
Single particle energy diffusion from relativistic spontaneous localization

D. J. Bedingham*

Blackett Laboratory Imperial College, London SW7 2BZ, United Kingdom
(Received 25 June 2013; published 30 August 2013)

Energy diffusion due to spontaneous localization (SL) for a relativistically fast moving particle is

examined. Spontaneous localization is an alternative to standard quantum theory in which quantum state

reduction is treated as a random physical process which is incorporated into the Schrödinger equation in

an observer-independent way. These models make predictions in conflict with standard quantum theory

one of which is nonconservation of energy. On the basis of proposed relativistic extensions of SL it is

argued that for a single localized particle, nonrelativistic SL should remain valid in the rest frame of the

particle. The implication is that relativistic calculations can be performed by transforming nonrelativistic

results from the particle rest frame to the frame of an inertial observer. This is demonstrated by

considering a relativistic stream of noninteracting particles of cosmological origin and showing how

their energy distribution evolves as a result of SL as they traverse the Universe. A solution is presented and

the potential for astrophysical observations is discussed.
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I. INTRODUCTION

Motivated by the measurement problem, spontaneous
localization (SL) models are an alternative to standard
quantum theory in which quantum state reduction is treated
as a genuine physical process [1,2]. The typical formula-
tion of these models is by modification of the Schrödinger
equation to include nonlinear and stochastic terms. Both of
these features are well motivated. Stochasticity represents
the random nature of state reduction. Nonlinearity enters
since the probability of the state reducing to a particular
outcome depends on the state itself (i.e. the Born rule).
This approach is an empirical way of modeling the behav-
ior of a quantum state as it is observed to behave in practice
whether in a measurement situation or not.

The state-of-the-art nonrelativistic SL model is the con-
tinuous spontaneous localization (CSL) model [3,4]. This
model is formulated in terms of a stochastic differential
equation for the state vector (see below) describing a
continuous stochastic state trajectory in Hilbert space.
The CSL model reproduces the behavior of nonrelativistic
quantum systems on the micro scale while any macro
superposition of quasi-localized states is rapidly sup-
pressed (the position basis takes a special role). This
happens without having to make an arbitrary division
between the micro and the macro domains; the theory itself
determines when a superposition state is stable and when it
is not. The remarkable thing is that this works in a way
which is consistent with our experience.

This paper concerns a side effect of SL models which is
that they lead to a gradual increase in the energy of a
system on average. There are two complementary ways
in which this happens. The first is that as a result of the

localization process, an initially spread out wave function
becomes narrower in position space and therefore broader
in momentum space. Since the free Hamiltonian is a
convex function of momentum, the expected energy in-
creases. The second contribution is due to the fact that as
the localizations happen the wave packet as a whole tends
to undergo stochastic jumps in phase space (this is exam-
ined in more detail below). This also results in spreading
of momentum and consequently increases the expected
energy on average.
We shall consider this effect when the particle is travel-

ing at relativistic speed with respect to some observer. For
the sake of definiteness we consider a stream of relativisti-
cally fast noninteracting particles whose origin might be in
the early universe. These particles travel at close to the
speed of light and spend almost the whole lifetime of the
Universe traveling freely until they eventually collide with
an observer on Earth. The question we wish to ask is this:
Would the nonconservation of energy due to SL lead to a
measurable effect in the energy distribution of the observed
particles?
An obstacle in getting to this goal is that existing rela-

tivistic collapse models are complicated. In particular both
the relativistic models of Refs. [5,6] are non-Markovian
and this makes calculations more difficult to perform. We
shall therefore take a short cut, arguing that the nonrela-
tivistic SL equations for a single particle should be valid in
its rest frame.
A key feature of SL is that the localizations have an

associated length scale. This is clear in discrete models
such as the GRW model [7] where the state occasionally
and randomly collapses under the action of a Gaussian
quasi projector in position space. The Gaussian has an
associated length scale defining its spread in space. This
is essential. Were we to try to remove the length scale by*d.bedingham@imperial.ac.uk
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making the localizations infinitely sharp the resulting col-
lapsed wave function would have infinite energy. The same
is true in CSL.

To retain the feature of a fundamental length scale
without resorting to the use of a preferred frame or folia-
tion has proved to be one of the main difficulties when
formulating relativistic extensions of SL. For example, in
Ref. [5] the localizations are centered about a random, time
ordered sequence of points in spacetime, called flashes.
The state at any given stage is defined on an arbitrary
spacelike surface to the future of the previous flash. The
law of the flashes requires that the state is unitarily evolved
to a hyperbolic surface a random (Poisson distributed)
timelike distance to the future of the previous flash; the
state then defines a probability distribution on the hyper-
bolic surface from which the location of a new flash is
randomly drawn. The state is then modified by the action of
a Gaussian quasi projector with fixed length scale acting
within the hyperbolic surface and centered on the flash
location. We can deform the spacelike surface to the future
of this new flash—the state evolves unitarily until the next
random flash happens. This procedure is independent of
any particular frame of reference.

Now consider two observers—one in the rest frame of
the particle (which we take to be well localized) and
another moving with respect to it. For the rest frame
observer, provided that the proper time between flashes is
sufficiently large compared to the length scale of the
localization operator, the hyperboloid can be approximated
by a plane and the model reduces to the nonrelativistic
GRW model. However, due to the invariance of the con-
struction, the moving observer will simply see the local-
ization length contracted and the time between flashes
dilated.

A further example is provided by the model of Ref. [6].
This is a model involving quantum fields in which a new
spacetime quantum field is introduced to mediate the
influence of the localizations. The length scale arises
from a smeared interaction between quantum fields and
the mediating field. In order to avoid divergences, the
smearing must be confined to a finite spacetime region.
This is achieved by allowing the smearing function to
depend on local properties of the quantum fields. The
construction proposed results in a smearing function
which defines a region in spacetime that is near to the
point of interaction from the point of view of an averaged
local rest frame.

In each of these relativistic models the localizations can
be said to happen with a fixed length scale in the rest frame
of the system (at least in the case of a well localized
particle which we consider here where the rest frame is
unambiguous). It seems natural on general grounds that
this should be a universal feature of relativistic collapse
models. A length scale is necessary in order to define a
localization, therefore a frame in which the length scale

applies is necessary. The obvious way to do this without
making reference to a preferred foliation is to make use
of local rest frames defined by the state. While it might not
be obvious precisely how to do this for a general state
(perhaps requiring a fairly technical definition as in both
the relativistic models mentioned above), for a single
particle in a localized state the rest frame is clear.
Relativistic invariance ensures that the localization pro-

cess seen from a moving observer’s point of view is simply
a Lorentz transformation of events. We therefore take the
approach of working in the particle rest frame where non-
relativistic equations of motion are adequate, before trans-
forming to the moving observer’s frame. Note that this is
an assumption inspired by relativistic considerations. An
alternative possibility which we will not explore here is
that there exists a preferred global frame (e.g. the cosmo-
logical frame) in which the localizations occur. In this case
we might make the approximation that the nonrelativistic
CSL equations hold in only in this special frame.
The structure of the paper is as follows: In Sec. II we

show how the CSL model can be significantly simplified in
the case of a state describing a single localized particle. We
describe the steady state solution for the CSL model in this
limit and reduce the behavior of the system to a classical
diffusion in phase space. In Sec. III we derive the energy
diffusion process and perform a transformation from the
rest frame of the particle to the frame of an inertial observer
moving at relativistic speed with respect to the particle. We
solve this diffusion equation to find the probability distri-
bution for the particle to end up with a given energy. We
conclude with some discussion in Sec. IV.

II. CSL IN THE LOCALIZED SINGLE
PARTICLE LIMIT

In this section we organize the necessary nonrelativistic
results taken to hold in the rest frame of the particle. We
will demonstrate the steady state solution for the CSL
model in the case of a single, well localized particle. In
order to do this we first demonstrate that the CSL equations
can be simplified to a form known as QMUPL (quantum
mechanics with universal position localization) [8]. It is
well known that relationships such as this exist between the
various SL models in certain limits [4,8–10]. However, the
following demonstration is believed to be novel.
The CSL model concerns a quantum system described

in terms of a nonrelativistic quantum field. The state evo-
lution is described by the stochastic differential equation

djc i ¼
�
� i

ℏ
Ĥ � �

2

Z
dxðN̂ðxÞ � hN̂ðxÞiÞ2

�
dtjc i

þ ffiffiffiffi
�

p Z
dxðN̂ðxÞ � hN̂ðxÞiÞdBtðxÞjc i; (1)

where the number density operator N̂ðxÞ is given by
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N̂ðxÞ ¼
�
�

�

�
3=4Z

dy exp

�
��

2
ðx� yÞ � ðx� yÞ

�
âyðyÞâðyÞ;

(2)

the field annihilation and creation operators âðxÞ and âyðxÞ
satisfy

½âðxÞ; âyðyÞ� ¼ �ðx� yÞ; (3)

and the field of Brownian motions satisfy

E½dBtðxÞ� ¼ 0; dBsðxÞdBtðyÞ ¼ �st�ðx� yÞdt: (4)

The CSL parameters � and 1=
ffiffiffiffi
�

p
are understood, respec-

tively, as the rate and the length scale of localization. The
state remains normalized under Eq. (1) and we note that the
Schrödinger equation is recovered in the limit that � ! 0.
As mentioned in the Introduction this model gives close
agreement with the standard Schrödinger equation for
micro systems but leads to rapid suppression of macro
superpositions of quasi-localized states.

Our task now is to simplify this construction for the
purposes of our calculation. We first assume that the state
is describing a single particle. The approximation will be
valid also if we a considering a swarm of noninteracting,
nonoverlapping, and nonentangled particles where the
state factorizes into single particle states. For a single
particle the state is represented by

jc i ¼
Z

dxc ðxÞâyðxÞj0i; (5)

where j0i is the vacuum state. Here we can identify c ðxÞ as
the wave function for the particle. Improper position ei-
genstates take the form jxi ¼ âyðxÞj0i and the position
operator is given in terms of field creation and annihilation
operators by

x̂ ¼
Z

dxxâyðxÞâðxÞ: (6)

Given this definition we find

hx̂i ¼
Z

dxxjc ðxÞj2; (7)

as expected.
Next we assume that the particle is sufficiently localized

about a point �y that we can make the approximation
(cf. Appendix B of [11])

exp

�
��

2
ðx� yÞ � ðx� yÞ

�

’ exp

�
��

2
ðx� �yÞ � ðx� �yÞ

�
½1þ �ðx� �yÞ � ðy � �yÞ�:

(8)

This requires that jy � �yj � 1=
ffiffiffiffi
�

p
, i.e. the particle must

be localized about the point �y on a length scale much
smaller than the localization length scale of the CSL
model. The point �y is time dependent—it describes the
location of the center of the particle’s wave packet.

We can combine these various elements to calculate the
following useful relations:

Z
dxN̂2ðxÞ ’ 1þ �

2
�y � �y þ �

2
x̂ � x̂� ��y � x̂;

Z
dxhN̂ðxÞi2 ’ 1þ �

2
�y � �y þ �

2
hx̂i � hx̂i � ��y � hx̂i;

Z
dxhN̂ðxÞiN̂ðxÞ ’ 1þ �

2
�y � �y þ �

2
hx̂i � x̂� �

2
�y � hx̂i

� �

2
�y � x̂;

Z
dxN̂ðxÞdBtðxÞ ’ d ~Bt þ

ffiffiffiffi
�

2

r
ðx̂� �yÞ � dBt;

Z
dxhN̂ðxÞidBtðxÞ ’ d ~Bt þ

ffiffiffiffi
�

2

r
ðhx̂i � �yÞ � dBt; (9)

where the Brownian motions Bt and ~Bt are related to the
Brownian motion field through

dBt ¼
Z

dx
ffiffiffiffiffiffi
2�

p �
�

�

�
3=4

exp

�
��

2
ðx� �yÞ � ðx� �yÞ

�

� ðx� �yÞdBtðxÞ; (10)

d ~Bt ¼
Z

dx

�
�

�

�
3=4

exp

�
��

2
ðx� �yÞ � ðx� �yÞ

�
dBtðxÞ:

(11)

These definitions are readily shown to satisfy

E½dBi;t� ¼ 0 ¼ E½d ~Bt�; dBi;sdBj;t ¼ �ij�stdt;

d ~Bsd ~Bt ¼ �stdt; dBi;sd ~Bt ¼ 0;
(12)

where dBi;t for i ¼ 1, 2, 3 are the 3 orthogonal components

of dBt relating to the orthogonal spatial directions xi.
Inserting the relations (9) into Eq. (1) results in

djc i ¼
�
� i

ℏ
Ĥdt� D

ℏ2
ðx̂� hx̂iÞ � ðx̂� hx̂iÞdt

þ
ffiffiffiffiffiffiffi
2D

p
ℏ

ðx̂� hx̂iÞ � dBt

�
jc i; (13)

with D given in terms of the CSL parameters as

D ¼ ��ℏ2

4
; (14)

(the factor of ℏ2 is included for later convenience). In terms
of momentum space field creation and annihilation opera-
tors the Hamiltonian is given by

Ĥ ¼
Z

dp
p � p
2m

âyðpÞâðpÞ; (15)

so that hpjĤjc i ¼ ðp � p=2mÞc ðpÞ, where jpi¼ âyðpÞj0i,
and c ðpÞ ¼ R

dxe�ip�x=ℏc ðxÞ= ffiffiffiffiffiffiffiffiffiffi
2�ℏ

p
. We can therefore

write
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Ĥ ¼ p̂ � p̂
2m

; (16)

in the single particle case.
Equation (13) is the QMUPL model [8]. Not only is this

equation useful as a scaled limit of CSL, it can also be used
to describe the effect of a thermal environment when deal-
ing with open systems (see e.g. [12]).

The advantage of Eq. (13) for our purpose is that we can
calculate the steady state limit which occurs when the
diffusive effects of the Hamiltonian balance with the local-
izing effects of the SL terms [9,13,14]. The form of the
wave function in the steady state is given by

c ðxÞ ¼ 1

ð2��21Þ3=4

� exp

�
�ð1� iÞ

4�21
ðx�hx̂iÞ � ðx�hx̂iÞþ i

ℏ
hp̂i �x

�
;

(17)

where the steady state width is

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ℏ3

8Dm

4

s
: (18)

Starting from a general wave function it takes a time of

order tloc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mℏ=D

p
to reach the steady state. The shape of

the wave function is stable, however, the average position
and momentum of the packet undergo 3-dimensional
Brownian motion described by the following diffusion
equations:

dhx̂i ¼ hp̂i
m

dtþ
ffiffiffiffi
ℏ
m

s
dBt (19)

dhp̂i ¼ ffiffiffiffiffiffiffi
2D

p
dBt: (20)

These closed equations describe a classical Brownian mo-
tion for the wave packet.

We now exhibit estimates of the steady state widths and
localization times for a set of different species of particles.
A detailed analysis of the valid range of choices for the SL
parameters consistent with experiments can be found in
Ref. [15]. Here we use the original values suggested by
GRW [7] of �� 10�16 s�1 and 1=

ffiffiffiffi
�

p � 10�7 m. Based
on experimental evidence of spontaneous photon emission
rates from Germanium it has been possible to argue that �
should increase with the mass of the particle as m2 [16].
This result we put in by hand (we would expect it to
ultimately result from a more fundamental theory, perhaps
involving gravity). We therefore assume that the GRW
value relates to a single nucleon (as originally intended)
and write

� ¼
�
m

mn

�
2 � 10�16 s�1; (21)

where mn is a nucleon mass. Based on these assumptions
the results are shown in Table I.
We see from Table I that none of the particles satisfy the

condition that �1 � 1=
ffiffiffiffi
�

p
for the GRW parameters.

However, we note that many results relating to the effects
of spontaneous localization involve the parameters � and�
only in the combination �� (e.g. reduction rates, rate of
energy increase). We therefore assume that the combina-
tion �� takes the GRW value (for a single nucleon) and
that � is as large as necessary to fulfil the localized particle
approximation made in this section.
For a proton the value for �1 ¼ 4 cm gives a sense of

being fairly well localized on large scales such that it can
be treated like a particle, while at the same time very
spread out on atomic scales such that its wavelike
characteristics should dominate.

III. RELATIVISTIC CSL

The localization times for the various particles in Table I
indicate that on cosmological time scales a free particle can
be expected to exist in its steady state. We therefore assume
that the particle is in its steady state and concern ourselves
only with the classical diffusive motion of the packet.
Since the behavior is reduced to a classical form we write
hx̂i ¼ X and hp̂i ¼ P. We assume that Eqs. (19) and (20)
apply in the rest frame of the particle—defined by P ¼ 0,
whereby relativistic effects can be ignored. Note that due to
the diffusive motion of the particle the rest frame is con-
tinuously changing. Below we describe how to transform
this process to the frame of an inertial observer.
Denoting the rest frame O0 and labeling coordinates in

this frame with a prime we have from Eqs. (19) and (20)

dX0 ¼
ffiffiffiffi
ℏ
m

s
dBt0 (22)

dP0 ¼ ffiffiffiffiffiffiffi
2D

p
dBt0 : (23)

We assume that the energy of the particle near its rest frame
is given by the nonrelativistic formula E0 ¼ P0 � P0=2m.
Using Itô’s lemma and (12) we can derive the process for
the energy

dE0 ¼ 3D

m
dt0 þ

ffiffiffiffiffiffiffi
2D

p
m

P0 � dBt0 : (24)

TABLE I. Steady state widths and localization times for vari-
ous types of particle based on the GRW parameters.

Particle �1 tloc

neutrino (0:1 eV=c2) 1300 km 180 yrs

electron 12 m 41 days

proton 4 cm 23 hrs

Fe nucleus 2 mm 3 hrs

10,000 u cluster 42 �m 14 mins
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In the rest frame of the particle this is simply given by

dE0 ¼ 3D

m
dt0: (25)

The drift in energy is due to the stochastic shifts in
momentum described by Eq. (23).

We now transform from the particle rest frame to the
cosmological frame O (coordinates in this frame are
unprimed) assumed to be an inertial frame in which the
particle travels at relativistic speed v� c (we refer to this
as the ultrarelativistic limit) in the Xi direction. This direc-
tion will change as the particle undergoes diffusion—we
rotate coordinates accordingly. The energy process in the
cosmological frame is given by the Lorentz transformation

dE ¼ �dE0 þ v�dP0
i

’ �dE0 þ c�dP0
i

¼ 3D

m
�dt0 þ ffiffiffiffiffiffiffi

2D
p

c�dBi;t0 ; (26)

with � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
. This process is still expressed in

terms of the rest frame time t0. We would like to express it
in terms of the cosmological time t. To do this we use the
Lorentz transformation

dt ¼ �

�
dt0 � vdX0

i

c2

�
’ �

�
dt0 � dX0

i

c

�
: (27)

Depending on the random fluctuations which define dX0
i, dt

can be positive or negative. This indicates that the particle
in fact moves in tiny spacelike jumps. This makes the
definition (27) unsuitable as the time parameter. A suitable
definition can be guessed by considering a finite period of
cosmological time

t ¼
Z t0

0
�ds0 �

ffiffiffiffiffiffiffiffiffi
ℏ

mc2

s Z t0

0
�dBi;s0 : (28)

Note that � is a function of t0 (since the velocity v is a
function of t0). The 2 terms on the right-hand side can be
thought of as a signal term and a noise term (with expecta-
tion zero). Then for a given value of t0 we can estimate t by

t ¼
Z t0

0
�ds0: (29)

The standard deviation in this estimate is given by the
standard deviation of the Itô integral term. This is given by

�t ¼
�

ℏ
mc2

Z t0

0
E½�2�ds0

�
1=2

: (30)

So for � approximately constant corresponding to a small
amount of velocity dispersion we can write E½�2� � �2 and
the condition that �t � t corresponds to

ℏ
mc2

� t0: (31)

For a proton ℏ=mc2 � 10�24 s so on cosmological time
scales we can safely ignore the stochastic shifts of position
of the wave packet in its rest frame.
In order to convert to cosmological time we therefore

write dt ¼ �dt0 and using a theorem of stochastic calculus

we have dBt ¼ �1=2dBi;t0 with dB2
t ¼ dt (we drop the i

since there is only one Brownian motion factor in the
energy process). Using E ¼ �mc2, Eq. (26) can now be
written

dE ¼ 3D

m
dtþ

ffiffiffiffiffiffiffiffiffiffiffi
2D

m
E

s
dBt: (32)

It is worth noting that this equation is remarkably similar to
the nonrelativistic equation that is obtained from Eq. (24).

We find that the only difference is an extra factor of
ffiffiffi
2

p
in

the stochastic term of the nonrelativistic version.
For generality we include the effects of the expansion of

the Universe as a friction term resulting in

dE ¼
�
3D

m
� _a

a
E

�
dtþ

ffiffiffiffiffiffiffiffiffiffiffi
2D

m
E

s
dBt; (33)

where a is the scale factor of the Universe and _a=a, the
Hubble parameter, is taken to be a constant. This equation
describes the diffusion in energy of a particle due to CSL as
it travels at relativistic speed with respect to a cosmological
observer (subject to the various approximations outlined
earlier).
Equation (33) is in fact a Cox-Ingersoll-Ross process

[17]. The process is well known in finance where it is used
to describe an instantaneous interest rate. A generic pro-
cess of this type

dz ¼ �ð	� zÞdtþ �
ffiffiffi
z

p
dBt; (34)

has the properties that z is elastically pulled towards the
long-term value 	 at a rate determined by �; the origin is
inaccessible if 2�	 � �2 in which case z remains positive;
the variance in z increases as z increases; and there is a
steady state distribution for z.
How do these properties apply to the problem of

relativistic energy diffusion? The condition for the origin
to be inaccessible is satisfied meaning that the energy
will always remain positive. We might expect that the
energy would have a long-term average value given by
ð3D=mÞ=ð _a=aÞ (independent of the initial state). However,
the rate at which E is elastically pulled to this value is
_a=a—of order of the inverse age of the Universe.
Therefore, for the energy to reach its steady state distribu-
tion will require a time much longer than the age of the
Universe (or more correctly, a much longer time than
the time over which the Hubble parameter can be
approximated as a constant).
The forward equation corresponding to Eq. (33) is

given by

SINGLE PARTICLE ENERGY DIFFUSION FROM . . . PHYSICAL REVIEW D 88, 045032 (2013)

045032-5



d

dt
ptðEjE0Þ ¼

�
D

m
E2 @2

@E2
þ

�
_a

a
�D

m

�
@

@E
þ _a

a

�
ptðEjE0Þ:

(35)

We can compare this equation with a result from
Refs. [18,19] where a diffusion process in phase space
due to a fundamental discreteness of spacetime is consid-
ered. There it is shown that starting from the idea of a
randomwalk in momentum space, the condition of Lorentz
invariance alone can be used to determine the form of the
equation satisfied by the probability distribution on phase
space. It turns out that Eq. (35) is consistent with this result.
In order to show this we find the equation satisfied by the
marginal distribution for momentum and then convert from
momentum to energy in the ultrarelativistic limit. This
gives us confidence that our result (35) is at least relativisti-
cally correct. It also offers an interesting point of compari-
son between SL models and spacetime discreteness.

The advantage of working in the ultrarelativistic limit is
that the forward equation (35) can be solved. With initial
condition p0ðEjE0Þ ¼ �ðE� E0Þ the probability distribu-
tion for E at time t conditional on a value E0 at time 0 is
found to be [17]

ptðEjE0Þ ¼ �




E

E0

e��ðE�
E0ÞI2ð2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

EE0

p Þ (36)

where

� ¼ _a

a

m

D

1

1� 

; (37)


 ¼ exp

�
� _a

a
t

�
; (38)

and I2 is a modified Bessel function of the first kind of
order 2. The expected value of E at time t is

Et½EjE0� ¼ 
E0 þ 3

�
; (39)

and the variance is

Vart½EjE0� ¼ 2


�
E0 þ 3

�2
: (40)

We can also write down the asymptotic limit of (36)
valid when �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

EE0

p ! 1

ptðEjE0Þ/
ffiffiffiffiffiffiffiffiffiffiffiffi
m

4�Dt

r �
E3

E5
0

�
1=4

exp

�
� m

Dt
ð ffiffiffiffi

E
p � ffiffiffiffiffiffi

E0

p Þ2
�
; (41)

where we have assumed that t � a= _a. And for complete-
ness we give the steady state distribution (despite the fact
that this state is not achieved in the lifetime of the
Universe)

p1ðEÞ ¼ 1

2
!3E2e�!E; (42)

where

! ¼ _a

a

m

D
: (43)

The mean of the steady state distribution is 3=! and
the variance is 3=!2. Equation (42) is in fact the
ultrarelativistic limit of the Maxwell-Jüttner distribution
describing the energies of particles in an ideal gas in
thermal equilibrium at relativistic temperatures.
In Fig. 1 we show the probability distribution for E given

in Eq. (36). Once we fix units such that E0 ¼ 1 and make
the assumption that t � a= _a, the shape of the distribution
depends only on the value of the combination Dt=m. For
large values (>E0) the distribution is wide and flat while
for small values (<E0) the distribution becomes sharp and
narrow tending towards a delta function at E ¼ E0 as
Dt=m ! 0.
From Eq. (39) we see that the expected increase in

energy is approximately 3Dt=m. We can estimate Dt=m
using the GRW parameters along with (14) and (21). If
we generously assume that the particle has been freely
traveling for almost the whole lifetime of the Universe,
t� 1017 s,

Dt

m

��������GRW
�10�15 mc2: (44)

We can make a more aggressive estimate by choosing
��� 108 m�2 s�1—this is the order of the current upper
bound (CUB) on SL parameters imposed by diffraction
experiments using large molecules [15]. Here using the
same value for t we find

Dt

m

��������CUB
�10�5 mc2: (45)

In both cases the value is very small. Given our assumption
that the particle is traveling with speed close to the speed of
light its initial energy E0 must be at least several times the

FIG. 1. Probability distribution of particle energy. See text for
detailed description.

D. J. BEDINGHAM PHYSICAL REVIEW D 88, 045032 (2013)

045032-6



rest energy. Since E0 � Dt=m the distribution of energies
will be highly peaked around E0 (see Fig. 1) with variance
of orderDtE0=m. Given the fact that it would be difficult to
identify a source of massive free particles in the early
Universe with very precise energy we conclude that it is
very unlikely that this effect could be measured.

IV. SUMMARYAND CONCLUSIONS

We have considered the case of a relativistically fast
moving particle with fixed initial energy traversing the
Universe over billions of years. Standard quantum theory
predicts that the energy of the particle remains fixed and
that the wave function slowly disperses in space. By con-
trast the CSL model, a modification of standard quantum
theory to include quantum state reduction as a dynamical
process, predicts that the wave function remains localized
and that the energy of the particle undergoes diffusion. We
have performed a calculation to determine the distribution
of possible kinetic energies obtained by the relativistic
particle after a long period of CSL evolution.

Starting with the nonrelativistic CSL model we have
demonstrated that in the case of a sufficiently localized
single particle the stochastic equations for the state vector
can be recast in the simplified form of quantum mechanics
with universal position localization (QMUPL). The prop-
erties of QMUPL are well understood. In particular there is
a steady state form for the wave packet achieved after a
finite amount of free propagation. The average position and
momentum of the packet then satisfy a closed pair of
coupled classical diffusion equations. This essentially re-
duces the complex quantum/stochastic behavior of CSL to
the simple problem of a classical diffusion in phase space.

Although the nonrelativistic CSL equations cannot be
taken to apply for relativistic systems we argued that they
should be valid in the particle’s rest frame. This was based
on examining the form of proposed relativistic extensions
of SL along with the general principle that relativistic SL
models should somehow incorporate a fixed localization
length scale. The obvious way to do this without the use of
a preferred frame or foliation is to make reference to local
rest frames invariantly defined by the state. Roughly speak-
ing this means that the localizations of a particle’s wave
function will happen in the rest frame.

We showed how the classical diffusion process satisfied by
the steady state wave packet in the particle rest frame can be
Lorentz transformed to describe the diffusion from the point
of view of an inertial frame. This led us to derive a forward
equation for the observed probability distribution of energies
in the case where the inertial observer sees the particle with
speed v� c. The energy process in this case is an example
of a Cox-Ingersoll-Ross process. These are well known from
finance where they are useful for describing short rates. The
forward equation has a solution which we presented. In
particular we were able to show that the solution does not
permit negative energies as we would expect.
In fitting estimates for the CSL parameters to this

energy distribution we found that even using the upper
bound values obtained from diffraction experiments, the
spread in energy and the average increase in energy due
to the diffusion were both very small when compared to
the initial kinetic energy of the particle. Given that the
initial energy of the particle in practical examples will
have some uncertainty, it is unlikely that the precision
required to measure the relativistic energy diffusion due
to CSL can be achieved. On the other hand, this result
means that the energy increases due to CSL are kept
small, even on the scale of the lifetime of the Universe
and therefore do not pose a problem for the viability of
the theory.
Given that the localizations which happen in the rest

frame are Lorentz contracted from the perspective of a fast
moving observer, one might have expected that the col-
lapse effects would be stronger for relativistic particles.
However, this has to be balanced against the time dilation
effects which effectively reduce the localization rate from
the observer’s point of view. On the basis of the above
calculation the two effects seem to cancel each other out.
Relativistic particles do not obviously provide a way to
amplify the effects of CSL for the purpose of experimental
test.
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