
�1=2ðrÞ: (5.22)

We have just seen that the condition � ¼ 0 is still
maintained in case III as well. This means that the field

equation (4.20) forces �QI
ðNSÞ
brane and �QI

ðRÞ
brane to adjust them-

selves to cancel so that � vanishes even at the quantum
level. Omitting the tree-level terms in (5.11), one finds

that Ibrane, which now consists of �QI
ðNSÞ
brane and �QI

ðRÞ
brane, is

given by
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Ibrane ¼
�Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p �Z
r5dr�5

�
� 1

gs
�1=2e��vac

þ �	


�
�6ð ~rÞ: (5.23)

So the condition � ¼ 0 requires that

1

gs
�1=2e��vac ¼ �	
; (5.24)

which in turn implies

e��vac ¼ �	 (5.25)

by (5.22). Further, using the perturbative expansions
�vac ¼ P1

n¼0 �ne
n� and �	 ¼ P1

n¼1 	ne
n� one can

express (5.25) in terms of the coefficients �n and 	n as

�n ¼ 	nþ1; (5.26)

where n represents non-negative integers. Equation (5.26)
is a result of � ¼ 0 and it shows that the two types
of vacuum energies on the brane must cancel to all orders
of gs.

It is well known [21] that (5.26) is really satisfied for
n ¼ 0, where �0 and 	1 are identified as the NS-NS and
R-R sector one-loop amplitudes of the unoriented string
theory: �0 � iANS=V10 and 	1 ��iAR=V10 with A
( � ANS þAR) given by

A ¼
Z
T2

d2�

4�2
TrNSþRf�ðF; ~FÞqL0 �q

�L0g (5.27)

for the closed string, and similarly for the open string.
In (5.27), q ¼ exp ð2�i�Þ and �ðF; ~FÞ is an appropriate

Gliozzi-Scherk-Olive projection of the given theory. For

instance for type IIB it will be �ðF; ~FÞ ¼ 1þð�1ÞF
2

1þð�1Þ ~F
2 .

The amplitude A vanishes for the BPS states and the
cancelation between two sectors is achieved by Jacobi’s
abstruse identity. In fact (5.26) [and equivalently (5.25)]
can be regarded as a restatement of the BPS-condition, and
consequently some spacetime supersymmetry is still ex-
pected in the case III. Note that �c� in (5.20) vanishes by
(5.24) because the right-hand side of (5.20) is just a func-

tional� derivative of (5.24), and therefore we have �̂ ¼ 0
from (5.17) as in the case II. The unbroken supersymmetry
of the case II is still preserved in the case III as well. The
vacuum fluctuations on the D-brane do not break the
supersymmetry of the bulk region.

VI. SUPERSYMMETRY BREAKING

In the previous section we have seen that vacuum fluc-
tuations on the BPS D3-brane do not break the supersym-
metry of the bulk region because the dilaton remains a
constant there even under fluctuations on the D3-brane.
Such a result seems to be natural for the BPS state since in
that case the right-hand side of the field equation for �

vanishes by the cancelation between NS-NS and R-R
sector vacuum energies on the brane. Sowe have a constant
� and hence an unbroken supersymmetry. This, however,
is not to be the case anymore when we go to the brane
region. In this section we will show that the d ¼ 4 super-
symmetry is essentially broken in the brane region due to
the gauge symmetry breaking of the R-R four-form arising
at the quantum level.

A. Gauge symmetry breaking induced
by quantum fluctuations

The total action (4.1) plus (4.2) remains invariant under
the gauge transformation A4 ! A4 þ �A4 with �A4 ¼ d�3

where �3 is an arbitrary three-form. Ibulk is invariant
because so is F5 in Ibulk. Ibrane is also invariant because

the variation �IðRÞbrane vanishes for �A4 ¼ d�3: �IðRÞbrane ¼
	0

R
@� �3 ¼ 0 where @� is the boundary of the four-

dimensional spacetime.11 But this is valid only at the

classical level. When we go up to quantum level IðRÞbrane is

not gauge invariant anymore though Ibulk still remains gauge

invariant. Note that IðRÞbrane can be written as (5.14) and where

J	0	1	2	3 consists of two parts, J	0	1	2	3

sol and h�	0	1	2	3
vac i.

The current density J	0	1	2	3

sol satisfies @	0
J	0	1	2	3

sol ¼ 0

because it is a tree-level (on-shell) quantity. But �
	0	1	2	3
vac

does not necessarily satisfy h@	0
�
	0	1	2	3
vac i ¼ 0 because it

is an off-shell quantity arising from the quantum fluctua-
tions. Thus the total J	0	1	2	3 is not locally conserved at the
quantum level and the gauge transformation �A	0	1	2	3

¼
4@½	0

�	1	2	3� induces a nonzero variation of IðRÞbrane.

Integrating by parts one obtains

�IðRÞbrane ¼ � 1

3!

Z
d4x�	1	2	3

h@	0
�	0	1	2	3
vac i; (6.1)

and since h@	0
�	0	1	2	3
vac i is nonzero, (6.1) does not gener-

ally vanish at the quantum level. �IðRÞbrane, however, vanishes

if� (and therefore �	ð�Þ) is independent of x. In terms of

�	ð�Þ �IðRÞbrane can be rewritten as

�IðRÞbrane ¼
Z

d4x�	ð�Þ@½0�123�; (6.2)

and (6.2) vanishes if �	ð�Þ is independent of x because in
that case the integrand becomes a total derivative in x.
In addition to (6.2) there is another important variation

of IðRÞbrane which plays a crucial role in addressing the

cosmological constant problem. To find its explicit form

rewrite it as �IðRÞbrane ¼ 	0

R
d�3 and take an ansatz

�3 ¼ FðyÞ ffiffiffiffiffiffiffiffiffiffi�g4
p

dx1 ^ dx2 ^ dx3; (6.3)

where FðyÞ is an arbitrary function of the internal coordi-
nates ym. Equation (6.3) is the most appropriate ansatz for

11Here we assumed that the four-dimensional spacetime has no
boundary.
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�3, which accords with (4.5). Taking a derivative to�3 one
obtains

�IðRÞbrane ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p
fmðyÞJm123

þ 3

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p

HFðyÞJ0123; (6.4)

where fmðyÞ (� @mFðyÞ) represents �Am123=
ffiffiffiffiffiffiffiffiffiffi�g4

p
, and

Hð� ð2=3Þ@0 ln ffiffiffiffiffiffiffiffiffiffi�g4
p Þ is the Hubble constant of the

four-dimensional spacetime ds24 ¼ �dt2 þ eHtd ~x3, which
therefore vanishes for � ¼ 0 because � / H2. Also in (6.4)
Jm123 is defined by

Jm123 ¼ 	0�
�0�1�2�3

�
@Ym

@x�0

�
^
�
@X1

@x�1

�
^
�
@X2

@x�2

�
^
�
@X3

@x�3

�
;

(6.5)

as in J0123.
At the classical level Jm123 is simply Jm123

sol where Ym and

X	 are classical fields, and it vanishes for the embedding
X	ðxÞ ¼ x	 because @Ym=@x�0 ¼ 0. So the nonvanishing
contribution to Jm123 comes from the quantum excitations
h�m123

vac i. Denoting h�m123
vac i by �	m

T ð�Þ, one can rewrite
(6.4) as

�IðRÞbrane ¼
�Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p �Z
r5dr�5�	

m
T ð�ÞfmðyÞ�6ð~rÞ;

(6.6)

where we have omitted the second term since we always
consider the configuration with � ¼ 0 as required by (4.20).
By (6.6) the field equations necessarily acquire extra terms.
But in effect only (4.21) among (4.20)–(4.23) is revised by

the additional contribution �IðRÞbrane. The other equations

(when expressed in terms of �ð¼ e4B�2�̂Þ) remain un-
changed as one can check from the total brane action

Ibrane þ �IðRÞbrane. The revised field equation is

r2�̂ ¼ 2�2
10g

2
s

�
e2B

�
Tð�Þ þ @Tð�Þ

@�

�
� @	ð�Þ

@�

ðrÞ

� @�	m
T ð�Þ

@�
fmðyÞ

�
�6ð~rÞ; (6.7)

and similarly for r2B. Also the total brane action is

Ibrane ¼
�Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p �Z
r5dr�5½�e2BTð�Þ þ	ð�Þ
ðrÞ

þ �	m
T ð�ÞfmðyÞ��6ð ~rÞ: (6.8)

The last term of (6.7) and (6.8) will act as a supersym-
metry breaking term (see Secs. VI C and VIIA). Since it
occurs as a result of the gauge symmetry breaking of A4,
we may say that the primary cause of the supersymmetry
breaking is a five-form anomaly in a sense. But this is not
the usual gravitational anomaly for the five-form. In the
usual gravitational anomaly the five-form acts as a source

for the gravity. But in here the five-form plays the role of
the gauge field coupled to the string fields on the D3-brane
which now act as a source for the five-form. The gauge
symmetry breaking of A4 does not occur in the bulk region,
so the bulk region does not suffer from this anomaly. From
all this the anomaly associated with the supersymmetry
breaking may have to be understood as a composition of
the various anomalies for the string fields on the D3-brane
which couple to A4. The integration of these anomalies
over the brane region turns out to vanish by the condition
� ¼ 0 (see Sec. IX). So the above result does not mean that
the theory with broken supersymmetry becomes anomalous.
In general the ten-dimensional superstring theory is known
to be anomaly free [22,23]. We will get back to this in
Sec. IX.

B. D3-brane with a nonzero thickness

So far we have assumed that the D3-brane located at the
conifold singularity has a zero thickness. But in reality
D3-brane has its own thickness and the case III may not
be suitable for a real model. For instance in (4.27) Mpl

diverges in the thin brane limit because e�2B ! 1 as r!0
in the case III of the previous section. By the same reason

�QI
ðNSÞ
brane following from (4.11) with Tð�Þ ¼ T0e

�� þ �vac

simply vanishes in the thin brane limit. This is not realistic

because �QI
ðNSÞ
brane per unit volume of the four-dimensional

spacetime must be at least of an order �ðTeVÞ4 as
mentioned in Sec. IV. These unrealistic situations can be
avoided if we allow for nonzero thickness to the brane
because in that case the integration region does not contain
the (neighborhood of the) point ~r ¼ 0.
More importantly the supersymmetry breaking with

vanishing � can be easily understood if we allow for
nonzero thickness to the brane, as we shall see in this
section a little later on. The scenario of nonzero thickness
of the D-brane associated with the cosmological constant
problem has already been studied in the literature [16,24],
where they argued that a tiny cosmological constant can be
achieved if one assumes that the cosmological constant
receives contributions only from the vacuum energy of the
bulk fields. In the followings we will also assume that the
D3-brane at the conifold singularity has a nonzero thick-
ness rB, though the entire structure of the mechanism is
totally distinguished from that of [16,24]. In this setup the
delta-function source terms of the field equations vanish
outside the brane, while they do not inside the brane. In
order to see it explicitly, we divide the whole transverse
space into a brane region (0 � r < rB) and bulk region
(r > rB), and modify the delta function �6ð~rÞ into

�6ð~rÞ ¼
(
�0 for 0 � r < rB

0 for r > rB;

�
�0 � 6

r6B

1

VolðBÞ
�
:

(6.9)
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C. Field equations and their solutions
in the brane region

In the brane region the whole field equations with delta-
function sources must be revised by (6.9). First, the field
equation for 
ðrÞ must be recast into

1

r5
d

dr

�
e2�̂�4Br5

d


dr

�
¼ 2�2

10�0	ð�Þ; (6.10)

which, upon integration
R
r5dr�5, gives

@r
 ¼ 1

gs

qinðrÞ
r5

�;

�
qinðrÞ � c0

Z
r5dr	ð�Þ

�
; (6.11)

where � ¼ e4B�2�̂ as before and c0 ¼ 2�2
10gs�0. Using

(6.11) one obtains from (6.7) and the remaining equations
in (4.12)–(4.15):

r2�̂ ¼ c0�
1=2e�

�
�vac þ @�vac

@�

�

� c0gs

�
@�	

@�

þ @�	m

T

@�
fm

�
; (6.12)

r2 ln�� 2
½qinðrÞ�2

r10
� ¼ 2c0�

1=2T0 þ 2c0�
1=2e��vac;

(6.13)

�
d

dr
ln�

�
2 � 4

½qinðrÞ�2
r10

�þ 4

�
d�̂

dr

�
2 ¼ 0; (6.14)

where the condition � ¼ 0 with RðrÞ ¼ r is always under-
stood in the above and in what follows.

The above equations are highly nonlinear in e� and may
be solved perturbatively (order by order) in gs. Now we

expand e�̂ and �1=2 as

e�̂ ¼ e�̂ð0Þ ð1þ gsUð1Þ þ g2sUð2Þ þ � � �Þ; (6.15)

�1=2 ¼ �1=2
ð0Þ ð1þ gsVð1Þ þ g2sVð2Þ þ � � �Þ; (6.16)

and from 	ð�Þ ¼ P1
n¼0 	ne

n� we can write qinðrÞ as

qinðrÞ ¼ 1

6
c0	0r

6 þ gsc0	1

Z
r5dre�̂ð0Þ þ � � � : (6.17)

Finally from (6.11) and (6.17),

@r
¼ c0	0

6gs
r�ð0Þ þc0

6
r�ð0Þð	1þ2	0Vð1ÞÞþ��� : (6.18)

1. Tree level

At the tree level of the D3-brane, the vacuum energy
terms �vac, �	ð�Þ, and �	m

T ð�Þ all vanish, and Tð�Þ and
	ð�Þ are simply given by Tð�Þ ¼ T0e

�� and 	ð�Þ¼	0.
The tree-level equations are the lowest-order (order of g0s)
equations of (6.12)–(6.14). They are

r2�̂ð0Þ ¼ 0; (6.19)

r2 ln�ð0Þ � 2
q20
r12B

r2�ð0Þ ¼ 2c0T0�
1=2
ð0Þ ; (6.20)

�
d

dr
ln�ð0Þ

�
2 � 4

q20
r12B

r2�ð0Þ þ 4

�
d�̂ð0Þ
dr

�
2 ¼ 0; (6.21)

where q0 � 1
6 c0r

6
B	0.

The first equation is trivially solved by �̂ð0Þ ¼ 0, but the
second equation has a nontrivial solution

�1=2
ð0Þ ¼ cH

r2
;0

@cH ¼ 18

c0	0

�
T0

	0

�24�1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

9

�
	0

T0

�
2

s 3
5
1
A

(6.22)

for 	0 � 0. Substituting (6.22) into (6.21) shows that 	0

must be related to T0 by 	0 ¼ T0. This accords with the
result of the case II of Sec. V where the field equations
require that the D3-brane should be a BPS state. Indeed one
can check that (6.20) and (6.21) do not allow for non-BPS

solution with 	0 ¼ 0 for the given value of �̂ ¼ 0 as it

should be. Thus �1=2
ð0Þ is finally given by12

�1=2
ð0Þ ¼ � 12

c0	0

1

r2
; ð	0 ¼ T0Þ; (6.23)

and from (6.18) 
ðrÞ is now written as


 ¼ 1

g2s
½
ð0Þ þ gs
ð1Þ þ � � ��; (6.24)

where 
ð0Þ and 
ð1Þ are defined, respectively, by


ð0Þ ¼ � 12

c0	0

gs
r2

;


ð1Þ ¼ � 12gs
c0	0

��
	1

	0

�
1

r2
� 4

Z dr

r3
Vð1Þ

�
:

(6.25)

Brane action also can be expressed in a series form.
From (6.8) and the given expansions of the previous
functions, one can write Ibrane as

Ibrane ¼ 1

g2s
½Ið0Þbrane þ gsI

ð1Þ
brane þ � � ��; (6.26)

where

Ið0Þbrane ¼ �0

�Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p �Z

r5dr�5½�gsT0�
1=2
ð0Þ þ	0
ð0Þ�

(6.27)

is the tree-level action of the order g0s , and

12The solution with minus sign in front of the square root in
(6.22) does not satisfy (6.21).
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Ið1Þbrane ¼�0

�Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p �Z

r5dr�5½�gs�
1=2
ð0Þ ðVð1ÞT0þ�0Þ

þ	0
ð1Þ þ	1
ð0Þ þ
m
1 f

ð0Þ
m � (6.28)

is the one-loop action of the order g1s , where the integrationR
r5dr�5 is taken over the brane region and we have set

�	m
T ð�Þ ¼ X1

n¼1


m
n e

n�;

fm ¼ 1

g2s
½fð0Þm þ gsf

ð1Þ
m þ � � ��;

(6.29)

as in �	ð�Þ and 
ðrÞ. The condition � ¼ 0 requires that

all IðnÞbrane’s in (6.26) should vanish respectively. At the tree

level, Ið0Þbrane vanishes if 	0 ¼ T0 because �1=2
ð0Þ and 
ð0Þ

satisfy the relation gs�
1=2
ð0Þ ¼ 
ð0Þ by (6.23) and the first

equation of (6.25). Thus the condition � ¼ 0 at the tree
level requires that the D3-brane should be a BPS state as in
the previous section.

2. One-loop level

One-loop level equations can be obtained by collecting
g1s-order terms in (6.12)–(6.14). They are

r2Uð1Þ ¼ c0
gs

ð�0gs�
1=2
ð0Þ �	1
ð0ÞÞ � c0

gs

m
1 f

ð0Þ
m ; (6.30)

r2Vð1Þ � c20	
2
0

18

�
	1

	0

þ Vð1Þ
�
r2�ð0Þ ¼ c0ðT0Vð1Þ þ �0Þ�1=2

ð0Þ ;

(6.31)

�
d

dr
ln�ð0Þ

��
dVð1Þ
dr

�
� c20	

2
0

18

�
	1

	0

þ Vð1Þ
�
r2�ð0Þ ¼ 0:

(6.32)

The first two terms on the right-hand side of (6.30) cancel
by (6.23) and (6.25) for �0 ¼ 	1, and (6.30) reduces to

r2�̂ ¼ �c0�
ð1Þ
T ; (6.33)

where we have used the fact that �̂ ¼ gsUð1Þ in the

first-order (one-loop level) approximation, and �ð1Þ
T is

defined by

�ð1Þ
T ¼ 
m

1 f
ð0Þ
m : (6.34)

�ð1Þ
T is one of the (one-loop order) vacuum energy density

whose distribution is given by fð0Þm . It originates from the
quantum excitations with components along the transverse
directions and becomes the primary cause of the super-
symmetry breaking. Were it not for this term, the super-
symmetry would be unbroken for �0 ¼ 	1, which is the

n ¼ 0 case of (5.26). But since �ð1Þ
T � 0 in general, the

cosmological constant problem requires that the condition

� ¼ 0 must be compatible with the nonzeroness of �ð1Þ
T .

We will be back to this in Sec. VII A.
The solution to the remaining equations (6.31) and

(6.32) is found to be

Vð1Þ ¼ �	1

	0

�
1þ r20

r2

�
; (6.35)

where r0 is an arbitrary constant and the condition
�0 ¼ 	1 is also required by (6.32). The solution (6.35)
is valid for any Uð1Þ because (6.31) and (6.32) do not

depend on Uð1Þ. This then implies that both

supersymmetry-broken and unbroken solutions described
by the same ð�ð0Þ; Vð1Þ; 
ð0Þ; 
ð1ÞÞ are equally qualified for a

solution to the field equations. This a little unexpected
result is due to the fact that in the g1s-order approximation

the Uð1Þ-terms in e� and ð@�̂Þ2 of (6.13) and (6.14) are

already of an order g2s and do not appear in the g1s-order
equations of (6.13) and (6.14). The same thing also happens
in the higher-order equations. In the gns -order equations
UðnÞ appears as of an order gnþ1

s in e� and similarly as of an

order g2ns in ð@�̂Þ2, respectively. SoUðnÞ does not appear in
the nth order equations of (6.13) and (6.14), and these
equations admit both solutions (the one with UðnÞ ¼ 0
and the other with UðnÞ � 0) to a correct solution.

VII. ADDRESS THE COSMOLOGICAL
CONSTANT PROBLEM

In the previous section we have considered a configura-
tion of D3-brane which possesses its own thickness, and
then found solutions to the field equations in the brane
region. So in the next we may have to work out the field
equations in the bulk region. However, we do not need to
do this. The field equations and their solutions in the bulk
region are already found in the case III of the Sec. V. The
supersymmetry is unbroken and � ¼ 0 is automatically
satisfied in the bulk region. So we do not need to know
about the solutions of the bulk region anymore. The solu-
tions of the brane region obtained in Sec. VIC is sufficient
enough to address the cosmological constant problem.

A. Supersymmetry breaking with vanishing �

In Sec. VIC we have seen that the tree-level action Ið0Þbrane

vanishes for 	0 ¼ T0, and the field equation for �̂ pos-
sesses a supersymmetry breaking term at the one-loop level

[see (6.33)]. Now � ¼ 0 requires13 that Ið1Þbrane must also

vanish. To see this, we substitute (6.35) into the second
equation of (6.25) to get


ð1Þ ¼ 12gs
c0	0

�
	1

	0

�
1

r2

�
1þ r20

r2

�
¼ gs�

1=2
ð0Þ Vð1Þ: (7.1)

13Recall that � must vanish by the condition � ¼ 0 which is
required by (4.20).
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Using (7.1) and gs�
1=2
ð0Þ ¼ 
ð0Þ one finds that all but the last

term in (6.28) cancel out for	0 ¼ T0 and	1 ¼ �0, and we
are left with

Ið1Þbrane ¼ �0

�Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p �Z

r5dr�5

m
1 f

ð0Þ
m : (7.2)

Thus when we consider up to the one-loop level, � can be
written as

� ¼ �2

2
�0

Z
r5dr�5�

ð1Þ
T ; (7.3)

where the integration is taken over the whole brane region
of the transverse space.

Now the point of the cosmological constant problem can
be summarized as whether we can find a nonzero function

�ð1Þ
T satisfying

�0

Z r¼rB

r¼0
r5dr�5�

ð1Þ
T � QT

total ¼ 0; (7.4)

where QT
total represents the total vacuum energy (per unit

volume of the four-dimensional spacetime) of the brane
region which originated from the excitation h�m123

vac i. For
such a function �ð1Þ

T , � vanishes by (7.4) because � is given
by � ¼ ð�2=2ÞQT

total, and the supersymmetry is broken by

(6.33) because �ð1Þ
T is a nonzero function, which is the very

configuration required by the cosmological constant prob-
lem. In the followings we will consider two different cases
of this configuration.

First we integrate (6.33) by
R
d6y

ffiffiffiffiffi
h6

p
and use the

divergent theorem to find @m�̂, where hmn represents the
conifold metric (2.2). We obtainI

SðymÞ
d�m

ffiffiffiffiffi
h6

p
hmn@n�̂ ¼ �c0

Z ym

0
d6y

ffiffiffiffiffi
h6

p
�ð1Þ
T ; (7.5)

where
H
SðymÞ d�m is a surface integral taken over the

hypersurface defined by a certain fixed ym. Now let us
find the configurations which respect (7.4) as required by
the cosmological constant problem.

1. Case I

Suppose that �̂ is only a function of r: �̂ ¼ �̂ðrÞ. In this
case (7.5) reduces to

@r�̂ ¼ � c0
r5

Z r

0
r5dr�ð1Þ

T ; (7.6)

and the natural solution �ð1Þ
T satisfying (7.4) may be

written as

�ð1Þ
T ¼ rB

r5

X1
n¼1

ðan cos knrþ bn sin knrÞ;
�
kn � 2�n

rB

�
;

(7.7)

where an and bn are arbitrary dimensionless constants.
Substituting (7.7) into (7.6) one obtains

@r�̂ ¼ c0
rB
r5

X1
n¼1

�
1

kn
ðbn cos knr� an sin knrÞ � bn

kn

�
:

(7.8)

Note that @r�̂ without the last (constant) term of (7.8) is
also a good solution to (6.33) corresponding to (7.7). This
solution is interesting because it diverges as r ! 0 mean-
ing that the magnitude of the supersymmetry breaking is
infinitely large at r ¼ 0.

2. Case II

Now suppose that h�m123
vac i contains the excitations along

the isometry directions c or �i: m ¼ c or �i. In this case

�ð1Þ
T becomes a function of c or �i (and necessarily of r

and �i). Choose m ¼ c for definiteness of our discussion

and suppose that �̂ is a function of c alone14: �̂ ¼ �̂ðc Þ.
For this �̂ (7.5) reduces to

hc c@c �̂ ¼ �c0
Z c

0
dc�ð1Þ

T ; (7.9)

and �ð1Þ
T satisfying (7.4) is now given by

�ð1Þ
T ¼ fðr; �iÞ

X1
n¼1

�
an cos

n

2
c þ bn sin

n

2
c

�
;

ð�2� � c � 2�Þ;
(7.10)

where an and bn are arbitrary dimensionless constants,
while fðr; �iÞ is an arbitrary function of r and �i with
length dimension minus four. Also fðr; �iÞ must satisfy
the condition that r5fðr; �iÞ be regular in the region
0 � r � rB.
For fðr; �iÞ ¼ �hc c =r20 (where r0 is an arbitrary

constant with length dimension one) (7.9) is solved by

@c �̂ ¼ �0

X1
n¼1

�
~an cos

n

2
c þ ~bn sin

n

2
c

�
;

�
�0 � c0

r20

�
;

(7.11)

and therefore

�̂ ¼ ��0

X1
n¼1

�
2

n

�
2
�
an cos

n

2
c þ bn sin

n

2
c

�
; (7.12)

where ~an � �ð2=nÞbn, ~bn � ð2=nÞan, and �0 is a dimen-
sionless constant of order g1s . Equation (7.11) still repre-

sents an arbitrary Fourier expansion because ~an and ~bn are
arbitrary as well as an and bn.

14In this case the c dependence of �̂ must be taken into
account when we solve the field equations (for �) with order
higher than g2s . But the field equations in Sec. VI C remain
unchanged because they are g0s- and g1s-order equations.
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3. Orbifold compactifications

There is a simple but important solution subject to (7.11).
The step function �ðc Þ defined by �ðc Þ ¼ þ1ð�1Þ for
0< c < 2� (� 2�< c < 0) can be represented by the

sine series (~an ¼ 0) of (7.11). In this representation, �̂ is

given by �̂ ¼ �0jc j and therefore e� ¼ gse
�0jc j. Now

rewrite (4.3) [with (4.9)] as

ds210 ¼ e�Bd~s2conifold þ eBg	
dx
	dx
; (7.13)

where d~s2conifold is defined by d~s
2
conifold ¼ e�̂ds2conifold. Then

taking �0 ¼ 1 (namely take r20 ¼ c0) one obtains

d~s2conifold ¼ ejc jds2conifold: (7.14)

Equation (7.14) represents a Z2-orbifolding where the
conifold metric is Z2-orbifolded along c with c ffi �c .
In the same way if we introduce a new step function
�ðc Þ ¼ þ1ð�1Þ for 0< c < 2�

N (� 2�
N < c < 0) mod

4� we can generalize (7.14) to the ZN-orbifolding gener-
ated by ðr; tmÞ, where r is the reflection c ffi �c and tm is
the translation c ffi c þ 4�

N m. We can do the same thing to

the case of m ¼ �i to orbifold the metric along �i.
Orbifold compactification generally reduces the number

of unbroken supersymmetries of the theory and in our case
one can expect that the ZN-orbifolding leads to a non-
supersymmetric theory because originally we had only
one (for instance N ¼ 1, d ¼ 4 for the type IIB) unbro-
ken supersymmetry which however would be broken by
theZN-orbifolding. Good examples are given in [25] where
the authors presented a nonsupersymmetric type II theory
compactified on orbifolded T6 in which the supersymmetry
is broken at the string scale but the quantum corrections
to the cosmological constant cancel. These examples may
explain why ds2conifold in ds210 should be replaced by

d~s2conifold in (7.13). However, the usual orbifolding methods

[26] including [25] are no more than a special way to
obtain nonsupersymmetric theories with vanishing �.
According to the discussion of Sec. VII A, the most general
way to obtain nonsupersymmetric theory with vanishing �

is to replace ds2internal ! e�̂ds2internal, where �̂ is a solution

to (6.33) and where �ð1Þ
T is subject to (7.4).

The whole discussion in Sec. VIIA is basically based on
the assumption that the D3-brane has a nonzero thickness

rB. Indeed in the case I, kn diverges as rB ! 0 and hence �̂

or its derivative @�̂ is not well defined in the thin-brane

(rB ¼ 0) limit. However, �̂ and the other functions of the
case II do not contain the parameter rB, and therefore taking
the limit rB ! 0 certainly makes sense in the case II. So the
whole discussions of this paper may not be restricted only
to the case of the brane with nonzero thickness.

B. Why broken supersymmetry?

In Sec. VIIA we have seen that the d ¼ 4 reduced
supersymmetry can be arbitrarily broken (while maintaining

� ¼ 0) if �ð1Þ
T is given by the Fourier expansions satisfying

(7.4). However, the Fourier expansions contain a special

case, �ð1Þ
T ¼ 0, in which the coefficients an and bn all

vanish. In this case � of course vanishes by (7.3), but at
the same time the d ¼ 4 supersymmetry also remains un-
broken. This is certainly not the case of our universe be-
cause the d ¼ 4 supersymmetry of our universe is believed
to be broken. So the question is that why our universe did
not make this relatively simple choice. Why did our uni-

verse choose a nonzero fð0Þm ? We may have to answer this
last question to make our discussion on the cosmological
constant problem complete.
To find the answer to this question, we go back to (4.10)

and (6.8) to calculate the minimum value of the total action
Itotal. The brane action (6.8) vanishes in any case by the
condition � ¼ 0 or (7.4). Also the first term of (4.10)
vanishes for � ¼ 0 since R4ðg	
Þ is proportional to �.

Thus the minimum value of Itotal is entirely determined by
the remaining terms of (4.10), which is just given by (4.26).
Since R6ðhmnÞ vanishes for RðrÞ ¼ r the total action
finally becomes

Itotal /
Z
d6y

ffiffiffiffiffi
h6

p �
�1

8
ð@ ln�Þ2þg2s

2
��1ð@
Þ2�1

2
ð@�̂Þ2

�
;

(7.15)

where the positive proportionality constant ½Rd4x
ffiffiffiffiffiffiffiffiffiffi�g4

p �=
2�2

10g
2
s has been omitted. Basically (7.15) vanishes by

(6.14) to all orders of gs. However, (6.14) is too restrictive
in the phenomenological sense because it was obtained
from the conventional action with the smallest number of
field contents. In more realistic extended models we need
more terms in the action. So if we can relax (6.14) at the
order of (and higher than) g2s the following discussion can
be made.
Equation (7.15) can be expanded in a power series of

gs as

Itotal /
Z

d6y
ffiffiffiffiffi
h6

p �
�ð0Þ þ gs�ð1Þ � g2s

2
ð@Uð1ÞÞ2 þ � � �

�
;

(7.16)

where

�ð0Þ ¼ � 1

8
ð@ ln�ð0ÞÞ2 þ 1

2g2s
ð@
ð0ÞÞ2��1

ð0Þ ; (7.17)

�ð1Þ ¼ � 1

2
ð@ ln�ð0ÞÞð@Vð1ÞÞ þ 1

g2s
��1
ð0Þ ½ð@
ð0ÞÞð@
ð1ÞÞ

� Vð1Þð@
ð0ÞÞ2�: (7.18)

In Sec. VIC we have seen that the nonsupersymmetric
solution described by ð�ð0Þ; Vð1Þ; 
ð0Þ; 
ð1ÞÞ with nontrivial

Uð1Þ is as equally qualified for a solution to the field

equations as the supersymmetric solution described by
the same ð�ð0Þ; Vð1Þ; 
ð0Þ; 
ð1ÞÞ but with vanishing Uð1Þ.
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Both of these solutions can satisfy the field equations
because �ð0Þ and Vð1Þ (and consequently 
ð0Þ and 
ð1Þ) are
entirely determined by the Uð1Þ-independent field equa-
tions, and on the other hand Uð1Þ is only determined by an

arbitrary fð0Þm through (6.30). Now one can check that both
�ð0Þ and �ð1Þ vanish for the given ð�ð0Þ; Vð1Þ; 
ð0Þ; 
ð1ÞÞ of
Sec. VIC. So the first two terms in (7.16) vanish for both
solutions, and Itotal is finally given by

Itotal / � g2s
2

Z
d6y

ffiffiffiffiffi
h6

p ð@Uð1ÞÞ2 þ � � � : (7.19)

The first term of (7.19) takes negative values for the
solutions with nontrivial Uð1Þ, while it vanishes for the

solution with vanishing Uð1Þ. Thus (7.19) suggests that

the solution with broken supersymmetry would be more
favored by the action principle than the other with unbro-
ken supersymmetry because the former takes lower values
of Itotal than the latter. But see also the fourth last paragraph
of Sec. IX.

VIII. WITH NONVANISHING FLUXES

So far in the previous sections we have considered the
conventional compactifications with H3 ¼ 0 and � ¼
constant to address the cosmological constant problem.
In the framework of these compactifications we found
that � adjusts itself to zero forced by field equations, while
the d ¼ 4 supersymmetry is broken in the brane region.
But the conventional compacitifications typically suffer
from having too many moduli whose vacuum expectation
values are not properly determined. To obtain more real-
istic phenomenological models we may need to generalize
our discussion to the case where we have some nontrivial
potential that can freeze these undetermined moduli. In this
section we will consider the flux compactifications where
the fluxes including H3 are all turned on to stabilize the
moduli of the Calabi-Yau threefolds.

A. Superpotential and scalar potential

Consider the low-energy effective action of the type IIB
string theory. In the Einstein frame it can be written in the
SLð2;RÞ invariant form,

IIIB ¼ 1

2�2
10

Z
d10x

ffiffiffiffiffiffiffiffi�G
p �

R10� ðr�Þ2
2ðIm�Þ2 �

1

2 � 3!
G3 � �G3

Im�

� 1

2 � 5!
~F2
5

�
þ 2

2�2
10

Z A4 ^G3 ^ �G3

4iIm�
; (8.1)

with

G3 ¼ F3 ��H3; � ¼ A0 þ ie��; (8.2)

and

~F ¼ F5 � 1

2
A2 ^H3 þ 1

2
B2 ^ F3;

	 ~F5 ¼ ~F5; (8.3)

where F3ð¼ dA2Þ is the R-R three-form field strength, and
� is the axion/dilaton. The G3 � �G3 term in (8.1) gives rise
to a potential for� and the complex structure moduli of the
Calabi-Yau threefold as we shall see below. The last term,
which is the Chern-Simons term, makes a contribution
to the total D3 charge, but is irrelevant to the Einstein
equation because it does not contain the metric.
In the presence of nonzeroG3, one can generate a super-

potential W for the Calabi-Yau moduli [27] as

W ¼
Z
M6

G3 ^�; (8.4)

where M6 is the Calabi-Yau threefold and � is its hol-
omorphic three-form. Equation (8.4) shows that W van-
ishes ifG3 does not contain (0, 3) component. In particular,
for (2, 1)-type G3, W satisfies (for instance see [28]),

W ¼ @�W ¼ @�iW ¼ 0; (8.5)

which corresponds to an unbroken supersymmetry and
where �i are complex structure moduli of M6. Aside
from this, the G3 � �G3 term in (8.1) can be written as [29]

IG ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p
LG (8.6)

with

LG ¼ 1

4�2
10

Z
M6

G3 ^ 	6 �G3

Im�

¼ V scalar � i

4�2
10Im�

Z
M6

G3 ^ �G3; (8.7)

where 	6 is the dual in the transverse directions, andV scalar

is given by

V scalar ¼ 1

2�2
10Im�

Z
M6

GIASD
3 ^ 	6 �GIASD

3 : (8.8)

In (8.8) GIASD
3 is the imaginary anti-self-dual (IASD) part

ofG3, 	6GIASD ¼ �iGIASD, and the second term of (8.7) is
merely topological and does not involve any moduli.
Defining the Kähler potential K as

K ¼ � ln ½�ið�� ��Þ� � ln

�
�i

Z
M6

� ^ ��

�
; (8.9)

one can show [29] that V scalar can be expressed in terms
of W as

V scalar ¼ 1

2�2
10

eK½Gi �jDiWDjW�; (8.10)

where DiW ¼ @iW þ ð@iKÞW and Gi �j ¼ @i@ �jK, and i, j

are summed over � and the complex structure moduli �i.
(8.10), however, is not the most general expression for the
potential. To obtain a general expression for the potential
we need to introduce the Kähler potential for the Kähler
moduli which generally runs over up to h1;1. In our dis-

cussion we just assume that we have only one Kähler

REMARK ON CALABI-YAU VACUA OF THE STRING . . . PHYSICAL REVIEW D 88, 046007 (2013)

046007-17



modulus, say �. For such a model the tree-level Kähler
potential takes the form

K ¼ �3 ln ½�ið�� ��Þ� � ln ½�ið�� ��Þ�
� ln

�
�i

Z
M6

� ^ ��

�
; (8.11)

and similarly (8.10) is generalized to the form

V scalar ¼ 1

2�2
10

eK½Ga �bDaWDbW � 3jWj2�; (8.12)

where a, b are now summed over � as well as � and �i.

B. � in flux compactifications

The effective bulk action (8.1) can be rewritten in the
string frame as

IIIB ¼ 1

2�2
10

Z
d10x

ffiffiffiffiffiffiffiffi�G
p �

e�2�½R10 þ 4ðr�Þ2� � 1

2
F2
1

� 1

2 � 3!G3 � �G3 � 1

2 � 5!
~F2
5

�

þ 1

8i�2
10

Z
e�A4 ^G3 ^ �G3; (8.13)

where the metric GMN and the Ricci scalar R10 are now
those of the string frame. (8.13) shows that in the presence
of nonzero fluxes the six-dimensional bulk action will
generally take the form

Ibulk=

�Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p �

¼ 1

2�2
10g

2
s

Z
d6y

ffiffiffiffiffi
h6

p
e�̂�2B�

þ 1

2�2
10g

2
s

Z
d6y

ffiffiffiffiffi
h6

p ½R6ðhmnÞ�LF�

þ topological terms (8.14)

in the string frame, where � ¼ ½R d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p
R4�=

½R d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p � as before and
LF ¼ K � V; ðK ¼ hmnKmnÞ; (8.15)

with

Kmn ¼ X
I;J

FIJ½�K�@ðm�I@nÞ�J;

V ¼ V½�I; h
mn�;

(8.16)

where �I’s are six-dimensional scalar fields including �,
B, 
, etc. Equation (8.14) is a generalization of (4.10), and
in (8.15) V is related to V scalar by the equation

V scalar ¼ 1

2�2
10g

2
s

Z
d6y

ffiffiffiffiffi
h6

p
V; (8.17)

and hence V is identified with � g2
S

3! G
IASD
3 � �GIASD

3 of

the type IIB action (8.13). The six-dimensional Einstein
equation following from (8.14) is now

Rmn � 1

2
hmnR6 � 1

2
Tmn � �

2
e�̂�2Bhmn ¼ 0; (8.18)

where the energy momentum tensor Tmn is defined by

Tmn ¼ 2ffiffiffiffiffi
h6

p �ð ffiffiffiffiffi
h6

p
LFÞ

�hmn : (8.19)

The four-dimensional Einstein equation on the other
hand can be obtained by rewriting (8.14) as

Ibulk ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p

R4ðg	
Þ þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g4

p
Îbulk

þ topological terms; (8.20)

where Îbulk is now

Îbulk ¼ 1

2�2
10g

2
s

Z
d6y

ffiffiffiffiffi
h6

p ½R6ðhmnÞ � LF�; (8.21)

which is the generalization of (4.26). Adding Ibrane to (8.20)
one finds that Itotal takes the form

Itotal ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p ½R4ðg	
Þ � 2��

þ topological terms; (8.22)

where � is defined by

� ¼ ��2½Îbulk þ Îbrane� (8.23)

as before [see (4.25)], and the four-dimensional Einstein
equation is still given by R	
 � 1

2g	
Rþ �g	
 ¼ 0.

Now substitute (8.19) [with LF given by (8.15)] into
(8.18) and contract the indices m and n. We obtain

R6 � LF þ 1

2

�
V � @V

@hmn h
mn

�
þ 3

2
�e�̂�2B ¼ 0; (8.24)

which, upon integration, gives the generalization of (4.30),

Îbulk ¼ � 3�

4�2
� 1

4�2
10g

2
s

Z
d6y

ffiffiffiffiffi
h6

p �
V � @V

@hmn h
mn

�
:

(8.25)

Finally, substituting (8.25) into (8.23) (and using � ¼ 4�)
gives

� ¼ �2

2
Îbrane � �2

8�2
10g

2
s

Z
d6y

ffiffiffiffiffi
h6

p �
V � @V

@hmn h
mn

�
;

(8.26)

which is just the generalization of (4.31).

1. ISD solutions

In the usual type IIB flux compactifications there is a
constraint imposed on the field strength G3. The Bianchi
identity for ~F5 combined with the noncompact components
of the Einstein equation requires [29] that G3 be imaginary
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self-dual (ISD) for a compact M6.
15 Such a G3 is charac-

terized by the equations,

0 ¼ D�W ¼ 1
����

Z
M6

�G3 ^�;

0 ¼ D�iW ¼
Z
M6

G3 ^ �i;

(8.27)

where �i is the basis of (2, 1) forms onM6. Since the two
equations in (8.27) kill, respectively, the (3, 0) and (1, 2)
components of G3, the primitive G3 satisfying (8.27)
contains only (2, 1) and (0, 3) components. Since this G3

is ISD it satisfies V ¼ 0 (recall that V / GISAD
3 � �GIASD

3 ), or

equivalently V scalar ¼ 0.
The compactifications using the above G3 contain both

supersymmetric and nonsupersymmetric solutions. To ex-
tract the supersymmetric part we need to impose further,

W ¼ D�W ¼ 0; (8.28)

which kills the (0, 3) component of G3 by (8.4), leaving
only (2, 1) component. Thus the supersymmetry requires
that G3 be primitive (2, 1), and for this G3 the scalar
potential V scalar becomes necessarily of the no-scale
form. Indeed, in the absence of nonperturbative corrections
whole these solutions with no-scale structure are all ISD at
the tree level regardless of whether or not they are super-
symmetric, and for these solutions (8.26) reduces to

� ¼ �2

2
Îbrane: (8.29)

So, under (8.35), the cosmological constant problem for
the ISD solutions is basically identical with that of the
conventional compactifications [see (4.31)].

2. General case

We have just seen that � is simply given by Îbrane for
the ISD (no-scale type tree level) solutions. But when
the corrections enter, V does not vanish anymore and �
acquires an additional term from (8.26). The non-ISD
solutions can arise by both perturbative and nonperturba-
tive reasons. For instance one can stabilize all the moduli
(including Kähler) supersymmetrically by including non-
perturbative contributions to the scalar potential (see [30]).
In this case the potential of the flux vacuum would be
required not to be of no-scale type. Besides this, V and
consequently V scalar can fail to vanish even for ISD
solutions. Though a solution is ISD at the tree level, it
receives both �0- and gs-loop corrections perturbatively.
Due to these corrections, G3 can acquires (1, 2) and (3, 0)

components and as a result the solution becomes non-ISD
in these cases. That is, V now includes nonzero IASD
contributions coming from the corrections.
For all these non-ISD solutions � is given by (8.26) and

where the second term (the terms in the integration) is now
nonzero due to the corrections �V. Equation (8.26) is
simplified if we use

@V

@hmn h
mn ¼ nV; (8.30)

where n ¼ 3 because GIASD
3 is a three-form. Indeed the

Kähler potential and the super potential receive the correc-
tions of the form K ¼ Ktree þKp þKnp and W ¼
Wtree þWnp, where we see that the perturbative corrections

Kp contain both �0- and gs-loop corrections, while the

superpotential receives only the nonperturbative
corrections. But in any case V scalar takes the same form
as (8.12) even after these corrections16 and V basically
satisfies (8.30) when V scalar is of no-scale type

17 and even
when not.18 By (8.17), (8.30), and (8.26) finally becomes

� ¼ �2

2
ðÎbrane þV scalarÞ: (8.31)

Now � consists of two parts, Îbrane andV scalar, in contrast to
(8.29).

C. Vanishing �

In Sec. V we have seen that � is forced to vanish by field
equations in the conventional compactifications. This is
also the case even for the flux compactifications. By
(8.30) and (8.24) can be rewritten as

LF ¼ R6 � V þ 3

2
�e�̂�2B: (8.32)

Substituting (8.32) into (8.19) then gives

Tmn ¼ 2

�
Rmn � 1

2
hmnR6

�
þ

�
Vhmn � 2

@V

@hmn

�

� 3

2
�e�̂�2Bhmn: (8.33)

Again, substituting (8.33) into (8.18) gives�
Vhmn � 2

@V

@hmn

�
� �

2
e�̂�2Bhmn ¼ 0: (8.34)

Finally, contracting m and n in (8.34) and using (8.30)
gives � ¼ 0, or equivalently

15In addition to this, the Bianchi identity for ~F5 also requires
the tadpole cancelation. This requirement can be met by in-
troducing negative tension objects, which in our case will be
either O3 planes of the CY orientifolds, or D7-branes wrapped
on a four-cycle in the type IIB version of the F-theory
compactifications.

16See [31] for this matter. Also see [32] for the corrections due
to D3=D3-brane.
17An interesting example of this type can be found, for in-
stance, in [33], where the factor 1=ðIm�Þ3 is obtained from eK of
the no-scale potential (8.10) even without introducing the
D3-brane of Kachru-Kallosh-Linde-Trivedi (see KKLT in [30]).
18See [31] and in particular [34] where it was shown that
V scalar is proportional to jW0j2 at the minimum even under
nonperturbative corrections, where W0 represents the flux-
induced superpotential (8.4).
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� ¼ 0: (8.35)

Namely, �must also vanish in the flux compactifications as
well as in the conventional compactifications.

D. Nonsupersymmetric solutions with � ¼ 0

As mentioned in Sec. VIII B V scalar can fail to vanish
even for ISD solutions. At the tree level, the D�W term in

(8.12) precisely cancels the �3jWj2 term, and V scalar

reduces to the no-scale form (8.10). The no-scale structure
is preserved at the classical level (to the leading order in
�0) even for nonsupersymmetric solutions for which
D�W / W � 0. But at the quantum level there is no guar-

antee that it survives perturbative (and nonperturbative)
corrections. For the supersymmetric solutions such correc-
tions can act as an F-term, and also we can have a D-term
which has been ignored so far. All these terms make non-
trivial contributions toV scalar, and as a resultV scalar takes
generically nonzero values at the quantum level. So if the
contributions to � were coming solely from V scalar, �
would necessarily fail to vanish due to these contributions,
which is precisely what happens in the ordinary flux
compactifications.

In (8.31), however, � contains an additional term, Îbrane,
which is given (in the one-loop order approximation) by
[see (7.2)]

Îð1Þbrane ¼ �0

Z
r5dr�5�

ð1Þ
T ; (8.36)

where �ð1Þ
T is arbitrary because it contains six arbitrary

gauge parameters fð0Þm [see (6.34)]. Now we decompose

�ð1Þ
T into ~�ð1Þ

T þ ��ð1Þ
T to get Îð1Þbrane ! ~̂I

ð1Þ
brane þ �Îð1Þbrane, where

~̂I
ð1Þ
brane and �Îð1Þbrane are given by

~̂I
ð1Þ
brane ¼ �0

Z
r5dr�5 ~�

ð1Þ
T ;

�Îð1Þbrane ¼ �0

Z
r5dr�5��

ð1Þ
T :

(8.37)

Since ��ð1Þ
T is arbitrary it can be adjusted so that �Îð1Þbrane

cancels (the first-order deviation of) V scalar. The cancel-

ation between �Îð1Þbrane and V scalar is automatic because �
must vanish by (8.35), and consequently (8.31) reduces to

� ¼ �2

2
~̂Ibrane: (8.38)

Equation (8.38) is the generalized version of (7.3) and

where ~̂I
ð1Þ
brane corresponds to Îð1Þbrane of the conventional

compactifications. ~�ð1Þ
T in ~̂I

ð1Þ
brane is basically arbitrary only

except for the requirement that it satisfy (7.4) to make ~̂I
ð1Þ
brane

vanish. It can be used to break the supersymmetry at
anytime we want.

Apart from this, one can also consider the case where the

nonzero V scalar is compensated by the whole Îð1Þbrane.

Suppose that we have a nonsupersymmetric solution where

V scalar is fine-tuned to take a nearly vanishing (or zero)
value at the stable minimum. But as mentioned above
V scalar does not generally survive the perturbative (both
gs- and �0-) corrections, and it necessarily acquires a
nonzero value at the quantum level. In the ordinary flux
compactifications this immediately leads to a nonvanishing
� because in that case � is simply given by V scalar. But in

our case �ð1Þ
T can be so adjusted that the nonzero V scalar is

exactly compensated by the whole Îð1Þbrane. This adjustment

is automatic by (8.35) and the fact that Îð1Þbrane possesses

gauge arbitrariness. So in this way we can obtain a non-
supersymmetric theory where � always vanishes even at

the quantum level. In this case we do not even need ~̂I
ð1Þ
brane to

break the supersymmetry. We can simply put ~̂I
ð1Þ
brane ¼ 0.

So far in this section we have considered the flux
compactifications of the type IIB theory to generalize the
discussion on the cosmological constant problem of
the conventional compactifications with H3 ¼ 0. After
the generalization we find that � appears as a sum of two

terms, Îbrane and V scalar, in contrasts to the case of the
ordinary type IIB flux compactifications where � is simply
given by V scalar. V scalar usually receives nontrivial
contributions both from perturbative and nonperturbative
effects. So, even though � is fine-tuned to zero at the tree
level, it cannot be maintained when we go up to quantum
level because V scalar deviates from zero due to these
corrections. Such a difficulty disappears now. In (8.31),

any nonzeroV scalar is always canceled by �Îbrane (or by the

whole Îbrane), and the cancelation is automatic. V scalar is
just gauged away by (8.35).

IX. SUMMARYAND DISCUSSION

As an opening of the discussion on the cosmological
constant problem, in the first part of this paper we studied
solitonic properties of the Calabi-Yau vacua of the string
theory. We first observed that the conifold singularities of
the Calabi-Yau threefold can be regarded as NS-NS sol-
itons with their masses proportional to 1=g2s because each
conifold of the Calabi-Yau threefold consists of two inter-
secting KK-monopoles which themselves are NS-NS
solitons. We then observed that the generic compact
Calabi-Yau threefolds can be thought of as NS-NS objects
because they usually contain certain numbers of conifolds
at the singularities in such a way that the entire topology is
characterized by h1;1 and some negative �.
Such an observation coincides with the conjecture

suggested in [5,6], and may have an important conse-
quence in addressing the cosmological constant problem
in the respect that the effect of the vacuum fluctuations
exerting on the internal geometry is highly suppressed by
the factor g2s by the solitonic property of the internal
dimensions. The solitonic interpretation of the internal
manifolds may be extended to the whole background vacua
of the various string theories. For instance in F-theory the
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geometry of two-dimensional transverse space of D7-brane
may also be taken as an NS-NS type soliton in some sense
because it does not contain the factor gs in the metric. This
is interesting because the extended source of this NS-NS
type soliton is D7-brane instead of (exotic) NS7-brane
[35]. This suggests that the D7-branes of F-theory are as
rigid as the NS-NS type branes.

In the second part, we considered a configuration of a
BPS D3-brane located at the conifold singularity of the
Calabi-Yau threefolds to propose a new type of mechanism
to address the cosmological constant problem. In Secs. IV–
VII, we first considered the conventional compactifications
where the n-form fluxes including H3 are all turned off. In
this case the four-dimensional cosmological constant �

appears as a brane action density Îbrane which is basically
given by a sum of two types, NS-NS type and R-R type, of
vacuum energies of the brane region, and these two types
of vacuum energies are forced to cancel by field equations
so that � vanishes as a result. For the BPS state the
cancelation is automatic by the supersymmetry and by
field equations. But in more general cases there is an

additional term in Îbrane, which does not cancel by the field

equations. This term, which is denoted by �ð1Þ
T , also appears

in the equation of motion for �̂ and acts as a supersym-
metry breaking term of the d ¼ 4 reduced theory.

Since the supersymmetry breaking term makes an extra
contribution to �, it (upon integration) must vanish anyhow
to maintain � ¼ 0. The field equation representing super-
symmetry breaking appears in the form of the Poisson’s

equation for �̂. In the analogy with the ordinary electro-

statics the supersymmetry breaking term �ð1Þ
T plays the role

of the charge density while �̂ plays the role of the electro-
static potential of the system. Aside from this it turns
out that � is proportional to the total charge QT

total, which

is confined to the brane region and hence defined by the

volume integral of �ð1Þ
T over the brane region. So the

condition � ¼ 0 becomes equivalent to the condition
QT

total ¼ 0, which then implies that the d ¼ 4 supersym-

metry remains unbroken in the bulk region (i.e., outside the

brane region) because �̂ becomes a constant (zero) there
by the Gauss’s law of the electrostatics.

There may be many ways to satisfy QT
total ¼ 0. In

Sec. VII Awe have considered two different cases in which
QT

total ¼ 0 is achieved in a natural way. In both cases the

condition QT
total ¼ 0 can be satisfied most naturally by

writing �̂ in terms of a Fourier series. In the case I �̂ is
assumed to be a function of r alone. This case includes an
interesting solution where the d ¼ 4 supersymmetry is
broken to an infinitely large extent at r ¼ 0. In the case

II �̂ is assumed to be a function of the isometry coordi-
nates. In our discussion we had allowed for nonzero thick-
ness rB to the D3-brane. But in the case II we can take the
limit rB ! 0 whenever we want to see the thin brane
features, which suggests that the whole discussion of this

paper need not be restricted only to the case of the brane
with nonzero thickness.
The substance of the supersymmetry breaking term is a

vacuum energy density arising from the quantum excita-
tions with components along the transverse directions. The
quantum excitations induces a gauge symmetry breaking
of the R-R four-form, and the supersymmetry breaking
occurs as a result of this gauge symmetry breaking. Since
it occurs in the brane region, the brane region is locally
anomalous. But the total anomaly of the brane region
vanishes by the condition � ¼ 0. The reason is because

the anomaly locally occurs in the region where �ð1Þ
T takes

nonzero values. So the magnitude of the anomaly at some

point of the brane region is proportional to the value of �ð1Þ
T

of that point. But � ¼ 0 requires that QT
total, the volume

integral of �ð1Þ
T over the whole brane region, must vanish.

Thus the anomalies at each point (area) of the brane region
add up to zero upon integration and the theory becomes
anomaly free.
The bulk region does not suffer from this kind of anom-

aly because the gauge symmetry breaking of A4 does not
occur in the bulk region. In general the ten-dimensional
superstring theory is known to be anomaly free. For in-
stance in the type IIB theory the gravitational anomaly for
the five-form (IA) is canceled by the anomalies for the two
left-handed Majorana-Weyl gravitinos (2I3=2) and two

right-handed Majorana-Weyl dilatinos (� 2I1=2): IA þ
2I3=2 � 2I1=2 ¼ 0 [22]. The anomaly of the brane region

is not the usual gravitational anomaly for the five-form.
Rather, it may have to be understood as a composition of
the various anomalies for the string fields on the D3-brane
which couple to A4.
The ten-dimensional metric for the D3-brane with

unbroken supersymmetry is typically given by

ds210 ¼ e�Bds26 þ eBg	
dx
	dx
; (9.1)

where ds26 represents the six-dimensional internal geome-

try. In Sec. VII A it was suggested that the nonsupersym-
metric theory with vanishing � can be easily obtained from

(9.1) by replacing ds26 by e�̂ds26, where �̂ is a solution to

the poisson’s equation (6.33). In the bulk region the super-

symmetry is preserved (�̂ ¼ 0) so the metric ds210 is still

given by (9.1). But in the brane region the supersymmetry

is broken (�̂ ’ gsUð1Þ) and therefore ds210 will take the

form

ds210 ffi e�Bð1þ gsUð1ÞÞds26 þ eBg	
dx
	dx
: (9.2)

The additional term gsUð1Þ in (9.2) is of course due to the

supersymmetry breaking.
Still in the conventional compactifications the super-

symmetry breaking gives a mass to the dilaton because
the supersymmetry breaking term generates a potential for
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the dilaton. From (4.1) and (6.8) one finds the action for the
dilaton (in the brane region) is given by

Ið�Þ ¼ 1

2�2
10g

2
s

Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g4
p Z

d6y
ffiffiffiffiffi
h6

p ½4e�̂�2Bð@�Þ2x
þ Vð�Þ þ � � ��; (9.3)

where ð@�Þ2x � g	
@	�@
�, and [from the leading term

of �	m
T ð�Þ in (6.29)] the potential Vð�Þ takes the form

Vð�Þ ¼ 2�2
10�0�

ð1Þ
T e� þ � � � : (9.4)

From @2Vð�Þ=@�2 the characteristic scale of the dilaton

mass is estimated to bem2
� 
 c0�

ð1Þ
T , where c0ð� 2�2

10gs�0Þ
becomes c0 ’ ð2�Þ7gsl8s=r6B upon setting 2�2

10 ¼ ð2�Þ7l8s
where ls is the fundamental scale of the string theory,

ls ¼ 1=ms ¼
ffiffiffiffiffi
�0p
. Also the thickness (the characteristic

size) of the brane should be of order ls: rB � ls, so we have
c0 � ð2�Þ7gsl2s and therefore

m2
� ’ ð2�Þ7gs �

ð1Þ
T

m2
s

: (9.5)

In (9.5) the magnitude of �ð1Þ
T is given by �ð1Þ

T � 
m
1 , and

where it is natural to assume that 
m
1 is of the same order as

	1, which is the first order correction to 	0 in the gs
expansion. Since 	0 �m4

s (more precisely, it is 	0 �
m4

s=ð2�Þ3) we also expect 	1 � 
m
1 �m4

s and conse-

quently �ð1Þ
T �m4

s . Putting all these together (and omitting
the factor ð2�Þ7), we obtain m2

� � gsm
2
s from (9.5). The

dilaton mass m� gives a typical mass scale for the super-
symmetry breaking and it may be roughly identified with
the mass scale of the Standard Model superpartners, msp

[21]. We finally have

m2
sp � gsm

2
s : (9.6)

Equation (9.6) suggests that the magnitude of msp could

be much larger than the conventional LHC scale of order
�TeV.

As a final discussion on the cosmological constant prob-
lem of the conventional compactifications it was argued
that the configuration with an unbroken supersymmetry is
as equally possible as the configuration with broken super-
symmetry but the latter is more favored by the action
principle than the former. This argument, however, is valid
only in the realistic models in which the field equations are
sufficiently relaxed, and in addition to this there is some
subtlety in writing down the classical action for the theory
containing self-dual five-form as a field content. For this
matter of supersymmetry breaking there is a different

viewpoint that fð0Þm must be taken as a nonzero function

from the beginning. In this viewpoint fð0Þm is not just an
arbitrary gauge parameter. Rather, it is a distribution func-
tion describing charge (vacuum energy) configurations in-

side the brane region. So �ð1Þ
T does not vanish because 
m

1

are nonzero constants, and therefore the d ¼ 4 supersym-
metry is always broken and the solutions with an unbroken
supersymmetry do not exist from the beginning.
These are the whole story of the cosmological constant

problem of the conventional compactifications. In Sec. VIII,
which is the last section of the second part, the above
discussions have been generalized to the case of the flux
compactifications of type IIB theory where the n-form
fluxes are all turned on to stabilize the moduli. In this
generalized theory we found that � appears as a sum of

two terms, Îbrane and V scalar, which contrasts with the
ordinary type IIB flux compactifications where � is simply
given by V scalar. In the ordinary flux compactifications
V scalar can be fine-tuned to zero at the classical level to
obtain a theory with vanishing �. But V scalar necessarily
deviates from zero because it receives nontrivial contribu-
tions coming from loops of bulk fields or from any other
kind of perturbative or nonperturbative effect that onewould
need to include in order to stabilize the moduli of the Calabi-
Yau threefold. As a result, � ¼ 0 can not be maintained at
the quantum level in the ordinary flux compactifications.
Indeed, the vanishing � for the nonsupersymmetric

vacua usually depends on the tree-level structure of the
Kähler potential for the Kähler moduli. But since this
Kähler potential is unstable against both perturbative and
nonperturbative corrections, so is the tree-level potential
V scalar. Thus even though we fine-tune V scalar so that it
vanishes at the stable minimum, it can not be maintained
once the corrections enter because V scalar necessarily
acquires nonzero values at the stable minimum due to
corrections. So in the ordinary flux compactifications
� ¼ 0 cannot be maintained because � is simply given
by V scalar there.
Such a thing can be avoided in our case. First, in our case

� appears as a sum of two terms, Îbrane andV scalar, not just

V scalar alone. Further, Îbrane possesses gauge arbitrariness
as mentioned in Sec. VIII D. Finally � is forced by (8.35) to
vanish. So we can always maintain � ¼ 0 regardless of
whetherV scalar acquires nonzero values at the stable mini-
mum or not because any nonzero values of V scalar is

automatically gauged away (namely cancel with Îbrane)
by (8.35). So one of the simple way to obtain a nonsuper-
symmetric theory with � ¼ 0 is just to find a tree-level
solution where D�W / W � 0 and V scalar is fine-tuned to

take a nearly vanishing value at the stable minimum. Then
the nonzero values of V scalar arising from the higher order
(both of �0- and gs-) corrections (and the small corrections
coming from nonperturbative effects) are all gauged away
and we readily obtain a theory with broken supersymmetry
where � always vanishes even at the quantum level.

ACKNOWLEDGMENTS

This work was supported by the National Research
Foundation of Korea (NRF), under Grant No. 353-2009-
2-C00045, funded by the Korean Government.

EUN KYUNG PARK AND PYUNG SEONG KWON PHYSICAL REVIEW D 88, 046007 (2013)

046007-22



[1] P. Candelas, P. S. Green, and T. Hübsch, Nucl. Phys. B330,
49 (1990).
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