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Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are

usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike

singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism

for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons

interactions. This is illustrated in a supersymmetric SUð2Þ Yang-Mills-Chern-Simons theory. We calculate

the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly

between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy

result. We suggest possible applications to singularity resolution in string theory and speculate a relationship

to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
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I. INTRODUCTION AND SUMMARY

Understanding spacetime singularities is one of the central
problems in string theory. Singularities arise in diverse sys-
tems, ranging from cosmology to black holes. So far we do
not know the necessary and sufficient conditions for a singu-
larity to be resolved,1 and since we lack a complete frame-
work to answer this question, it is important to identify
concrete mechanisms that can resolve singularities. In this
work wewill present a novel mechanism for resolving certain
timelike singularities, based on Chern-Simons interactions.

One successful approach has been to exploit the connec-
tion between D-branes and geometry. Using D-branes to
probe string theory solutions reformulates the spacetime
geometry in terms of the scalars on the world volume
gauge theory. This is helpful because the gauge theory
can capture phenomena that are beyond the reach of the
classical gravity description.2 Here, we will focus on gauge
theories with perturbative Coulomb branch singularities.
These describe certain timelike singularities of string the-
ory, the canonical example being that of orientifold planes.

From the gauge theory side, one of the first and most
important examples of a Coulomb branch singularity ap-
peared in the work of Seiberg and Witten [5] on the SUð2Þ
Yang-Mills theory (YM) with N ¼ 2 supersymmetry in
four dimensions. The gauge coupling along the Coulomb
branch receives a one-loop correction

1

g2ð�Þ ¼
1

g20
þ 1

4�2
log

j�j2
�2

; (1.1)

where � is the Coulomb branch coordinate, g0 is the UV
value of the gauge coupling, and � is the dynamical scale.

This result, which is exact in perturbation theory, shows a

singularity at j�j2 ¼ �2e�4�2=g20 . For smaller values of
j�j2, the perturbative answer cannot be correct because it
predicts a negative gauge coupling squared. Since the
quantum field theory is UV complete, it should make sense
at arbitrarily long distances; so the failure of perturbation
theory suggests that new physics should become important

at the scale �2e�4�2=g20 . And, indeed, Seiberg and Witten
showed how this singularity is resolved by nonperturbative
effects and found that the correct low-energy description is
in terms of a light monopole and a dyon near the origin of
the moduli space.
Another example, which will be relevant for us, is

obtained by compactifying one spatial dimension in this
theory. At low energies this gives an SUð2Þ Yang–Mills
theory with N ¼ 4 supersymmetry in three dimensions
(i.e., eight supercharges). Now, the gauge coupling includ-
ing perturbative corrections is [6,7]

1

g2ð�Þ ¼
1

g20
� 1ffiffiffi

8
p

�j�j : (1.2)

Nonperturbative contributions from instantons resolve the

perturbative singularity at j�j ¼ g20=ð
ffiffiffi
8

p
�Þ, giving rise to

the smooth Atiyah–Hitchin metric [8].
In these examples, the existence of singularities signals

the appearance of nontrivial nonperturbative dynamics.
Our goal is to understand what happens to such singular-
ities when these nonperturbative effects are absent. Let us
deform the previous theory by adding a topological Chern-
Simons (CS) mass that does not lift the Coulomb branch.
Intuitively, the topological mass for the gauge field leads to
confinement of monopole instantons [9], and we will argue
that the Yang-Mills instantons deformed by a CS term do
not have finite action. Therefore, they cannot resolve the
moduli space singularity. How then is the Coulomb branch
singularity resolved?

1Some proposals in the context of AdS/CFT were given in
[1,2].

2For more details and references, see Refs. [3,4].

PHYSICAL REVIEW D 88, 045018 (2013)

1550-7998=2013=88(4)=045018(12) 045018-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.045018


In this work we analyze the quantum corrections to the
Coulomb branch of Yang-Mills-Chern-Simons theories
and show that the Chern-Simons interaction resolves the
singularity (1.2) already in perturbation theory, without
the need of nonperturbative contributions. We focus on
the simplest theory that has a Coulomb branch that receives
nontrivial loop corrections; this is the previous SUð2Þ
gauge theory plus a CS term that preserves N ¼ 2 super-
symmetry. Besides our motivation from singularities, this
class of theories may be relevant to the AdS/CFT corre-
spondence for three-dimensional gauge theories or the
intriguing possibility of emergent supersymmetry in con-
densed matter systems [10]. Furthermore, as far as we are
aware, there is not much work on the quantum Coulomb
branch of YM-CS theories, and we hope that our results
help to bridge this gap.

Before proceeding to the explicit analysis, let us discuss
the relation of this mechanism to timelike singularities in
string theory. One of our motivations was to understand the
gauge theory version of Ref. [11], in which it was found
that the O6 plane singularity is resolved in massive type-
IIA compactifications to four dimensions. In the absence of
Romans mass, the O6 plane geometry can be understood
using a D2 probe, which gives exactly Eq. (1.2). The strong
coupling limit of type IIA is M theory, and the nonpertur-
bative effects discussed before arise from exchange of
D0 branes [12]. However, it was argued in Ref. [13] that
massive type IIA does not have an M-theory limit. Instead,
the O6 singularity is resolved by the Romans mass [11].
A D2 probe in massive IIA acquires a Chern-Simons term,
and this is the basic effect that our mechanism captures.

Actually, it turns out that there exists another type of

orientifold plane, the fO6, for which the singularity resolu-
tion is not yet known. This plane can be thought of as an
O6 plus a half D6 brane [14]. The half D6 introduces a
fundamental flavor on the D2 probe, which produces, at
one loop, a Chern-Simons mass for the world volume
gauge field. Thus, we expect that our results will be rele-

vant to understanding the fO6. Another possible application
would be to consider Chern-Simons deformations of the
enhançon mechanism of Ref. [15] for the resolution of
repulsion-type singularities.

Here, we will focus on the previous three-dimensional
Yang-Mills-Chern-Simons theory with N ¼ 2 supersym-
metry, postponing to a future work a more detailed explo-
ration of the effects on timelike singularities. One reason
for this is that, with this amount of supersymmetry, the
Coulomb branch metric is not protected against higher
loop corrections. Our results, valid at one loop and in the
perturbative limit, can receive nontrivial corrections in the
regime of interest for the gravitational singularities. Also,
in string theory solutions such as that of Ref. [11], we
expect the probe theory to be more complicated, with
reduced supersymmetry and only an approximate moduli
space. The theory that we will study is the simplest one in

which our mechanism can be exhibited under controlled
approximations. Nevertheless, we expect that our conclu-
sions are applicable more generally.
The paper is organized as follows. First, in Sec. II we

introduce the Yang-Mills-Chern-Simons theory, study the
classic Coulomb branch, and show that the YM instantons
have infinite action in the presence of the CS deformation.
The rest of the work is then devoted to understanding the
quantum geometry of the Coulomb branch in perturbation
theory.
Our analysis of the quantum Coulomb branch metric is

done in three steps. In Sec. III we discuss the UV limit at
which the Coulomb branch expectation value j�j � kg,
where g is the gauge coupling and k is the CS level. In this
regime the CS deformation can be neglected, and we
perform an explicit one-loop calculation that reproduces
Eq. (1.2). A nonzero expectation value for the Coulomb
branch scalar � leads to massive states of mass m2

g ¼
2g2j�j2, and the quantum corrections to the low-energy
theory are obtained by integrating out these fields.
Next, in Sec. IV we study the quantum Coulomb branch

in the CS theory, ignoring the YM term, which corresponds
to the IR limit g ! 1 at fixed � and k—up to important
finite effects that we discuss below. We present a general
argument explaining why the CS interaction resolves the
singularity: for dimensional reasons, scalar expectation
values cannot appear in the corrections to the metric, which
thus have to be finite. We also present an explicit calcu-
lation showing indeed a finite smooth correction to the
Coulomb branch metric of order 1=k.
Finally, in Sec. V we determine the quantum Coulomb

branch metric in the full YM-CS theory at one loop. The
effect of the CS deformation on the massive fields is to split
m2

g ! m2�, where the mass eigenvalues m2� are defined in

Eq. (2.10). Surprisingly, the one-loop quantum corrected
Coulomb branch metric is exactly the same as in the pure
YM case, after replacing the Higgs massmg by the average

mass of the massive modes in the presence of the CS
deformation, ðmþ þm�Þ=2. This gives the Coulomb
branch metric

S �
Z

d3x

0
BBB@1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8�2 j�3j2
g2

þ k2

16

r
1
CCCA@��3@

� ��3: (1.3)

This result interpolates smoothly between Eq. (1.2) in the
UV and a finite nonsingular metric in the IR that becomes
independent of �. Furthermore, the answer in the deep IR
disagrees with the one calculated in the pure CS theory in
Sec. IV by a factor of 2. This is due to an interesting non-
decoupling effect from fields that become infinitely massive
in the limit g ! 1 but still contribute finite corrections. This
will end our analysis, proving our claim that the CS interac-
tion resolves the moduli space singularity by perturbative
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quantum corrections. Some useful formulas that are needed
for our analysis are collected in the Appendix.

II. THE YANG-MILLS-CHERN-SIMONS THEORY

Let us begin by describing the classical YM-CS
theory that will be the subject of our analysis. This is a
three-dimensional SUð2Þ gauge theory withN ¼ 2 super-
symmetry— i.e., four supercharges. The matter content
consists of a vector superfield with components
ðAa

�; �
a; �a; DaÞ and a chiral superfield ð�a; c a; FaÞ.

Here, a is the index for the adjoint representation of the
gauge group, � is a real scalar,3 � and c are three-
dimensional Dirac fermions, and D and F are auxiliary
fields. The theory contains a CS deformation for the vector
supermultiplet, and there is no superpotential. A review of
the three-dimensional supersymmetric YM-CS theory is
given in the Appendix.

The general Lagrangian with N ¼ 2 supersymmetry
and no superpotential is [see Eq. (A8)]

L ¼ Lgauge þ LCS þ Lmatter; (2.1)

where the gauge kinetic terms are

Lgauge ¼ � 1

4
Fa
��F

a�� þ 1

2
ðD��

aÞ2 þ i ��a 6D�a � g ����;

(2.2)

the CS deformation is

LCS ¼ 1

2
mk

�
����

�
Aa
�@�A

a
� þ 1

3
gfabcAa

�A
b
�A

c
�

�

� ð�aÞ2 � 2 ��a�a

�
; (2.3)

and the remaining matter contributions and interactions are

Lmatter ¼ ðD��iÞyðD��iÞ þ i �c i 6Dc i � g2�y�2�

� g �c�c þ ffiffiffi
2

p
igð�y ��c � �c��Þ

� 1

2
ðg�y

i T
a
ij�jÞ2 �mkg�

a�y
i T

a
ij�j: (2.4)

The auxiliary fields have already been integrated out, and
we have introduced the mass parameter

mk � g2k

4�
; (2.5)

where k is the CS level. Note that the CS deformation does
not give a mass to the chiral supermultiplet.

Our conventions for covariant derivatives, index con-
tractions, etc., are described in detail in the Appendix.
Here, we will specialize to an SUð2Þ gauge group, with
the chiral superfield also transforming in the adjoint rep-
resentation. In this case, the indices i, j also run over 1, 2,
3, and Ta

ij ¼ �i�aij.

In the limit mk ! 0, supersymmetry is enhanced to
N ¼ 4. This is the low-energy limit of the four-
dimensional pure SUð2Þ theory with eight supercharges
compactified on a circle. This theory was studied by
Ref. [6]. Here, it arises as the UV limit of Eq. (2.1), while
the IR is dominated by the CS deformation. These limits
will be studied in Secs. III and IV, respectively, before
tackling the whole problem.

A. Classical Coulomb branch

The classical Coulomb branch of the theory is parame-
trized by the gauge-invariant tr �2. Without loss of gen-
erality, we will choose a real expectation value along the
third direction in color space,

h�ai ¼ v	a3; v 2 R; (2.6)

which breaks SUð2Þ ! Uð1Þ. We will now determine
the low-energy description of this Uð1Þ theory, valid at
energies E � v.
We denote the color indices perpendicular to the

Coulomb branch direction by 
 ¼ 1, 2 and split the scalar
fields into real and imaginary parts:

�
 ¼ �
 þ i~�
ffiffiffi
2

p ; �3 ¼ vþ �3 þ i~�3ffiffiffi
2

p : (2.7)

The massive fields come from ðA�

;�
;�
; �
; c 
Þ, with


 ¼ 1, 2. The nonzero expectation value v introduces
another mass parameter:

m2
g � 2g2v2: (2.8)

(Recall that both � and the gauge coupling have classical
dimension 1=2).
Expanding Eq. (2.1) to quadratic order around Eq. (2.6)

obtains

Lquad ¼ 1

2
A
�

 ½g��ðhþm2

gÞ � @�@� �mk����@
��A�




� 1

2
�
h�
 � 1

2
�
ðhþm2

g þm2
kÞ�


� 1

2
~�
ðhþm2

gÞ~�
 þmgmk�
��
 ~��

þmg�
�@�A
�

�� þ ��
ði6@�mkÞ�


þ i �c 
 6@c 
 � �
�mgð ��
c � þ �

�c �Þ: (2.9)

The Lagrangian for the fields along a ¼ 3 is not modified
by the expectation value and can be read off directly from
Eq. (2.1), so we have not included those terms here. In the
limit at which the gauge symmetry becomes global, the
fields �
 are the Goldstone bosons of the broken symme-
try; that is why they do not have a mass term at this stage,
and they couple derivatively to the massive vector bosons.
This is, however, gauge dependent, and we will add a
gauge-fixing term below. We will first work in the
Landau gauge and then consider an arbitrary R
 gauge

3This scalar is the extra component of the gauge field upon
compactifying the four-dimensional theory on a circle.
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that will allow us to prove the gauge invariance of our
results.

Let us now discuss the masses of the heavy fields. Since
the bosonic part of the previous Lagrangian will be modi-
fied by the gauge fixing term, we will instead focus on the
fermionic masses, which will not be altered. Diagonalizing
the mass matrix obtains the mass eigenvalues

m2� � m2
g þ 1

2
m2

k �
1

2
mk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

g þm2
k

q
: (2.10)

In the UV limit m2
g � m2

k, m
2� �m2

g, corresponding to

both the gaugino and c fermion acquiring the same mass
(and consistent with the approximate N ¼ 4). On the
other hand, approaching the origin of the Coulomb branch
m2

g � m2
k, the c fermion becomes massless, while the

gaugino acquires a mass mk. This is the topological mass
induced by the N ¼ 2 CS deformation.

In our calculation of quantum effects, we will also need
the interactions for the fields along the color directions 
.
The interactions that contribute at one-loop order are

Lint ¼ �g

�
mg�3 þ 1

2
g�2

3 þ
1

2
g~�2

3

�
ð�ðA


�Þ2 þ �2

 þ ~�2


Þ
þ gðmg þ g�3Þ�
 ~�
 ~�3 þ�gmk�
��
ð~���3

� �� ~�3Þ þ 2g�
�A


�ð��@��3 þ ~��@� ~�3Þ

þ g�
�@�A
�

 ð���3 þ ~�� ~�3Þ

� g�
��3ð ��
c � þ �

�c �Þ

þ ig�
� ~�3ð ��
c � � �

�c �Þ: (2.11)

B. Analysis of instanton solutions

Now, we come to the important question of instanton
solutions in the YM-CS theory. The gauge theory in the
absence of a CS deformation has three-dimensional instan-
ton solutions that resolve the perturbative Coulomb branch
singularity. These instantons are the same as the four-
dimensional BPS monopoles of the Seiberg–Witten theory
and are described, for instance, in Ref. [7]. We would
like to understand what happens to these solutions when
the theory is deformed by a CS term. Instantons in a non-
supersymmetric theory with a massive Higgs fields have
been studied by several authors; see, for instance,
Refs. [9,16–18]. Here, we will adapt some of these tech-
niques to the supersymmetric case and argue that the real
instantons of the YM theory have infinite action once the
effects of the CS interaction are taken into account.4

Choosing a Coulomb branch coordinate along the
real part of �a as in Eq. (2.6), the YM instantons have a
nontrivial profile [7],

Aa
� � �a��

x�

x2
; ’a � ffiffiffi

2
p

Re�a � xa

x
; (2.12)

where x is the Euclidean distance. The other bosonic fields
are set to zero, and the solution for fermions can be
obtained by a supersymmetry transformation.
Let us now add the CS term and find how Eq. (2.12)

is modified. Following Ref. [9], we look for deformed
instantons that are invariant under the diagonal subgroup
of the rotations and gauge transformations groups:

Aa
�ðxÞ ¼ 1

g
ð1� fðxÞÞ�a��

x�

x2
þ 1

g
AðxÞ xax�

x2
;

’a ¼ 1

g
’ðxÞ x

a

x
; (2.13)

a possible contribution proportional to 	a� has been set to

zero by a gauge transformation, and the factors of g are
included to simplify the following formulas. At short dis-
tances the CS deformation is unimportant, and these solu-
tions are required to approach the YM instantons. Given
this ansatz, the Euclidean bosonic action takes the form

Sb ¼ SYM þ SCS þ Sscalar; (2.14)

where

SYM ¼ 4�

g2

Z 1

0
dx

�
ðf0Þ2 þ ð1� f2Þ2

2x2
þ A2f2

�

SCS ¼ � 4�i

g2
mk

Z 1

0
dxAð1� f2Þ

Sscalar ¼ 4�

g2

Z 1

0
dx

�
’2f2 þ r2

2
ð’0Þ2

�
;

(2.15)

and a prime denotes a derivative with respect to the
Euclidean distance x.
Integrating out A sets

A ¼ i
mkð1� f2Þ

2f2
; (2.16)

and the Euclidean Lagrangian for the instanton becomes

L ¼ 4�

g2

�
ðf0Þ2 þ ð1� f2Þ2

4

�
2

x2
þm2

k

f2

�

þ ’2f2 þ x2

2
ð’0Þ2

�
: (2.17)

We thus arrive at the equations of motion for the classical
configuration,

f00 ¼ f2 � 1

4

�
4f

x2
þm2

k

f3
ðf2 þ 1Þ

�
þ ’2f (2.18a)

’00 ¼ 2

x

�
’f2

x
� ’0

�
: (2.18b)

4We do not claim that there are no finite action classical
solutions; for instance, Ref. [18] argues that there are complex
solutions that can contribute to the path integral. The role of
these solutions in the physical theory is not fully understood yet.
However, these subtleties will not affect our main conclusion,
namely, the smoothness of the quantum corrected Coulomb
branch.
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As a check, at small distances the effect of the CS term is
found to be unimportant, and Eq. (2.18) admits the real
solutions

fðxÞ¼ mgx

sinhðmgxÞ ; ’ðxÞ¼�1

x
þmgcothðmgxÞ; (2.19)

which reproduce the instantons of the YM theory. At long
distances we require the scalar field to approach the
Coulomb branch expectation value, namely, ’ð1Þ ¼ mg.

In this regime, the equation of motion for f is dominated by
the CS term, and the field approaches a limiting value

fð1Þ4 ¼ m2
k

m2
k þ 4m2

g

: (2.20)

We have solved this system of equations numerically for
solutions that interpolate between the previous asymptotic
behaviors. For nonzero CS mass, both fðxÞ and ’ðxÞ are
found to be slowly varying (as opposed to the highly
localized instantons of the YM theory), and a numerical
evaluation of the Euclidean action shows that it diverges
with the size of the Euclidean space. The reason for this is,
in fact, the same as in Ref. [9]: at large x the Lagrangian
evaluates to

L	4�

g2

�ð1�fð1Þ2Þ2
4

m2
k

fð1Þ2þm2
gfð1Þ2þ




�
; (2.21)

which is strictly positive, explaining the divergence of the
action.

We conclude that the instantons of the YM theory, when
deformed by a CS interaction, have a divergent action. We
need to look somewhere else for a mechanism to resolve
singularities. This ends our analysis of the classical YM-
CS theory. In what follows we first review the appearance
of the Coulomb branch singularity in the UV limit of the
gauge theory and then argue that the singularity is resolved
by perturbative effects that become important at long
distances.

III. UV LIMIT: YANG-MILLS THEORY

In this section we will calculate the one-loop correction
to the two-point function of � along the Coulomb branch
(2.6) in the limitm2

g � m2
k. This is the UV region, in which

the CS deformation may be ignored. In this limit the theory
reduces to the three-dimensional SUð2Þ N ¼ 4 theory.
The quantum-corrected Coulomb branch metric was ob-
tained in Ref. [6], and the one loop calculation was carried
out in Ref. [7]. However, these methods rely heavily on the
N ¼ 4 supersymmetry, and it is not clear how to general-
ize them to include a CS deformation. For this reason, here
we will reproduce the known result using an approach that
can be extended to the N ¼ 2 YM-CS theory. This will
serve mostly as a warm-up for our real motivation: the
YM-CS theory.

A. One-loop calculation

Our goal is to compute the one-loop corrected two-point
function

h�3ðpÞ�3ð�pÞi ¼ Gð0ÞðpÞ þGð0ÞðpÞ�ð1ÞðpÞGð0ÞðpÞ þ 
 
 

¼ 1

ðGð0ÞÞ�1ðpÞ � �ð1ÞðpÞ ; (3.1)

for now in the limit mk ! 0. Here, Gð0ÞðpÞ ¼ i=p2 is the
tree-level propagator for �3. Since supersymmetry forbids
the generation of a mass term,�ðpÞ / p2 plus higher-order
terms in p2. Using the fact that at one loop the self-energy
is proportional to the interaction g2, we have, on dimen-
sional grounds,

�ð1ÞðpÞ ¼ i�1

g2

mg

p2 þOðp4Þ ¼ i�1

gffiffiffi
2

p jvjp
2 þOðp4Þ:

(3.2)

�1 is a dimensionless coefficient that will be calculated
explicitly.5 Plugging this form into Eq. (3.1) and Fourier
transforming back to position space gives a one-loop ki-
netic term

L �
�
1þ �1

gffiffiffi
2

p jvj
�
1

2
@��3@

��3: (3.3)

This defines the quantum-corrected Coulomb branch met-
ric at the position v, with the rest of the components fixed
by supersymmetry.
Our approach is very straightforward: we will calculate

all the one-loop diagrams that contribute to Eq. (3.1) using
the component fields and interactions described in
Sec. II A. In this approach, supersymmetry is not used
explicitly, although its consequences (such as the cancel-
lation of divergences) will be seen directly. It would be
nice to apply a method that takes advantage of supersym-
metry from the start, perhaps in terms of the superspace
background field approach of Refs. [19–21]. Furthermore,
our final result for the quantum corrected metric in the
YM-CS theory will be so simple that it suggests that a more
direct way of calculating it could exist.
We work in Landau gauge

@�A� ¼ 0; (3.4)

which is very convenient for calculations in the
Coulomb phase. It can be obtained by taking the limi

 ! 0 of the R
 gauge fixing described in the Appendix.

In this case there are no ghosts, the derivative couplings in
Eqs. (2.9) and (2.11) vanish, and �
 is massless. The
bosonic propagators simplify to

5The index denotes the loop order, and the factor of i antici-
pates that �1 is real.
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hA

�ðpÞA�

� ð�pÞi ¼ �i	
�
g�� � p�p�=p

2

p2 �m2
g

h�
ðpÞ��ð�pÞi ¼ i	
�

1

p2 �m2
g

h�
ðpÞ��ð�pÞi ¼ i	
�

1

p2

h~�
ðpÞ~��ð�pÞi ¼ i	
�

1

p2 �m2
g

;

(3.5)

and for the fermions

h�
ðpÞ ���ðpÞi ¼ i	
�

6p
p2 �m2

g

hc 
ðpÞ �c �ðpÞi ¼ i	
�

6p
p2 �m2

g

h�
ðpÞ �c �ðpÞi ¼ i�
�mg

1

p2 �m2
g

:

(3.6)

The one-loop diagrams that contribute to the �3

two-point function are as follows. The total bosonic
contribution involves seven one-loop diagrams, which
can be written in terms of the previous propagators to give

�b ¼ �g2
Z d3q

ð2�Þ3 ½�ihA

�A

�

 iq þ ih�
�
iq þ ih~�
 ~�
iq

þ 2m2
ghA


�A
�
� iqhA�


A�
�ip�q

þ 4p�p��
���	hA�

A�

�iqh���	ip�q

þ 2m2
gh�
��iqh�
��ip�q

þ 2m2
gh~�
 ~��iqh~�
 ~��ip�q�: (3.7)

We use the shorthand notation h�1�2iq �
h�1ðqÞ�2ð�qÞi. The fermionic contribution amounts to

�f ¼ 2g2�
���	
Z d3q

ð2�Þ3 ½h�

���iqhc �

�c 	iq�p

þ h�

�c 	iqh��

�c �iq�p�: (3.8)

Individual diagrams have linear divergences, but they ex-
actly cancel in the total contribution � ¼ �b þ �f, so no

regulator is needed at this order. This is expected from
supersymmetry. Expanding the self-energy in powers of p2

and performing the loop integrals obtains

�ð1Þ ¼ � i

2�

g2

mg

p2 þOðp4Þ: (3.9)

We conclude that �1 ¼ �1=ð2�Þ—see Eq. (3.2)—and
the quantum Coulomb branch metric is (restoring the real
and imaginary parts of the flat direction)

L �
�
1� 1

2
ffiffiffi
2

p
�

g

j�3j
�
@��3@

� ��3; (3.10)

which reproduces Refs. [6,7]. This result is exact in per-
turbation theory and signals a perturbative singularity at

j�3j ¼ 1

2
ffiffiffi
2

p
�
g:

IV. QUANTUM EFFECTS IN PURE
CHERN-SIMONS THEORY

Having understood the perturbative singularity in the
YM limit, we will next focus on the deep IR. In this limit,
the CS deformation dominates over the kinetic terms
for the vector superfield. So in this section, we will deter-
mine the quantum-corrected Coulomb branch metric of the
Chern-Simons-matter theory, which is also interesting in
its own right.6

The resulting theory is obtained from Eq. (2.1) by
rescaling

ðA�;�; �;DÞ ! 1

g
ðA�;�; �;DÞ

and then taking the limit g ! 1. Now, � and � also
become auxiliary, and integrating them out obtains

L ¼ ðD��iÞyD��i þ i �c i 6Dc i

þ k

8�
����

�
Aa
�@�A

a
� þ 1

3
fabcAa

�A
b
�A

c
�

�

� 16�2

k2
ð�yTaTb�Þð�yTa�Þð�yTb�Þ

þ 4�

k
ð �cTac Þð�yTa�Þ þ 8�

k
ð �cTa�Þð�yTac Þ:

(4.1)

More details are given in Appendix A 1. It is sometimes
convenient to introduce the parameter

� � k

4�
: (4.2)

Perturbation theory is an expansion in powers of ��1.
This theory has a one-dimensional Coulomb branch

parametrized by trð�2Þ. The kinetic term is not protected
against quantum corrections, and, unlike the case of
N ¼ 4 supersymmetry, it receives corrections to all or-
ders in perturbation theory. Here, we will calculate the one-
loop corrections and show that there is no singularity. This
finite effect is the dominant contribution in the perturbative
regime k � 4�, which we henceforth assume.7

Let us develop some intuition about the corrections that
can appear. The crucial difference between the CS matter
theory (4.1) and the previous case with nonzero gauge

6We refer the reader to Ref. [22] for a detailed review of
Chern-Simons gauge theories with references to the original
literature. Some of the early works on supersymmetric CS
theories are Refs. [23–26]; also see Ref. [27] for a more recent
review.

7There are also interesting quantum corrections to the CS level
of the Uð1Þ gauge field; see, e.g., Refs. [28,29].
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coupling is that, at least in perturbation theory, there is no
dimensionful parameter. The CS level k, which is dimen-
sionless and quantized, determines all the interactions.
Next, turning on a Coulomb branch expectation value v,
this will be the only dimensionful parameter, and hence it
cannot appear in the loop-corrected kinetic term for �3. In
the Yang-Mills case, there was a dimensionless parameter
v=g that was appearing in loop corrections, but this is no
longer possible in the pure CS-matter case. We thus con-
clude that, if there are quantum corrections to the Coulomb
branch metric, they have to be independent of v. This
argument explains the absence of singularities along the
Coulomb branch at the perturbative level.

A. One-loop quantum corrections

Now, we need to determine whether such corrections
occur and what their numerical value is. We turn on an
expectation value (2.6) and compute the two-point function
for the massless field �3—recall our definition (2.7). At
one loop, �3 interacts with the fields ðA


�; �
; ~�
; c 
Þ,
where 
 ¼ 1, 2 are the color directions perpendicular to
the Coulomb branch expectation value.

In the Landau gauge @�A
� ¼ 0, the quadratic

Lagrangian for the fields ðA

�; �
; ~�
; c 
Þ is

Lquad ¼ �

2
A

�ð����@� þmHg

��ÞA

� � 1

2
~�
ðhþm2

HÞ~�


� 1

2
�
h�
 þ �c 
ði6@þmHÞc 
; (4.3)

where the mass induced by the Higgs mechanism is

mH � 2v2

�
: (4.4)

From this quadratic action, we can read off the propagators

hA

�ðpÞA�

� ð�pÞi ¼ �i	
���1

�mHðg�� �p�p�=p
2Þ � i����p

�

p2 �m2
H

h�
ðpÞ��ð�pÞi ¼ 	
�

i

p2
;

h~�
ðpÞ~��ð�pÞi ¼ 	
�

i

p2 �m2
H

hc 
ðpÞ �c �ðpÞi ¼ 	
�

ið6pþmHÞ
p2 �m2

H

: (4.5)

Furthermore, the interaction terms that contribute to the
one-loop action of �3 are

Lint ¼ � 1

�2
ð2 ffiffiffi

2
p

v3 ~�
ð��
 ~�3 þ 2~�
�3Þ
þ 6v2 ~�
�3ð��
 ~�3 þ ~�
�3Þ þ v2ð�2


 þ ~�2

Þ~�2

3Þ
þ

�
2

�
�c 
c 
 þ ðA


�Þ2
�� ffiffiffi

2
p

v�3 þ 1

2
�2
3 þ

1

2
~�2
3

�
þ 2�
�A

�

 ð��@��3 þ ~��@� ~�3Þ: (4.6)

Now, we are ready to compute the one-loop self-energy
for �3. The bosonic contributions sum up to

�b ¼ �
Z d3q

ð2�Þ3
�
i
6

�
mHh~�
 ~�
iq � ihA


�A
�

 iq

þ 8

�
m3

Hh~�
 ~��iqh~�
 ~��ip�q

þ 4p�p��
���	hA�

A�

�iqh���	ip�q

þ 4v2hA

�A

�
� iqhA�


A�
�ip�q

�
: (4.7)

This is of the same form as Eq. (3.7) (after a rescaling to
absorb the powers of g), except that � does not appear
anymore because it is an auxiliary field in the CS theory.
On the other hand, the fermionic contributions are

�f ¼ 2

�

Z d3q

ð2�Þ3 ðihc 

�c 
iq

� 2mHhc 

�c �iqhc 


�c �ip�qÞ: (4.8)

Replacing the previous expressions for the propagators
and expanding in powers of p2 obtains

�ð1Þ ¼ �b þ �f ¼ � i

2��
p2 þOðp4Þ: (4.9)

Thus, the Coulomb branch metric including one-loop
effects becomes

L �
�
1� 1

2��

�
@��3@

� ��3: (4.10)

In summary, in the CS-matter theory, there is no Coulomb
branch singularity, and instead there is a finite one-loop
correction to the metric proportional to ��1 and indepen-
dent of �3. We also expect nonzero higher-loop correc-
tions, suppressed by higher powers of the coupling, so
our result gives a good approximation in the perturbative
regime ��1 � 2�.

V. QUANTUM COULOMB BRANCH
OF YM-CS THEORY

Finally, we are ready to attack the full problem of
computing the one-loop corrected Coulomb branch metric
for the YM-CS theory (2.1). The result has not been
obtained before, and the calculations are somewhat in-
volved, so it is important to perform consistency checks.
Therefore, instead of specializing to the Landau gauge,
here we will work in an arbitrary R
 gauge and will show
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that the self-energy is independent of the gauge-fixing
parameter. This provides a nontrivial verification on our
result, implying its gauge invariance and the restoration of
supersymmetry (which is broken by the gauge-fixing func-
tion). Other consistency checks will include the exact
cancellation of divergences and the correct UV behavior.

A. ONE-LOOP METRIC ALONG
THE COULOMB BRANCH

The R
 gauge corresponds to the gauge-fixing function

(see, e.g., Ref. [30])

Ga ¼ @�A
a� � ig
ðh�y

i iTa
ij	�j � 	�y

i T
a
ijh�jiÞ;

Lg:f: ¼ � 1

2

ðGaÞ2;

(5.1)

where 	� is the fluctuation around the vacuum expectation
value. Evaluating this and the Faddeev-Popov determinant
for our theory, we find that the gauge fixing and ghost
Lagrangian terms that contribute at one loop are

Lg:f: þLghost �� 1

2

ð@�A�


 Þ2 �mg�
�@�A
�

��

� 1

2

m2

g�
2

 � �c
ðhþ 
m2

g þ 
gmg�3Þc
:
(5.2)

More details may be found in Appendix A 2. The fields
with color index parallel to the color-breaking direction
a ¼ 3 do not contribute to the one-loop effective action.

Recall that mg ¼
ffiffiffi
2

p
gv and that we are working in the

convention for which g appears in the interactions and not
in front of F2

��.

The propagators for the massive fields for arbitrary 
 are
given in the Appendix. Also, note that in the R
 gauge, the

derivative interaction term L � g�
�@�A
�

���3 also

contributes to the one-loop self-energy.
There are 13 one-loop bosonic contributions to the �3

two-point function,

�b ¼ �g2
Z d3q

ð2�Þ3 f�ihA

�A

�

 iq þ ih�
�
iq þ ih~�
 ~�
iq þ 2m2

ghA

�A

�
� iqhA�


A�
�ip�q þ 2m2

g½h�
��iqh�
��ip�q

þ h~�
 ~��iqh~�
 ~��ip�q þ 2h�
 ~��iqh�
 ~��ip�q� þm2
k�
���	½h�
��iqh~�� ~�	ip�q þ h�
 ~�	iqh�� ~��ip�q�

� 4mgmk�
�h�
��iqh�� ~��ip�q � 4mgmk�
�h~�� ~��iqh�
 ~��ip�q

þ �
���	ð4p�p� þ q�q�ÞhA�

A�

�iqh���	ip�qg: (5.3)

The fermionic contributions are simpler:

�f ¼ 2g2�
���	
Z
q
½h�


���iqhc �
�c 	iq�p

þ h�

�c 	iqh��

�c �iq�p�: (5.4)

We do not write explicitly the propagators (that can be
found in the Appendix) in order to exhibit explicitly the
various symmetry factors and couplings. The ghost
contribution can be obtained from Feynman diagrams
or directly from the Faddeev-Popov determinant
det ð	
G�Þ / det 2ðhþ 
m2

g þ g
mg�3Þ, with the result

�ghost¼�2g2
2m2
g

Z
q

1

q2�
m2
g

1

ðp�qÞ2�
m2
g

: (5.5)

Putting these results together, we finally arrive at the
total one-loop self-energy

�ð1Þ ¼ �b þ�f þ�ghost ¼ � i

�

g2

mþ þm�
p2 þOðp4Þ;

(5.6)

where the mass eigenvaluesm2� were defined in Eq. (2.10).
As promised, this is independent of the gauge-fixing pa-
rameter 
, thus verifying the gauge invariance of the self-
energy. This is a strikingly simple result: it is the same as

the pure YM quantum correction (3.9) after replacing mg

by the averaged mass ðmþ þm�Þ=2 of the massive modes.
Of course, an important difference to keep in mind is that
the Coulomb branch metric of YM-CS is expected to
receive higher-loop corrections, while the YM result is
exact in perturbation theory.
In summary, the Coulomb branch metric including one-

loop corrections is

S �
Z

d3x

0
BBB@1� 1

2�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 j�3j2

g2
þ �2

4

r
1
CCCA@��3@

� ��3: (5.7)

This is our main result. In the UV regime j�j � �g, this
recovers the known YM result, providing another test for
our result. When j�j � �g the effects from the CS defor-
mation become important, and for j�j � �g the metric
flows to a constant value G ¼ 1� 1

�� . When � ¼ k
4� � 1

(which is when our perturbative computations can be
trusted), G> 0. Therefore, the perturbative singularity of
the YM theory is resolved by the topological mass. The full
metric Gðj�jÞ interpolating between the UV and IR for
different values of � is shown in Fig. 1, together with the
one-loop result in the pure YM case.
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B. Nondecoupling of massive modes

Finally, let us compare the IR limit g ! 1 of the full
YM-CS calculation with the result in the CS theory of
Sec. IV. When the gauge coupling is taken to infinity,

mþ ! mk � g2; m� ! mH �Oðg0Þ; (5.8)

and hence Eqs. (5.6) and (4.9) are related by

�ð1Þ
YMþCSþm ¼g!1� ig2

�mk

p2 þOðp4Þ ¼ 2�ð1Þ
CSþm þOðp4Þ:

(5.9)

Therefore, the YM-CS and CS results differ by a factor of
2. At first this is a bit puzzling because the CS interaction
dominates over the YM kinetic term in the IR; so we would
expect the CS calculation to reproduce the long-distance
behavior of the full theory.

To understand this difference, consider, for instance, the
one-loop contribution from the interaction term involving
�
 and A�

� . In the Landau gauge,

�ð1Þ
YMþCSþm½�A�

¼ �i
16g2

3
p2

Z dq3

ð2�Þ3
ðq2 �m2

gÞ
ðp� qÞ2ðq2 �m2þÞðq2 �m2�Þ

;

(5.10)

while for the CSþmatter theory,

�ð1Þ
CSþm½�A� ¼ �i

16

3�
p2

Z dq3

ð2�Þ3
mH

ðp� qÞ2ðq2 �m2
HÞ

:

(5.11)

Taking the limit g ! 1 before performing the integral,
both contributions give the same result. However, perform-
ing the integrals at finite g and taking the IR limit at the end
of the calculation gives a different answer. Let us see how
this comes about.
Wick rotating and expanding to order p2 obtains

�ð1Þ
YMþCSþm½�A�

¼ �i
4g2

3�2
p2

Z þ1

�1
dq

ðq2 þm2
gÞ

ðq2 þm2þÞðq2 þm2�Þ
þOðp4Þ:

(5.12)

This integral can be done using residue methods. For
instance, closing the contour in the upper complex plane,
the two poles that contribute are at q ¼ im�, obtaining

�ð1Þ
YMþCSþm½�A� ¼ � 8g2

3�
i

p2

mþ þm�

þOðp4Þ ¼g!1� 8ip2

3��
þOðp4Þ: (5.13)

In contrast, in the CSþmatter theory, there is only one
pole that contributes:

�ð1Þ
CSþm½�A� ¼ �i

4

3��2
p2

Z þ1

�1
dq

mH

q2 þm2
H

þOðp4Þ

¼ � 4ip2

3��
þOðp4Þ: (5.14)

Thus, the relative factor of 2 comes from the massive states
that yield the extra pole at q2 ¼ �m2þ, which is absent in
the CS theory. These masses diverge for g ! 1, but, as we
just found, they give a finite wave function renormalization
to the Coulomb branch field. If we instead take g ! 1 first
and then perform the integral, both answers agree because
the massive pole goes to infinity and does not contribute to
the contour integral.
It is interesting that the Coulomb branch metric is in this

way sensitive to the UV completion. This is related to
anomalies. In three dimensions, the generation of a CS
interaction from massive fermions is itself an example of
this [31–33], related to the parity anomaly. The nondecou-
pling finite effect on the Coulomb branch that we just
described is associated to the trace anomaly.8

ACKNOWLEDGMENTS

We are grateful to M. S. Bianchi, G. Dunne, S. Kachru,
C. Oleari, M. Peskin, S. Penati, D. Rosa, and M. Siani
for helpful discussions. A. T. and F. S. have been supported
in part by INFN, by the MIUR-FIRB Grant

0.5 1

0.5

1

G

FIG. 1 (color online). Plot of the function Gðj�jÞ in the
one-loop Coulomb branch metric in YM-CS (namely, S �R
Gðj�jÞ@��3@

� ��3), for different values of k. The four curves

correspond to k ¼ 0, 6, 10, 14 (in red, violet, magenta, and blue,
respectively), with g ¼ 1 in all cases. For k ¼ 0, the metric
vanishes at � ¼ g

2
ffiffi
2

p
�
, while it stays regular everywhere along

the Coulomb branch for k large enough that our perturbative
computations can be trusted.

8An analog of this in four dimensions that is phenomenolog-
ically important is the triangle diagram for Higgs production
from gluon fusion or the h ! �� decay, in which loops of very
massive fermions give finite contributions [34]. We thank M.
Peskin for discussions on these points.

TOPOLOGICAL RESOLUTION OF GAUGE THEORY . . . PHYSICAL REVIEW D 88, 045018 (2013)

045018-9



No. RBFR10QS5J ‘‘String Theory and Fundamental
Interactions,’’ and by the MIUR-PRIN Contract
No. 2009-KHZKRX. The research of A. T. is also sup-
ported by the ERC Starting Grant No. 307286
(XD-STRING). The research of G. T. is supported in
part by the National Science Foundation under Grant
No. PHY-0756174.

APPENDIX: SOME USEFUL FIELD
THEORY RESULTS

In this appendix we collect our field theory conventions
and other required results for the calculations in the main
part of the paper.

The metric signature is (þ��); three-dimensional
fermions are Dirac, with �c ¼ c y�0. A possible repre-
sentation of gamma matrices is �0 ¼ �2, �1 ¼ i�3,
�2 ¼ i�1. The covariant derivative is given by

D��i ¼ @��i � iAa
�T

a
ij�j: (A1)

For the adjoint representation, Ta
ij ¼ �ifaij and D��a ¼

@��a þ fabcAb
��c.

1. Three-dimensional supersymmetric theories

In three dimensions the vector superfield contains the
gauge field Aa

� and gaugino �a, a real scalar �a (the extra

component of the gauge field in reducing from four dimen-
sions to three dimensions), and an auxiliary D term Da.
Their Lagrangian is

Lgauge ¼ 1

g2

�
� 1

4
Fa
��F

a�� þ 1

2
D��

aD��a þ i ��a 6D�a

� ����þ 1

2
DaDa

�
: (A2)

The gaugino is a three-dimensional Dirac fermion.
Moving to the matter sector, a chiral superfield contains

a complex scalar �, a Dirac fermion c , and an auxiliary
field F. The Lagrangian reads

Lmatter ¼ ðD��iÞyD��i þ i �c i 6Dc i ��y�2�þ�yD�

� �c�c þ i
ffiffiffi
2

p
�y ��c � i

ffiffiffi
2

p
�c��þ Fy

i Fi

þ Fi

@W

@�i

þ Fy
i

�
@W

@�i

�y � 1

2

@2W

@�i@�j

c ic j

� 1

2

�
@2W

@�i@�j

�y
�c i

�c j: (A3)

The fields from the vector superfield act on the matter

ones as matrices. For instance, �yD� � �y
i ðTaDaÞij�j.

Similarly,�y�2� � �y
i ð�aTa

ijÞð�bTb
jkÞ�k. Integrating out

the D term sets Da ¼ �g2�yTa�, and the relevant part of
the Lagrangian becomes

1

2g2
DaDa þ�yD� ! � g2

2
ð�yTa�Þð�yTa�Þ: (A4)

Consider now the three-dimensional N ¼ 4 theory
with gauge group SUðNÞ and no flavors. This arises for
the special case of an N ¼ 2 theory with a single matter
superfield in the adjoint representation, and vanishing
superpotential, W ¼ 0. Therefore, the Lagrangian reads

LN¼4 ¼ 1

g2

�
� 1

4
Fa
��F

a�� þ 1

2
D��

aD��a

þ i ��a 6D�a � ����

�
þ ðD��

aÞyD��a þ i �c a 6Dc a � ����

� �c�c ��y�2�þ i
ffiffiffi
2

p
�y ��c

� i
ffiffiffi
2

p
�c��� g2

2
ð�yTa�Þð�yTa�Þ: (A5)

Here, we have included a factor of 1=g2 in the vector
multiplet kinetic terms, while in the main part of the paper,
these kinetic terms are taken to be canonical. The conven-
tion here is more convenient for understanding the g ! 1
limit, which we will consider shortly. On the other hand,
the choice of canonical kinetic terms simplifies the
Feynman diagram calculations in the Coulomb branch of
the full YM-CS theory.
Next, let us add anN ¼ 2 CS deformation—preserving

more supersymmetries would lift the Coulomb branch.
This is given by

LCS ¼ k

8�

�
����

�
Aa
�@�A

a
� þ 1

3
fabcAa

�A
b
�A

c
�

�

� 2 ��a�a þ 2Da�a

�
; (A6)

so that the YM-CS theory is

L ¼ LN¼4 þ LCS: (A7)

The final form for the Lagrangian is obtained by integrat-
ing out the auxiliary D term,

Da ¼ �g2k

4�
�a � g2�y

i T
a
ij�j:

We then arrive at

L ¼ 1

g2

�
� 1

4
Fa
��F

a�� þ 1

2
ðD��

aÞ2 þ i ��a 6D�a � ����

�

þ k

8�

�
����

�
Aa
�@�A

a
� þ 1

3
fabcAa

�A
b
�A

c
�

�
� 2 ��a�a

�

� 1

2
g2
�
k

4�
�a þ�y

i T
a
ij�j

�
2 þ ðD��iÞyðD��iÞ

þ i �c i 6Dc i ��y�2�� �c�c

þ ffiffiffi
2

p
ið�y ��c � �c��Þ: (A8)
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This shows directly that, in the presence of LCS, the gau-
gino and scalar � acquire a mass

mk � g2k

4�
: (A9)

Calculating the gauge-field propagator requires choosing a
gauge, as we will discuss momentarily. The theory studied
in this paper is given by Eq. (A8) with an SUð2Þ gauge
group.

Finally, we consider the limit g2 ! 1, for which the
kinetic terms for the vector supermultiplet are set to zero.
Now, �, D, and � are all auxiliary, and integrating them
out sets

�a ¼ 4�

k

ffiffiffi
2

p
ið�yTac Þ; �a ¼ � 4�

k
ð�yTa�Þ;

where ð�yTa�Þ ¼ �y
i T

a
ij�j. Therefore, the Lagrangian

becomes

L ¼ ðD��iÞyD��i þ i �c i 6Dc i

þ k

8�
����

�
Aa
�@�A

a
� � 1

6
fabcAa

�A
b
�A

c
�

�

� 16�2

k2
ð�yTaTb�Þð�yTa�Þð�yTb�Þ

þ 4�

k
ð �cTac Þð�yTa�Þ þ 8�

k
ð �cTa�Þð�yTac Þ:

(A10)

2. Fields and propagators in the Coulomb phase

In this work we are interested in the quantum corrections
to the Coulomb branch metric. The classical Coulomb
branch was described in Sec. II A. It can be parametrized
by the expectation value

h�ai ¼ v	a3; v 2 R: (A11)

Let us focus on the fields that contribute to the one-loop
effective action for �3, which have color indices 
 ¼ 1, 2
perpendicular to the color-breaking direction a ¼ 3. Here,
we work with canonical kinetic terms for the gauge field
and gauginos, which simplifies the one-loop calculations.
We consider a general R
 gauge (see Ref. [30])

Lg:f: ¼ � 1

2

ð@�Aa� � ig
ðh�y

i iTa
ij	�j � 	�y

i T
a
ijh�jiÞÞ2;

(A12)

where 	� is the fluctuation around the vacuum expectation
value. In our case, the gauge-fixing terms and ghost
Lagrangian simplify to

Lg:f: þ Lghost ¼ � 1

2

ð@�Aa� þmg
�

ab3�bÞ2

� �caðð@�D�Þab þm2
g
	

abÞcb
�mgg
ð �c
c
�3 � ��
c3�
Þ: (A13)

The Lagrangian for the fields along the 
 direction also
involves the quadratic terms (2.9) and interactions (2.11).
The gauge-fixing Lagrangian (A13) cancels the qua-

dratic coupling between @�A
�

 and the Goldstone mode,

but the cubic interaction @�A
�

�3�� survives. It is also

possible to choose a quadratic gauge fixing function,

Ga ¼ @�A
a� � ig
ð�y

i T
a
ij�j ��y

i T
a
ij�jÞ;

that also cancels the cubic derivative interaction and
has a simple Faddeev–Popov determinant det ð	�G
Þ /
det 2ðhþ 2g2
j�3j2Þ. We have verified that both gauge-
fixing functions give the same result.
Let us now list the propagators that enter in the one-loop

diagrams for the self-energy of �3. The propagators for the
gauge field and Goldstone boson are found to be

hA

�ðpÞA�

� ð�pÞi ¼ �i	
�
ðp2 �m2

gÞðg�� � p�p�

p2�
m2
g
Þ þ imk����p

� þ 

p2�m2

k
�m2

g

p2�
m2
g
p�p�

ðp2 �m2þÞðp2 �m2�Þ
h�
ðpÞ��ð�pÞi ¼ i

	
�

p2 � 
m2
g

:

(A14)

The Landau gauge corresponds to the limit 
 ! 0 in these expressions. The scalars ð�
; ~�
Þ have mass mixings, leading to
the two-point functions

h�
ðpÞ��ð�pÞi ¼ i	
�

p2 �m2
g

ðp2 �m2þÞðp2 �m2�Þ
h~�
ðpÞ~��ð�pÞi ¼ i	
�

p2 �m2
g �m2

k

ðp2 �m2þÞðp2 �m2�Þ
h�
ðpÞ~��ð�pÞi ¼ �i�
�

mgmk

ðp2 �m2þÞðp2 �m2�Þ
: (A15)

For the fermions ð�
; c 
Þ, we find
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h�
ðpÞ ���ðpÞi ¼ i	
�

ðp2 �m2
gÞ6pþmkp

2

ðp2 �m2þÞðp2 �m2�Þ
hc 
ðpÞ �c �ðpÞi ¼ i	
�

ðp2 �m2
g �m2

kÞ6pþmkm
2
g

ðp2 �m2þÞðp2 �m2�Þ

h�
ðpÞ �c �ðpÞi ¼ i�
�mg

p2 �m2
g þmkp 6p

ðp2 �m2þÞðp2 �m2�Þ
: (A16)

Finally, the ghost propagator is

hc
ðpÞc�ð�pÞi ¼ i	
�

1

p2 � 
m2
g

: (A17)

The i� prescription, not shown here, is the same as in Ref. [30].
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