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We formulate a generic three-dimensional superfield higher-derivative gauge theory coupled to matter,

which in certain cases reduces to the three-dimensional scalar super-QED, supersymmetric Maxwell-

Chern-Simons, or Chern-Simons theories with matter. For this theory, we explicitly calculate the one-loop

effective potential.
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I. INTRODUCTION

The effective potential is a central object of quantum
field theory, efficiently describing its low-energy effective
dynamics [1]. In the supersymmetric theories, the most
adequate method for its calculation is based on the super-
field formalism, allowing one to maintain a manifest
explicit supersymmetry at all steps of the calculation.
The superfield methodology for calculating the effective
potential was originally developed in Ref. [2] for a
four-dimensional spacetime and, further, was successfully
applied to the Wess-Zumino model in Ref. [3], to a more
general model involving chiral superfields only in Ref. [4],
to the supergauge theories in Ref. [5], and to the higher-
derivative superfield theories in Refs. [6,7].

However, preliminary discussions of the superfield ap-
proach to the study of three-dimensional supersymmetric
field theories themselves—especially the Chern-Simons
theory [8]—and of the effective potential in three-
dimensional superfield theories [9] began in the 1980s; in
a more or less systematic way the superfield methodology
for studying the effective potential has been formulated
only recently [10,11]. However, the interest in three-
dimensional field theories has grown recently, especially
due to the study of the N ¼ 6 and N ¼ 8 Chern-Simons
theories which display finiteness and conformal invariance
[12]. Other important studies of the extended supersym-
metric three-dimensional theories were presented in
Ref. [13], where, in particular, the N ¼ 2 and N ¼ 3
superfield descriptions of these theories were given explic-
itly. Different issues related to the superfield Chern-Simons
theories have also been considered in Refs. [14,15].

However, up to now no studies of the higher-derivative
three-dimensional superfield theories have been carried out,
whereas such a study could certainly be interesting (for
example, it is natural to study the famous problem of ghosts
in higher-derivative theories [16], especially when taking
into account that in the three-dimensional superspace the

convergence is better and the formulation is simpler). The
only consideration of the higher-derivative supersymmetric
theories in three dimensions has been carried out within the
component approach in Ref. [17], where a one-loop effec-
tive potential for a model involving only scalar fields and
their superpartners was calculated. In this work we suggest
to fill this lack. We formulate the generic three-dimensional
superfield higher-derivative gauge theory coupled to matter.
For this theory, we present the generic methodology for
calculating the effective potential, and calculate it in an
explicit way. Throughout the paper, we follow the notations
and conventions adopted in Ref. [18]. Our calculations will
be carried out in Euclidean space.

II. HIGHER-DERIVATIVE SUPERSYMMETRIC
GAUGE THEORY

We start with the following three-dimensional free
generic Abelian gauge theory:

S ¼ 1

2e2

Z
d5zA�R̂D�D�A�: (1)

Here, R̂ is some scalar operator commuting with D�D�,

and hence it is a function of D2, spacetime derivatives, and
some constants. This theory is evidently invariant under
usual gauge transformations �A� ¼ D�K, with K an arbi-
trary scalar superfield parameter. It is clear that if (up to the

multiplicative constants) R̂ ¼ 1 we have a Chern-Simons

theory, if R̂ ¼ D2 we have a three-dimensional QED, and

if R̂ ¼ D2 þm we have a Maxwell-Chern-Simons theory.

If R̂ involves higher degrees of D2—in particular, the
d’Alembertian operator h and its functions—we have
the higher-derivative supersymmetric gauge theory.
Earlier, the one-loop effective potential for this theory
was calculated for only the supersymmetric Chern-

Simons theory, R̂ ¼ 1 [19], and the supersymmetric scalar

QED R̂ ¼ D2 was discussed in Ref. [20]. We note that
while the non-Abelian extension of this theory would
be rather sophisticated—involving the vertices of self-
couplings of the gauge superfield—the one-loop effective
potential will be the same as in the Abelian case, up to the
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constant depending on the algebraic factor, since, at the
one-loop level, only the vertices involving the external
scalar legs give nontrivial contributions to the effective
potential.

We add to this action the following gauge-fixing term:

SGF ¼ 1

2e2�

Z
d5zA�R̂D�D

�A�; (2)

which is a natural higher-derivative generalization of the
usual gauge-fixing term. We note that this theory is
Abelian, and therefore the ghosts completely decouple.

Now, let us couple the gauge superfield to the scalar
matter. It is clear that the gauge covariant derivative is
D� � iA�, so the object ðD� � iA�Þ� [and, similarly,

ðD� þ iA�Þ ��] is transformed covariantly, i.e., if one trans-
forms� ! eiK� and takes the gauge transformation of the
field A� ! A� þD�K, one will arrive at ðD� � iA�Þ� !
eiKðD� � iA�Þ�. Hence, in principle, if we introduce
r� � D� � iA�, we can introduce a higher-derivative
kinetic term,

SK� ¼ � 1

2

Z
d5zr�r� . . .r��ðr�r� . . .r��Þ�: (3)

We can also introduce the mass for the scalar field and the

self-coupling for the scalar field of the form �
2

R
d5zð� ��Þn.

More generally, we will consider an arbitrary potential

Vð ��;�Þ. So, the complete action of the theory would
look like

St ¼
Z

d5z

�
1

2

�
A� 1

e2
R̂

�
D�D� þ 1

�
D�D

�

�
A�

�r�r� . . .r��ðr�r� . . .r��Þ�
�
þ Vð ��;�Þ

�
:

(4)

However, for the first attempt we suggest that the higher
derivatives be present only in the gauge sector, as it occurs
in Ref. [7]. Therefore, the equation above reduces to

St ¼
Z

d5z

�
1

2

�
A� 1

e2
R̂

�
D�D� þ 1

�
D�D

�

�
A�

�r��ðr��Þ�
�
þ Vð ��;�Þ

�
: (5)

The standard method of calculating the effective action
is based on the methodology of the loop expansion [21].
To do this, we make a shift� ! �þ� in the superfield�

(together with the analogous shift for the ��), where now�
is a background (super)field and � is a quantum one. We
suppose that the gauge field A� is taken to be a purely
quantum one. In order to calculate the effective action at
the one-loop level, we have to keep only the quadratic
terms in the quantum fluctuations �, ��, and A�. By using
this prescription, we get

S2½�; ��;�; ��;A��
¼ 1

2

Z
d5z

�
A� 1

e2
R̂

�
D�D� þ 1

�
D�D

�

�
A�

þ 2 ��D2�þ 2V ���
���þ i�A�D�

��� i ��A�D��

þ V���
2 þ V �� ��

��2 � ���A�A�

�
; (6)

where the irrelevant terms were omitted, including those
involving covariant derivatives of the background scalar
superfields. Moreover, we use a shorthand notation:

V ��� ¼ @2Vð ��;�Þ
@ ��@�

, V�� ¼ @2Vð ��;�Þ
@�2 , V �� �� ¼ @2Vð ��;�Þ

@ ��2 .

From Eq. (6), it follows that the propagators are given by

hA�ð1ÞA�ð2Þi ¼ e2

4k2R̂1

ðD�
1D1� þ �D1�D

�
1 Þ�12;

h ��ð1Þ�ð2Þi ¼ D2
1

k2
�12;

(7)

where �12 � �2ð�1 � �2Þ is the usual Grassmann delta
function.
Now, let us study the Kähler potential. At one-loop

order, the basic supergraphs contributing to the effective
action in the theory under consideration are of three types:
first, those with internal lines composed of only scalar
propagators; second, those composed of only gauge propa-
gators; third, those involving alternating gauge and matter
propagators. However, as was argued in Ref. [19], if we
consider the Landau gauge (� ¼ 0) then the last case need
not be considered in our calculations, since the gauge
superfield propagator hA�A�i in this gauge is proportional
to D�D�, while the vertex to which this propagator is

associated looks like (�A�D�
��� ��A�D��), so—after

integration by parts—the D� acts on the propagator
hA�A�i, annihilating it due to the identity D�D

�D� ¼ 0.
From now on, all the calculations presented in this work
will be performed in the Landau gauge for simplicity.

Since the vertices (�A�D�
��� ��A�D��) are irrele-

vant in the Landau gauge, we can discard them and rewrite
the functional (6) as

S2½�; ��;�; ��;A��
¼ 1

2

Z
d5z

�
A� 1

e2
R̂

�
D�D�þ 1

�
D�D

�

�
A�� ���A�A�

þ�iPj
iD

2�jþ�iMj
i�j

�
; (8)

where

�i ¼
�

��

 !
; �i ¼ � ��

� �
;

Pj
i ¼

0 1

1 0

 !
; Mj

i ¼
V�� V� ��

V� �� V �� ��

 !
:

(9)

Therefore, the new propagators are (� ¼ 0)
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hA�ð1ÞA�ð2Þi ¼ e2

4k2R̂1

D�
1D1��12;

h�ið1Þ�jð2Þi ¼ Pj
iD

2
1

k2
�12:

(10)

These propagators will be used for the one-loop
calculations.

III. ONE-LOOP CALCULATIONS

Let us start the calculations of the one-loop supergraphs
contributing to the purely scalar sector, that is, those
involving the scalar superfield propagators (10) connecting
the vertices �iMi

j�j. Such supergraphs exhibit the struc-

tures shown in Fig. 1.

We can compute all the contributions by noting that each
supergraph above is formed by n ‘‘subgraphs,’’ like those
shown in Fig. 2.
Hence, the contribution of this subgraph is given by

ðQ12Þij ¼ ðM1ÞikPk
j D

2
1

k2
�12 ¼ ð ~M1Þij

D2
1

k2
�12; (11)

~M ¼ V� �� V��

V �� �� V� ��

 !
: (12)

It follows from the result above that the contribution of a
supergraph formed by n subgraphs is given by

In ¼
Z

d3x
1

2n

Z
d2�1d

2�2 . . . d
2�n

Z d3k

ð2�Þ3 TrfðQ12ÞijðQ23Þjk . . . ðQn�1;nÞlmðQn;1Þmpg

¼
Z

d3x
1

2n

Z
d2�1d

2�2 . . . d
2�n

Z d3k

ð2�Þ3 Tr

��
ð ~M1Þij

D2
1

k2
�12

��
ð ~M2Þjk

D2
2

k2
�23

�
. . .

�
ð ~MnÞmp D

2
n

k2
�n;1

��
; (13)

where Tr denotes the trace over the matrix indices and 2n is
a symmetry factor. Such a factor takes into account the
Taylor series expansion coefficients of the effective action,
the usual symmetry factor of each supergraph, and the
number of topologically distinct supergraphs [22]. The
external momenta have to be taken to be zero in
the calculation of the effective potential.

We can integrate the expression In by parts to get

In ¼
Z

d5z
Z d3k

ð2�Þ3
1

2n
Tr½ ~Mn�

�
D2

k2

�
n
���0 j�¼�0 : (14)

The effective action is given by the sumof all supergraphs In,

�ð1Þ
1 ¼ X1

n¼1

In

¼
Z

d5z
Z d3k

ð2�Þ3
X1
n¼1

1

2n
Tr½ ~Mn�

�
D2

k2

�
n
���0 j�¼�0 :

(15)

It is not difficult to prove that ðD2Þm���0 j�¼�0 ¼ 0 for

m ¼ 2l, and that ðD2Þm���0 j�¼�0 ¼ ð
ffiffiffiffiffiffiffiffiffi
�k2

p
Þm�1 for

m ¼ 2lþ 1, where l is a non-negative integer. It follows that

�ð1Þ
1 ¼

Z
d5z

Z d3k

ð2�Þ3
X1
l¼0

ð�1Þl
2ð2lþ1Þ Tr½

~M2lþ1� 1

ðk2Þlþ1

¼
Z
d5z

Z d3k

ð2�Þ3
X1
l¼0

ð�1Þl
2ð2lþ1Þ ½�

2lþ1
1 þ�2lþ1

2 � 1

ðk2Þlþ1
;

(16)

where the �’s are the eigenvalues of the matrix ~M, namely

�1;2 ¼ V ��� � ðV��V �� ��Þ1=2. Hence, by substituting these

eigenvalues into Eq. (16) and summing over all l we get

�ð1Þ
1 ¼ 1

2

Z
d5z

Z d3k

ð2�Þ3
1

jkj
�
�
arctan

�
V ��� þ ðV��V �� ��Þ1=2

jkj
�

þ arctan

�
V ��� � ðV��V �� ��Þ1=2

jkj
��

: (17)

Finally, we can compute these integrals to get

FIG. 1. One-loop supergraphs in a purely scalar sector.
FIG. 2. A typical vertex in one-loop supergraphs in the matter
sector.
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�ð1Þ
1 ¼ � 1

8�

Z
d5zðV2

���
þ V��V �� ��Þ: (18)

We conclude here that this contribution to the one-loop
effective action does not display any divergences, indepen-

dently of the form of the potential Vð ��;�Þ. We note that,
unlike Ref. [19], here we used only the supergraph sum-
mation instead of the functional trace calculations.

Let us move on to the calculation of the one-loop super-
graphs involving the gauge superfield propagator connect-

ing the vertices,� ���A�A�. Such supergraphs exhibit the
structure shown in Fig. 3.

As before, we can compute all the contributions by
noting that each supergraph above is formed by n sub-
graphs, like those depicted in Fig. 4.
This subgraph provides the contribution

ðP12Þ�1

�2 ¼ � e2ð ���Þ1
4k2

1

R̂1

D�2

1 D1;�1
�12: (19)

It follows from the result above that the contribution of a
supergraph formed by n subgraphs is given by

Jn ¼ ð2�Þ3�3ð0Þ 1

2n

Z
d2�1d

2�2 . . . d
2�n

Z d3k

ð2�Þ3 ðP12Þ�1

�2ðP23Þ�2

�3 . . . ðPn�1;nÞ�n�1

�nðPn;1Þ�n

�1

¼ ð2�Þ3�3ð0Þ 1

2n

Z
d2�1d

2�2 . . . d
2�n

Z d3k

ð2�Þ3
�
� e2ð ���Þ1

4k2
1

R̂1

D�2

1 D1;�1
�12

�

�
�
� e2ð ���Þ2

4k2
1

R̂2

D�3

2 D2;�2
�23

�
� � �

�
� e2ð ���Þn

4k2
1

R̂n

D�1
n Dn;�n

�n;1

�
: (20)

After successive integrations by parts and summing all
supergraphs Jn, we get the effective action

�ð1Þ
2 ¼

Z
d5z

Z d3k

ð2�Þ3
X1
n¼1

1

2n

�
� e2 ���

4k2

�
n

� 1

R̂n
D�2D�1

D�3D�2
. . .D�nD�n�1

�D�1D�n
���0 j�¼�0 : (21)

At this stage of the calculation, we have to specify the
operator R̂ in order to proceed with the calculation of �ð1Þ

2 .
The most general choice is R̂ ¼ fðhÞ þ gðhÞD2 (recall
that this operator is a scalar). This expression is rather
generic. The result of the complete evaluation of the
D-algebra essentially depends on the explicit form of the
operator R̂. So, let us consider two characteristic examples
where the final result is expressed in closed form and in
terms of elementary functions.

The first example is f ¼ 0 and g � 0, so we have

R̂ ¼ gðhÞD2 ) 1

R̂n
¼
� �1

gðk2Þk2
�
nðD2Þn: (22)

It follows from the covariant derivative algebra that
ðD2ÞnD�2D�1

D�3D�2
. . .D�1D�n

���0 j�¼�0 ¼ 0 for all n.

Therefore, from the Eqs. (21) and (22), we have

�ð1Þ
2 ¼ 0: (23)

In conclusion, the complete one-loop Kähler effective
potential is completely given by the expression (18),

Kð1Þð�; ��Þ ¼ � 1

8�
ðV2

���
þ V��V �� ��Þ;

for fðhÞ ¼ 0 and gðhÞ � 0:
(24)

This result is consistent with the claim made in Ref. [20]
that, in the case where the self-coupling of the scalar field is
absent, the one-loop Kähler effective potential for the
three-dimensional QED (that is, g ¼ 1) identically van-
ishes. We have shown that the same situation occurs for all
classes of theories in which g � 1 but f ¼ 0.
Our second example is f ¼ 	ð�hÞm and g ¼ 0, where

	 is a parameter with a nontrivial mass dimension

FIG. 3. One-loop supergraphs in a gauge sector.
FIG. 4. A typical vertex in one-loop supergraphs in the matter
sector.
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½	� ¼ ½M��2m, 	 > 0, and m is a non-negative integer.
Consequently, we have trivially

R̂ ¼ 	ð�hÞm ) 1

R̂n
¼
�

1

	ðk2Þm
�
n
: (25)

It can be shown that D�2D�1
D�3D�2

. . .D�1D�n

���0 j�¼�0 ¼ 0 for n ¼ 2l, and D�2D�1
D�3D�2

. . .D�1

D�n
���0 j�¼�0 ¼ 2nð

ffiffiffiffiffiffiffiffiffi
�k2

p
Þn�1 for n ¼ 2lþ 1, where l is

a non-negative integer. Hence, from Eqs. (21) and (25),
we get

�ð1Þ
2 ¼

Z
d5z

Z d3k

ð2�Þ3
1ffiffiffiffiffiffiffiffiffi
�k2

p X1
l¼0

1

2ð2lþ 1Þ

�
0
@� e2 ���

ffiffiffiffiffiffiffiffiffi
�k2

p

2	ðk2Þmþ1

1
A2lþ1

¼ � 1

2

Z
d5z

Z d3k

ð2�Þ3
1

jkj arctan
�
e2 ���jkj
2	ðk2Þmþ1

�
; (26)

where we have used the fact that
ffiffiffiffiffiffiffiffiffi
�k2

p
¼ ijkj and the

identity arctan ðxÞ ¼ 1
i arctanhðixÞ. The integral above

can be solved by induction. Then we obtain

�ð1Þ
2 ¼ �

Z
d5z

1

16�
sec

�
�

2mþ 1

��
e2 ���

2	

� 2
2mþ1

: (27)

It is worth noticing that this result is finite and does not
need any renormalization, which, however, is a rather
generic effect in the three-dimensional superfield theories

[20]. Moreover, we note that if the operator R̂ is of the first
order in spacetime derivatives or (similarly) of the second
order in spinor supercovariant derivatives, the theory is
super-renormalizable, with the only possible divergences
being the two-loop ones and no divergences at higher
order. This is just the situation of the super-QED [23],

and if the operator R̂ is of second order in spacetime
derivatives the corresponding theory is all-loop finite.

Again, the complete one-loop Kähler effective potential
can be read off from the sum of Eqs. (18) and (27). As a
result, we finally obtain

Kð1Þð ��;�Þ ¼ � 1

16�
sec

�
�

2mþ 1

��
e2 ���

2	

� 2
2mþ1

� 1

8�
ðV2

���
þ V��V �� ��Þ; (28)

for fðhÞ ¼ 	ð�hÞm and gðhÞ ¼ 0.
The result (28) is highly generic. In particular, if m ¼ 0,

	 ¼ 1, and Vð ���Þ ¼ �
2 ð ���Þ2, we get

Kð1Þð ��;�Þ ¼ 1

64�
ðe2 ���Þ2 � 5

8�
�2ð ���Þ2: (29)

This is just the (Euclidean) one-loop Kähler effective
potential for the Chern-Simons theory coupled to a
self-interacting massless scalar matter without higher de-
rivatives. Our result agrees with that obtained in Ref. [19].

IV. SUMMARY

We formulated a generic Abelian three-dimensional
supergauge theory coupled to matter. In the general case,
the classical action of this theory involves higher deriva-
tives. However, despite of this, we developed a universal
procedure for calculating the one-loop effective potential
for this theory—which actually applies to a wide class of
theories including supersymmetric Chern-Simons theory,
supersymmetric QED, supersymmetric Maxwell-Chern-
Simons theory, and their non-Abelian generalizations—
and found that the result is rather generic for a wide class
of the theories. In particular, we explicitly demonstrated
that for the three-dimensional supersymmetric QED the
one-loop effective potential vanishes. Also, we noted that
any three-dimensional higher-derivative supersymmetric
gauge theory is all-loop finite.
Studies of the higher-derivative superfield theories can

have natural continuation. For example, it is interesting to
look for other ways to introduce higher derivatives in the
four-dimensional superfield theories that are different from
those presented in Refs. [6,7].
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