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The absence so far of any supersymmetric signals at the LHC pushes towards a rethinking of the

assumptions underlying the minimal supersymmetric Standard Model. Because the large missing ET

searches are inadequate to detect a lightest supersymmetric partner (LSP) decaying within the detector,

R-parity violating supersymmetry is still a good candidate for low-energy, natural supersymmetry. We

show that, in Froggatt-Nielsen-like models of horizontal symmetries, specific textures for the R-parity

violating couplings are dictated by the symmetry, with the largest coupling involving the third generation

fields. Lepton number can be an accidental symmetry of the renormalizable superpotential and baryon

number violation is given by a �u �d �d operator. The collider phenomenology then mimics the main features

of minimal flavor violation R-parity violating supersymmetry. The LSP can evade current LHC

supersymmetry searches and is allowed to be well below 1 TeV, and at the same time all the constraints

from proton decay and other low-energy decays can be satisfied; in particular, dimension-five operators

allowed by R-parity but dangerous for the proton are under control, while neutrino masses are generated

by the Weinberg operator. Assuming sub-TeV (natural) superpartners, we obtain both upper and lower

limits on the magnitude of the dominant R-parity violating coupling: a lower limit of order 10�9 arises

from null LHC searches on R-hadrons and heavy stable charged particles, while an upper limit of order

10�2 follows from constraints on low-energy flavor-changing neutral currents. Displaced vertices are

predicted in the lower end of this range.
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I. INTRODUCTION

Generic supersymmetric extensions of the Standard
Model (SM) do not share its success in suppressing large
flavor-changing effects: first, baryon and lepton number are
not accidental symmetries of the supersymmetric Standard
Model, unless some additional (usually discrete) symmetry
is assumed, e.g. R-parity, Rp ¼ ð�1Þ2Sþ3BþL [1], or matter

parity Mp [2], under which the SM fields are even and the

superpartners are odd. This way, all the baryon-number
violating (BNV) and lepton-number violating (LNV)
dimension-four operators are forbidden; still, dimension-
five operators that would induce proton decay are allowed
by R-parity. Other possibilities are baryon triality (B3) [3],
which just forbids baryon-number violation, or proton
hexality (P6) [4], the direct product of Mp and B3.

Second, even with a discrete symmetry, generic squark
masses at the TeV scale would generate unsuppressed
flavor-changing neutral currents (FCNCs), which contrib-
ute to low-energy phenomena such as meson mixing and
decays. To eliminate large FCNCs in low-energy super-
symmetry (SUSY), squark degeneracy is usually assumed;
then, in a Glashow-Iliopoulos-Maiani-like mechanism,
their contribution is suppressed. Although natural (at the
SUSY breaking scale) in gauge-mediated models of super-
symmetry breaking, squark degeneracy is not guaranteed
in other frameworks, such as gravity mediation. An

alternative way to suppress large FCNCs is to assume
alignment between quark and squark mass matrices; that
is, assuming that the squark mass-squared matrices and
the quark-mass matrices are simultaneously diagonal,
in the basis where the gluino interactions are diagonal as
well [5]. Nevertheless, as pointed out in Refs. [6,7], for a
SUSY breaking scale of 1 TeV alignment alone is not
enough to satisfy the constraints from both K � �K and
D� �Dmixing, and anOð10%Þ degeneracy for the squarks
is needed.
A third, related problem involves the mass of the Higgs

boson and the scale of supersymmetry. In the minimal
supersymmetric Standard Model (MSSM), the tree-level
Higgs boson mass is bounded above by MZ, and one has
to rely on radiative correction to lift it up to the value
mh ¼ 126 GeV discovered at the LHC [8,9]. This either
implies a heavy top squark or large soft A-terms, or both.
On the other hand, the fine-tuning of the weak scale is also
sensitive to the top squark mass, and heavy top squarks
lead to higher degrees of fine-tuning. The exact level
depends on the definition of fine-tuning, and it is debated
which degree of fine-tuning is acceptable and which is not,
but it is generically accepted that top squarks heavier than
1 TeV are a problem for the naturalness paradigm (see
Ref. [10] for a review of the concept of naturalness in
light of the LHC searches). When considering light
superpartners, a light Higgs at 126 GeV requires extra
contributions to its mass. Here, we will be assuming the
presence of a next-to-MSSM (NMSSM)-like singlet N,*amonteux@ucsc.edu

PHYSICAL REVIEW D 88, 045029 (2013)

1550-7998=2013=88(4)=045029(16) 045029-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.045029


with a superpotential term �N�u�d; as shown in Ref. [11],
for �� 0:7 this allows sub-TeV stops and a fine-tuning of
order 10%.

The MSSM usually just assumes R-parity, even though
additional suppression is needed for the dimension-five
operators: in this scenario superpartners are always pair-
produced. The lightest supersymmetric partner (LSP) is
stable and usually a neutralino, thus providing a weakly
interacting massive particle dark matter candidate. Any
superparticle produced at the LHC decays in a cascade
leading to the LSP, which escapes the detector generating
events with large missing energy 6ET . In most of the MSSM
parameter space, the LHC has set lower limits of 1 TeVor
above for superpartner masses, although searches directed
specifically at the top squark give slightly lower bounds, of
about 650 GeV. Still, the high limits on the gluino mass
result in a fine-tuning of the weak scale as the gluino mass
enters the renormalization group equations (RGEs) of the
squark masses, including the top squark. This has pushed
some to abandon the concept of naturalness and accept
that some parameters of our theories might be fine-tuned
and that their smallness might be due to environmental
selection.

Nevertheless, many low-energy (natural) supersymmet-
ric models exist that evade LHC searches—such as com-
pressed SUSY [12], stealth SUSY [13], and several models
of R-parity violating (RPV) SUSY [14–19]—the common
aspect of this class of models being that the decay cascades
have small missing energy, thus evading the requirement of
large 6ET in ATLAS and CMS searches.

In this work, we will focus on the last possibility,
R-parity violation; without R-parity, the LSP is not stable
and it can decay within the detector, thus leaving no miss-
ing energy. Moreover, because the LSP does not need to be
the dark matter, it can as well be a charged or colored
particle (the gravitino can be a dark matter candidate,
provided that its lifetime is long enough on cosmological
scales [20]). As we have seen, although R-parity was
initially proposed to stabilize the proton, it is not enough
for this purpose, and its very presence can be questioned. In
this context, lepton- and baryon-number conservation is
just approximate, and one can explain small violations as
the result of a broken symmetry [a SUð3Þ5 flavor symmetry
group in minimal flavor violation (MFV) [17], or a U(1) in
the models we will be considering].

A simple model of R-parity violation involves a
horizontal symmetry Uð1ÞH (which might also be an
R-symmetry) responsible for the hierarchy in the SM
fermion masses and mixings, in a supersymmetric exten-
sion of the Froggatt-Nielsen mechanism [5,21–24]. The
high-energy theory is assumed to be invariant under a
horizontal symmetry, broken by the vacuum expectation
value of a field S with charge H ½S� ¼ �1 (the flavon). In
the low-energy theory, heavy fields that have been inte-
grated out generate effective operators proportional to the

spurion " ¼ hSi
M , where M is the high scale related to the

horizontal symmetry-breaking mechanism.1 Only terms
that are invariant under the symmetry are allowed in the
superpotential. In order to give mass to the SM fermions,
the Higgs Yukawa couplings must be allowed, and their
hierarchies appear because they are proportional to differ-
ent powers of ", corresponding to the diverse horizontal
charges of the SM fields. For the same reason, the operators
that break R-parity can be small [24], while FCNCs can be
suppressed by charge assignments that give either squark
degeneracy or quark-squark alignment.
Here we will show that the horizontal symmetry predicts

the relative hierarchy of the R-parity violating couplings
and proton decay can be sufficiently suppressed. The hori-
zontal symmetry can also be embedded in the flavor group
Uð3Þ5 that is a symmetry of the Lagrangian in the limit of
vanishing Yukawa couplings, in a weaker version of the
minimal flavor violation hypothesis. Because no continu-
ous global symmetry is expected in quantum gravity, the

horizontal symmetry might be a discrete symmetry ZH
N ;

then, SN would have horizontal charge 0modN and the
maximal suppression for operators would be "N�1.
Achieving adequate suppression for R-parity violating
decays would push N to be greater than 10, making the
model less attractive, but if the horizontal symmetry is

ZH
N1

� ZH
N2
, with two spurions S1 and S2, the values of

N1 and N2 can be lower.
We will not ask for the horizontal symmetry to be

anomaly free, or that its anomalies with respect to the
SM gauge groups be universal, because we do not want
to commit to a specific high-energy model: as argued
in Ref. [29], anomaly universality is specific to the
Green-Schwartz (GS) mechanism in the heterotic string,
involving one dilaton field; for both continuous and dis-
crete symmetries, there are examples in the heterotic [30]
and type II [31,32] string theory where the anomalies are
cancelled by multiple moduli which do not couple univer-
sally to gauge-field strengths of different gauge groups.
Furthermore, we are considering an effective theory where
heavy charged fields have been integrated out at a high
scale where the symmetry breaks down, so additional
heavy states would contribute to the anomalies. We con-
clude that the only constraints on the horizontal symmetry
are given by the quark and lepton masses and mixings.
Since there are more variables than constraints, some of the
horizontal charges are free parameters.
While this paper was in preparation, a similar work was

published [33]; the authors of Ref. [33] also studied

1The high-energy theory generally includes extra charged
fields, but we are not interested in its specific form; for a
horizontal U(1), heavy mirror fermions are integrated out at
the scale M [21,23]. UV models for MFV SUSY were proposed
in Refs. [25–27], while a model in which the 6Rp couplings arise
through SUSY-breaking soft terms was studied in Ref. [28].
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R-parity violating SUSY with a horizontal symmetry, and
in particular how baryonic R-parity violation can evade
the stringent LHC supersymmetry searches. A standard
Green-Schwarz mechanism with universal anomalies was
assumed. As stated above, we do not ask for anomaly
universality, and clarify that the structure of the RPV
coefficients is unequivocally determined by the masses
and mixings of the SM fermions. An important difference
arising from anomaly universality involves the � term: as
can be seen in Ref. [34], anomaly cancellation through a
Green-Schwartz mechanism gives a specific prediction for

the magnitude of the� term,� ¼ m"jn�j, "n� ¼ mdmsmb

mem�m�
¼

5:14þ4:40
�3:02, where the error bars come from the experimental

errors in the quark masses, " ¼ 0:226 and m ¼ MP if
n� � 0, or m ¼ m3=2 for negative n�. This corresponds

to n� ¼ 0,�1 or�2, with�1 the preferred value: this is a

solution of the � problem if the SUSY scale is not very
much above 1 TeV. Although the main purpose of the
present work is to consider low-energy supersymmetry, a
horizontal symmetry with nonuniversal anomalies leaves
the possibility of a hierarchy between the SUSY breaking
scale and the weak scale. The only phenomenological
requirement is n� < 0, and jn�j can easily be a number

of order 10, thus explaining a hierarchy of up to 10�7

between m3=2 and �. In this sense, it is noteworthy that,

if there are no superpartners up to a few TeV, a horizontal
symmetry with cancellation of universal anomalies (sych
as the one considered in Ref. [33]) would be ruled out.

In addition, the present work takes a different approach
to low-energy supersymmetry, as it is pointed out that
current LHC searches also exclude models with arbitrarily
small 6Rp coefficients, and a range of allowed R-parity

violating couplings is provided. Finally, we solve issues
arising from low-energy supersymmetry, such as the high
value of the Higgs mass and the absence of FCNCs.

This paper is organized as follows. In Sec. II, we
will review how a horizontal symmetry can generate

hierarchies in the SM spectrum, and the phenomenological
constraints on the charges of the fields. We will then
investigate the implications for the 6Rp couplings in the

superpotential in Sec. III, and discuss the phenomenologi-
cal implications for both low-energy flavor physics and
LHC signatures; requiring low-energy supersymmetry will
provide a lower bound for the 6Rp coefficients. In Sec. IV,

we will consider quark-squark alignment and whether light
superpartners are compatible with low-energy flavor phys-
ics: this way, we reconcile the demand for low-energy
SUSY from naturalness and the demand of a higher scale
of supersymmetry from the absence of FCNC signals. In
Sec. V, we examine the NMSSM contribution to the Higgs
mass and present horizontal symmetry constraints on that
sector. In Sec. VI, we will investigate the origin of the
horizontal symmetry by asking it to be a subgroup of the
SUð3Þ5 flavor group; this corresponds to the use of a flavor
symmetry that is already manifest in the SM. We will then
discuss the similarities of our approach to the MFV ap-
proach, and the different phenomenological implications.

II. HORIZONTAL SYMMETRY

In this section, following Refs. [22,34], we construct an
effective theory in which a horizontal symmetry H is
responsible for the hierarchies and mixings of the SM
fermion sector. Unlike Refs. [34,35], we do not assume
anomaly cancellation through a GS mechanism. The hori-
zontal symmetry is broken when a field S with charge �1
acquires a vacuum expectation value hSi and the effective
theory is valid up to the scale M, where the flavon dynam-
ics takes place.2 The MSSM superpotential is replaced by
an expression that preserves H ,

��u�d þ Yd
ij�dQi

�dj þ Yu
ij�uQi �uj þ Y‘

ij�dLi
�‘j; (1)

which becomes

m

�hSi
M

�jn�j
�u�d þ

�hSi
M

�
mij

�dQi
�dj þ

�hSi
M

�
nij
�uQi �uj þ

�hSi
M

�
pij

�dLi
�‘j

¼ m"jn�j�u�d þ "mij�dQi
�dj þ "nij�uQi �uj þ "pij�dLi

�‘j; (2)

where we have neglected Oð1Þ coefficients of the effective
operators in the last equation and defined " ¼ hSi=M. If
the exponents mij, nij and pij are non-negative (since the
superpotential is holomorphic in S) and nonfractional (un-
less the effective operator arises from some nonperturba-
tive effect) the corresponding operator is allowed;
otherwise, it is forbidden. Below the SUSY breaking scale
the potential does not have to be holomorphic, and
operators with negative powers of " appear from Kähler
corrections (for a complete discussion, see Ref. [34]): for
dimensionless couplings, this generates an additional

suppression of order m3=2=MP and we will not consider
it, while a � term � ¼ m3=2"

�n� is generated by a Kähler
correction X�u�dðS�MÞ�n� in a Giudice-Masiero-like
mechanism [37], if n� ¼ H ½�u� þH ½�d� � r < 0. In
the expression above, we inserted a mass scale m that isM
if n� is positive and ism3=2 if n� < 0. For negative n�, the
� term is automatically suppressed with respect to m3=2.

2The flavor-physics scale is unconstrained; it could be as low
as 103–4 TeV [23], or up to MP if string theory is responsible
for it [36].
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Because H ½S� ¼ �1, the exponents are

mij ¼ H ½�d� þH ½Qi� þH ½ �dj� � r;

nij ¼ H ½�u� þH ½Qi� þH ½ �uj� � r;

pij ¼ H ½�d� þH ½Li� þH ½ �‘j� � r;

(3)

where r ¼ 0, 2 takes care of the possibility that the
horizontal symmetry is an R-symmetry. In the following
we will denote the horizontal charge of a field �i by the
symbol of the field itself, H ½�i� ¼ �i, and the intergen-
erational difference between charges as H ½�i� �
H ½�j� ¼ �ij, i, j ¼ 1, 2, 3.

a. Quark sector: Given the superpotential (2), the
masses and mixing angles in the quark sector can be ex-
pressed in terms of " [21],

Ya
ij � va"

�aþQiþaj�r; a ¼ u; d; i; j ¼ 1; 2; 3;

ma
i

ma
j

� "Qiþai�Qj�aj ; jVijj � "jQi�Qjj;
(4)

where V is the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix. It can be written in the Wolfenstein parametrization,

jVj ¼

����������������

1� "2=2 " A"3ð�� i�Þ
�" 1� "2=2 A"2

A"3ð1� �� i�Þ �A"2 1

0
BB@

1
CCA
����������������

�
1 " "3

1 "2

1

0
BB@

1
CCA; (5)

where we have set " ¼ jVusj ¼ sin�C ¼ 0:226 as the
magnitude of the flavor spurion. This choice is taken to
limit the tuning of Oð1Þ coefficients needed to explain
hierarchies; if we had taken a smaller ", we would not
have been able to explain the magnitude of Vus without
invoking a tuning of the parameters. If the horizontal
symmetry is a direct product of multiple U(1)’s the mag-
nitude of the spurions can be smaller, while still explaining
hierarchies of order Vus [5,22]; in Sec. IV, we will be
working in such a scenario.

To compute the mass hierarchies, we should take the
magnitude of the Yukawa’s at the flavor-breaking scaleM,
and run them down to the observed, low-energy values;
because the running does not alter the mass ratios signifi-
cantly, we take the values of the running quark masses at
MZ, as listed in Table I,

mt=v ¼ 1� "0; mb=mt ¼ 0:017� "2:7;

mc=mt � 0:0035� "4; ms=mb ¼ 0:019� "3;

mu=mc ¼ 0:002� "4; md=ms ¼ 0:053� "2:

(6)

Except for b, for which the effect of tan�will be discussed
below, rational numbers were approximated by the
closest integers. For example, the approximations
mc=mt ¼ "3:8 � "4 or ms=mb ¼ "2:6 � "3 were taken.
This is because the powers of " for allowed Yukawa
operators have to be integers and anOð1Þ coupling in front
of any superpotential term will also contribute to the mass
ratios; approximating "0:5 � "0 is reasonable, because a
factor of "0:5 corresponds to having an Oð1Þ coefficient of
0.48 in front of the relevant operator. It is also reasonable to
approximatems=mb � "2; this only means that some of the
charges might vary by �1, and it does not significantly
change our conclusions.
b. Lepton sector: For the leptons, the masses and mixing

angles can be treated in a similar way,

Y‘
ij � vd"

�dþLiþ‘j�r;

m‘
i

m‘
j

� "Liþ‘i�Lj�‘j ;

jUijj � "jLi�Ljj:

(7)

Here, U is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing matrix; in principle, its expression in
terms of " depends on the specific mechanism chosen to
generate neutrino masses. We assumed this form as it
follows from assuming either Dirac neutrino masses or a
type I seesaw mechanism, as shown in the Appendix. For
U, almost all the elements are of order 1,

jUj ¼
0:82 0:55 0:16

0:36 0:7 0:62

0:44 0:46 0:77

0
BB@

1
CCA�

1 1 1

1 1 1

1 1 1

0
BB@

1
CCA

or

1 " "

" 1 1

" 1 1

0
BB@

1
CCA or

1 1 "

1 1 "

" " 1

0
BB@

1
CCA: (8)

The choice of the PMNS parametrization changes the
constraints that will be enforced on the charges of the
leptons Li; in particular, the anarchical case corresponds
to Lij ¼ 0, while jL12j ¼ jL13j ¼ 1 in the second case in

Eq. (8). In the following, we will assume the anarchical
mixing scenario, keeping in mind that there might be a
difference of �1 in the Li charges if another hierarchy

TABLE I. Running quark and charged lepton masses atMZ, from Ref. [38]. We have reported error bars only when they are sizable.

u (MeV) d (MeV) c (MeV) s (MeV) b (GeV) t (GeV) e (MeV) � (MeV) � (MeV)

1:3� :5 2:9� 1:2 620� 80 55� 15 2:89� 0:09 171:7� 3 0:487 102:7 1746
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were to be generated by the horizontal symmetry. Although
jU13j is small, it is still considered an Oð1Þ factor.

The mass ratios for the leptons are,

m�

mt

¼0:01�"3:1;
m�

m�

¼0:059�"2;
me

m�

¼0:0047�"4:

(9)

For the down sector and the leptons, tan� has to be
considered,

h�ui
h�di ¼

vu

vd

¼ tan�; v2
u þ v2

d ¼ v2 ¼ ð246 GeVÞ2;
mb

vd

¼ mb

vu

tan� ¼ "2�x� ;
m�

vd

¼ m�

vu

tan� ¼ "2�x� ;

where we defined x� ¼ �0:7� log "ðtan�Þ> 0 to be an

integer; values of tan� for which x� would not be exactly

an integer can still be accounted for by considering the
Oð1Þ couplings. For tan�� 60, we have x� ¼ 2 and there

is no hierarchy between the up and down sectors. For small
values, tan�� 3 corresponds to x� ¼ 0, and tan�� 1 to

x� ¼ �1.

Putting together all the constraints (5)–(8), the following
relations must hold:

8>>><
>>>:
jQ12j ¼ 1;

jQ23j ¼ 2;

jQ13j ¼ 3;

8>>><
>>>:
jL12j ¼ 0;

jL23j ¼ 0;

jL13j ¼ 0;

8>>><
>>>:
�u þQ3 þ u3 ¼ r;

Q23 þ u23 ¼ 4;

Q12 þ u12 ¼ 4;8>>><
>>>:

�d þQ3 þ d3 ¼ 2� x� þ r; ¼ �d þ L3 þ ‘38<
:
Q23 þ d23 ¼ 3;

Q12 þ d12 ¼ 2;

8<
:
L23 þ ‘23 ¼ 2;

L12 þ ‘12 ¼ 4:

(10)

The two sets of solutions for the charge differences �ij

are displayed in Table II.
In the main body of the paper we will use the first set of

solutions, while the second one will be considered in the
Appendix. The phenomenological implications are similar
in both cases. The remaining constraints are8>>><

>>>:
�u þQ3 þ u3 ¼ r;

�d þQ3 þ d3 ¼ 2� x� þ r;

�d þ L3 þ ‘3 ¼ 2� x� þ r:

(11)

Because there are 17 charges and only 13 independent
equations, they cannot be uniquely solved and the solutions
depend on the choices of four independent variables, which
we take as fQ3; u3; d3; L3g.
The � term has a charge

n�¼�uþ�d�r¼2�x��2Q3�u3�d3þr: (12)

For positive charges of the fields, a � term in the super-
potential is easily avoided, as the right-hand side of the
equation becomes negative. In this case, the Kähler-
generated � term is automatically suppressed with respect
to the SUSY breaking scale m3=2. For low-energy SUSY,

n� should be a small negative number so that � and m3=2

are not that different. As stressed in the introduction,
the universal anomaly cancellation conditions predict
"n� � "�1 and � ¼ "m3=2. As we do not use a standard

GS mechanism, n� is not fixed in our framework; in

particular, a rather heavy scale of SUSY breaking can still
generate a weak-scale � term.

A. Additional freedom

Until now, we have asked for the superpotential in
Eq. (1) to be invariant under the horizontal symmetry
Uð1ÞH , but there are additional symmetries under which
the superpotential is already invariant,

Uð1ÞB � Uð1ÞL � Uð1ÞY � Uð1ÞX: (13)

These are the baryon number, the lepton number, the
hypercharge and the Peccei-Quinn symmetry Uð1ÞX under

which �d has charge �1 and the �di’s and �‘i’s have charge
þ1. As pointed out in Ref. [24], it is always possible to
define a horizontal symmetry H 0 related to H by

H 0 ¼ H þ bBþ lLþ yY þ xX; (14)

which still reproduces the hierarchies in Eq. (6). This
results in different charges for the quarks and leptons that
give the same charge differences as in Table II; it should be
noted that the four independent charges Q3, u3, d3, L3 can
be shifted independently from one another with the action
of the four additional symmetries.

III. R-PARITY BREAKING

In addition to the mass terms in the superpotential, in the
MSSM other dimension-four operators are allowed that
break the R-parity,

TABLE II. Charge differences allowed by the phenomenological constraints (10).

Q12 Q13 Q23 d12 d13 d23 u12 u13 u23 L12 L13 L23 ‘12 ‘13 ‘23

1 3 2 1 2 1 3 5 2
0 0 0 4 6 2�1 �3 �2 3 8 5 5 12 7
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W 6Rp
¼ ��iLi�u þ �ijkLiLj

�‘k þ �0
ijkLiQj

�dk þ �00
ijk �ui

�dj �dk:

(15)

The first three operators violate lepton number and the
last violates baryon number. To have proton decay, both
baryon-number and lepton-number violation are needed,
while neutron and dinucleon decays are affected by �00 on
its own. At the LHC, these operators allow sparticles to
decay to SM fermions, generating events without missing
energy. Then, most of the LHC limits on superpartners can
be evaded and lighter squarks are allowed. Searches for
L-violating decays of squarks and neutralinos are easier
because final states include hard leptons. Searches for theB
violation involve a ~t decaying to two jets through the
coupling �00

323, or a gluino decaying to three jets through

a (possibly off-shell) top squark. Depending on the magni-
tude of the couplings �0, �00, the LSP might be long-lived
and a displaced vertex might be possible. The LSP lifetime
might even be long enough for it to form a bound state and
stop in the detector before decaying. We will consider the
phenomenology at the end of this section.

In the presence of a horizontal symmetry, the values of
the RPV couplings are determined by the horizontal
charges of the superfields,

ð ��i; �ijk; �
0
ijk; �

00
ijkÞ

� "�rðm"Liþ�u; "LiþLjþ‘k ; "LiþQjþdk ; "uiþdjþdkÞ: (16)

Following an argument for ��i similar to the one about the
� term,m is a scale that can be eitherM orm3=2 depending

on if the corresponding power of " is positive or negative.
As we have seen above, requiring a horizontal symmetry

does not mandate the values of all the charges and it seems
that it has no predictive power for this sector; but, as the
charge differences are determined in Table II, we can
factorize the dependence on the unknown third generation
charges and study the relative structure of the 6Rp coeffi-

cients3 (using the first solution for Qij in Table II; for the

second solution, see the Appendix; also, recall the notation
�ij ¼ �i ��j). The results for the different couplings are

as follows.
(i) Bilinear LNV coupling ��iLi�u:

��i

��3

¼ "Li3 ¼ 1;

��1 ¼ ��2 ¼ ��3 ¼ m"n �� ;

n �� ¼ L3 þ�u � r:

(17)

(ii) Trilinear LNV couplings �ijkLiLj
�‘k and

�0
ijkLiQj

�dk: First, we note that

H ½�233� ¼ L2 þ L3 þ ‘3 � r

¼ L2 þQ3 þ d3 � r ¼ H ½�0
333�:

The leading coefficients �233 and �0
333 are the same

[apart from Oð1Þ factors] and as such they are
allowed or forbidden together. Defining nLNV ¼
L2 þQ3 þ d3 � r, we have �233 ¼ �0

333 ¼ "nLNV ,
and the textures of the coefficients are

�ijk

�233

¼ "Li2þLj3þ‘k3 ¼ "‘k3 ;

�121 �122 �123

�131 �132 �133

�231 �232 �233

0
BB@

1
CCA ¼ "nLNV

"6 "2 1

"6 "2 1

"6 "2 1

0
BB@

1
CCA;

�0
ijk

�0
333

¼ "Li3þQj3þdk3 ¼ "Qj3þdk3 ;

�0
i11 �0

i12 �0
i13

�0
i21 �0

i22 �0
i23

�0
i31 �0

i32 �0
i33

0
BB@

1
CCA ¼ "nLNV

"5 "4 "3

"4 "3 "2

" 1 1

0
BB@

1
CCA:

(18)

(iii) Trilinear BNV coupling �00
ijk �ui

�dj �dk:

�00
ijk

�00
323

¼ "ui3þdj2þdk3 ;

�00
112 �00

212 �00
312

�00
113 �00

213 �00
313

�00
123 �00

223 �00
323

0
BB@

1
CCA ¼ "nBNV

"7 "4 "2

"6 "3 "

"5 "2 1

0
BB@

1
CCA;

(19)

where we have defined �00
323 ¼ "nBNV , and nBNV ¼

u3 þ d2 þ d3 � r.
It is worth noting that these textures are a general feature of
any Abelian horizontal symmetry as they come directly
from the mass and mixing hierarchies and do not depend
on other constraints such as anomaly cancellation.
It can be seen that the trilinear soft terms are of order

m3=2. For example, the BNV A-term comes from a super-

potential term,

�00
ijkA�00 ¼

Z
d2�

X

MP

"uiþdjþdk �ui �dj �dk

¼ m3=2"
uiþdjþdk~�ui

~�dj
~�dk ¼ m3=2�

00
ijk
~�ui
~�dj
~�dk:

Thus, A�00 ¼ m3=2. A similar computation applies to the

other A-terms.
The coefficients ��3, �233, �

0
333, �

00
323 are determined by

the choice of the charges Q3, d3, u3, L3. Because the
individual charges vary under the additional action of a
Uð1ÞB � Uð1ÞL � Uð1ÞY � Uð1ÞX transformation, so will

3This property was first noted in Ref. [39], and, in the presence
of a GS anomaly cancellation, it was used to severely constrain
the LNV operators.
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the overall coefficients; in particular, because the operators
break B, L and X, under a transformation

bBþ lLþ xX (20)

the coefficients transform as ð ��;�; �0; �00Þ ! ð"l ��; "lþx�;
"lþx�0; "�bþ2x�00Þ, or

ðn ��;nLNV;nBNVÞ!ðn ��þ l;nLNVþ lþx;nBNV�3bþ2xÞ:

This means that they are not fixed by the fermion
hierarchies, as their values can be shifted by a B, L or
X transformation. Hence, as was first pointed out in
Ref. [24], if l, b, x are large enough, the 6Rp couplings

will be just too small to be of any phenomenological
significance; if one considers that arbitrarly high values
for the charges are unnatural and limits them to be at most
of order 10, proton decay constraints can still be satisfied
[24]. In the next section we will see that, while this argu-
ment still holds for heavy superpartner masses, it does not
hold for sub-TeV SUSY: arbitrarily small 6Rp coefficients

would either mimic R-parity conserving supersymmetry,
or allow the formation of R-hadrons or other stable massive
particles.

We can trade the four independent charges
ðQ3; u3; d3; L3Þ with the ‘‘phenomenological’’ variables
ðQ3; n�; n ��; nBNVÞ (in the sense that they determine

the 6Rp phenomenology of the models): using the con-

straints (11), it can be seen that nLNV is related to these
variables by

n� ¼ n �� � nLNV þ 2� x� þ r: (21)

For a weak-scale � term, n� will need to be a negative

integer number of order 1, so that � ¼ "jn�jm3=2. n�
cannot be fractional, or the � term would not be generated
at all. Then, the coefficients n �� and nLNV are either both

integer or both fractional.
In terms of the variables ðn ��; nBNVÞ, we have several

phenomenological scenarios:4

(1) If they are both fractional, all the dimension-four
RPVoperators are forbidden; LHC searches relying
on missing energy apply and the weak scale is
generically fine-tuned.

(2) If they are both integers, neither B or L are con-
served; the proton can decay to mesons and leptons
through a product of �0 and �00 couplings. The
leading constraints from upper limits on nucleon
lifetimes are [14]

p ! 	0‘þ: j�0
l1k�

00�
11kj & 2� 10�27

� m~dkR

100 GeV

�
2
;

p ! Kþ �
: j�0
i2k�

00�
11kj & 3� 10�27

� m~dkR

100 GeV

�
2
;

n ! 	0 �
: j�0
31k�

00�
11kj & 7� 10�27

� m~dkR

100 GeV

�
2
:

Substituting the expressions for the couplings in
terms of ", the leading constraint is the second one,

j�0
i23�

0”�113j ¼ "nLNVþnBNVþ8;& 10�27

� m~bR

100 GeV

�
2

¼ "41
� m~bR

100 GeV

�
2
: (22)

A priori, this is possible if both nBNV and nLNV are of
order 17 or higher, forcing the charges of the indi-
vidual fields to be of order 10, as was considered in
Ref. [24]. As we will discuss in Sec. III B, the
individual couplings are very small and either give
missing-energy events at the LHC or heavy particles
that are stable on collider timescales. In both cases,
generic limits for the sparticle masses go up to and
above 1 TeV and this scenario can be neglected
when considering low-energy SUSY.

(3) If only nBNV is fractional there is no 6B operator,
while lepton-number violation is allowed for the

three operators L�u, LL �‘, LQ �d (an interesting
case opens for decaying dark matter neutralinos,
studied in Ref. [35]). These interactions usually
give rise to collider signatures including multiple
leptons and searches at the LHC exist for a top-
squark LSP [40]. In this scenario, the limits are near
or above a TeVand would rule out a low SUSY scale
for a considerable portion of the parameter space.

(4) If only n �� is fractional, so is nLNV and there is no

lepton-number violation. The only RPV operator is
�u �d �d , which allows a top-squark LSP to decay to
jets and no missing energy. The idea of a �u �d �d
operator has seen a revival since the null LHC
searches and its phenomenology has been studied
[15]; it arises in several models of low-energy SUSY
that evade the LHC bounds [18,19,33]. We will
consider this scenario and put bounds on the mag-
nitude of �00 in Sec. III B.

A. Dimension-five operators

Although R-parity is usually assumed to make the pro-
ton stable by forbidding the dimension-four operators in
Eq. (15), there are dimension-five operators that also have
to be suppressed to avoid proton decay: they come from
both superpotential and Kähler corrections [41],

4A similar classification allowing/forbidding leptonic or bar-
yonic RPV was outlined in Refs. [33,35].
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W5 ¼
ð�1Þijkl
MP

QiQjQkLl þ
ð�2Þijkl
MP

�ui �uj �dk �‘l

þ ð�3Þijk
MP

QiQjQk�d þ
ð�4Þijk
MP

Qi�d �uj �‘k

þ ð�5Þij
MP

Li�uLj�u þ ð�6Þi
MP

Li�u�d�u;

K5 ¼
ð�7Þijk
MP

�ui �d
�
j
�‘k þ ð�8Þi

MP

��
u�d

�‘i þ
ð�9Þijk
MP

QiL
�
j �uk

þ ð�10Þijk
MP

QiQj
�d�k: (23)

Some of these operators break B, some break L, and some
break both; generically, these operators are dangerous for
nucleon decay because they generate an effective operator
�effqqq‘ (in the same way as LQ �d and �u �d �d do if they are
both allowed) where proton stability requires �eff &
10�32 GeV�2. For example, for the operator 1

MP
QQQL,

�eff � 1
MPMSUSY

� 10�21 GeV�2, and an additional suppres-

sion of order 10�10 is needed. In the R-parity conserving
MSSM, there is usually no explanation for this small
factor. In a grand unified theory where the effective opera-
tor arises from a colored Higgs exchange, �eff is propor-
tional to the Yukawa couplings of the lighter generations,
providing enough suppression. In a 6Rp model with hori-

zontal symmetries, the couplings can be suppressed in the
same way that all the other couplings are, by different
powers of ".

As in the previous section, we can factorize the leading
coefficient for each operator and use the solutions for the
SM charge differences (Table II) to find textures for each
operator. Wewill not write the textures down as they follow
from the same considerations as above and are of limited
phenomenological interest; our main interest will be to find
the leading coefficient and to see if the whole operator is
allowed or forbidden: the charges of (the leading compo-
nent of) each operator are given in Table III.

In particular, if n �� is fractional all the �L ¼ 1 operators

ðO1;O2;O4;O6;O7;O8;O9Þ are forbidden (a similar rela-
tionship between some dimension-five operators was noted
in a different context in Ref. [41]). O5 (Weinberg’s
neutrino-mass effective operator) is allowed if n �� is a

half integer. This gives an irreducible contribution to the
neutrino masses, as such an operator has to be generated at
MP (even if we do not have a specific neutrino sector in
mind). Of course, it is possible that the effective operator is
also suppressed by a smaller scale (as in the seesaw
mechanism), thus generating sizeable neutrino masses.
The other operators left for a fractional n �� are O3 and

O10, which do not need additional suppression as they
could mediate proton decay only if combined with
dimension-four 6L operators, which are forbidden for frac-
tional n ��.

For operators of dimension five or higher, negative
powers of " can arise: imagine that a heavy field �
(charged under the SM group) acquires a mass proportional
to S, m / S, and that it has trilinear couplings to the
light fields. Then, one can get dimension-five operators
for the light fields from a superspace diagram where the
internal propagator is the heavy field; its propagator reads

m�
p2�jmj2 � 1

S and a negative power of " is present in the low-

energy theory. This does not change our conclusions, as
operators with fractional powers of " are still forbidden,
and no dimension-five operator has been forbidden be-
cause it had a negative power of ".

B. Phenomenology

In this section, we will study limits on the 6Rp couplings

in the superpotential; assuming that the coefficient n �� is a

half integer, all the L-violating dimension four and 5
operators are forbidden, apart from the neutrino mass
term. We are left with the B-violating superpotential

W 6B ¼ �00
ijk �ui

�dj �dk: (24)

The main motivation for our choice is to avoid a strin-
gent limit like the proton decay bound (22) while still
considering low-energy supersymmetry. Then we cannot
have arbitrary small coefficients in the 6Rp superpotential of

Eq. (15): if a LSP is produced at the LHC but cannot decay
because its 6Rp coupling is too small, it will either exit the

detector as missing energy if it is neutral (and, therefore,
the limits on R-parity conserving SUSY will apply), or
hadronize and be observed as a new stable massive particle
(an R-hadron). R-hadrons have been investigated by
ATLAS and CMS, and they exclude a top-squark LSP up
to 680 GeV [42] and 850 GeV [43], respectively.
With these limits, we can exclude a range of 6Rp cou-

plings that would make the LSP stable on collider time

TABLE III. Horizontal charges H ½Oi� of the leading compo-
nent of the operator �iOi in Eq. (23). The leading component
is the one with the greatest number of third generation fields
allowed by the antisymmetric combinations of fields mandated
by the gauge structure; for example, for O1 the leading
component is ðQ2Q3ÞðQ3L3Þ. The numerical value of the coef-
ficient �i is "

H ½Oi��r.

O1 6þ r� 2x� � nBNV � 2n� þ n ��

O2 �2� rþ x� þ nBNV þ n� � n ��

O3 6þ r� 2x� � nBNV � n�
O4 2� x� þ r� n ��

O5 2n �� þ 2r
O6 n� þ n �� þ 2r
O7 �n ��

O8 2� x� � n ��

O9 �n ��

O10 2� x� � nBNV � n�
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scales: the width and decay length of a top squark decaying
directly to two quarks through the coupling �00

3ij are

�ð~t ! didjÞ ¼ m~t

8	
sin 2�~tj�00

3ijj2;

c� ¼ 1

2
10�16j�00

3ijj�2

�
100 GeV

m~t

�
m

� "27�2nBNV

�
850 GeV

m~t

�
m;

(25)

where we have taken the coupling �00
323 and assumed maxi-

mal mixing.
For nBNV * 13, the decay length is bigger than 1 m and

a ~t LSP would form an R-hadron which stops or decays
within the detector. Allowing a natural top squark with
m~t < 850 GeV requires nBNV < 13 (or, correspondingly,
�00 * 10�8). A similar order-of-magnitude bound
applies to the LNV couplings �0, if they are allowed.
Consequently, the proton decay rate, proportional to
�0
i23�

00
113, would be 109 times faster than the experimental

limits. This is why we do not consider the possibility of
both BNV and LNV violation in the renormalizable
superpotential.

In Ref. [16], stricter limits are inferred from more com-
plicated decay topologies, e.g. a top squark decaying to a

top and a neutralino ~X, which gives another sfermion ~f
ultimately decaying through a RPV coupling C to two
fermions. The resulting decay length c� is

2� 10�10jCj�2

�
0:01

�

�
2
�
m ~X

m~t

�
2
�m~f

m~t

�
4
�
850 GeV

m~t

�
m:

To have c� & 1 m, we need C to be of order 10�5 or

greater. If ~f is a sbottom and C is �00
ij3, this corresponds

to a stricter bound, nBNV & 6. This is limit is not relevant in
our case because the amplitude for the direct decay (25)
would always be bigger and the top squark would domi-
nantly decay through that channel. In Ref. [16], only one
coupling at a time was assumed to be dominant, which in
our case would correspond to having nBNV < 0; �00

323 ¼ 0
and some other �00

ijk � 0. As we will see later, for our

scenario this is not compatible with the bounds from
low-energy physics.

ATLAS and CMS can reconstruct displaced vertices
for hadronic top squarks decaying 1 mm–10 cm away
from the interaction point (for a similar discussion in a
different R-parity violating model, see Ref. [28]). A top
squark would generate a displaced vertex for the range
11 & nBNV & 13. Ruling out these displaced decays
would restrict the remaining parameter space of natural
supersymmetric models with horizontal symmetries and
R-parity violation.

We can now review how low-energy decays put an upper
limit on the couplings �00, and therefore a lower bound on the
coefficient nBNV; most of the expressions for the limits come
from the review [14] on R-parity violating SUSY. These

bounds depend generically on squarks and gluino masses,
whichwewill be assuming to be at a common scale (although
not degenerate) ~m�m~qk �m~g. A factor of a few in these

relations would not change the results significantly.
Comparable bounds come from neutron-antineutron os-

cillation and dinucleon decay, while limits from B physics
are subdominant: here, we update the neutron-antineutron
oscillation period �n� �n of Ref. [14] with the latest lower
limit by the SuperKamiokande experiment [44], �n� �n >
2:44� 108 s.
(i) Dinucleon decay NN ! KK: From Refs. [18,33,45]

we read the limit

j�00
112j & 3� 10�7

�
1:7� 1032 yr

�NN!KK

�
1=4

�
m~sR

300 GeV

�
2

�
�

m~g

300 GeV

�
1=2

�
75 MeV

~�

�
5=2

;

where ~� is the hadronic scale arising from the had-
ronic matrix element and phase-space integrals.
Thus, we have

j�00
112j ¼ "nBNVþ7 & "9

�
~m

500 GeV

�
5=2

;

nBNV * 2:

As argued in Ref. [45], given the weak dependence
of the limit from �NN!KK, this channel’s limit will
likely not increase substantially in the future.

(ii) n� �n oscillation: The limit cited in Ref. [14] is

j�00
11kj & ð10�8–10�7Þ 10

8 s

�n� �n

�
�

m~qkR

100 GeV

�
2
�

m~g

100 GeV

�
1=2

;

which in our model of horizontal symmetries reads
(for k ¼ 3)

j�00
113j ¼ "nBNVþ6 & "10

�
~m

500 GeV

�
5=2

;

nBNV * 4: (26)

For this process, the original calculation by Zwirner
[46] assumed an unknown 10% LR mixing in the
squark mass matrix: for a non-R-horizontal symme-
try, the soft terms give ~M2

LR= ~M2
LL �M= ~m, whereM

is the squark mass matrix [23]. In a n� �n oscillation
involving a sbottom, the contribution is of order
mb= ~m� 1=100 for weak-scale supersymmetry
(and 10�3 for TeV-scale SUSY), which is a factor
of 10 (respectively, 100) smaller than the value
assumed by Ref. [46]. The bound changes accord-
ingly: for ~m & 1 TeV we get nBNV * 2 instead of
nBNV * 4. For a horizontal R-symmetry, the left-
right mixing is large [23] and the stricter bound
applies.
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Alternative mechanisms for neutron oscillation that
do not involve unknown soft terms have been pro-
posed in Refs. [47,48], and the resulting bounds
are similar,

j�313j ¼ "nBNVþ1 	 10�2 ¼ "3; nBNV * 2:

(iii) Neutron decay n ! �:

j�00
112j & 10�8:5

�
1032 yr

�NN

�
1=4

�
m~sR

100 GeV

�
2

�
�

m~g

100 GeV

�
1=2

�
10�6 GeV6

h �Njududssj�i
�
1=2

� "10
�

~m

500 GeV

�
5=2

; nBNV * 3:

(iv) B� ! �	� decay:

j�00�
i23�

00
i12j & 6� 10�5

�
m~uiR

100 GeV

�
2
;

j�00�
323�

00
312j ¼ "2nBNVþ1 & "5

�
m~tR

500 GeV

�
2
;

from which we conclude nBNV * 2.
The stronger limit comes from the neutron decay channel
n ! �, and it is nBNV * 3.

The limits can be compared with the MFV prediction for
the magnitude of the �u �d �d couplings (MFV 6Rp SUSY was

introduced in Ref. [17] before the start of the LHC; for its
implications on the LHC limits on the scale of supersym-
metry, see Ref. [18]). In this scenario, the Yukawa matrices
are considered as spurions of the flavor symmetry group
SUð3Þ5, and only terms that are invariant under this sym-
metry are allowed. Thus, the operator �u �d �d is neutral under
the flavor group only if accompanied by products of
Yukawa matrices, and it reads YuYdYd �u �d �d . The couplings
involving light quarks are suppressed with respect to the
couplings involving the top.

We can compare the MFV prediction to the horizontal
symmetry results (as was first done in Ref. [33]), taking the
numerical results in Ref. [18] expressed as powers of ",5

�00
MFV ¼ "11þ2log " tan�

"13 "8 "2

"8 "3 "1

"5 "2 1

0
BB@

1
CCA: (27)

Using our notation, the largest coupling is �00
323 ¼ "nBNV

with nBNV ¼ 11þ 2log " tan�, while the structure of the

matrix is slightly different compared to the horizontal
symmetry prediction, Eq. (19). The largest coupling is still
j�00

323j, but there is more suppression for the couplings

involving lighter quarks. The collider phenomenology is
similar [17,18,33] and for the most part corresponds to
prompt decays. Displaced vertices are allowed only for
tan�< 10, corresponding to jlog " tan�j< 1:5 and
nBNV > 8; in our framework, there is no connection
between tan� and the possibility of having displaced
vertices. Extreme values of tan�� 100 would bring the
exponent of �00

323 as low as nBNV ¼ 5.
To summarize this section, generic R-parity violation

with both lepton-number and baryon-number violation is
inconsistent with the absence of superpartners that are
stable on collider scales. Low-energy supersymmetry
where baryonic R-parity violation is combined with a
horizontal symmetry is only allowed in the range 3 &
nBNV & 13, where "nBNV is the magnitude of the biggest
R-parity violating operator, �00

323 �u3
�d2 �u3. Currently, the

most relevant LHC searches for this model are performed
by ATLAS:
(i) In Ref. [49] a pair-produced massive particle decay-

ing to three jets was looked for: this topology can
describe a decay chain of a gluino to three quarks,
~g ! q~q ! qqq, where the last decay involves a
RPV coupling. Assuming an off-shell squark, the
95% confidence-level limit on the gluino mass is
m~g > 666 GeV.

(ii) In Ref. [50] two same-sign leptons in the final state
were searched for, as a signature of two gluinos
decaying as ~g ! �t~t ! �tbs. The 95% confidence-
level limit on the gluino mass is m~g > 890 GeV.

Unfortunately, these searches do not give stringent limits
on the top-squark mass, which is most important when
thinking about the naturalness of the weak scale. Still,
the gluino mass enters the RGE of the top-squark mass
term, so that if in the near future a gluino is excluded above
1.4 TeV, the fine-tuning of the weak scale would be less
than 1% [10].

IV. QUARK-SQUARK ALIGNMENT

In the last section we have seen how R-parity violation
can solve the tension between the negative LHC searches
for supersymmetry and the presence of light superpartners.
However, it has long been known that a generic low-

energy supersymmetric spectrum generates unobserved
FCNCs. In particular, neutral meson oscillations are well
explained by the Standard Model, leaving little space for
new physics contributions. The flavor structure of a super-
symmetric extension of the SM has to be highly nontrivial.
If squark degeneracy is assumed, FCNCs can be sup-
pressed. However, this is a strong assumption, and does
not follow automatically from Abelian horizontal symme-
tries: we will here focus on aligned models [23], in which
the quark- and squark-mass matrices are diagonal in the

5The couplings depend on the SUSY breaking scale, at which
the Yukawas (and quark masses) should be evaluated. As the
running of the quark masses between MZ and m3=2 does not
change the exponents, we evaluate them at MZ. We thank the
authors of Ref. [33] for helping us correct an earlier version of
our computation.
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same basis in which the gluino interactions are diagonal.
Similarly to squark degeneracy, alignment suppresses
FCNCs in K � �K and B� �B oscillation. It turns out that
the squark bases cannot be aligned for both the up and
down sector and that, with TeV-scale SUSY, an Oð10%Þ
squark degeneracy is still needed to explain the observed
D� �D mixing [7].

A natural way to get aligned models is to use horizontal
symmetries [5,23]; in particular, a simple model involves
two symmetries H 1 ¼ Uð1ÞH 1

and H 2 ¼ Uð1ÞH 2
with

two spurions "1, "2 carrying charges ð�1; 0Þ and ð0;�1Þ
under ðH 1;H 2Þ. The fermion mass hierarchies and mix-
ings can be reproduced and at the same time the sfermion
mass matrix can be nongeneric, suppressing flavor-
changing neutral currents.

In a model with two horizontal symmetries, we can see
that the 6Rp couplings are either the same as those calcu-

lated earlier in Eqs. (17)–(19), or zero; to see this, we
define coefficients a and b such that "1 ¼ "a, "2 ¼ "b,
with " ¼ 0:226 (in this case, the spurions are smaller).
The theory is then invariant under the diagonal subgroup
H d 
 H 1 �H 2 with a spurion " and charges
H d½�� ¼ aH 1½�� þ bH 2½��. A generic operator O
in the superpotential with charges p, q under H 1, H 2

will be suppressed by

"p1"
q
2O ¼ "sO; s ¼ apþ bq: (28)

The charge under H d is a linear combination of the
charges under H 1, H 2. It is important to note that s can
be positive even though p or q might be negative; an
operator that is forbidden by the full symmetry would be
allowed by the subgroupH d. In the same way, an operator
that has an integer charge under H d might have a
fractional charge under H 1 or H 2, and therefore be
forbidden. For this reason, when there are two or more
symmetries, the 6Rp couplings can either be zero or be

determined by the textures in Eqs. (17)–(19). It is possible
to write down aligned models for both cases.

For a specific example of how an 6Rp operator can be

forbidden by H 1 �H 2 even if it is allowed by the
diagonal H d, we take an aligned model from Ref. [24],
with a ¼ 1, b ¼ 2 and the following charges for the lepton
sector:

L1 L2 L3 ‘1 ‘2 ‘3
H 1 5 �1 1 �3 2 0
H 2 1 4 3 5 1 1
H d 7 7 7 7 4 2

(29)

For the 6Rp term �ijkLiLj‘k, one can factor out

�233 ¼ "82 ¼ "16, and compute the textures of �ijk=�233.

If we just considered H d the texture would be

ð�ij1; �ij2; �ij3Þ ¼ "16ð"5; "2; 1Þ: (30)

Instead, using the full symmetry H 1 �H 2, the coeffi-
cients are

ð�ij1; �ij2; �ij3Þ ¼ "82ð"�3
1 "42; "

2
1; 1Þ ¼ ð0; "82"21; "82Þ: (31)

As �ij1 has a negative power of "1, it is a holomorphic zero.

A specific coupling can be forbidden, while the others
maintain the previous structure. For a different choice of
the horizontal charges one can build a model where the
whole superpotential term is forbidden due to negative
charges, or a model in which some operators have frac-
tional charges with respect to "1 or "2.
This does not change the phenomenological conclusions

of Sec. III B, as one can get some of the couplings to be
zero, but, in general, similar bounds will be generated from
the remaining nonzero coefficients. We conclude that
aligned models of 6Rp SUSY with horizontal symmetries

are subject to the same order-of-magnitude limits that we
computed previously.

V. HORIZONTAL SYMMETRY IMPLICATIONS
FOR THE NMSSM

In the presence of light top squarks, the Higgs mass
needs an extra contribution to reach the measured value
of 126 GeV. In the NMSSM [51], an extra singlet N has a
tree-level coupling to the Higgs doublets. It should be
noted that in our scenario the singlet is needed just to raise
the Higgs mass while keeping light top squarks, and the
arguments in the other sections are not influenced by
choosing an alternative mechanism.6 We first review the
model, and then see the horizontal symmetry constraints on
the NMSSM. We take the superpotential involving N as

W � �N�u�d þ �

3
N3; (32)

where for simplicity we are taking the so called
Z3-symmetric NMSSM [51,52], where all the dimension-
ful couplings have been put to zero. With this superpoten-
tial, the � term is generated dynamically, � ¼ �hNi; in
addition, the Higgs mass receives an extra contribution,
which in the limit �hNi � jA�j, jA�j, can be written as

m2
h ’ M2

Zcos
22�þ �2v2sin 22�� �2v2

�2
ð�� � sin 2�Þ2

þ 3m4
t

4	2v2

�
log

m2
~t

m2
t

þ A2
t

m2
~t

�
1� A2

t

12m2
~t

��
; (33)

where the first line includes the additional tree-level con-
tribution proportional to � and the second line is the usual
top-squark loop contribution present in the MSSM. This

6In the NMSSM, a � term is automatically generated. As seen
earlier, a � term can also be generated by a Kähler correction in
a Giudice-Masiero mechanism: this does not happen in the
Z3-symmetric NMSSM, but it does in the general NMSSM.
The interplay between these two mechanisms is left for discus-
sion in a future work.
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expression is maximized for �� 0:7 and tan�� 2. A
Higgs mass of 126 GeV can be achieved with top squarks
around 500 GeVand tan�� 2, and result in a moderately
low fine-tuning of the weak scale [11].

In the NMSSM, the soft SUSY breaking terms are

Vsoft � m2
NjNj2 þ �A�N�u�d þ 1

3
A��N

3; (34)

and for largeN, an absolute minimum of the superpotential
is found for A2

� > 9m2
N at

hNi ¼ 1

4�

�
�A� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
k � 8m2

N

q �
: (35)

With a horizontal symmetry, the terms in the superpo-
tential (32) must be neutral under H : because we are
taking �� 0:7 to maximize the Higgs mass, � is assumed
to be an Oð1Þ factor, that is, carrying a null horizontal
charge. This fixes the charge of N,

H ½N� ¼ ��u ��d þ r ¼ �n�: (36)

In particular, a negative n� translates to a positive H ½N�
(We will denote the charge H ½N� by N). The constant
� is fixed as �� "3N�r. The soft terms are of order m3=2,

as they come from nonrenormalizable corrections asR
d4�NNyð1þ XXy

M2
P

Þ, R
d2� X

MP
N�u�d and

R
d2� X

MP
N3.

The minimum for N is unchanged.
Finally, there are some additional operators involving

the singlet field N: the only renormalizable operator is

��iNLi�u: (37)

If allowed, this would generate an effective ��i term with
magnitude ��i ¼ ��ihNi, with ��i ¼ "NþLiþ�u�r ¼
"n ���n�"Li3 . For the scenario with no lepton-number viola-
tion, with n �� semi-integer, the operator is forbidden.

There are also dimension-five operators involving N,

W5;N ¼ ð�11Þi
MP

Li�uNN þ ð�12Þijk
MP

LiLj‘kN

þ ð�13Þijk
MP

LiQj
�dk þ

ð�14Þijk
MP

�ui �dj �dkN;

K5;N ¼ ð�15Þi
MP

Li�uN
�: (38)

Their horizontal charges are given in Table IV. For
fractional n �� and nLNV, the only operator left is O14 ¼
1
MP

�ui �dj �dkN: its coefficients have the same structure as �00
ijk,

and the overall magnitude differs by a factor hNi
MP

"n� ; its

contribution to baryon-number violation is then negligible.

VI. SUð3Þ5 EMBEDDING OF THE
HORIZONTAL SYMMETRY

In the limit that the Higgs Yukawa couplings and soft
terms are vanishing, the R-parity conserving MSSM is
invariant under a Uð3Þ5 flavor symmetry group, under
which each superfield transforms independently from the
others,7

Uð3Þ5 ¼ Uð3ÞQ � Uð3Þ �d � Uð3Þ �u � Uð3ÞL � Uð3Þ �‘: (39)

The MFV hypothesis [17] assumes that the only flavor
violation in beyond-the-Standard-Model physics comes
from the Yukawa couplings, which are treated as spurions
of the SUð3Þ5 global symmetry. It has been shown that this
automatically suppresses the 6Rp couplings and can give an

interesting phenomenology for natural SUSY, which
evades current LHC bounds for light superpartners [18].
Although possible, this is a stringent hypothesis, and by
assuming that all the flavor physics is determined by the
already known Yukawa parameters, it gives more weight to
couplings whose discovery might just have been an his-
torical accident.
In this section, we will investigate a weaker hypothesis,

in which the horizontal symmetry is embedded in the
Abelian part of the Uð3Þ5 flavor group. Because each U
(3) has three diagonal generators, by taking a linear com-
bination it is possible to give independent charges to fields
in different generations, thus reproducing any horizontal
symmetry. Instead, we will consider the embedding of the
horizontal symmetry in the subgroup SUð3Þ5.
For each Uð3Þk, we can write Uð3Þk ¼ SUð3Þk � Uð1Þk,

and from each SUð3Þk we can extract two Abelian gener-
ators, T3 ¼ diagð1;�1; 0Þ, T8 ¼ diagð1; 1;�2Þ. Collecting
all the Abelian factors under which the Lagrangian is
invariant givesY
k¼Q; �d; �u;L; �‘

ðTk
3 � Tk

8Þ � Uð1ÞY � Uð1ÞB � Uð1ÞL � Uð1ÞX;

(40)

where we can take linear combinations of the five Uð1Þk’s
to get the hypercharge Uð1ÞY (with charges 1

6 ,
1
3 , � 2

3 , � 1
2 ,

1, 12 ,� 1
2 forQ, �d, �u, L, �‘,�u,�d, respectively), the baryon

number Uð1ÞB (with charges 1
3 , � 1

3 , � 1
3 for Q, �d, �u), the

lepton number Uð1ÞL (with charges þ1, �1 for L, �‘), and

TABLE IV. Horizontal charges H ½Oi� of the leading compo-
nent of the operator �iOi in Eq. (38).

O11 n �� � 2n� þ 2r O12 nLNV � n� þ r
O13 nLNV � n� þ r O14 nBNV � n� þ r
O15 n �� þ n� � r

7Because the fields Li and �d have the same gauge quantum
numbers, the R-parity violating MSSM is actually invariant
under the flavor group Uð3Þ4 �Uð4Þ �Uð1Þ�d

. An analysis of
MFV supersymmetry with this symmetry group is performed in
[53]. In this section, we will take the horizontal symmetry as a
diagonal subgroup of SUð3Þ5, in order to compare our approach
to the MFV approaches based on Uð3Þ5 [17,18].
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the PQ symmetry Uð1ÞX under which �d has charge �1

and �d and �‘ have charge þ1.
Of these terms, the first two give different charges to

fields in different generations, while the last four are
diagonal in generation space. As a transformation under
the U(1)’s will not change the hierarchies, it is possible to
see if they can be generated by the SUð3Þ5 group alone.
Thus, we write

H ¼ H 0 �H diag; H 0 ¼ Y
k¼Q; �d; �u;L; �‘

Tk
3 � Tk

8 : (41)

We are looking for charges under H 0 such that the charge
differences �0

ij are integers; this corresponds to the hori-

zontal symmetry being a subgroup of SUð3Þ5.
Because SU(3) is traceless, the sum of the H 0 charges

of the same field over the three generations has to be zero,

H 0½k1� þH 0½k2� þH 0½k3� ¼ 0; k ¼ Q; �d; �u; L; �‘:

In the following, we denote the charge of the field� under
H 0 as �0; we have �ij ¼ �0

ij and �a þQi þ ai ¼ Q0
i þ

a0i, a ¼ d, u (and an analogous expression for the leptons):
as before, the hierarchies (6) imply the solutions of Table II
for the charge differences, with the constraints8>>><

>>>:
Q0

3 þ u03 ¼ r;

Q0
3 þ d03 ¼ 2� x� þ r;

L0
3 þ ‘03 ¼ 2� x� þ r

: (42)

In this scenario, we have five additional constraints to sat-
isfy, corresponding to the tracelessness of SU(3). In particu-
lar, one can satisfy

P
iQ

0
i ¼ 0 or

P
iu

0
i ¼ 0, but not both at

the same time (the same happens for d, L, ‘): we have

0 ¼ X
i

ðQ0
i þ u0iÞ ¼ 12þ 3r: (43)

This can be solved in two ways:
(i) Use a discrete horizontal symmetry,ZN ,N¼12þ3r.

Although the relation for the down quarks is similar,P
iðQ0

i þ d0iÞ ¼ 12þ 3r� 3x�, the index N is the

same only for tan�� 3, while for the leptons
(keeping x� ¼ 0) we need to satisfy

P
iðL0

i þ ‘0iÞ ¼
15þ 3r and a second horizontal symmetry ZM,M ¼
15þ 3r would be needed.

(ii) Find a way to account for a prefactor of "4 in
the Yukawa couplings for �ui; then the hierarchy
ðmt=v;mc=v;mu=vÞ ¼ ð1; "4; "8Þ would be
ð"�4; "0; "4Þ, which can be embedded in a traceless
SU(3).

We will investigate the second possibility: to be more
specific, let us assume we can write the Yukawa
couplings as

"M"mij�dQi
�dj þ "N"nij�uQi �uj þ "P"pij�dLi

�‘j;

where the mij, nij, pij’s are explained by H 0 and the

prefactors "M, "N , "P would be explained by an additional
symmetry; we will return to this aspect at the end
of the section. M, N, P are determined by requiringP

iðQ0
i þ u0iÞ ¼ 0,

P
iðQ0

i þ d0iÞ ¼ 0,
P

iðL0
i þ ‘0iÞ ¼ 0,

N � r ¼ 4; M� r ¼ 4� x�; P� r ¼ 5� x�:

With this addition, all the nondiagonal charges are
uniquely determined in Table V and the horizontal sym-
metry can be written as a linear combination of all the
Abelian generators.

H 0 ¼ 1

2
TQ
3 þ 5

6
TQ
8 þ 1

2
T

�d
3 þ

1

6
T

�d
8 þ

3

2
T �u
3

þ 7

6
T �u
8 þ 2T

�‘
3 þ T

�‘
8 : (44)

These charges give the same charge differences as
Table II, except for the leptons, ð‘12; ‘13; ‘23Þ ¼ ð4; 5; 1Þ
instead of (4, 6, 2). [Here we assume that some of theOð1Þ
factors in front of the superpotential can lead to a slightly
different hierarchy, with m�=m� ¼ " instead of "1:9: e.g.,

we can have couplings of the form 0:4�dL3‘3 þ
1:5�dL2‘2.] Then, the RPV coupling textures in Sec. III
are the same, apart from the structure of the operator

�ijkLiLj
�‘k, whose couplings have rows that now read

ð"5; "; 1Þ instead of ð"6; "2; 1Þ. In particular, to have a
phenomenologically viable model, the LNV couplings
are still forbidden, and this can be done by having a frac-
tional value for n ��. The experimental limits on nBNV are

the same as above.

A. The prefactors

In the last sectionwe have seen how the relative hierarchies
between the quarks and leptons can be understood in terms of
a horizontal symmetry that is a subgroup of the flavor group
SUð3Þ5. We did not discuss the origin of the absolute scale,
which appears as an overall factor of "4 in front of the quark
Yukawas and as a factor of "5 for the leptons.
We can easily get this factor by adding an extra horizontal

Uð1Þ0 and having the horizontal symmetry be Uð1Þ0 �H .
The charges of the fields underUð1Þ0 can just be arranged to

TABLE V. The charges of the fields under H 0, the nondiagonal part of the horizontal symmetry (44), and the diagonal contribution
if the full symmetry is H ¼ H 0 � 3bB� 6yY þ xX þ lL, with the normalizations and signs chosen to have simple coefficients.

� Q0
1 Q0

2 Q0
3 d01 d02 d03 u01 u02 u03 L0

1 L0
2 L0

3 ‘01 ‘02 ‘03 �u �d

H 0 4
3

1
3 � 5

3
2
3 � 1

3 � 1
3

8
3 � 1

3 � 7
3 0 0 0 3 �1 �2 0 0

H diag �b� y b� 2yþ x bþ 4y lþ 3y �l� 6yþ x �3y 3y� x
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get the required suppression, e.g. by taking the charges of

ð�u;�d;Q; �d; �u; L; �‘Þ to be (0, 0, 2, 2, 2, 2, 3).
Another option would be to have a loop factor: if all the

SM Yukawas are generated through a loop diagram, it is

natural for them to have a factor of g2

16	2 � "4–5.

These considerations do not change the textures of the
RPV couplings in Sec. III, which are determined by the
charge differences in Table II.

VII. CONCLUSIONS

Motivated by current LHC searches that present no hint for
R-parity conserving supersymmetry, we have revisited 6Rp

models where a horizontal symmetry is responsible for the
hierarchies of the SM fermion mass and mixing hierarchies.
In this case, the LSP can decay in the detector, thus leaving no
large missing energy events. The RPV couplings are hier-
archical and their textures are completely fixed by the known
hierarchies for squarks and leptons. In particular, there is no
need to impose anomaly cancellation through a standard
Green-Schwartz mechanism. The phenomenology is similar
to the MFV SUSY scenario, with the largest RPV coupling
involving the top squark. While the overall scale of the RPV
operators is not fixed by the horizontal symmetry, null LHC
searches generically forbid light superpartners with 6Rp coef-

ficients smaller than about 10�9. With this bound, if lepton
and baryon number are violated at the same time the proton
lifetime would be shorter than its current experimental limit.
We are then led to consider just baryon-number violation,
while lepton number is conserved in the renormalizable
superpotential. The largest �u �d �d coupling, �00

323 ¼ "nBNV ,
has to lay between 10�3 and 10�9, corresponding to 4 &
nBNV & 13. In particular, we stress that for 8< nBNV < 13
(corresponding to 10�9 < �00 < 10�6, about half of the re-
maining allowed range for �00), displaced vertices would be a
striking signature of hadronic top-squark decays. As the LHC
pushes up the limits onR-hadrons, light LSPs with arbitrarily
small R-parity violating coefficients will be excluded to
higher and higher squark masses, thus strengthening our
argument for natural SUSY with B violation.
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APPENDIX A: THE NEUTRINO SECTOR

Let us recall the neutrino oscillation parameters,

�m2 ¼ 7:45� 10�5 eV2;

j�mAj2 ¼ 2:35� 10�3 eV2:
(A1)

We take note of the relation�m2 � "2j�mAj2, and explore
two ways of generating neutrino masses:

(i) Dirac neutrino masses: If there are three right-
handed neutrinos with a mass term g
ijLi�u �
Rj,

the neutrinos have Dirac masses of order g
v.
The oscillation data can be fitted by g
11 � g
22 ¼
3:5� 10�14 � "21 and g
33 � 2� 10�13 � "20. The
horizontal symmetry relates the magnitude of the
couplings to the charges of the fields,

ðg
Þij ¼ "Liþ�uþ
j � "n ��þLi3þ
j (A2)

As the lepton sector is similar to the quark sector, the
expression (7) for the PMNS matrix is analogous to
the expression for the CKM matrix. Taking 
i ¼ 15

2 ,

Li3 ¼ ð1; 1; 0Þ and n �� ¼ 25
2 , the atmospheric and

solar oscillation parameters are explained by a set
of charges of order 7–8, which are deemed natural.
The PMNS matrix has the third form in Eq. (8).
Other natural choices of charges are possible to
have a nonhierarchical mixing matrix.

(ii) Type I seesaw mechanism: Here we mainly review
arguments given in Refs. [54,55]. Including three
heavy right-handed neutrinosNR with a superpotential

gij
 Li�uNRj þ 1

2
�Nc
RMRRNR; (A3)

the magnitude of the couplings g
 are

gij
 ¼ "Liþ�uþNj ; (A4)

with the definition Nj ¼ H ½NRj�, and ðMRRÞij ¼
MR"

NiþNj . AssumingNi > 0, the seesaw mechanism
gives Majorana masses for the neutrinos as

mij

 ¼ v2

2MR

"2�uþLiþLj ¼ v2

2MR

"2n ��"Li3þLj3 ; (A5)

where n �� ¼ L3 þ�u � r is defined in Eq. (17). For

MR ¼ MP, themasses are too small, although it could
be MR ¼ MGUT, or MR ¼ M, the flavor breaking
scale.8

Given the expression above formij

 , the PMNSmatrix

U still takes the form jUijj ¼ "jLi�Ljj. If we take the
PMNS matrix to be anarchical, that is, jUijj ¼ Oð1Þ
for all i, j, we have Li3 ¼ 0, and all masses should be

of order v2

2MR
. To explain oscillation data, we have to

assume a tuning of order " in the eigenvalues of the
matrix ofOð1Þ coefficients, e.g. by having eigenvalues
such as

m
j ¼ v2

2MR

ð1; 1; "�1Þ: (A6)

For a seesaw mechanism, some amount of tuning is
generally needed. The masses are

8The discussion for Ni < 0 or n �� < 0 can be found in
Ref. [55]; the overall scale v2=2MR can be enhanced and be
consistent with the experimental results (A1) even for
MR ¼ MP.
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m
¼ v2

2MR

"

2L13 L13þL23 L13

L23þL13 2L23 L23

L13 L23 0

0
BB@

1
CCA
: (A7)

As Li3 is an integer, the eigenvalues will either be
degenerate or differ by a factor of at least "2; the latter
case would correspond to a factor of "4 between the
atmospheric and solar squared-mass differences, in-
stead of "2. Thus, an accidental tuning of the Oð1Þ
factors is needed to have the mass eigenvalues differ
by a factor of "; for clarity, taking Li3 ¼ ð1; 1; 0Þ, we
could have

m
j ¼ v2

2MR

ðA"2; B"2; C2Þ; (A8)

which, for A ¼ 1
2 , B ¼ 2

3 and C ¼ 2, gives

�m2 � "2j�mAj2.

APPENDIX B: THE OTHER SOLUTION FOR Qij

The second solution for the quark charge differences
from Table II is

Q12 Q13 Q23 d12 d13 d23 u12 u13 u23

�1 �3 �2 3 8 5 5 12 7
(B1)

Because the charge differences in the baryon sector have
changed, the 6Rp phenomenology will change too.

Factoring out the dependence on nLNV and nBNV gives
the following textures, which can be compared to
Eqs. (17)–(19):

��1 ¼ ��2 ¼ ��3 ¼ m"n ��;

�121 �122 �123

�131 �132 �133

�231 �232 �233

0
BB@

1
CCA ¼ "nLNV

"6 "2 1

"6 "2 1

"6 "2 1

0
BB@

1
CCA;

�0
i11 �0

i12 �0
i13

�0
i21 �0

i22 �0
i23

�0
i31 �0

i32 �0
i33

0
BB@

1
CCA ¼ "nLNV

"5 "2 "�3

"6 "3 "�2

"8 "5 1

0
BB@

1
CCA;

�00
112 �00

212 �00
312

�00
113 �00

213 �00
313

�00
123 �00

223 �00
323

0
BB@

1
CCA ¼ "nBNV

"20 "15 "8

"15 "10 "3

"12 "7 1

0
BB@

1
CCA;

where n ��, nLNV and nBNV have been defined as in the main

text. This gives a different phenomenology than if we had
lepton-number violation, in which the largest 6L coupling is
LiQ1

�d3. For BNV, the phenomenology is approximately
the same as before, with a dominant coupling �00

323, except

that there is more suppression on couplings involving the
first two generations.
As before, LHC searches for stable particles or missing

energy events would apply if the couplings were small
enough: the bound is still nLNV, nBNV & 13. The constraint
on proton decay used earlier (from p ! Kþ
) is weaker in
this case, because the first generations of squarks have
smaller couplings,

j�0
i23�

00
113j ¼ "nLNVþnBNVþ13 & "41ðm~sR=100Þ2;

which gives the constraint nBNV þ nLNV * 28. Other de-
cay channels give comparable bounds,

p ! 	0‘þ: nLNV þ nBNV * 27: j�0
l13�

00�
113j

¼ "nLNVþnBNVþ12 & 10�25

� m~bR

500 GeV

�
2
;

p ! K0‘þ: nLNV þ nBNV * 30: j�0
l13�

00
123j

¼ "nLNVþnBNVþ9 & 10�25

� m~bR

500 GeV

�
2
:

These bounds are incompatible with the LHC limit nLNV,
nBNV & 13 required by not having light supersymmetric
particles that are stable on collider time scales. Thus we
will set to zero all the LNV couplings by taking nLNV (and
n ��) fractional, and we are left with the BNV operator

�u �d �d . Revisiting the limits on �00 from low-energy experi-
ments, Eqs. (26) and (27), we get a lower limit on nBNV *
3 from n� �n oscillation; the allowed range for nBNV is
approximately the same as for the other solution allowed
by horizontal symmetries. The only phenomenological
difference is that the hierarchy between j�00

323j and the other
coefficients is enhanced, and j�00

323j is the only coupling

that could realistically be measured.
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