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I. INTRODUCTION

The idea of the Lorentz symmetry breaking has been
intensively discussed during the last years (for a review, see
for example [1]). Interest in this line of study is motivated
by the fact that the presence of the Lorentz-breaking
additive modifications of field theory models essentially
enriches their structure [2]. At the same time, since super-
symmetry is treated as a fundamental physical symmetry, a
natural question is whether the Lorentz-breaking field
theory can be supersymmetric. A systematic methodology
used to address this problem is based on the Kostelecky-
Berger construction [3] involving the deformation of the
supersymmetry algebra, which, in principle, can be applied
to different kinds of superfield theories, formulated
in different space-time dimensions, and allows for the
arising of the CPT-even Lorentz-breaking terms on the
component level. Other possible solutions for this problem
involve one or more extra superfields whose components
depend on the Lorentz-breaking parameters [4] (which can
allow for the arising of the CPT-odd Lorentz-breaking
terms on the component level) or a straightforward addi-
tion of Lorentz-breaking, superfield-dependent terms like

kab@a�@b �� (where�, �� are the superfields, and the kab is
a constant tensor). To the best of our knowledge, however,
the last method has not been systematically used yet, and it
is clear that it involves higher derivatives.

In this paper we develop a method based on the
Kostelecky-Berger (KB) construction to introduce a
Lorentz-breaking deformation of the supersymmetry
(SUSY) algebra for supergauge field theories. Earlier,
this method was successfully applied to supersymmetric
scalar field theories [5], where it was shown that the
application of the KB construction allows the generation
of aetherlike terms [6] in the action of the theories at
the component level, while the effective action can be
calculated on the basis of the superfield approach, in a
way that is as simple as the usual, Lorentz-invariant case.

We develop this methodology, in both three- and four-
dimensional cases, and one of the key results of our
consideration consists in a natural arising of a new form
of gauge symmetry, involving the Lorentz-breaking
parameter, for the vector component of the superfield.
The paper is organized as follows. In Sec. II we

discuss the generalization of the three-dimensional aether
superspace to gauge theories, including some perturba-
tive calculations on three-dimensional supersymmetric
quantum electrodynamics and Chern-Simons-matter
model. In Sec. III we deal with the four-dimensional
case, and we apply the aether superspace methodology
in the computation of the effective potential to the
supersymmetric quantum electrodynamics. In Sec. IV
we discuss the possibility of equivalence between our
modification of the supersymmetry generators and some
coordinate transformations. Finally, in Sec. V we present
our final remarks.

II. THREE-DIMENSIONAL AETHER SUPERSPACE

Just as we have discussed in our previous paper [5], the
extension of the usual superspace to a three-dimensional
deformed superspace is stated through the deformed SUSY
generators

Q� ¼ i½@� � i���m
��ð@m þ kmn@

nÞ�
¼ i½@� � i���m

��rm�; (1)

satisfying the anticommutation relation

fQ�;Q�g ¼ 2i�m
��rm; (2)

where @� is the derivative with respect to the
Grassmannian coordinates �� and rm ¼ @m þ kmn@

n,
with @m the derivative with respect to xm. Latin indices
assume values of three-dimensional space-time coordi-
nates (0, 1, 2) and kmn is a constant tensor that can be
chosen to assume an aetherlike form kmn ¼ �umun, with �
a small parameter (cf. [6]) and um a constant vector
with umum equal either to 1, �1 or 0. In general, we use
the conventions and notations as well as normalization
factors as in Ref. [7], but the symbols for the (supergauge
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covariant) derivatives appearing in the present paper are
slightly different.

It is important to remark that the new supercovariant
derivative that anticommutes with Q� is given by

D� ¼ @� þ i���m
��rm; (3)

where the operator rm commutes with D�, as well as with
the SUSY generators.

For superscalar field theories constructed in this
deformed superspace, we can define an action such as

S ¼ � 1

2

Z
d5z½ðD��ÞðD��Þ � fð ���Þ�; (4)

where fð ���Þ is some function of the bilinear ���,
which is invariant under Uð1Þ global transformations
(�0 ¼ eiK�). Our aim in this paper is to extend such action
to theories that are invariant under local (gauge) trans-

formations (�0 ¼ eiKðx;�Þ�, with Kðx; �Þ being a real
scalar superfield).

To do this, let us introduce a supergauge covariant
derivative D� ¼ ðD� � i��Þ such tht D�� transforms

covariantly under Uð1Þ gauge transformations (D0
��

0 ¼
eiKðx;�ÞD��), allowing us to write a gauge invariant action,

S ¼ � 1

2

Z
d5z½ðD��ÞðD��Þ � fð ���Þ�

¼ � 1

2

Z
d5z½ðD��ÞðD��Þ � iD�����

þ i�� ��D��þ ����
���� fð ���Þ�; (5)

where the spinor gauge connection transforms as �0
� ¼

�� þD�K. Note that the gauge transformations them-
selves are defined as deformed ones.

The components of the spinor superfield connection can
be defined as

�� ¼ ��j�¼0; B ¼ 1

2
D���j�¼0;

V�� ¼ � i

2
Dð���Þj�¼0; �� ¼ 1

2
D�D���j�¼0;

(6)

where V�� ¼ ð�mÞ��Am. In analogy with the usual three-

dimensional superspace, the components of the scalar
superfield are conveniently defined as

’ ¼ �j�¼0; c ¼ D��j�¼0; F ¼ D2�j�¼0; (7)

with similar definitions for the components of ��.
Therefore, in terms of the components of the superfields,

the action Eq. (5) can be cast as

S ¼
Z

d3x

�
�FFþ �c �ð�mÞ��½irm � Am�c �

þ ði �c ���’þ H:c:Þ þ ðrm � iAmÞ �’ðrm þ iAmÞ’
þ 1

2
f0ð �’’Þ½ �F’þ �’Fþ 2 �c �c ��

þ 1

2
f00ð �’’Þ½2 �’’ �c �c � þ ’2 �c � �c � þ �’2c �c ��

�
;

(8)

where f0ð �’’Þ ¼ @fð ���Þ
@ð ���Þ j ���¼ �’’.

Gauge covariant superfield strength can be defined just

as in the usual case, W� ¼ 1

2
D�D���. A SUSY Maxwell

Lorentz-breaking action can be constructed as

S ¼
Z

d5z
1

2
W�W�

¼
Z

d3x

�
��ið�mÞ��rm�� � 1

2
f��f��

�
; (9)

where �� � W�j�¼0 and f�� ¼ D�W�j�¼0 ¼ D�W�j�¼0.

In terms of the gauge field Am, f�� can be written as f�� ¼
1

2
�mn
r ð�rÞ��rmAn. Therefore, the physical content of the

SUSY Maxwell-like action is given by

S¼
Z
d3x

�
��ið�mÞ��rm���1

4
ðrmAn�rnAmÞ2

�
; (10)

where rm ¼ @m þ kmn@
n.

A. Three-dimensional quantum electrodynamics
in aether superspace

As a first example of the power of the superspace
techniques even in Lorentz-breaking scenarios, let us
evaluate the one-loop correction to the self-energy of the
gauge superfield in the super quantum electrodynamics in
three dimensions. To do this it is necessary to compute the
superpropagators of the model. Considering the theory
defined by the action Eqs. (5)–(9) plus the gauge-fixing
and the corresponding Fadeev-Popov term, and proceeding
as usual, we can write the following propagators in the
aether superspace,

h�ðp;�1Þ�ð�p;�2Þi

¼ ðD2 �mÞ
~p2 þm2

�2ð�1 � �2Þ;

h��ðp;�1Þ��ð�p;�2Þi

¼ 1

~p2

�ð1þ 	Þ
2

C�� � ð1� 	Þ
2

ð�mÞ�� ~pmD
2

~p2

�
�2ð�1 � �2Þ;

(11)
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where ~pm ¼ pm þ kmnp
n, ~p2 ¼ p2 þ 2kmnp

mpn þ
kmnkmlpnp

l, D2 ¼ @2 � ��ð�mÞ�� ~pm@
� þ �2 ~p2. As we

commented in our previous work [5], this dispersion rela-
tion has a structure common for the propagators in the
CPT-even Lorentz-breaking theories (see e.g. [8]).

We are able to compute the radiative corrections to the
super quantum electrodynamics Lorentz-breaking theory,

Eq. (9), and choosing fð ���Þ ¼ M ��� (i.e., a mass term to
the scalar superfield), the diagrams that contribute to the
effective action are depicted in Fig. 1. The corresponding
expression can be cast as

S2l ¼
Z d3p

ð2
Þ3 d
2�½W�W� �M��W��

�
Z d3q

ð2
Þ3
1

ð~q2 þM2Þ½ð~q� ~pÞ2 þM2� : (12)

This last integral can be evaluated by changing the
variable of integration q to ~q. In the case of p2 � 0, we

can write
R
d3q ¼ �

R
d3~q, where � ¼ det ð@qm@~qn Þ ¼

det�1ð�m
n þ kmn Þ is the Jacobian of the changing of varia-

bles. For kmn ¼ �umun with a small �, � � ð1� �u2Þ.
So, the final result is

S2l ¼ �

8
jMj
Z d3p

ð2
Þ3 d
2�½W�W� �M��W��: (13)

We can observe that the one-loop quantum correction is
finite. This model is known to be finite to all loop orders in
perturbation theory in the usual superspace [9,10], and it is
natural to expect that this issue persists in the aether super-
space, since the power counting of the model is not af-
fected by the presence of the Lorentz-breaking terms
introduced through the aether superspace. We also observe
the generation of a super Chern-Simons Lorentz-breaking
term, whose corresponding bosonic local part has the form

Z
d3xM��lmnAlrmAn

¼
Z

d3xM��lmn½Al@mAn þ kmsAl@
sAn�: (14)

We note that the Chern-Simons action, instead of the usual
gauge transformations, is invariant under the new ones

�An ¼ rn	, with 	 being a parameter of the gauge
transformation.
Let us now discuss the Maxwell action. It is easy to see

that after doing the Fourier transformation and reducing to
the component fields, the Maxwell-like contribution from
(13) looks like

SM ¼ � 1

4

�

8
jMj
Z

d3x ~Fmn
~Fmn; (15)

where

~Fmn ¼ rmAn �rnAm (16)

is a new stress tensor. We note that the derivatives rm

emerge from the supercovariant spinor derivatives. So, as
can be seen, a new action for the vector field Am is
generated, which is (as the Chern-Simons one) invariant
under the new gauge transformations �An ¼ rn	. We note
that the action (15) essentially differs from the usual
aetherlike action for the gauge field [6], which is invariant
under the usual gauge transformations �An ¼ @n	 and
cannot be reduced to it.

B. Chern-Simons-matter model in aether superspace

Quantum field theories defined in a three-dimensional
space-time are widely discussed in the literature because
they offer a very rich structure, working as excellent theo-
retical laboratories. They can also be applied to some almost
planar condensed matter systems, such as the quantumHall
effect [11]. More recently, supersymmetric gauge field
theories in three dimensions could be related to M2-branes
[12–14]. Of special interest is the computation of the effec-
tive superpotential of the supersymmetric Chern-Simons-
matter model [15–20], which can be used to evaluate the
possibility of spontaneous (super)symmetry breaking via
the Coleman-Weinberg mechanism [21]. The presence of
Lorentz-symmetry violating terms in the Lagrangian could
be a source of spontaneous SUSY breaking [22] .
Let us start by defining the classical action of the model

S ¼
Z

d5z

�
��W� � 1

2
D��D��þ �ð ���Þ2

�
; (17)

where W� ¼ ð1=2ÞD�D��� is the gauge superfield

strength as defined before and D� ¼ ðD� � ie��Þ is the
supercovariant derivative.
The action Eq. (17) possesses manifest N ¼ 1 SUSY,

and it can be lifted to N ¼ 2 by the elimination of the
fermion-number violating terms [23], from which we iden-
tify the coupling constants as � ¼ �e2=8. In the usual
superspace, supersymmetric Chern-Simons–matter theory
is superconformal invariant at the classical level, but in the
aether superspace the presence of the constant vector kmn

explicitly breaks this invariance; even so, we should expect
that an analog (or extended) symmetry could emerge from
the action Eq. (17), but we will not extend such analysis in
this paper.

(a) (b)

FIG. 1. One-loop contributions to the gauge superfield effec-
tive action. Continuous lines represent the scalar superfield
propagator, and wave crossed lines represent the external gauge
superfield.
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The presence of a mass term like
R
d5zM ���, with a

wrong sign, in the action Eq. (17) would generate a
spontaneously (gauge) symmetry-broken phase at the
classical level [24], but here we are interested in sponta-
neous symmetry breaking induced by radiative correc-
tions (Coleman-Weinberg mechanism), and so we will
keep the model massless at this level. To this end, let us

shift the superfields �� and � by the classical background
superfield ’ as

�� ¼ 1ffiffiffi
2

p ð’þ�1 � i�2Þ� ¼ 1ffiffiffi
2

p ð’þ�1 þ i�2Þ; (18)

where ’ ¼ ’1 � �2’2, with ’1 and ’2 being real
constant fields.
Assuming the vanishing of the vacuum expectation

values of the quantum superfields, i.e., h�1i ¼ h�2i ¼ 0
at any order of perturbation theory, the gauge-invariant
action Eq. (17) results in

S ¼
Z

d5z

�
��W� � e2’2

4
���� � e’

2
D����2 þ 1

2
�1ðD2 þ 3�’2Þ�1 þ 1

2
�2ðD2 þ �’2Þ�2 þ 1

2
’D2’þ �

4
’4

þ e

2
D��2���1 � e

2
D��1���2 � e2

2
ð�2

1 þ�2
2Þ�2 � e2’�1�

2 þ �

4
ð�4

1 þ�4
2Þ þ

�

2
�2

1�
2
2 þ �’�1ð�2

1 þ�2
2Þ

� eD�’�2�� þ ð�’3 þD2’Þ�1 þ 1

2�

�
D��� þ �

e’

2
�2

�
2 þ �cD2cþ �

4
e2’2 �ccþ �

4
e2’ �c�1c

�
: (19)

In the last line we added a gauge fixing and the corre-
sponding Faddeev-Popov terms. We have used an R	

gauge condition to eliminate the mixing between � and
�2 superfields, but this procedure is not enough to
completely eliminate this mixing. Even so, the remaining
term, �eD�’�2��, can be disregarded in the Kählerian
approximation of the effective superpotential, because
it contains a supercovariant derivative applied to the
background superfield ’.

The knowledge of the Kählerian effective superpotential
is enough to determine the possibility of spontaneous
SUSY and gauge symmetry breaking [18,25]. We will
evaluate it at two-loop order, where such effects are
expected to show up [18,26,27].

The Feynman rules derived from Eq. (19) are given, in
the Kählerian approximation (that is, by preserving the
dependence in ’ and dropping the dependences on D�’
and D2’), by

hT�1ðk;�Þ�1ð�k;�0Þi

¼ �i
D2 �M�1

k2 þM2
�1

�ð2Þð�� �0Þ;

hT�2ðk;�Þ�2ð�k;�0Þi

¼ �i
D2 �M�2

k2 þM2
�2

�ð2Þð�� �0Þ;

hT��ðk;�Þ��ð�k;�0Þi

¼ i

4

�ðD2 þMAÞD2D�D�

k2ðk2 þM2
�Þ

þ�
ðD2 ��M�ÞD2D�D�

k2ðk2 þ�2M2
�Þ

�

��ð2Þð�� �0Þ: (20)

For simplicity, let us choose the SUSY Landau gauge
� ¼ 0 (we have to remark that the effective superpotential
is a gauge-dependent quantity [28]). With this choice, the
ghost superfields are decoupled from the model, and we

can identify the poles of the propagators of the interacting
superfields as

M�1
¼ 3�’2; M�2

¼ �’2; M� ¼ e2’2

4
: (21)

Proceeding as described in [29], considering the two-
loop corrections depicted in Fig 2, and performing the
integrals using the regularization by dimensional reduction
[30], the two-loop Kählerian effective superpotential can
be cast as

Kð’Þ ¼ �b2
4
’4

�
b1
b2

� 1

2
�2 þ �2 ln

’2

�

�
� B

4
’4; (22)

where B is a counterterm, � is a mass scale introduced by
the regularization, b1 is a function of the coupling con-
stants of � and of 1=� � 1

3�D (D is the dimension of the

space-time). The quantity b2 is explicitly given by

b2 ¼ �ð116e6 þ 543e4�þ 432e2�2

� 71552�3Þ=ð12288
2Þ: (23)

The counterterm B is fixed through the following renor-
malization condition,

�

4
� 1

4!

@4Kð’Þ
@’4

��������’¼v
; (24)

where v is the renormalization point. By substituting B in
Eq. (22), the Kählerian effective superpotential results in

FIG. 2. Topologies of two-loop diagrams that contribute to the
Kählerian effective superpotential.
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Kð’Þ ¼ �b2�
2

4
’4 ln

�
’2

v2
exp

�
� �

b2�
2
� 25

6

��
: (25)

Now we are able to study the spontaneous generation of
mass to the physical superfields induced by the radiative
corrections. First, let us impose the condition to extremize
the Kählerian effective superpotential. It reads

@Kð’Þ
@’

¼ ’3

3

�
3�þ 3b2�

2

�
11

3
� ln

’2

v2

��
¼ 0: (26)

The nontrivial solutions are given by

’ ¼ �v exp

�
11

6
þ �

2b2�
2

�
: (27)

Since we have computed the effective superpotential
for constant configurations of the background superfields,
we expect that our approximation is valid for small fluc-
tuations around the mass scale v, used as the renormaliza-
tion point. This expectation constrains the exponential of
the above equation to approximately 1. Therefore, the

coupling constants satisfy
11

6
þ �

2b2�
2
� 0, which results

in the following condition:

� � 11

3
b2�

2

� ½�ð4� 10�3Þe6 � ð16� 10�3Þe4�
� ð13� 10�3Þe2�2 þ 2�3��2: (28)

For the Coleman-Weinberg mechanism, this last
equation is directly related to the compatibility of the
effective superpotential calculations with the assumptions
of perturbation theory. We can see from Eq. (28) that �
should be of the order of ð4� 10�3Þe6�2 þOðe10Þ, so
that for small e we are in the regime of validity of the
perturbative expansion.

The second derivative of the Kählerian effective super-
potential with respect to the background field ’ evaluated
in the minimum of the superpotential, i.e. ’ ’ �v, is
interpreted as the mass of the matter (background) super-
field ’. If positive, this condition guarantees that Eq. (27)
is a minimum ofKð’Þ. In fact, using Eqs. (27) and (28), we
obtain

M’ ¼ d2Kð’Þ
d’2

��������’¼v
� ð2� 10�3Þe6v2�2; (29)

and the mass of the gauge superfield induced by the radia-
tive corrections is given by

M�

M’

� e2

12�
��21

e�4

�2
; (30)

where we can notice that the mass of the gauge superfield is
much larger than the mass of the matter superfield, since
for a small violation of the Lorentz symmetry, � should be
approximately 1.

One interesting remark is that all the information on the
presence of Lorentz-violating terms in the original action
is manifested in the presence of the � factor in the
effective superpotential and, consequently, in the induced
masses. Since the Kählerian effective superpotential has a
consistent minimum, we can affirm that SUSY cannot
be spontaneously broken via the Coleman-Weinberg
mechanism. To search for SUSY breaking induced by
the Lorentz-violating terms, we should probably compute
the whole effective action, using some more sophisticated
technology.

III. FOUR-DIMENSIONAL AETHER SUPERSPACE

Now, let us consider gauge theories within the four-
dimensional aether superspace. In this case, the spinor
supercovariant derivatives look like

D�¼@�þ i ��
_��m

_��
rm; �D _�¼@ _�þ i�� ��m

� _�rm; (31)

where againrm ¼ @m þ kmn@
n. It is clear that these spinor

derivatives satisfy the usual properties,

D�D�D� ¼ 0; �D _�
�D _�

�D _� ¼ 0: (32)

Now, let us define the following Abelian gauge theory,

S ¼
Z

d6zW�W�; (33)

where

W� ¼ 1

8
�D2ðe�vD�e

vÞ ¼ 1

8
�D2D�v: (34)

In principle, the non-Abelian generalization of this theory
can be constructed along the same lines.
This action can be rewritten as

SW ¼ � 1

16

Z
d8zvD� �D2D�v: (35)

As can be seen, its form does not differ from the usual
action of gauge theories (see for example [7]); the only
difference, from the usual case, consists in the replacement
of the common spinor supercovariant derivative with a new
one given by (31). It is clear that this action is invariant

under the gauge transformations �v ¼ �þ ��, where � is

a chiral superfield and �� is an antichiral one.
Following the general principles, we suggest that the

component expansion of the real scalar superfield v is the
same as in the usual case, i.e., it depends on the relevant
vector (gauge) field Am as

v ¼ � i

2
ð ���m�ÞAmðxÞ þ � � � : (36)

By reducing the action (35) to the component fields, its
bosonic part can be shown to have the form (15) up to the
numerical factor, with the only difference being that the

SUPERGAUGE THEORIES IN AETHER SUPERSPACE PHYSICAL REVIEW D 88, 045022 (2013)

045022-5



integral is now performed over the four-dimensional
space-time.

Then, we must add the following gauge-fixing action,

Sgf ¼ 1

16�

Z
d8zvD2 �D2v; (37)

where � is the gauge-fixing parameter.
The corresponding propagator looks like

hvðz1Þvðz2Þi¼� 1
~h

�
�D� �D2D�

8 ~h
þ�

f �D2;D2g
16 ~h

�
�8ðz1�z2Þ;

(38)

involving the new projection operators,

�0 ¼ f �D2; D2g
16 ~h

; �1=2 ¼ �D� �D2D�

8 ~h
:

We then couple the gauge field to the chiral matter field 

by introducing the following action:

S� ¼
Z

d8z �
egv
: (39)

The propagators of the chiral field look like (cf. [5])

h
ðz1Þ �
ðz2Þi ¼
�D2D2

16 ~h
�8ðz1 � z2Þ

h �
ðz1Þ
ðz2Þi ¼ D2 �D2

16 ~h
�8ðz1 � z2Þ:

(40)

To calculate the one-loop Kählerian effective potential,
we can use the well-developed methodology of calculating
the superfield effective potential elaborated in [31–33].
As usual, one can begin with constructing the one-loop
Feynman diagrams contributing to the superfield effective
potential. The structure of the supergraphs does not essen-
tially differ from the usual case [31]. The first set depicted
in Fig. 3 involves only gauge propagators. Their sum is
given by

Kð1Þ
a ¼

Z
d8z1

X1
n¼1

ð�1Þn
2n

�
g2� ��

1

h
ð�1=2 þ ��0Þ

�
n

� �12j�1¼�2 ; (41)

where 1
n is a symmetry factor.

Proceeding just as in [31], we find that

Kð1Þ
a ¼

Z
d8z

Z d4p

ð2
Þ4
1

~p2

�
ln

�
1þ g2� ��

~p2

�

� ln

�
1þ �g2� ��

~p2

��
; (42)

where ~p2 ¼ ðpm þ kmnp
nÞ2 is a Fourier transform for ~h.

Notice that at � ¼ 0 (Landau gauge), the second term in
(42) vanishes. Using the notations adopted in [34], one can
introduce a ‘‘dressed’’ propagator involving a sum over
quartic vertices (see Fig. 4),

hvviD¼�
�

1
~hþg2� ��

�1=2þ �
~hþ�g2� ��

�0

�
�8ðz1�z2Þ:

(43)

The triple vertices will enter the Feynman diagrams only
through the links depicted at Fig. 5, and the contribution
from this sector is given by the sum of the supergraphs
depicted at Fig. 6. It is equal to

Kð1Þ
b ¼

Z
d8z

Z d4p

ð2
Þ4
1

~p2

�
ln

�
1þ �g2� ��

~p2

��
: (44)

The total result which is the sum of Kð1Þ
a and Kð1Þ

b , is gauge

invariant and equal to

Kð1Þ ¼
Z

d8z
Z d4p

ð2
Þ4
1

~p2
ln

�
1þ g2� ��

~p2

�
: (45)

To calculate these integrals, we can change the variables as
in [5]. After integration and subtracting the divergences we
arrive at

FIG. 3. Supergraphs composed by gauge propagators only.

FIG. 4. Dressed propagator.

FIG. 5. A link involving gauge and matter propagators.

FIG. 6. Supergraphs composed by gauge andmatter propagators.
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Kð1Þ ¼ � 1

32
2
�g2� �� ln

g2� ��

�2
; (46)

where � is again a Jacobian of the change of variables

km ! ~km. We see that the result only differs from the usual
case [32] by the multiplicative factor �.

IV. LORENTZ-BREAKING MODIFICATION OF
THE SUPERSYMMETRY GENERATORS AND

COORDINATE TRANSFORMATIONS

To close the paper, let us discuss the possible impact of
the Lorentz-breaking modification of the supersymmetry
generators for the generic quantum contributions to an
effective action of arbitrary superfield theory. It follows
from the the definitions of modified supersymmetry gen-
erators and covariant derivatives (1) and (31) that the
methodology of Lorentz symmetry breaking adopted
by us implies the change of all momenta that emerge
through the D-algebra transformations by the rule
pm ! pm þ kmnp

n or, in the coordinate space, @m !
@m þ kmn@

n (which corresponds to the linear coordinate
change xm ! ð�n

m þ knmÞ�1xn). Therefore, one can elabo-
rate the following geometric interpretation of this Lorentz-
breaking modification of SUSY algebra.

It was shown in our previous paper [5] that the one-loop
contribution to the two-point function in a 3D self-coupled
scalar superfield model looks like

�ð1Þ
2 ¼ �

8
jmj
Z

d3xd2��ðD2 � 2mÞ�: (47)

By projecting this action to components, we arrive at

�ð1Þ
2 ¼ �

8
jmj
Z

d3xð��mnrm
rn


þ c �ið�mÞ��rmc � þ F2 � 2mðc 2 þ
FÞÞ: (48)

Let us perform, for this action, the analysis carried out
in [35]. It is clear that one can formally introduce the
upper-index metric

gab ¼ �mnð�a
m þ kamÞð�b

n þ kbnÞ; (49)

with gab introduced as usual to be the inverse of gab.
The Jacobian � ¼ det�1ð�m

a þ kma Þ can naturally be
treated as a contribution to the integral measure, since

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gabj
p ¼ ffiffiffiffiffiffijgjp

. One can also introduce the modi-
fied Dirac matrices ~�m ¼ �m þ kmn �

n, which satisfy the
modified anticommutation relation

f~�a; ~�bg ¼ 2gab; (50)

where gab is given by (49). Therefore, the action (48) can
be rewritten as

�ð1Þ
2 ¼ 1

8
jmj
Z
d3x

ffiffiffiffiffiffi
jgj

q
ð�gmn@m
@n
þc �ið~�mÞ��@mc �

þF2�2mðc 2þ
FÞÞ: (51)

Therefore, we can say that for the scalar superfield, our
Lorentz-breaking modification of the supersymmetry gen-
erators is equivalent to the introduction of a new metric
and, therefore, a new geometry (this is an affine geometry
since the new metric is related to the Minkowski one
through a constant matrix). It is easy to check that an
analogous situation occurs also in the four-dimensional
chiral superfield theory, that is, in our extension of the
Wess-Zumino model.
However, the situation differs for the contributions

involving external gauge legs. We have shown above that
in the 3D gauge theory, the quantum correction is given by
the expression (13). If we project it into components, the
result in the purely gauge sector will be

SM¼ �

8
jMj
Z
d3x

�
�1

4
�ma�nb ~Fmn

~Fab�M�abcAarbAc

�
:

(52)

Let us consider the Maxwell term, and, more precisely, one
contribution to it, for example,

SM1 ¼ �

8
jMj
Z

d3x

�
� 1

4

�
�ma�nbrmAnraAb: (53)

Repeating identically the arguments above, we can rewrite
this expression as

SM1 ¼ 1

8
jMj
Z

d3x
ffiffiffiffiffiffi
jgj

q �
� 1

4

�
gma�nb@mAn@aAb: (54)

We see that whilewe succeeded in replacing theMinkowski
metric with a new metric gab in a sector involving only the
space-time derivatives, there is no way to form a new
‘‘curved’’ metric gab in a sector involving vector fields.
This is related to the fact that within our methodology only
the geometry (that is, coordinates, derivatives, metric and
Dirac matrices) suffers transformations due to the introduc-
tion of the Lorentz-breaking parameters kab, but not the
vector fields. Thus, there is no way to reabsorb the Lorentz
breaking completely within a corresponding coordinate
transformation in the gauge sector. This conclusion is
similar to the one performed in [35].

V. SUMMARY

In this work we developed a gauge superfield method to
construct Lorentz-breaking supersymmetric field theories
based on the Kostelecky-Berger construction [3]. Themeth-
odology of superfields is a powerful tool for studying,
among other subjects, the perturbative aspects of super-
symmetric theories. Even though SUSY and its algebra is
closely related to Lorentz symmetry, we could extend the
superfield formalism to include the Lorentz violating terms,
therefore allowing us to use the most attractive properties of
superspace formalism. The aether superspace is a natural
way to deal with Lorentz-violating supersymmetric models.

SUPERGAUGE THEORIES IN AETHER SUPERSPACE PHYSICAL REVIEW D 88, 045022 (2013)

045022-7



In this context, we presented some applications of the
aether superspace techniques in three- and four-
dimensional space-time, discussing perturbative aspects of
supersymmetric quantum electrodynamics and the super
Chern-Simons-matter model. We showed that, from the
methodological viewpoint, the calculations do not essen-
tially differ from the usual Lorentz-invariant case.
However, as we have noted, the new theory involving the
Lorentz symmetry breaking can be reduced, through simple
rules, to the usual Lorentz-invariant theory, only if it is
being considered in the purely scalar sector. If we deal
with vector or spinor fields whose actions involve metrics
contracted to fields, the redefinition of coordinates will not
allow us to redefine completely all of the action, since it will

imply variations of the fields that are not suggested by the
initial structure of our modification of the supersymmetry
generators (cf. [35]).
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