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Investigations of the torque anomaly in an annular sector. I1.
Global calculations, electromagnetic case
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Recently, it was suggested that there was some sort of breakdown of quantum field theory in the presence
of boundaries, manifesting itself as a torque anomaly. In particular, Fulling e al. used the finite energy-
momentum-stress tensor in the presence of a perfectly conducting wedge, calculated many years ago by
Deutsch and Candelas, to compute the torque on one of the wedge boundaries, where the latter was cut off by
integrating the torque density down to minimum lower radius greater than zero. They observed that this
torque is not equal to the negative derivative of the energy obtained by integrating the energy density down to
the same minimum radius. This motivated a calculation of the torque and energy in an annular sector
obtained by the intersection of the wedge with two coaxial cylinders. In a previous paper we showed that for
the analogous scalar case, which also exhibited a torque anomaly in the absence of the cylindrical
boundaries, the point-split regulated torque and energy indeed exhibit an anomaly, unless the point splitting
is along the axis direction. In any case, because of curvature divergences, no unambiguous finite part can be
extracted. However, that ambiguity is linear in the wedge angle; if the condition is imposed that the linear
term be removed, so that the energy goes to zero for large angles, the resulting torque and energy are finite,
and exhibit no anomaly. In this paper, we demonstrate that the same phenomenon takes place for the
electromagnetic field, so there is no torque anomaly present here either. This is a nontrivial generalization,
since the anomaly found by Fulling ef al. is linear for the Dirichlet scalar case, but nonlinear for the

conducting electromagnetic case.
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L. INTRODUCTION

Recently, Fulling er al. [1] suggested that a quantum
torque anomaly exists in field theories in the presence of
boundaries. This is related, but somewhat distinct from that
group’s earlier discussion of a pressure anomaly [2], since
the latter explicitly depended on taking seriously the dis-
tance dependence of stress tensor components below the
cutoff scale. In the new torque anomaly, the stress tensor
employed is the completely finite one (cutoff independent)
for an ideal wedge calculated first by Dowker and Kennedy
[3] for the Dirichlet scalar case, and then given for elec-
tromagnetic fields subject to perfectly conducting bounda-
ries by Deutsch and Candelas [4]. These computations
were later revisited by Brevik and Lygren [5] and by
Saharian and Tarloyan [6]. It should, however, be borne
in mind that in computing those completely finite vacuum
expectation values of the stress tensor, regularization, such
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as that afforded by point splitting in the angular or the
radial direction, is necessary, before the subtraction of the
free-space vacuum stress tensor is effected. So the distinc-
tion between the two types of anomalies is not so sharp.
Naturally, the stress tensor computed for the wedge is
singular at the apex of the wedge. Therefore, it is not
possible to compute the total energy of the wedge, or the
torque exerted by quantum fluctuations of the interior fields
on one of the sides of the wedge. So what is proposed in
Ref. [1] is to integrate only from some nonzero inner radius
a from the apex, for both the torque and the energy. That is,
let the torque per unit length be
m(a, @) = f dpp(T?,), (1.1)
a
where the integral is over one of the wedge sides, 6
is the axial angle, and « is the angle of the wedge. The
corresponding energy per unit length is
&g, a) = [ dpp f 46T, (1.2)
a 0
It is immediately seen from the Deutsch-Candelas stress
tensor that
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a a) + -2 & a). (1.3)
oo

This is Fulling’s torque anomaly.

A possible resolution of this anomaly has been sug-
gested by Dowker [7]. It would appear that what is neces-
sary is more than simply putting in spatial cutoffs on the
integrals. This, in effect, equates the force on a semi-
infinite plate, not touching a second semi-infinite plate,
with the negative derivative of the quantum vacuum energy
contained in only the open region between those plates,
rather than the energy in all of space. Therefore, we here
are considering a region completely bounded by conduct-
ing surfaces: the two radial wedge boundaries and two
circular cylindrical boundaries sharing a common axis, as
shown in Fig. 1. In Ref. [8] we considered such a geometry
for a massless scalar field, with Dirichlet boundaries. We
regulate the integral by point splitting in the time or the
axial direction. For the former, the divergent expressions
indeed exhibit an anomaly, in that the torque is not equal to
the negative derivative of the energy contained within the
sector. This anomaly disappears for point splitting in the
axial direction, consistent with the findings of Ref. [2],
since that is a neutral direction, not referring to the stress
tensor components involved in either the energy density or
the torque density. Introducing the cylindrical boundaries,
however, causes another problem by generating divergen-
ces associated with curvature. These curvature divergences
generate logarithmic terms in the cutoff parameter, which
means that it is impossible to extract a finite energy.
However, all the divergences encountered are linear
functions of the wedge angle, so if we demand that the
“renormalized” observable energy approach zero as the
wedge angle gets large, we can remove such terms, yield-
ing a finite energy which indeed has the correct balance
with the torque. These results are consistent with the
annular piston results calculated a few years ago [9], using
the multiple-scattering technique.

FIG. 1. The Casimir energy and torque are calculated for the
region bounded between two perfectly conducting cylinders, of
radius a and b, bounded in the angular direction by two perfectly
conducting radial planes, making an angle « between them.
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In the present paper, we generalize the result of Ref. [8],
hereafter referred to as paper I, to the electromagnetic
situation, with perfectly conducting boundary conditions.
In the next section we set up the general Green’s dyadic
formulation, for the situation of cylindrical symmetry,
where, with perfectly conducting boundaries, we have
the complete decomposition between transverse electric
(TE) and transverse magnetic (TM) modes. This means
that the TM modes are the Dirichlet modes calculated in
paper I, while the TE modes are scalar Neumann modes.
In Sec. III we derive formulas for the energy in the sector,
as well as the torque on one of the radial planes. These
quantities are regulated by point splitting either in the
temporal or the axial direction. All the divergent terms
are extracted for the energy in Sec. IV, corresponding to
the volume, the surface area, corners, and curvature cor-
rections. These correspond to known terms in the heat
kernel expansion for this problem [10—12]. The finite part
is extracted in Sec. V, which arises from the uniform
asymptotic expansion of the Bessel functions appearing
in the Green’s functions, and the remainder, which is
computed numerically in Sec. VI. Just as in the scalar
case, the numerical results exhibit a linear dependence on
the wedge angle for sufficiently (not very) large angles. So
it is proposed to remove this linear dependence completely,
by a renormalization process that eliminates all the diver-
gent terms, leaving finite results which satisfy the expected
balance between energy and torque. Concluding remarks
are offered in Sec. VIIL.

II. GREEN’S DYADIC

The electromagnetic Feynman Green’s dyadic, which
corresponds to the vacuum expectation value of the time-
ordered product of electric fields, satisfies the differential
equation

1
(—2V X V X —1)F(r, r;w)=15r —1r'), (2.1)
w
or, for the divergenceless dyadic I =T" + 1,

(LZV XV X —I)F’(r, r'; )
w

=%VX (VX1)é(r —1'). (2.2)
Here, and in the following, we have taken a Fourier trans-
form in time. Henceforth, we will suppress the explicit
reference to the frequency dependence. For a situation with
cylindrical symmetry, and perfectly conducting boundary
conditions, the modes decouple into TE and TM modes,
and we can write

I = EGE + HG, 2.3)

in terms of TE and TM Green’s functions, where
the polarization tensor operators have the structure (for
example, see Ref. [5])
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E=—-VX(VX2)(V X3),
H = (VX (VX 2))(V X (V' X2)),

II. GLOBAL ...

(2.4a)
(2.4b)

where 7 is the translationally invariant direction. Acting on
a completely translationally invariant function,

E+H=-Vi(VV - 1V?), (2.5)
where
62
V2=V +— (2.6
az%
Further useful properties of E and H are
VXEXV =HV?,, VXHXV =EV?2 (2.7a)

where it is understood that both gradients still act on the r
and r’ dependent functions to the right, and

E(x,x)-Hx" x¥'")=H(r,x')- E@" r") =0, (2.7b)
E(r,x)- Ex",x") = E(r,r")V}V",  (2.7c¢)
H(r,x')- Hx", x") = H(r,x")V?V'"?,  (2.7d)

where we will understand that after differentiation, the
intermediate coordinates r’ and r’/ become identified.
For electromagnetism, the energy density is

E? + B?
2 )

u=T%= (2.8)
so by use of the Maxwell equations the energy contained
in a volume V with perfectly conducting boundaries 9V
becomes, in terms of the imaginary frequency { = —iw,

/V(dr)u(r) - % [V(dr) Tr[l + %(vn - VV)]

"EMEX)|y— (2.9)

because
f (dr) TEV X [(V X E(r)E(r)"]
|4
- iw}( oh X B@)-E@®)* =0, (2.10)
A%

for perfectly conducting boundaries. Quantum mechani-
cally, we replace the expectation value of the product of
electric fields E(r) by the Green’s dyadic:
1

(EMET)") =-I'(r,r'). (2.11)
i
Because we will be regulating all integrals by point
splitting, we can ignore delta functions (contact terms)
in evaluations, so in terms of I”, the quantum vacuum
energy is
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e u(r))

o]

- f (anmef” w;"" o (vz AU |,

Zf(dr)[—eiflfTrF’(r, r),
Vv 27

where in the last equation we have performed the rotation
to Euclidean space, so —it— ty is a Euclidean time-
splitting parameter, going to zero through positive values.
This is a well-known formula; for example, see Ref. [13].
The energy may be written in terms of the scalar Green’s
functions in Eq. (2.3),

= ﬁ ilty 72\72 E H
/V(dr) ] LV (GE + G e (213)

(2.12)

which again involves an integration by parts, and use of the
perfect conducting boundary conditions on both arguments
of the Green’s functions (see below)

fa . do -V G (e 1)y, = 0. (2.14)
The decomposition theorems contained in this section

are familiar from waveguide theory; for example, see
Ref. [14].

III. ANNULAR SECTOR

We now specialize to the situation at hand, an annular
sector bounded by two concentric cylinders, intercut by a
coaxial wedge, as illustrated in Fig. 1. The inner cylinder
has radius a, the outer b, and the wedge angle is . The
axial direction is chosen to coincide with the z axis.
The explicit form for the Green’s dyadic is

F/(l‘ I") _ __Z[ 2 tk(z Z) 1
oo &TT

X [E(r, ') cos v cos Vﬁ’g,,(p, o)

+ H(r,x')sin v0sin v0'g% (p, p')]. 3.D

Here v = mp where p = 7/a, and k> = %> + k*. The m
summation runs from 0 to oo for the TE modes, but only
from 1 to oo for the TM modes. We will see the crucial role
of the TE “zero mode” in the following. The H mode
vanishes on the radial planes, and on the circular arcs,

g(a, p") = gil(b, p') = 0. (3.2)
The normal derivative of the E mode vanishes on the radial
planes, as it does on the circular arcs:

9
—g5(p, Pl p=ap = 0. (3.3)

dp
Thus, the TE mode corresponds to a scalar mode satisfying
Neumann boundary conditions, while the TM modes cor-
respond to scalar Dirichlet modes. Therefore, the latter are
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exactly those found in the corresponding scalar calculation
in paper 1. Both scalar Green’s functions satisfy the same
equation:

2
K+ ; )gf”’ = —5(/) —p). (B4

Therefore, imposing the boundary conditions (3.2) and (3.3)
we find

g (p, p') = 1,(kp)K,(kp=)

- OB, ey, ep)
- DL ek, ()
+ WD ek, ()
+ K, (kp)l,(kp")], (3.5a)
g (p, p) = I(kp)K,(kp-)
- OB ey, ep)
- DUALED) ¢ p)i, (p)
o WRDRRD) o)k, (p)
+ K, (kp)l,(kp')] (3.5b)
where
A, (ka, kb) = I,(kb)K,(ka) — I,(ka)K,(kb), (3.6a)
A,,(Ka, kb) = I,(kb)K' (ka) — I'(ka)K,(kb). (3.6b)

A. Energy

Now using Eq. (2.13) we have for the energy per length
in the z direction

d¢ dk

27 27

X Z[ dpplgt(p.p) + gl (p, P)) (37

E=— g2 z{tE ikZ

In paper I we showed that
1

[ dopstio o) =5 Sma G
and in just the same way we can show [15]
b 1 9
[Laposio. =5 2 mied 39)

in terms of the quantities defined in Eq. (3.6). Therefore,
the energy per unit length is given by

I 2 9 AR
47Tf0 drk*f (K8, qﬁ)%aKanAA. (3.10)
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Here, to explore the effects of different point-splitting
schemes, we write

k = ksinvy,
Z = Jsin ¢,
where Z = z — 7 is an infinitesimal point splitting in the

z direction, and then we define the regulator function
& dl cos 2,yeiK3 cos (y—<;/>)y

sws. )= [T

which equals 1/2 for § = 0. For finite 8, temporal splitting
corresponds to

{ = Kkcosvy,

(3.11)
tg = 6cos ¢,

(3.12)

1
f(KS, 0) = Jo(Ka) - —6.11 (K(S), (3133)
K
while z splitting corresponds to
1
f(kd, m/2) = —6J1(K5). (3.13b)
K

B. Torque

To compute the torque on one of the radial planes, we
need to compute the angular component of the stress
tensor,

1
(%)) = — (B — B2 — BY)

=—i[é-r’-é+i2

: p-VXT' XV -p
2i

(3.14)

r'—r

1 <
+—22-V><F’><V’-2:|
(]

The torque then is immediately obtained by integrating the
first moment of this over one radial side of the annular
region, that is, for § = 0 or «a:

T:fb dpp j’oooocziiwe—iw(zft’)<T00>
— 3 [T O s wo) ] 1B (o, p) + g1(p, p))

(3.15)

In paper I we gave the radial integral for the TM part:

bd
f P gli(p, p) = LY

= 3.16
o 3o (3.16)

and we can show the same form holds for the TE
part [15]:

d a 0 A
j—”g’i(p,m:—ﬁ@lna (3.17)

Thus the electromagnetic torque on one of the planes is

=341 Z/ drrJoy(kd)In Kk? AA.
a4

Using integration by parts in Eq. (3.10), and Bessel’s
equation, we see this is indeed the negative derivative

(3.18)
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with respect to the wedge angle of the interior energy
provided ¢ = 7/2; that is, for point splitting in the z
direction. We will now proceed to evaluate the energy, by
explicitly isolating the divergent contributions as é — 0,
and extract the finite parts. Will it be true, as in the scalar
case, that after renormalization the finite torque is equal to
the negative derivative of the finite energy with respect to
the wedge angle?

IV. DIVERGENT TERMS FOR THE TE ENERGY

‘We now turn to the examination of the Neumann or TE
contribution to the Casimir energy of the annular region,
which is

LI SRS
&= 47Tf()dKKf(K5,¢)"§08K1nKA, 4.1)

where A is given by Eq. (3.6b). As in the Dirichlet case, we
expand the Bessel functions according to the uniform
asymptotic expansion, which here reads [16]

e (0250
KL (v€) ~ —‘/—l—tée nv<1 + Z(—l)" ”kgf)), (4.2b)
=1 14

where! 1 = (1 + £2)712, dn/dé = 1/(£1), and the poly-
nomials v () are generated from those for the functions 7,
and K, by

vo(1) =1,

velt) = wglt) + 12 - 1)[ () + 1, 1(z)]

I,(v¢) ~ (4.2a)

(4.3)

Because of this behavior, the second product of Bessel
functions in Eq. (3.6b) is exponentially subdominant.
Thus the logarithm in Eq. (4.1) is asymptotically

mﬂ+mm+
+1n oo”"(’) +In 1+ ( 1)k“"(~), (4.4)
(1+3

In k?A ~constant + [ n(¢) — 71/2)

where & = kb/v, &€ = £a/b, T = (1 + &)71/2. Here the
constant means a term independent of «, which will not
survive differentiation. Note that the 1/& behavior seen in
the prefactors in Eq. (4.2) is canceled by the multiplication
of A by «%. In the following, we will consider the
z-splitting regulator, ¢ = 7/2, since the result for time
splitting may be obtained by differentiation:

"The variable ¢ is the same as that called z in paper I; we have
changed the notation here to avoid confusion with the axial
coordinate.

PHYSICAL REVIEW D 88, 045030 (2013)

80) = < [58(r/2) (@.5)
We now extract the divergences, that is the terms pro-
portional to nonpositive powers of &, just as in paper 1.
We label those terms by the corresponding power of 1/8.
The calculation closely parallels that in paper I, except for
the additional zero mode, m = 0. Except for that term, the
leading divergence is exactly that found in paper I,

=0 a*—d*)  b—a
R (40
However, the m = 0 term yields
A= b—a
Ert=——3, 4.7
4 4783 .7)

thereby (correctly) reversing the sign of the second term in
Eq. (4.6). Thus the leading divergence is again the expected
Weyl volume divergence:

A

@ — ’
272 6%

A= %a(b2 —ad?). (4.8)

Evidently, the O(v~3) term, for m >0, is exactly
reversed in sign from that for the Dirichlet term,
_ala+b) 1

16w  8mwd*’

but again the sign of the subleading term is reversed by
including m = 0:

gm>0

(4.9)

1
478%
Thus, we get the correct surface area and corner terms:
g __ P

En0 = —

(4.10)

P=ala+b)+2(b—a),
_ (T T2
=457

Closely following the path blazed in computing the
divergent terms coming from the polynomial asymptotic
corrections in the Dirichlet case in paper I, but includ-
ing the m = 0 terms, we find the first three curvature
corrections

(4.11a)

= 6. (4.11b)

. 3 1/1 1
Y 4.12
&2 64776(a b)’ (4.122)

. 5 al/l 1\ 3lms/1 1
=—_——_ Z _(Z4+2)+ —+—) @12
& 1024 5( b) 1287 (a2 bz) (4.120)

A.m = 0 case

Before proceeding, it is time to recognize that use of the
uniform asymptotic expansion is apparently inconsistent
for m = 0, because v = 0 then. So let us calculate the
m = 0 contribution directly from
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~ _ 1 © ) J] (Ka) d 2 ,
Em—o = il KK — = [1}(kb)K|(ka)
— I}(ka)K|(kb)], (4.13)

where the divergent terms arise from the large argument
expansions

e* 3 15
() ~ =2 -2 4) @14
o) v 27Tx( 8x  128x2 ) ( 2)
L [7( 3 15
Ki(x) ~ e ﬂ(l b ) (4.14b)

Inserting this into Eq. (4.13) we obtain

[ dKJl(K6)|:K(b —a)+1
+ 3 1 1 . 3 1 1 4 1 .
8K<b a) 8K2+)\2(b2 az) ]
b—a 1 3 /1 1
~ = — =+ _— =
478 4ws?  32wd (a b)
3lnAd /1 1
+——(5+=)
641 (a2 bz)
Here, in the last term we introduced a mass, k2 — k% + A2,
in order to eliminate the infrared divergence. These terms
all agree with the corresponding terms found from the
uniform asymptotic expansion by taking m = 0. We might
note that these terms are all independent of «, so cannot
contribute to the torque, but for completeness we will
retain them.
There is one remaining divergent term, arising from the
1/ 13 term, but here we exclude m = 0, because that sub-

traction is not necessary since the corresponding m = (0
contribution to the energy is already finite at 6 = 0. That

curvature term is
o Iné 1
&, ~ aln ( i _2)
18072 \b a

Let us summarize the divergent terms for the Neumann
or TE modes:

b0~ 15

(4.15)

(4.16)

g __ A P C 3 (1_1)
div 2728 16m83  487wS  64md\a b
_ Sa <l+l)+3ln6/,u<i+i>
102476 \a b 1287 \a? b2
alnd/pw(l 1
2R ) 4.17
18072 <a2 bz) (“.17)

)=}

{ o ( 1 ba
ti—| 5 In—
b 1807 7 69120

1 1
fima 7) e

29 a2(1+1) 5 g()(
46080 7 \a> b*) 12012 7*
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Here, we have introduced an arbitrary scale w, which
will appear in the finite part given in the next
section.

B. Heat-kernel expansion

This small-6 Laurent expansion (4.17) exactly agrees
with that found by the heat-kernel calculation of Dowker
and Apps and of Nesterenko et al. [10—12], who consider
a wedge intercut with a single coaxial circular cylinder
with radius R. From the latter heat-kernel coefficients
the cylinder-kernel coefficients can be readily extracted
[17]. The trace of the cylinder kernel T(¢) is defined
in terms of the eigenvalues of the Laplacian in d
dimensions,

T(t)=Ze_“~Ze P+ Z £ 4Int,
J

s=d+1
s—d odd

(4.18)

where the expansion holds as ¢t — 0 through positive
values. (This ¢ is not to be confused with the quantity
appearing in the uniform asymptotic expansion.) The
energy is given by
1

E(1) ¥ 70,
which corresponds to the energy computed here with
¢ = 0, that is, time splitting. In view of Eq. (4.5) we
see that the z-splitting result should be identical to that
of —zitT(t) with ¢+ — &. In this way we transcribe the
results of Ref. [12] for the outside cylinder kernel per
unit length:

(4.19)

L S S N
2t 27 167 16722
3 —5a/l16 Int (37 4da
———] (4.20
64 Rt 16772R2< 8 45) ( )

This exactly agrees with Eq. (4.17) when a — R and
b — oo (except that the the latter limit is not taken in the
first two terms). The reason for the factor of 2 discrep-
ancy in the third (corner) term is that Nesterenko et al.
have only two corners, not four.

V. EXTRACTION OF FINITE PART

Just as in the Dirichlet case considered in paper I, the
divergent terms have finite remainders, which we state
here:

1 11
——>+{ 3 [ +y+1nb—+21n,u/\]+(b—>a)}
o

b? 1287621 12

1)~I—ER (5.1)
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FIG. 2 (color online). Renormalized energy for TE modes for
a/b = 0.1 (triangles), a/b = 0.5 (inverted triangles), and
a/b = 0.9 (dots). Here the energies per unit length, in units of
1/b2, are plotted as a function of the wedge angle a.

The last two explicitly given terms are what come from the
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asymptotic expansion of the integrand for the energy.
The remainder, therefore, consists of two parts: that arising
from m = 0,

N 1 00 J ~
Epo=—— f dKK[K— Ink?A,,—g — k(b —a) — 1
87 Jo 0K

_3(1_1)_ 3 (1+1)]
8k\b a) S8(k*+ A)\p* d*/]

and the rest coming from the terms with m > 0,

(5.2)

L 3 [Tage o e.aim)

87b? —

A/__
Er =

-2
+> fuw & a/b)]- (5.3)
n=4

Here, with the abbreviations I = I,(v&), I = I,(véa/b),
etc., the original integrand in Eq. (4.1) is

(1+HUK — K[ +5(1 +

~

a

)(I'K — K'D)

next two terms in the uniform expansion for m > 0. Note T — KT (5.4)
that we have made no approximation here; we have merely
added and subtracted the leading terms in the uniform  The subtractions are easily read off:
|
N 1 al
= -4+ - — 5.5a
4 & b E (5.5a)
Fy= —i<§z2 +f§fl) (5.5b)
U 2w b° ) '
~ 1 a -
fo=—=E&P(=3+71) ——(£— &), (5.5¢)
8v b
A 1 -
fi= F§t4(_3 + 2072 — 211%) + g(f — &), (5.5d)
v
fo = —— £5(—2835 + 3910512 — 99225¢* + 65835(6) — = (& — & , 55
Jo = g €0 ) 2= d (5.5¢)
A 1 -
fo1 = 15855 E0(—108 + 26161 — 11728¢* + 176401° — 84841%) + %(5 — &), (5.59)
v
N 1
foa= Wfﬂ(—S%ISS + 226809452 — 156073050¢* + 3933537301% — 41521252513 + 156010365¢'°)
v
a ~
- Z(f — &) (5.59)

The last two subtractions, and the associated terms in
Eq. (5.1), are not necessary, but they improve convergence.

VI. NUMERICS

The extraction of the finite part follows the same proce-
dure described in paper 1. The total finite energy given in
Eq. (5.1) is the sum of the explicitly given finite terms plus
the remainder:

)
Er=> & + &, 6.1)
n=4
where E'R is the sum of Egs. (5.2) and (5.3).

The total energy becomes a linear function of « for
sufficiently large wedge angles. But because of the loga-
rithmically divergent parts in the energy, such linear terms
are undetermined. That is, we can add to the energy an
arbitrary counterterm of the form

A

E4=A+ Ba. (6.2)
We subtract off the linear behavior found numerically from
Eq. (6.1), because the energy should approach zero for
sufficiently (but not very) large «. In this way, we get the
Neumann (TE) energies seen in Fig. 2, very similar to what
we found for the Dirichlet (TM) contribution.
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FIG. 3 (color online). Comparison of the renormalized energy
per length (in units of 1/b?) for TE modes (squares) and TM
modes (upper red curve), with the Casimir limit (6.3) (blue
dashes) and the PFA approximation [first term in Eq. (5.1)]
(red dots), the PFA being larger than the Casimir limit in
magnitude by 27%, for a/b = 0.5. The TE mode is always
much larger in magnitude than the TM contribution.

The TE and TM contributions are both displayed
in Fig. 3, as well as the result expected for either TE or
TM modes for parallel plates, which is approached as
a— 0

7@ l—a/b 1

Ec=— —.
¢ 18062 (1 + a/b)’ a®

(6.3)

This formula is valid in the regime ¢« < 1,1 — a/b < 1,
in which case it agrees with the leading finite term in
Eq. (5.1), which is the same as the a3 term for the
Dirichlet case. Those leading terms are, in fact, the prox-
imity force approximation (PFA). Figure 3 shows that this
limit is indeed approached for both TE and TM modes,
from opposite sides, but that the TE mode is always
considerably larger in magnitude than the TM mode,
which is a phenomenon observed previously in a related
context [18].

VII. CONCLUSIONS

Because of curvature divergences, it is impossible to
extract a unique finite part of the energy. However, the
divergences are all constant or linear in the wedge angle «.
Therefore, we can renormalize the energy by subtracting
the linear dependence for large angles, to impose a physi-
cal requirement that the energy go to zero when the sepa-
ration between the wedge planes is large. The resulting
energy is completely finite, independent of regularization
scheme, and exhibits no torque anomaly:

d
m(a) = ——&(a). (7.1)
o
These results, of course, are consistent with, and generalize
to electromagnetism, the annular piston work of Ref. [9].

PHYSICAL REVIEW D 88, 045030 (2013)

It is remarkable how similar the electromagnetic calcula-
tion is to that for the Dirichlet scalar.

So, as with the scalar, Dirichlet, case, there is no sign of
a torque anomaly. Here, this is even more surprising,
because in the Dirichlet situation, the anomaly is man-
ifested by linear terms in « in the energy, which would be
canceled by the corresponding exterior (6 € [a, 27])
contribution for an annular piston, as well as being re-
moved by our “‘renormalization” procedure. As empha-
sized in Ref. [1], for the electromagnetic wedge, there is
an additional anomalous term in the energy ~a ™! [4],
which would not disappear if the exterior contribution
were included, and should not be removed by renormal-
ization. The reason we do not see this effect here will be
explored further as we study the local regulated stress
tensor.

To summarize, in these two papers, we have explored the
torque 7 (per unit length) on one side of an annular sector,
formed by the intersection of two planes, and two coaxial
cylinders. The question we asked was whether the torque
was somehow anomalous, in that

(7.2)

Here £ is the energy (per unit length) contained within
the sector, and « is the dihedral angle between the planes.
In the first paper, the quantum vacuum energy and torque
were computed for a massless scalar field subject to
Dirichlet boundary conditions on all the surfaces, and in
the present paper, the boundaries are perfect conductors,
and the fluctuating field is the electromagnetic one. In
both cases we computed the divergent and finite parts of
the energy, obtained by point splitting in either the
(Euclidean) time or the axial direction. The physical
normalization requirement that the energy of the annular
sector go to zero for sufficiently large wedge angles
allows us to define a finite, nonanomalous renormalized
energy. The possibility of doing so, however, depends on
the existence of an inner cylindrical boundary. Without
that boundary it is not possible to define a torque or an
energy, and ambiguities such as the torque anomaly can
appear.
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