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In this paper, we systematically study gauge anomalies in bosonic and fermionic weak-coupling gauge

theories with gauge groupG (which can be continuous or discrete) in d space-time dimensions. We show a

very close relation between gauge anomalies for gauge group G and symmetry-protected trivial (SPT)

orders (also known as symmetry-protected topological (SPT) orders) with symmetry group G in one-

higher dimension. The SPT phases are classified by group cohomology class H dþ1ðG;R=ZÞ. Through a

more careful consideration, we argue that the gauge anomalies are described by the elements in

Free½H dþ1ðG;R=ZÞ� � _H�
dþ1ðBG;R=ZÞ. The well known Adler-Bell-Jackiw anomalies are classified

by the free part of H dþ1ðG;R=ZÞ (denoted as Free½H dþ1ðG;R=ZÞ�). We refer to other kinds of gauge

anomalies beyond Adler-Bell-Jackiw anomalies as non-ABJ gauge anomalies, which include Witten

SUð2Þ global gauge anomalies. We introduce a notion of �-cohomology group, _H�
dþ1ðBG;R=ZÞ, for the

classifying space BG, which is an Abelian group and include Tor½H dþ1ðG;R=ZÞ� and topological

cohomology group Hdþ1ðBG;R=ZÞ as subgroups. We argue that _H�
dþ1ðBG;R=ZÞ classifies the bosonic

non-ABJ gauge anomalies and partially classifies fermionic non-ABJ anomalies. Using the same approach

that shows gauge anomalies to be connected to SPT phases, we can also show that gravitational anomalies

are connected to topological orders (i.e., patterns of long-range entanglement) in one-higher dimension.
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I. INTRODUCTION

Gauge anomaly in a gauge theory is a sign that the theory
is not well defined. The first known gauge anomaly is the
Adler-Bell-Jackiw anomaly [1,2]. The second type of gauge
anomaly is the Witten SUð2Þ global anomaly [3]. Some
recent work on gauge anomaly can be found in Refs. [4–9].
Those anomalies are for continuous gaugegroups. Thegauge
anomalies can also appear for discrete gauge groups.
Previously, the understanding of those discrete-group
anomalies was obtained by embedding the discrete gauge
groups into continuous gauge groups [10,11], which only
captures part of the gauge anomalies for discrete gauge
groups.

In condensed matter physics, close relations between
gauge and gravitational anomalies and gapless edge exci-
tations [12,13] in quantum Hall states [14,15] have been
found. Also close relations between gauge and gravitational
anomalies of continuous groups and topological insulators
and superconductors [16–29] have been observed [30–34],
which have been used extensively to understand and study
topological insulators and superconductors [30].

In this paper, we will give a systematic understanding of
gauge anomalies in weak-coupling gauge theories, where
weakly fluctuating gauge fields are coupled to matter
fields. If the matter fields are all bosonic, the corresponding
gauge anomalies are called bosonic gauge anomalies. If
some matter fields are fermionic, the corresponding gauge
anomalies are called fermionic gauge anomalies. We find
that we can gain a systematic understanding of gauge

anomalies through SPT states, which allow us to under-
stand gauge anomalies for both continuous and discrete
gauge groups directly.
What are SPT states? SPT states are short-range

entangled states with an on-site symmetry described by
the symmetry group G [35,36]. It was shown that one can
use distinct elements in group cohomology class
H dþ1ðG;R=ZÞ to construct distinct SPT states in
(dþ 1)-dimensional space-time [37–39].
The SPT states have very special low energy boundary

effective theories, where the symmetry G in the bulk
is realized as a non-on-site symmetry on the boundary. If
we try to gauge the non-on-site symmetry, we will get
an anomalous gauge theory, as demonstrated in
Refs. [38,40–43] for G ¼ Uð1Þ, SUð2Þ. This relation be-
tween SPT states and gauge anomalies on the boundary of
the SPT states is called anomaly inflow (the first example
was discovered in Refs. [44,45], which allows us to obtain
the following result:

one can use different elements in group cohomol-

ogy class H dþ1ðG;R=ZÞ to construct different

bosonic gauge anomalies for gauge group G in

d-dimensional space-time.

This result applies for both continuous and discrete
gauge groups. The free part of H dþ1ðG;R=ZÞ,
Free½H dþ1ðG;R=ZÞ�, classifies the well known Adler-
Bell-Jackiw anomaly for both bosonic and fermionic sys-
tems. The torsion part of H dþ1ðG;R=ZÞ corresponds to
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new types of gauge anomalies beyond the Adler-Bell-
Jackiw anomaly (which will be called non-ABJ gauge
anomalies).

However, in the above systematic description, the
nontrivial gauge anomalies come from the nontrivial
homological structure of the classifying space BG of the
gauge group G. On the other hand, we know that nontrivial
global anomalies come from nontrivial homotopic struc-
ture �dðGÞ of G, which is the same as the homotopic
structure of the classifying space since �dþ1ðBGÞ ¼
�dðGÞ. Therefore, the cohomology description of gauge
anomalies may miss some global anomalies which can
only be captured by the homotopic structure of BG, instead
of the homological structure.

In an attempt to obtain a more general description
of gauge anomalies, we introduce a notion of the
�-cohomology group _H�

dþ1ðBG;R=ZÞ for the classifying
space BG of the gauge group G. _H�

dþ1ðBG;R=ZÞ is an
Abelian group which include the topological cohomology
class Hdþ1ðBG;R=ZÞ and group cohomology class
Tor½H dþ1ðG;R=ZÞ� as subgroups (see Appendix D):

Tor ½H dþ1ðG;R=ZÞ� � Hdþ1ðBG;R=ZÞ
� _Hdþ1

� ðBG;R=ZÞ: (1)

If G is finite, we further have

Tor ½H dþ1ðG;R=ZÞ� ¼ Hdþ1ðBG;R=ZÞ
¼ _Hdþ1

� ðBG;R=ZÞ: (2)

We like to remark that, by definition, _H�
dþ1ðBG;R=ZÞ is

more general than Hdþ1ðBG;R=ZÞ. But at the moment, we
do not know if _H�

dþ1ðBG;R=ZÞ is strictly larger than
Hdþ1ðBG;R=ZÞ. It is still possible that _H�

dþ1ðBG;R=ZÞ ¼
Hdþ1ðBG;R=ZÞ even for continuous group.

We find that we can use the different elements in the
�-cohomology group _H�

dþ1ðBG;R=ZÞ to construct differ-
ent non-ABJ gauge anomalies. So, more generally,

the bosonic/fermionic gauge anomalies are described

by Free½H dþ1ðG;R=ZÞ� � _H�
dþ1ðBG;R=ZÞ. It

is possible that Free½H dþ1ðG;R=ZÞ� �
_H�

dþ1ðBG;R=ZÞ classify all the bosonic gauge

anomalies. _H�
dþ1ðBG;R=ZÞ includes

Hdþ1ðBG;R=ZÞ as a subgroup.

We note that Witten’s SUð2Þ global anomaly is a
fermionic global anomaly with known realization by
fermionic systems. Since the �-cohomology result
Free½H dþ1ðG;R=ZÞ� � _H�

dþ1ðBG;R=ZÞ only describes
part of fermionic gauge anomalies, it is not clear if it
includes Witten’s SUð2Þ global anomaly. On the other
hand, we know for sure that the group cohomology result
Hdþ1ðBG;R=ZÞ does not include the SUð2Þ global anom-
aly since H5ðBSUð2Þ;R=ZÞ ¼ 0.

We will define _H�
dþ1ðBG;R=ZÞ later in Sec. VB. In

the next two sections, we will first give a general picture
of our approach and present some simple examples of
the new non-ABJ gauge anomalies. Then we will give a
general systematic discussion of gauge anomalies, and
their description or classification in terms of
Free½H dþ1ðG;R=ZÞ� � _H�

dþ1ðBG;R=ZÞ.
Last, we will use the connection between gauge anoma-

lies and SPT phases (in one-higher dimension) to construct
a nonperturbative definition of any anomaly-free chiral
gauge theories. We find that even certain anomalous chiral
gauge theories can be defined nonperturbatively.

II. A GENERAL DISCUSSION
OF GAUGE ANOMALIES

A. Study gauge anomalies in one-higher dimension
and in zero-coupling limit

We know that anomalous gauge theories are not well
defined. But, how can we classify something that are not
well defined? We note that if we view a gauge theory with
the Adler-Bell-Jackiw anomaly in d-dimensional space-
time as the boundary of a theory in (dþ 1)-dimensional
space-time, then the combined theory is well defined. The
gauge noninvariance of the anomalous boundary gauge
theory is canceled by the gauge noninvariance of a
Chern-Simons term on (dþ 1)-dimensional bulk which
is gauge invariant only up to a boundary term. So we define
d-dimensional anomalous gauge theories through defining
a (dþ 1)-dimensional bulk theory. The classification of the
(dþ 1)-dimensional bulk theories will leads to a classifi-
cation of anomalies in d-dimensional gauge theories.
The (dþ 1)-dimensional bulk theory has the following

generic form

Ldþ1D ¼ Lmatter
dþ1Dð�; c ; A�Þ þ

TrðF��F
��Þ

�g

; (3)

where � (or c ) are bosonic (or fermionic) matter fields
that couple to a gauge field A� of gauge group G. In this

paper, we will study gauge anomalies in weak-coupling
gauge theory. So we can take the zero-coupling limit:
�g ! 0. In this limit we can treat the gauge field A� as

nondynamical probe field and study only the theory of
the mater fields Lmatter

dþ1Dð�; c ; A�Þ, which has an on-site

symmetry with symmetry group G if we set the probe field
A� ¼ 0. So we can study d-dimensional gauge anomalies

through (dþ 1)-dimensional bulk theories with only
matter and an on-site symmetry G.

B. Gauge anomalies and SPT states

Under the above set up, the problem of gauge anomaly
becomes the following problem:

Given a low energy theory with a global symmetry

G in d-dimensional space-time, is there a nonper-

turbatively well-defined theory with on-site
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symmetry in the same dimension which reproduce

the low energy theory.

We require the global symmetry G to be an on-site
symmetry in the well-defined theory since we need to
gauge the global symmetry to recover the gauge theory
with gauge group G.

It turns out that we may not always be able to find a well-
defined theory with on-site symmetry in the same dimen-
sion to reproduce the low energy theory. Let us assume that
we can always find a well-defined gapped theory with
on-site symmetry in higher dimension to reproduce the
low energy theory on a lower dimensional defect sub-
manifold, such as a boundary, a defect line, etc. Note that
we can always deform the higher dimensional space into a
lower dimensional space so that the defect submanifold
looks like a boundary when viewed from far away (see
Fig. 1). So without loosing generality, we assume that we
can always find a well-defined gapped theory with on-site
symmetry in one-higher dimension to reproduce the low
energy theory on the boundary. Therefore,

We can understand anomalies through studying theo-

ries with on-site symmetry in one-higher dimension.

In this paper, we will concentrate on ‘‘pure gauge’’
anomalies. We require that the theory is not anomalous if
we break the gauge symmetry. Within our set up, this
means that we can find a well-defined gapped theory in
same dimension to reproduce the low energy theory, if
we allow to break the symmetry at high energies. If we
do not allow to break the symmetry, we still need to go to
one-higher dimension. However, the fact that the boundary
theory can bewell defined within the boundary (if we break
the symmetry) implies that the ground state in one-higher
dimensional theory has a trivial (intrinsic) topological
order [46–48]. This way, we conclude that

We can understand ‘‘pure’’ gauge anomalies

through studying SPT states [37–39] with on-site

symmetry in one-higher dimension.

A nontrivial SPT state in (dþ 1)-dimensions will
correspond to a ‘‘pure’’ gauge anomaly d-dimensions.
(For more detailed discussions, see Sec. IV).

With such a connection between gauge anomalies and
SPT states, we see that the topological invariants for
(dþ 1)-dimensional SPT states [49,50] can be used to

characterize d-dimensional gauge anomalies. The topo-
logical invariants for (dþ 1)-dimensional SPT states also
give rise to anomaly cancellation conditions: Given a
potentially anomalous gauge theory in d-dimensional
space-time, we first construct a well defined (dþ 1)-
dimensional theory which produce the d-dimensional
gauge theory. (This step is needed since the potentially
anomalous gauge theory may not be well defined in
d-dimensional space-time.) If all the topological invariants
for the (dþ 1)-dimensional theory are trivial, then the
d-dimensional gauge theory is not anomalous.

C. Gauge anomalies and gauge topological term
in (d þ1) dimensions

In addition to the topological invariants studied in
Refs. [49,50], we can also characterize gauge anomalies
through the induced gauge topological term W

gauge
top ðA�Þ in

the (dþ 1) dimensional theory, obtained by integrating out
the matter fields. The gauge topological term provide us a
powerful tool to study gauge anomalies in one lower
dimension.
The above describes the general strategy that we will

follow in this paper. In the following, we will first use this
line of thinking to examine several simple examples of
non-ABJ gauge anomalies.

III. SIMPLE EXAMPLES OF NON-ABJ
GAUGE ANOMALIES

A. Bosonic Z2 gauge anomaly in 1 þ1D

The simplest example of non-ABJ gauge anomaly is the
Z2 gauge anomaly in 1þ 1D. Since _H�

3ðBZ2;R=ZÞ ¼
H 3ðZ2;R=ZÞ ¼ Z2, we find that there is only one type
of nontrivial bosonic Z2 gauge anomaly in 1þ 1D.
To see a concrete example of Z2 gauge anomaly, let us

first give a concrete example of non-on-site Z2 symmetry.
Gauging the non-on-site Z2 symmetry will produce the Z2

gauge anomaly.
Let us consider the following spin-1=2 Ising-like model

on a one-dimensional lattice whose sites form a ring and
are labeled by i ¼ 1; 2; . . .L [37,42,51]:

Hring ¼ �XL
i¼1

Ji;iþ1�
z
i�

z
iþ1 �

XL
i¼1

hxi ð�x
i � �z

i�1�
x
i �

z
iþ1Þ

�XL
i¼1

hyi ð�y
i þ �z

i�1�
y
i �

z
iþ1Þ; (4)

where �x, �y, �z are 2-by-2 Pauli matrices. The model
has a non-on-site (or anomalous) Z2 global symmetry
generated by

U ¼YL
i¼1

�x
i

YL
i¼1

�i;iþ1; (5)
FIG. 1 (color online). A point defect in two dimensions looks
like a boundary of an effective one-dimensional system, if we
wrap the two-dimensional space into a cylinder.
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where �i;j is a 4-by-4 matrix that acts on two spins at site i

and site j as � ¼ j ""ih"" j � j "#ih"# j þ j #"ih#" j þ j ##ih## j.
We sayU is a non-on-site symmetry transformation since it
cannot be written in the direct product form (i.e., the on-
site form) [37–39,42] U ¼ �iUi, where Ui acts only on
site i.

Such a non-on-site (or anomalous) symmetry is not
‘‘gaugable’’. If we try to gauge the Z2 symmetry, we will
get an anomalous Z2 gauge theory in 1þ 1D. The anoma-
lous Z2 gauge theory is not well defined and we cannot
even write down its Hamiltonian. However, the anomalous
1þ 1D Z2 gauge theory can be defined as a boundary of a
2þ 1D Z2 gauge theory. So we can study the physical
properties of anomalous 1þ 1D Z2 gauge theory through
its corresponding 2þ 1D Z2 gauge theory. We will do this
in the next section for the more general anomalous 1þ 1D
Zn gauge theory.

In the rest of this section, we will not gauge the Z2

symmetry. We will only study the 1þ 1D model with the
non-on-site (i.e., anomalous) Z2 symmetry. We like to
understand the special properties of the 1þ 1D model
that reflect the anomaly (the non-on-site character) in the
Z2 symmetry.

The most natural way to probe the gauge anomaly is to
measure the gauge charge induced by gauge flux. So to
probe the Z2 anomaly, we like to add an unit of Z2 flux
through the ring on which the 1þ 1D system is defined,
and then measure the induced Z2 charge. But since the Z2

symmetry is non-on-site, we do not know how to add an
unit of Z2 flux through the ring. We can add Z2 flux only if
we view our anomalous 1þ 1D system as a boundary of a
2þ 1D Z2 gauge theory, which will be discussed in the
next section. So here, we will do the next best thing: we
will study the 1þ 1D model on a open line. The 1þ 1D
model on an open line can be viewed as having a strong
fluctuation in the Z2 flux through the ring.

The Hamiltonian on an open line, Hline, can be obtained
from that on a ring (4) by removing all the ‘‘nonlocal
terms’’ that couple the site-1 and site-L, i.e., by setting
JL;1 ¼ hx1 ¼ hxL ¼ hy1 ¼ hyL ¼ 0. Hline still has the anoma-

lous (i.e., non-on-site) Z2 symmetry: UHlineU
�1 ¼ Hline.

However, as a symmetry transformation on a line, U con-
tains a nonlocal term �L;1. After dropping the nonlocal

term �L;1, we obtain

Uline ¼ U��1
L;1 ¼

YL
i¼1

�x
i

YL�1

i¼1

�i;iþ1: (6)

We find that Uline is also a symmetry of Hline: UlineHline

U�1
line ¼ Hline. From the relation

U2 ¼ U4
line ¼ 1; UUlineU

�1 ¼ U�1
line; (7)

we find that U and Uline generate a dihedral group
D4 ¼ Z4 2Z2—a symmetry group of Hline. In fact, Hline

has even higher symmetries since �z
1 and �

z
L are separately

conserved. So the full symmetry group is generated by
(i�z

1, i�
z
L, Uline, U) which is ½ðZ4 � Z4Þ 2Z4� 2Z2. Some

of the group elements have the relation

ði�z
1ÞU ¼ �Uði�z

1Þ: (8)

So all the representations of the group must be even
dimensional. Such a symmetry causes a two-fold degener-
acy for all the eigenvalues of Hline. From a numerical
calculation, we find that the two-fold degenerate states
always carry opposite Z2 quantum numbers U ¼ �1.
This is a property that reflects the anomaly in the Z2

symmetry.

The two-fold degeneracy induced by the Z2 non-

on-site symmetry implies that there is a Majorana

zero-energy mode at each end of 1þ 1D system if

the system lives on an open line.

B. Bosonic Zn gauge anomalies in 1þ1D

Now let us discuss more general Zn gauge anomaly in
1þ 1D bosonic gauge theory, which is classified by
_H3
�ðBZn;R=ZÞ ¼ H 3ðZn;R=ZÞ ¼ Zn. So there are

n� 1 nontrivial Zn gauge anomalies. To construct the
examples of those Zn gauge anomalies, we will present
two approaches here.
In the first approach, we start with a bosonic Zn SPT

state in 2þ 1D. We can realize the Zn SPT state through a
2þ 1D bosonic Uð1Þ SPT state, which is described by the
following Uð1Þ �Uð1Þ Chern-Simons theory [40,43]:

L ¼ 1

4�
KIJaI�@�aJ��

��� þ 1

2�
qIA�@�aI��

��� þ � � � ;
(9)

where the nonfluctuating probe field A� couples to the

current of the global Uð1Þ symmetry. Here the K matrix
and the charge vector q are given by [52–54]

K ¼ 0 1

1 0

 !
; q ¼ 1

k

 !
; k 2 Z: (10)

The even diagonal elements of the K matrix are required
by the bosonic nature of the theory. The Hall conductance
for the Uð1Þ charge coupled to A� is given by

�xy ¼ ð2�Þ�1qTK�1q ¼ 2k

2�
: (11)

The above 2þ 1D Uð1Þ SPT state is characterized by
an integer k 2 H 3½Uð1Þ;R=Z�. We also know that an
2þ 1D Zn SPT state is characterized by a mod-n integer
m 2 H 3ðZn;R=ZÞ. If we view the 2þ 1D Uð1Þ SPT state
labeled by k as a 2þ 1D Zn SPT state, then what is the m
label for such a 2þ 1D Zn SPT state?
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The mod-n integer m can be measured through a
topological invariant constructed by creating n identical
Zn monodromy defects [50]: 2m is the total Zn charge of n
identical Zn monodromy defects. On the other hand, a Zn

monodromy defect corresponds to 2�=n flux in the Uð1Þ
gauge field A�. From the 2k quantized Hall conductance, n

identical 2�=n-flux of A� will induce 2k Uð1Þ charge,

which is also the Zn charge. So the above bosonic Uð1Þ
SPT state correspond to a m ¼ k mod n bosonic Zn SPT
state [50].

The low energy effective edge theory for the 2þ 1D
system (9) has an non-on-site Zn symmetry if k � 0mod n.
(In fact, the low energy edge effective theory has an non-
on-site Uð1Þ symmetry.) If we gauge such a non-on-site Zn

symmetry on the edge, we will get an anomalous Zn gauge
theory in 1þ 1D, which is not well defined. (In other
words, we cannot gauge non-on-site Zn symmetry within
1þ 1D.)

However, we can define an anomalous Zn gauge theory
in 1þ 1D as the edge theory of a 2þ 1D Zn gauge theory.
Such a 2þ 1D Zn gauge theory can be obtained from
Eq. (9) by treating A� as a dynamical Uð1Þ gauge field

and introduce a charge n-Higgs field to break the Uð1Þ
down to Zn:

L ¼ 1

4�
KIJaI�@�aJ��

��� þ 1

2�
qIA�@�aI��

���

þ jð@� þ inA�Þ�j2 þ aj�j2 � bj�j4: (12)

The edge theory of the above Ginzberg-Landau-Chern-
Simons theory contain gapless edge excitations with
central charge c ¼ 1 right-movers and central charge
�c ¼ 1 left-movers. Such a 1þ 1D edge theory is an ex-
ample of anomalous 1þ 1D Zn gauge theory that we are
looking for. The anomaly is characterized by a mod-n
integer m ¼ 2k. A unit of Zn flux (a 2�=n flux) through
the hole (see Fig. 2) will induce a 2m=n Zn charge on the
edge. Such a property directly reflects a Zn gauge anomaly.

To summarize, in the first approach, we start with a Zn

SPT state in 2þ 1D to produce a 1þ 1D edge theory with
a non-on-site Zn symmetry. We then gauge the non-on-site
Zn symmetry to obtain an anomalous Zn gauge theory in
1þ 1D.

In the second approach, we use the Levin-Gu duality
relation [49,55,56] between the Zn SPT states and the
(twisted) Zn gauge theory in 2þ 1D. We obtain the anoma-
lous 1þ 1D bosonic Zn gauge theory directly as the edge
theory of the (twisted) Zn gauge theory in 2þ 1D. The
(twisted) Zn gauge theory can be described by the follow-
ing 2þ 1D Uð1Þ �Uð1Þ Chern-Simons theory [57–59]:

L ¼ 1

4�
~KIJaI�@�aJ��

��� þ � � � ; (13)

where the ~K-matrix is given by

~K ¼ �2m n

n 0

 !
; ~K�1 ¼ 0 1=n

1=n 2m=n2

 !
: (14)

When m ¼ 0, the above 2þ 1D theory is a standard Zn

gauge theory, and its low energy edge theory is a standard
Zn gauge theory in 1þ 1D with no anomaly. Such an 1þ
1D Zn gauge theory can defined within 1þ 1D without
going through a 2þ 1D theory. When m � 0, the m term
corresponds to a quantized topological term in Zn gauge
theory discussed in Ref. [55]. Such a quantized topological
term is classified by a mod-n integer m 2 H 3ðZn;R=ZÞ.
To see the relation between the Uð1Þ �Uð1Þ

Chern-Simons theory Eq. (13) and the Zn gauge theory
in 2þ 1D, [57,58] we note that a unit a1�-charge corre-

spond to a unit Zn charge. A unit Zn charge always carries a
Bose statistics. So the Zn gauge theory is a bosonic Zn

gauge theory. On the other hand, a unit of Zn flux is
described by a particle with lvI aI�-charge. We find that

lv2 ¼ 1 (so that moving a unit Zn charge around a unit Zn

flux will induce 2�=n phase). lv1 can be any integer and the
lv ¼ ðlv1 ; 1Þ aI�-charge is not a pure Zn flux (i.e., may carry

some Zn charges).
When the 2þ 1D system (13) has holes (see Fig. 2), the

theory lives on the edge of hole is an 1þ 1D anomalous Zn

gauge theory. If we add Zn flux to the hole, we may view
the hole as a particle with l ¼ ð0; 1Þ aI�-charge. Such a

particle carries a fractional 2m=n Zn charge as discussed
above. We conclude that, when m � 0,

a unit of Zn flux through a ring, on which a 1þ 1D
anomalous Zn gauge theory lives, always induces a

fractional Zn charge 2m=n, which is a consequence

of Zn gauge anomaly of the 1þ 1D system.

FIG. 2 (color online). A Z2 gauge configuration with two
identical holes on a torus that contains a unit of Z2 flux in
each hole. The Z2 link variables are equal to �1 on the crossed
links and 1 on other links. If the 1þ 1D bosonic Z2 gauge theory
on the edge of one hole is anomalous, then such a Z2 gauge
configuration induces half unit of total Z2 charge on the edge
(representing a Z2 gauge anomaly). Braiding those holes around
each other reveals the fractional statistics of the holes. The edge
states for one hole are degenerate with�1=2 Z2 charge if there is
a time-reversal symmetry.
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From the second description of the anomalous 1þ 1D
bosonic Zn gauge theory, we see that if we view the holes
with a unit of Zn flux as particles (see Fig. 2), then such
particles will carry a unit of a2�-charge. If we braid the

holes with a unit of Zn flux around each others (see Fig. 2),
those holes will carry a fractional statistics 	 ¼ 2m

n2
� (the

fractional statistics of unit a2�-charges).

One can use fractional (or non-Abelian) statistics

of the holes with flux to detect 1þ 1D gauge

anomaly [49].

The gapless edge excitations of the 2þ 1D theory (13)
is described by the following 1þ 1D effective theory

L1þ1D ¼ 1

4�
½ ~KIJ@t�I@x�J � VIJ@x�I@x�J�

þX
l

X
J¼1;2

½cJ;leil ~KJI�IH:c:�; (15)

where the field �Iðx; tÞ is a map from the 1þ 1D space-
time to a circle 2�R=Z, and V is a positive definite real
2-by-2 matrix.

A Zn flux (not the pure Zn flux which is not allowed) is
described by an unit a2�-charge. From the equation of

the motion, we find that, in the bulk, a Zn flux correspond
to a bound state of 1=n a1�-flux and 2m=n2 a2�-flux.

Thus a unit of Zn flux through the hole is described by
the following boundary condition [60,61]

�1ðxÞ ¼ �1ðxþ LÞ þ 2�=n;

�2ðxÞ ¼ �2ðxþ LÞ þ 2�ð2m=n2Þ:
(16)

We see that the Zn symmetry of the 1þ 1D theory is
generated by

�1 ! �1 þ 2�=n; �2 ! �2 þ 4�m=n2: (17)

Such a Zn symmetry is anomalous (or non-on-site) if
m � 0 mod n in Eq. (36). When n ¼ 2 and m ¼ 1,
Eq. (15)is the low energy effective theory ofHring in Eq. (4).

If we gauge the Zn symmetry, we will get an anomalous
1þ 1D Zn gauge theory, which has no 1þ 1D nonpertur-
bative definition. This way, we obtain an example of bosonic
anomalous Zn gauge theory in 1þ 1D, Eqs. (15) and (17).

C. Bosonic Z2 � Z2 � Z2 gauge anomalies in 1 þ 1D

The bosonic Z2 � Z2 � Z2 gauge anomalies in 1þ 1D
are classified by _H3

�ðBðZ2 � Z2 � Z2Þ;R=ZÞ ¼ H 3½Z2 �
Z2 � Z2;R=Z� ¼ Z7

2. So there are 127 different types
of Z2 � Z2 � Z2 gauge anomalies in 1þ 1D. Those 127
gauge anomalies in 1þ 1D can be constructed by starting
with a 2þ 1D Z2 � Z2 � Z2 gauge theory. We then add the
quantized topological terms [55] to twist the Z2 � Z2 � Z2

gauge theory. The quantized topological terms are also
classified by H 3½Z2 � Z2 � Z2;R=Z�. The low energy

edge theories of those twisted Z2 � Z2 � Z2 gauge theories
realize the 127 types of bosonic Z2 � Z2 � Z2 gauge
anomalies in 1þ 1D. The edge theories always have degen-
erate ground states or gapless excitations, even after we
freeze the Zn gauge fluctuations (i.e., treat the Zn gauge
field as a nondynamical probe field).
As discussed in Refs. [62,63], twisted Z2 � Z2 � Z2

gauge theories can be described by U6ð1Þ Chern-Simons
theories (13) with

~K ¼

�2m1 2 �m12 0 �m13 0

2 0 0 0 0 0

�m12 0 �2m2 2 �m23 0

0 0 2 0 0 0

�m13 0 �m23 0 �2m3 2

0 0 0 0 2 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (18)

where mi, mij ¼ 0, 1. The mi terms and the mij terms are

the quantized topological terms, which twist the Z2 �
Z2 � Z2 gauge theory. The other 64 twisted Z2 � Z2 �
Z2 gauge theories are non-Abelian gauge theories [62,64]
with gauge groups D4, Q8, etc. (see also Ref. [63]). So
some of the anomalous Z2 � Z2 � Z2 gauge theories in
1þ 1D has to be defined via non-Abelian gauge theories in
2þ 1D. (For details, see Refs. [62,64]). In this case, the
holes that carry the gauge flux have non-Abelian statistics
(see Fig. 2).

D. Fermionic Z2 � Z2 gauge anomalies in 1 þ 1D

A fermionic Z2 � Z2 anomalous (i.e., non-on-site)
symmetry in 1þ 1D can be realized on the edge of a
2þ 1D fermionic Z2 � Z2 SPT states. Those fermionic
SPT states were discussed in detail in Refs. [50,51,65].
We found that there are 16 different fermionic Z2 � Z2

SPT states in 2þ 1D (including the trivial one) which form
a Z8 group where the group operation is the stacking of
the 2þ 1D states.
One type of the fermionic Z2 � Z2 anomalous symmetry

in 1þ 1D is realized by the following free Majorana field
theory

L1þ1D ¼ i�Rð@t � @xÞ�R þ i�Lð@t þ @xÞ�L: (19)

The Z2 � Z2 symmetry is generated by the following two
generators

ð�R; �LÞ ! ð��R; �LÞ; ð�R; �LÞ ! ð�R;��LÞ; (20)

i.e., �R carries the first Z2 charge and �L the second Z2

charge. The above fermionic anomalous symmetry is the
generator of Z8 types of fermionic Z2 � Z2 anomalous
symmetries.
Due to the anomaly in the Z2 � Z2 symmetry, the above

1þ 1D field theory can only be realized as a boundary of a
2þ 1D lattice model if we require the Z2 � Z2 symmetry
to be an on-site symmetry. (However, it may be possible to
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realize the 1þ 1D field theory by a 1þ 1D lattice model if
we do not require the Z2 � Z2 symmetry to be an on-site
symmetry.) One example of 2þ 1D realization is the
stacking of a pþ ip and a p� ip superconductor (denoted
as pþ ip=p� ip state) [26,50,65].

Since the Z2 � Z2 symmetry is anomalous in the above
1þ 1D field theory, if we gauge the Z2 � Z2 symmetry, the
resulting 1þ 1D fermionic Z2 � Z2 gauge theory will be
anomalous which can not have a nonperturbative definition
as a 1þ 1D model. However, the 1þ 1D fermionic
Z2 � Z2 gauge theory can have a nonperturbative defini-
tion as the boundary of a 2þ 1Dmodel. One such model is
the stacking of a bosonic � ¼ 1 Pfaffian quantumHall state
[66] and a bosonic � ¼ �1 Pfaffian quantum Hall state

(denoted as Pfaff=Pfaff state). Note that the bosonic � ¼ 1
Pfaffian quantum Hall state have edge states which include
a c ¼ 1=2Majorana mode and a c ¼ 1 density mode [67].
However, since we do not require boson number conser-
vation, the density mode of the � ¼ 1 Pfaffian state and the
density mode of the � ¼ �1 Pfaffian state can gap out each
other, and be dropped.

Again, it is interesting to see that a nonperturbative
definition of an anomalous 1þ 1D fermionic Z2 � Z2

Abelian gauge theory requires an non-Abelian state
[66,68] in 2þ 1D.

E. Bosonic Uð1Þ gauge anomalies in 2 þ 1D

The bosonic Uð1Þ gauge anomalies in 2þ 1D are
described by _H4

�½BUð1Þ;R=Z� which contains H4½BUð1Þ;
R=Z� ¼ R=Z as subgroup. So what are those Uð1Þ gauge
anomalies labeled by a real number 
=2 2 R=Z ¼ ½0; 1Þ?

First, let us give a more general definition of anomalies
(which include gauge anomalies as special cases): We start
with a description of a set of low energy properties, and
then ask if the set of low energy properties can be realized
by a well-defined quantum theory in the same dimensions?
If not, we say the theory is anomalous.

So to describe the 2þ 1DUð1Þ gauge anomaly, we need
to first describe a set of low energy properties. The Uð1Þ
gauge anomaly is defined by the following low energy
properties:

(1) there are no gapless excitations and no ground state
degeneracy.

(2) the Uð1Þ gauge theory has a fractional Hall conduc-
tance �xy ¼ 
=2�.

The above low energy properties implies that, after inte-
grating out the matter field, the 2þ 1D theory produces the
following gauge topological term

L2þ1D ¼ 


4�
A�@�A��

��� þ � � � : (21)

When 
 2 ½0; 2Þ, the above two low energy properties
cannot be realized by a well-defined local bosonic quantum
theory in 2þ 1D. In this case, the theory has a Uð1Þ gauge
anomaly.

To see the above two properties cannot be realized by a
well-defined 2þ 1D bosonic theory (i.e., represent a Uð1Þ
gauge anomaly), we first note that the requirement that
there is no degenerate ground states implies that there are
no excitations with fractional charges and fractional statis-
tics (since the state has no intrinsic topological order
[46,47]). Second, the above Uð1Þ Chern-Simons theory
with a fractional coefficient has a special property that a
unit of Uð1Þ flux (2� flux) induces a Uð1Þ charge 
 (since
the Hall conductance is 


2� ). The flux-charge bound state

has a statistics 	 ¼ 
�. Since a unit of Uð1Þ flux only
induce an allowed excitation, so for any well-defined
2þ 1D model with no ground state degeneracy, the in-
duced charge must be integer, and the induced statistics
must be bosonic (for a bosonic theory):


 ¼ integer; 
 ¼ even integer: (22)

We see that, for 
 2 ½0; 2Þ, the above Uð1Þ Chern-Simons
theory (with no ground state degeneracy) cannot appear as
the low energy effective theory of any well-defined 2þ 1D
model. Thus, it is anomalous.
But when 
 ¼ even integer, the above 2þ 1D model

with even-integer quantized Hall conductance can be real-
ized through a well-defined 2þ 1D bosonic model with
trivial topological order, [40–43] and thus not anomalous
[69]. This is why only 
 2 ½0; 2Þ represents the Uð1Þ
anomalies in 2þ 1D.
However, the above anomalous 2þ 1D theory (with no

ground state degeneracy) can be realized as the boundary
theory of a 3þ 1D bosonic insulator that does not have the
time-reversal and parity symmetry. The 3þ 1D bosonic
insulator contains a topological term

L3þ1D ¼ 2�


2!ð2�Þ2 @�A�@�A��
���� (23)

that is allowed by symmetry. A unit of magnetic flux
through the boundary will induce a fractional Uð1Þ charge

 on the boundary. Thus the 3þ 1D bosonic insulator can
reproduces the above two mentioned low energy properties.
The above result can be generalized to studyUkð1Þ gauge

anomaly in 2þ 1D. If after integrating out the matter fields,
we obtain the following gauge topological term

L2þ1D ¼ 
IJ

4�
AI
�@�A

J
��

��� þ � � � ; (24)

then the theory is anomalous if 
IJ is not an integer sym-
metric matrix with even diagonal elements. The anomalous
Ukð1Þ gauge theory can be viewed as the boundary of a
3þ 1D Ukð1Þ gauge theory with topological term

L3þ1D ¼ 2�
IJ

2!ð2�Þ2 @�A
I
�@�A

J
��

����: (25)

Two topological terms described by 
IJ and 
0
IJ are

regarded as equivalent if


0
IJ � 
IJ ¼ Keven

IJ ; (26)
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where Keven is an integer symmetric matrix with even
diagonal elements [70].

F. Fermionic Uð1Þ gauge anomalies in 2 þ 1D

In this section, we consider 2þ 1D fermion systems
with a Uð1Þ symmetry where the fermion parity symmetry
is part of Uð1Þ symmetry. As a result, all fermions carry
odd Uð1Þ charges.

The gauge anomalies in such fermionic Uð1Þ gauge
theory are described by _H4

�½BUð1Þ;R=Z� which includes
H4½BUð1Þ;R=Z� ¼ R=Z. Thus, the fermionic Uð1Þ gauge
anomaly can be labeled by 
 2 R=Z ¼ ½0; 1Þ.

The Uð1Þ gauge anomaly correspond to the following
low energy properties: The 2þ 1D anomalous fermionic
Uð1Þ gauge theory has

(1) a gapped nondegenerate ground state and
(2) a fractional Hall conductance �xy ¼ 
=2�.

After integrating out the matter field, the 2þ 1D theory
produces the following gauge topological term

L2þ1D ¼ 


4�
A�@�A��

��� þ � � � : (27)

When 
 2 ½0; 1Þ the above 2þ 1D theory is anomalous.
When 
 ¼ integer, the above 2þ 1D model with inte-

ger quantized Hall conductance can be realized through a
well-defined 2þ 1D fermionic model – an integer quan-
tized Hall state which has no ground state degeneracy.
So the 2þ 1D theory with integer 
 is not anomalous.
This is why only 
 2 ½0; 1Þ represents the fermionic Uð1Þ
anomalies in 2þ 1D.

Similarly, the above result can also be generalized to
study fermionic Ukð1Þ gauge anomaly in 2þ 1D. If after
integrating out the matter fields, we obtain the following
gauge topological term

L2þ1D ¼ 
IJ

4�
AI
�@�A

J
��

��� þ � � � ; (28)

then the theory is anomalous if and only if 
IJ is not an
integer symmetric matrix. The anomalous fermionic Ukð1Þ
gauge theory can be viewed as the boundary of a 3þ 1D
Ukð1Þ gauge theory with topological term

L3þ1D ¼ 2�
IJ

2!ð2�Þ2 @�A
I
�@�A

J
��

����: (29)

Two topological terms described by 
IJ and 
0
IJ are

regarded as equivalent if


0
IJ � 
IJ ¼ KIJ; (30)

where K is an integer symmetric matrix. It is interesting to
see that the periodicy of 
IJ is an even integer matrix for
bosonic systems while the periodicy is an integer matrix
for fermionic systems [70].

G. Uð1Þ � ½Uð1Þ 2Z2� gauge anomalies in 2 þ 1D

After understanding theUð1Þ gauge anomalies in 2þ 1D
for bosonic and fermionic systems, we are ready to discuss
a more interesting example—Uð1Þ � ½Uð1Þ 2Z2� gauge
anomalies in 2þ 1D.

1. Cohomology description

The 2þ 1D Uð1Þ � ½Uð1Þ 2Z2� gauge anomalies are
described by _H4

�½BðUð1Þ � ½Uð1Þ 2Z2�Þ;R=Z� which con-
tains H4½BðUð1Þ � ½Uð1Þ 2Z2�Þ;R=Z� as a subgroup.
Using Künneth formula [see Eq. (E15)], we can compute
Hd½BðUð1Þ � ½Uð1Þ 2Z2�Þ;Z� from Hd½B½Uð1Þ 2Z2�;Z�
and Hd½BUð1Þ;Z�:

d: 0; 1; 2; 3; 4; 5; 6

Hd½B½Uð1Þ 2Z2�;Z�: Z; 0; Z2; Z2; Z � Z2; Z2; Z�2
2

Hd½BUð1Þ;Z�: Z; 0; Z; 0; Z; 0 Z

Hd½BðUð1Þ � ½Uð1Þ 2Z2�Þ;Z�: Z; 0; Z � Z2 Z2; Z�2 � Z�2
2 ; Z�2

2 ; Z�2 � Z�4
2

; (31)

where Z�2
n 	 Zn � Zn. Then using the universal coefficient theorem (see Appendix E), we find

d: 0; 1; 2; 3; 4; 5

Hd½BðUð1Þ � ½Uð1Þ 2Z2�Þ;R=Z�: R=Z; Z2; R=Z � Z2; Z�2
2 ; ðR=ZÞ�2 � Z�2

2 ; Z�4:
2

(32)

We see that some of the Uð1Þ � ½Uð1Þ 2Z2� gauge anoma-
lies in 2þ 1D can be described by ðR=ZÞ�2 � Z�2

2 �
_H4
�½BðUð1Þ � ½Uð1Þ 2Z2�Þ;R=Z�.

2. Continuous gauge anomalies

The gauge anomalies described by ðR=ZÞ�2 can be
labeled by two real numbers ð
1; 
2Þ 2 ðR=ZÞ�2 (for
fermions) or ð
1; 
2Þ 2 ðR=2ZÞ�2 (for bosons). An ex-
ample of such a gauge anomaly can be obtained through

a Uð1Þ � ½Uð1Þ 2Z2� gauge theory coupled to matter
fields. If integrating out the matter field produces the
following gauge topological term in 3þ 1D:

L3þ1D ¼ 2�
1

2!ð2�Þ2 @�A1�@�A1��
����

þ 2�
2

2!ð2�Þ2 @�A2�@�A2��
����; (33)
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then the 3þ 1D gauge theory describes the desired
gauge anomaly. Here A1� is for the first Uð1Þ and A2�

the second Uð1Þ, and A2� changes sign under the Z2 gauge

transformation.

3. First discrete gauge anomaly

If integrating out the matter field produces the following
gauge topological term in 3þ 1D [55]:

L3þ1D ¼ �

ð2�Þ2 @�A1�@�A2��
����; (34)

then the 3þ 1D gauge theory describes a discrete Uð1Þ �
½Uð1Þ 2Z2� gauge anomaly (which belongs to Z�2

2 ). The
boundary 2þ 1D theory of the 3þ 1D system will be a
Uð1Þ � ½Uð1Þ 2Z2� gauge theory with the discrete Uð1Þ �
½Uð1Þ 2Z2� gauge anomaly. Such an anomalous 2þ 1D
theory must be gapless or have degenerate ground states, if
we freeze the gauge fluctuations without breaking the
Uð1Þ�ðUð1Þ 2Z2Þ symmetry. We suspect that, in our par-
ticular case, 2þ 1D boundary theory is actually gapless.

This is because if the Z2 gauge symmetry is broken on
the 2þ 1D boundary, we will have the following effective
2þ 1D boundary theory:

L ¼ �=j�j
4�

~KIJAI�@�AJ��
��� þ � � � ; (35)

where � is the Higgs field that breaks the Z2 gauge
symmetry, and the ~K matrix is given by

~K ¼ 0 1=2

1=2 0

 !
: (36)

The above theory has a fractional mutual Hall conductance,

�IJ
xy ¼ �

j�j
~KIJ

2�
;

�11
xy ¼ �22

xy ¼ 0;

�12
xy ¼ �21

xy ¼ 1=2

2�

�

j�j :

(37)

Such a theory can be realized by a double-layer bosonic
fractional quantum Hall state described by K matrix

K ¼ �

j�j
0 2

2 0

 !
;

where the bosons in the two layers carry unit charges of
the two Uð1Þ’s separately.

If the Z2 gauge symmetry does not break, � will fluc-
tuate with equal probability to be � ¼ �j�j. Due to the
separate conservation of the two Uð1Þ charges, the domain
wall between � ¼ þj�j and � ¼ �j�j will support gap-
less edge excitations [12,60]. Because there are long do-
main walls in the disordered phase of �, this suggests that
the theory is gapless if theUð1Þ � ½Uð1Þ 2Z2� symmetry is
not broken.

To further understand the physical property of such a
discrete gauge anomaly, let us assume that the 3þ 1D
space-time has a topology M2 �M0

2. We also assume
that the A1� gauge field has 2� flux on M0

2. In the large

M2 limit, the Lagrangian (34) reduces to an effective
Lagrangian on M2 which has a form

LM2
¼ �

2�
@�A2��

��: (38)

We note that the A1� gauge configuration preserve the

Uð1Þ � ðUð1Þ 2Z2Þ symmetry. The above Lagrangian is
the effective Lagrangian of the Uð1Þ � ½Uð1Þ 2Z2� sym-
metric theory on M2 probed by the A2� gauge field [50].

Such an effective Lagrangian implies that the Uð1Þ �
½Uð1Þ 2Z2� symmetric theory on M2 describe a nontrivial
Uð1Þ � ½Uð1Þ 2Z2� SPT state labeled by the nontrivial
element in H 2½Uð1Þ � ðUð1Þ 2Z2Þ;R=Z� ¼ Z2 [59].
The nontrivial 1þ 1D Uð1Þ � ½Uð1Þ 2Z2� SPT state on

M2 has the following property: LetM2 ¼ Rt � I, where Rt

is the time and I is a spatial line segment. Then the
excitations at the end of the line are degenerate, and the
degenerate end states form a projective representation of
Uð1Þ � ½Uð1Þ 2Z2� [71–74].
The above result has another interpretation. Let the

3þ 1D space-time have a topology Rt � I�M0
2. Such

a space-time has two boundaries. Each boundary has a
topology Rt �M0

2, and the theory on the boundary is
a Uð1Þ � ½Uð1Þ 2Z2� gauge theory with the first discrete
Uð1Þ � ½Uð1Þ 2Z2� gauge anomaly. If we freeze the
Uð1Þ � ½Uð1Þ 2Z2� gauge fields without break the Uð1Þ �
½Uð1Þ 2Z2� symmetry, then all the low energy excitations
on M0

2 at one boundary form a linear representation of
Uð1Þ � ½Uð1Þ 2Z2�, if the A1� gauge field is zero on M0

2.

However, all the low energy excitations on M0
2 at one

boundary will form a projective representation of Uð1Þ �
½Uð1Þ 2Z2�, if the A1� gauge field has 2� flux onM0

2. This

result also implies that

the monopole of A1� gauge field in the correspond-

ing 3þ 1D Uð1Þ � ½Uð1Þ 2Z2� SPT state will

carries a projective representation of Uð1Þ �
½Uð1Þ 2Z2�.

Note that the monopole of A1� gauge field does not

break the Uð1Þ � ½Uð1Þ 2Z2� symmetry.
Again consider only one boundary, we have seen that

adding 2� flux of A1� gauge field changes the Uð1Þ �
½Uð1Þ 2Z2� representation of the boundary excitations
from linear to projective. If the 2� flux is concentrated
within a region of size L, we may assume that the boundary
excitations that from a projective representation of Uð1Þ �
½Uð1Þ 2Z2� is concentrated within the region. When L is
large, the 2� flux is a weak perturbation. The fact that a
weak perturbation can create an nontrivial excitation in a
projective representation implies that the excitations on the
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2þ 1D boundary Rt �M0
2 is gapless. To summarize, we

have the following two results:

The 2þ 1D Uð1Þ � ½Uð1Þ 2Z2� gauge theory with

the anomaly described by (34) is gapless, if we

freeze the Uð1Þ � ½Uð1Þ 2Z2� gauge fields without

break the Uð1Þ � ½Uð1Þ 2Z2� symmetry

The 3þ 1D Uð1Þ � ½Uð1Þ 2Z2� SPT state char-

acterized by the topological term (34) of the probe

gauge fields [50,55] has gapless boundary excita-

tions, if the Uð1Þ � ½Uð1Þ 2Z2� symmetry is not

broken.

In other words, the edge of this particular 3þ 1D
Uð1Þ � ½Uð1Þ 2Z2� SPT state cannot be a gapped topologi-
cally ordered state that does not break the symmetry.

The first discrete gauge anomaly generates one of the
Z2 in H4½BðUð1Þ � ½Uð1Þ 2Z2�Þ;R=Z� ¼ ðR=ZÞ�2 � Z�2

2 .
Since Dis½H4½BðUð1Þ � ½Uð1Þ 2Z2�Þ; R=Z� ¼ TorðH 4

½Uð1Þ � ½Uð1Þ 2Z2�; R=Z�Þ ¼ Z�2
2 , the first discrete

gauge anomaly also generates one of the Z2 in
TorðH 4½Uð1Þ � ½Uð1Þ 2Z2�;R=Z�Þ. According to the
Künneth formula [see Eq. (E15)],

H 4½Uð1Þ � ½Uð1Þ 2Z2�;R=Z�
¼ H 2ðUð1Þ;H 2½Uð1Þ 2Z2;R=Z�Þ

�H 0ðUð1Þ;H 4½Uð1Þ 2Z2;R=Z�Þ; (39)

where we have only kept the nonzero terms, and

H 2ðUð1Þ;H 2½Uð1Þ 2Z2;R=Z�Þ ¼ H 2½Uð1Þ;Z2� ¼ Z2;

(40)

H 0ðUð1Þ;H 4½Uð1Þ 2Z2;R=Z�Þ
¼ H 4½Uð1Þ 2Z2;R=Z� ¼ Z2: (41)

So the discrete gauge anomaly generates the Z2 of
H 2ðUð1Þ;H 2½Uð1Þ 2Z2;R=Z�Þ, which is a structure
that involves both Uð1Þ’s.

4. Second discrete gauge anomaly

In this section, we will discuss the second discrete gauge
anomaly that generates the other Z2 associated with
H 0ðUð1Þ;H 4½Uð1Þ 2Z2;R=Z�Þ ¼ H 4½Uð1Þ 2Z2;R=Z�.
The second discrete gauge anomaly is actually a gauge
anomaly of Uð1Þ 2Z2 described by the nontrivial element
in H 4½Uð1Þ 2Z2;R=Z� ¼ Z2. At the moment, we do not
know how to use a 3þ 1D gauge topological term to
describe such an anomaly. However, we can describe the
physical properties (i.e., the topological invariants) of the
second discrete gauge anomaly [50].

Let the 3þ 1D space-time has a topology Rt � I �
S1 � S01. The theory on a boundary Rt � S1 � S01 has the
second Uð1Þ � ½Uð1Þ 2Z2� gauge anomaly. If we freeze

the Uð1Þ � ½Uð1Þ 2Z2� gauge fields without break the
Uð1Þ � ½Uð1Þ 2Z2� symmetry and consider the large S1
small S01 limit, then the excitations on S1 are gapped with a
nondegenerate ground state, if the A2� gauge field is zero

on S1 � S01. However, the excitations on S1 will be gapless
or have degenerate ground states, if there is � flux of A2�

gauge field going through S01 [50]. (The gapless or degen-
erate ground states on S1 are edge state of nontrivial
2þ 1D Z2 SPT state.) Since adding � flux to small S01 is
not a small perturbation, we cannot conclude that the ex-
citations on the 2þ 1D boundary Rt � S1 � S01 are gapless.
We also note that the monopole of A2� gauge field in the

3þ 1D bulk breaks the Z2 symmetry. In this case, we can
only discuss the Uð1Þ �Uð1Þ charges of the monopoles
(see Ref. [55]).

IV. UNDERSTANDING GAUGE ANOMALIES
THROUGH SPT STATES

After discussing some examples of gauge anomalies, let
us turn to the task of trying to classify gauge anomalies of
gauge group G. We will do so by studying a system with
on-site symmetry G in one-higher dimension. We have
described the general idea of such an approach in Sec. II.
In this section, we will give more details.

A. The emergence of non-on-site symmetries
in bosonic systems

Before discussing gauge anomalies, let us introduce the
notion of non-on-site symmetries, and discuss the emer-
gence and a classification of non-on-site symmetries. The
non-on-site symmetries appear in the low energy boundary
effective theory of a SPT state. So let us first give a brief
introduction of SPT state.
Recently, it was shown that bosonic short-range en-

tangled states [48] that do not break any symmetry can
be constructed from the elements in group cohomology
class H dþ1ðG;R=ZÞ in d spatial dimensions, where G is
the symmetry group [37–39]. Such symmetric short-range
entangled states are called symmetry-protected trivial
(SPT) states or symmetry-protected topological (SPT)
states.
A bosonic SPT state is the ground state of a local

bosonic system with an on-site symmetry G. A local
bosonic system is a Hamiltonian quantum theory with a
total Hilbert space that has direct-product structure:
H ¼ �iH i where H i is the local Hilbert space on site
i which has a finite dimension. An on-site symmetry is a
representation UðgÞ of G acting on the total Hilbert space
H that have a product form

UðgÞ ¼ �iUiðgÞ; g 2 G; (42)

where UiðgÞ is a representation G acting on the local
Hilbert space H i on site-i.
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A bosonic SPT state is also a short-range entangled state
that is invariant under UðgÞ. The notion of short-range
entangled state is introduced in Ref. [48] as a state that
can be transformed into a product state via a local unitary
transformation [75–77]. A SPT state is always a gapped
state. It can be smoothly deformed into a gapped product
state via a path that may break the symmetry without gap-
closing and phase transitions. However, a nontrivial SPT
state cannot be smoothly deformed into a gapped product
state via any path that does not break the symmetry without
phase transitions.

Since SPT states are short-range entangled, it is relatively
easy to understand them systematically. In particular, a sys-
tematic construction of the bosonic SPT state in d spatial
dimensionswith on-site symmetryG can be obtained through
the group cohomology classH dþ1ðG;R=ZÞ [37–39].

The SPT states are gapped with no ground state
degeneracy when there is no boundary. If we consider a
d-space-dimensional bosonic SPT state with a boundary,
then any low energy excitations must be boundary excita-
tions. Also since the SPT state is a short-range entangled
state, those low energy boundary excitations can be de-
scribed by a pure local boundary theory [37–39]. However,
if the SPT state is nontrivial (i.e., described by a nontrivial
element in H dþ1ðG;R=ZÞ), then the symmetry transfor-
mation G must act as a non-on-site symmetry [37–39,42]
in the effective boundary theory. The non-on-site symme-
try action UðgÞ does not have a product form UðgÞ ¼
�iUiðgÞ. So the SPT phases in d spatial dimensions lead
to the emergence of non-on-site symmetry in d� 1 spatial
dimensions. As a result, the different types of non-on-site
symmetry in (d� 1) spatial dimensions are described by
H dþ1ðG;R=ZÞ.

The non-on-site symmetry has another very interesting
(conjectured) property:

the ground states of a system with a non-on-site

symmetry must be degenerate or gapless

[37–39,50,69]. The degeneracy may be due to the

symmetry breaking, topological order, [46,47] or

both.

The above result is proven only in 1þ 1D [37].
For certain types of non-on-site symmetries, the ground
state may even have to be gapless, if the symmetry is not
broken.

For a reason that we will explain later, we will refer non-
on-site symmetry as anomalous symmetry and on-site
symmetry as anomaly-free symmetry. We see that a system
with an anomalous symmetry cannot have a ground state
that is nondegenerate. On the other hand a system with an
anomaly-free symmetry can have a ground state that is
nondegenerate (and symmetric). So the anomaly-free prop-
erty of a global symmetry is a sufficient condition for the
existence of a gapped ground state that do not break any
symmetry.

B. Anomalous gauge theories as the boundary
effective theory of bosonic SPT states

We can alway generalize an on-site global symmetry
transformation into a local gauge transformation by mak-
ing g to be site dependent,

UgaugeðfgigÞ ¼ �iUiðgiÞ; (43)

which is a representation ofGNs , whereNs is the number of
sites,

UgaugeðfhigÞUgaugeðfgigÞ ¼ UgaugeðfhigigÞ: (44)

So we say that the on-site symmetry (i.e., the anomaly-free
symmetry) is ‘‘gaugable.’’
On the other hand, the non-on-site symmetry of the

boundary effective theory is not ‘‘gaugable.’’ If we try to
generalize a non-on-site symmetry transformation to a
local gauge transformation: Unon-on-siteðgÞ ! UgaugeðfgigÞ,
then UgaugeðfgigÞ does not form a representation of GNs . In

fact, if we do ‘‘gauge’’ the non-on-site symmetry, we will
get an anomalous gauge theory with gauge group G on the
boundary, as demonstrated in Refs. [38,40–43] for G ¼
Uð1Þ, SUð2Þ. Therefore, gauge anomaly 
 non-on-site
symmetry. This is why we also refer the non-on-site sym-
metry as anomalous symmetry. Gauging anomalous sym-
metry will lead to an anomalous gauge theory.
Since nonsite symmetries emerge at the boundary of

SPT states. Thus gauging the symmetry in the SPT state
in (dþ 1)-dimensional space-time is a systematic way to
construct anomalous gauge theory in d-dimensional space-
time. Then from the group cohomology description of the
SPT states, we find that the gauge anomalies in bosonic
gauge theories with a gauge group G in d space-time
dimensions are described by H dþ1ðG;R=ZÞ (at least
partially).

C. The gauge noninvariance (i.e., the gauge anomaly)
of non-on-site symmetry and the cocycles

in group cohomology

The standard understanding of gauge anomaly is its
‘‘gauge noninvariance.’’ However, in above, we introduce
gauge anomaly through SPT state. In this section, we will
show that the two approaches are equivalent. We also
discuss a direct connection between gauge noninvariance
and the group cocycles in H dþ1ðG;R=ZÞ.
The SPT state in the (dþ 1)-dimensional space-time

bulk manifold M can be described by a nonlinear � model
with G as the target space,

S ¼
Z
M
ddþ1x

�
1

�s

½@gðx�Þ�2 þ iWtopðgÞ
�
; (45)

in large �s limit. Here we triangulate the (dþ 1)-
dimensional bulk manifoldM to make it a (random) lattice
or a (dþ 1)-dimensional complex. The field gðx�Þ live on
the vertices of the complex. So

R
ddþ1x is in fact a sum
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over lattice sites and @ is the lattice difference operator.
The above action S actually defines a lattice theory.
iWtopðgÞ is a lattice topological term which is defined

and classified by the elements in H dþ1ðG;R=ZÞ
Refs. [38,39,49,55,56,59]. This is why the bosonic SPT
states are classified by H dþ1ðG;R=ZÞ.

Since G is an on-site symmetry in the dþ 1D bulk, we
can always gauge the on-site symmetry to obtain a gauge
theory in the bulk by integrating out gðx�Þ

S ¼
Z

ddþ1x

�
TrðF��Þ2

�g

þ iW
gauge
top ðA�Þ

�
: (46)

The resulting topological term Wgauge
top ðAÞ in the gauge

theory is always a ‘‘quantized’’ topological term discussed
in Ref. [55]. It is a generalization of the Chern-Simons
term Refs. [55,56,78]. It is also related to the topological
term WtopðgÞ in the nonlinear �-model when A� is a pure

gauge

Wgauge
top ðA�Þ ¼ WtopðgÞ; where A� ¼ g�1@�g: (47)

(A more detailed description of the two topological
terms WtopðgÞ and Wgauge

top ðA�Þ on lattice can be found in

Ref. [55].) So the quantized topological term W
gauge
top ðAÞ in

the gauge theory is also described by H dþ1ðG;R=ZÞ.
Since WtopðgÞ is a cocycle in H dþ1ðG;R=ZÞ, we have

Refs. [38,39]

	½gðx�Þ� ¼
Z
M
ddþ1xW

gauge
top ðg�1@�gÞ ¼ 0mod 2� (48)

if the space-timeM has no boundary. But if the space-time
M has a boundary, then

	½gðx�Þ� ¼
Z
M
ddþ1xW

gauge
top ðg�1@�gÞ � 0mod 2�; (49)

which represents a gauge noninvariance (or a gauge anom-
aly) of the gauged bulk theory in (dþ 1)-dimensional
space-time. (This is just like the gauge noninvariance of
the Chern-Simons term, which is a special case of
Wgauge

top ðA�Þ.) Note that the gauge anomaly 	½gðx�Þ� mod

2� only depend on gðx�Þ on the boundary of M. Such a
gauge anomaly is canceled by the boundary theory which
is an anomalous bosonic gauge theory. Such a point was
discussed in detail for G ¼ Uð1Þ, SUð2Þ in Ref. [12].

From the above discussion, we see that the bulk theory
on the (dþ 1)-dimensional complex M is gauge invariant
ifM has no boundary, but may not be gauge invariant ifM
has a boundary. Since a gauge transformation gðx�Þ lives
on the vertices, it is described by fgiji labels verticesg.
Thus, the gauge noninvariance of the bulk theory is de-
scribed by a mapping fromGNs to phase 2�R=Z: 	ðfgigMÞ,
where Ns is the number of lattice sites (i.e., the number of
the vertices). Such a mapping has two properties. The first
one is

	ðfgigMÞ ¼ sum of local terms for the cells inM (50)

[i.e., 	ðfgigMÞ ¼
R
M ddþ1xW

gauge
top ðg�1@�gÞ]. The second

one is

	ðfgigMÞ ¼ 0 mod 2� (51)

if M has no boundary, since the theory is gauge invariant
when M has no boundary. Equation (51) is the cocycle
condition in group cohomology theory and the function
	ðfgigMÞ satisfying (51) is a cocycle.
When M does has a boundary, the gauge noninvariance

	ðfgigMÞ only depend on gi’s on the boundary (mod 2�).
So it is a gauge noninvariance (or a gauge anomaly) on the
d-dimensional boundary. Some times, such a gauge non-
invariance 	ðfgigMÞ can be expressed as the sum of local
terms for the cells on the boundary @M [this is potentially
possible since 	ðfgigMÞ only depend on gi’s on the bound-
ary mod 2�], then such a 	ðfgigMÞ will be called coboun-
dary. The associated gauge noninvariance is an artifact of
us adding gauge noninvariant boundary terms as we create
the boundary of the space-time. Such a gauge noninvar-
iance is removable. So a coboundary does not represent a
gauge anomaly. Only those gauge noninvariance 	ðfgigMÞ
that cannot be expressed as the sum of local terms repre-
sent real gauge anomalies. After we mod out the coboun-
daries from the cocycles, we obtain H dþ1ðG;R=ZÞ.
This way, we see more directly that

the elements in H dþ1ðG;R=ZÞ describe the gauge
anomalies in d-dimensional space-time for gauge

group G, assuming the gauge transformations are

described by fgig on the vertices of the space-time

complex M.

We also see that a nontrivial gauge anomaly (described
by a nontrivial cocycle) represents a gauge noninvariance
in the boundary gauge theory. We believe that the above
argument is very general. It applies to both continuous and
discrete gauge groups, and both bosonic theories and
fermionic theories. (However, fermionic theories may con-
tain extra structures. See Sec. VI.) It turns out that the free
part of H dþ1ðG;R=ZÞ, Free½H dþ1ðG;R=ZÞ�, gives rise
to the well known Adler-Bell-Jackiw anomaly. The torsion
part of H dþ1ðG;R=ZÞ correspond to new types of gauge
anomalies called non-ABJ gauge anomalies.

V. MORE GENERAL GAUGE ANOMALIES

A. d-dimensional gauge anomalies and
(d þ 1)-dimensional gauge

topological terms

In the last section, when we discuss the connection
between gauge noninvariance and the group cocycles, we
assume that the gauge transformations on the vertices of
the space-time complex Md, fgig, can be arbitrary.
However, in this paper, we want to understand the gauge

XIAO-GANG WEN PHYSICAL REVIEW D 88, 045013 (2013)

045013-12



anomalies in weak-coupling gauge theories in d space-time
dimensions, where gauge field strength is small. In this
case, gauge transformations fgig on the vertices are not
arbitrary.

For finite gauge group G, the gauge transformations fgig
on the vertices of the space-time complex Md are indeed
arbitrary. Therefore, we have the following:

H dþ1ðG;R=ZÞ classifies the bosonic gauge

anomalies in d-dimensional space-time for finite

gauge group G.

H dþ1ðG;R=ZÞ partially describes the fermionic

gauge anomalies in d-dimensional space-time for

finite gauge group G.

Wewill discuss the distinction between gauge anomalies
in bosonic and fermionic gauge theory in Sec. VI.

However, for continuous gauge group G, we further
require that gauge transformations fgig on the vertices of
the space-time complex Md are close to smooth functions
on the space-time manifold. In this case, there are more
general gauge anomalies. Free½H dþ1ðG;R=ZÞ� still de-
scribes all the Adler-Bell-Jackiw anomaly. But there are
non-ABJ anomalies that are beyond Tor½H dþ1ðG;R=ZÞ�.

To understand more general non-ABJ gauge anomalies
beyond Tor½H dþ1ðG;R=ZÞ�, let us view gauge anomalies
in d-dimensional space-time as an obstruction to have a
nonperturbative definition (i.e., a well-defined UV com-
pletion) of the gauge theory in the same dimension. To
understand such an obstruction, let us consider a theory in
(dþ 1)-dimensional space-time where gapped matter
fields couple to a gauge theory of gauge group G. We
view of the gauge field as a nondynamical probe field
and only consider the excitations of the matter fields.
Since the matter fields are gapped in the bulk, the low
energy excitations only live on the boundary and are
described by a boundary low energy effective theory with
the nondynamical gauge field. We like to ask, can we
define the boundary low energy effective theory as a
pure boundary theory, instead of defining it as a part of
(dþ 1)-dimensional theory?

This question can be answered by considering the in-
duced gauge topological terms (the terms that do not
depend on space-time metrics) in the (dþ 1)-dimensional
theory as we integrate out the gapped mater fields. There
are two types of the gauge topological terms that can be
induced. The first type of gauge topological terms has an

action amplitude ei
R

M
ddþ1xW

gauge
top ðA�Þ that can change as we

change the gauge field slightly in a local region:

ei
R

M
ddþ1xW

gauge
top ðA�þ�A�Þ � ei

R
M
ddþ1xW

gauge
top ðA�Þ: (52)

They are classified by Free½H dþ1ðG;R=ZÞ� ¼
Free½Hdþ2ðBG;ZÞ� [55,78] and correspond to the Adler-
Bell-Jackiw anomalies in d-dimensional space-time.

The Chern-Simons term is an example of this type of
topological terms.
The second type of gauge topological terms has an

action amplitude that does not change under any perturba-
tive modifications of the gauge field in a local region (away
from the boundary):

ei
R

M
ddþ1xWgauge

top ðA�þ�A�Þ ¼ ei
R

M
ddþ1xWgauge

top ðA�Þ: (53)

W
gauge
top ðA�Þ ¼ @�A�@�A��

���� is an example of such kind

of topological terms. We will refer the second type of
topological terms as locally null topological terms. Some
of the locally null topological terms are described by
Tor½H dþ1ðG;R=ZÞ� [55,78].
Since ei

R
ddþ1xW

gauge
top ðA�Þ does not change for any pertur-

bative modifications of the gauge field away from the
boundary, one may naively think that it only depends on
the fields on the boundary and write it as a pure boundary
term,

ei
R

M
ddþ1xW

gauge
top ðA�Þ ¼ ei

R
@M

ddxLgauge
top ðA�Þ: (54)

However, the above is not valid in general since

ei
R

ddþ1xW
gauge
top ðA�Þ does depend on the bulk gauge field

away from the boundary: ei
R

ddþ1xW
gauge
top ðA�Þ can change if

the modification in the gauge field away from the boundary
cannot be continuously deformed to zero. In this case, the
appearance of the locally null gauge topological term in
(dþ 1)-dimensions represents an obstruction to view the
(dþ 1)-dimensional theory as a pure d-dimensional
boundary theory. This is why we can study non-ABJ gauge
anomalies through (dþ 1)-dimensional locally null gauge
topological terms.

B. Classifying space and �-cohomology classes

To have a systematic description of the locally null
topological terms, let us use the notion of the classifying
space BG for group G. The gauge configurations (with
weak field strength) on the (dþ 1)-dimensional space-time
manifold Mdþ1 can be described by the embeddings of
Mdþ1 into BG, Mdþ1 ! Mdþ1

BG � BG [55,78]. So we can

rewrite our quantized topological term as a function of
the embeddings Mdþ1

BG :Z
Mdþ1

ddþ1xW
gauge
top ðA�Þ ¼ S

gauge
top ðMdþ1

BG Þ: (55)

One way to construct the topological term is to use the
topological (dþ 1)-cocycles �dþ1 2 Hdþ1ðBG;R=ZÞ:

Sgaugetop ðMdþ1
BG Þ ¼ 2�h�dþ1;M

dþ1
BG i: (56)

Note that cocycles are cochains, and cochains are defined
as linear maps from cell-complices M to R=Z. h�dþ1;Mi
denotes such a linear map. As a part of definition,
h�dþ1;M

dþ1
BG i satisfies the locality condition
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h�dþ1;M
dþ1
BG i ¼ sum of local terms for the cells inM;

(57)

which is similar to Eq. (50).
It turns out that the most general locally null topological

terms can be constructed from � cocycles. By definition, a
ðdþ 1Þ � �-cocycle �dþ1 is a (dþ 1)-cochain that satis-
fies the condition

h�dþ1;M
dþ1
BG i ¼ h�dþ1; N

dþ1
BG imod 1 (58)

ifMdþ1
BG and Ndþ1

BG have no boundaries andMdþ1
BG and Ndþ1

BG

are homotopic to each other (i.e., Mdþ1
BG and Ndþ1

BG can

deform into each other continuously.) As a comparison, a
(dþ 1)-cocycle �dþ1 are (dþ 1)-cochains that satisfy a
stronger condition,

h�dþ1;M
dþ1
BG i ¼ h�dþ1; N

dþ1
BG imod 1; (59)

if Mdþ1
BG � Ndþ1

BG is a boundary of a (dþ 2)-dimensional

cell complex.
Let us use Zdþ1

� ðBG;R=ZÞ to denote the set of
(dþ 1)-�-cocycle. Clearly, Zdþ1

� ðBG;R=ZÞ contains the
set of (dþ 1)-cocycles: Zdþ1ðBG;R=ZÞ � Zdþ1

� ðBG;
R=ZÞ, which in turn contains the set of (dþ 1)-
coboundaries: Bdþ1ðBG;R=ZÞ � Zdþ1ðBG;R=ZÞ. The �
cohomology class _Hdþ1

� ðBG;R=ZÞ is defined as
_H dþ1
� ðBG;R=ZÞ ¼ Zdþ1

� ðBG;R=ZÞ=Bdþ1ðBG;R=ZÞ;
(60)

i.e., two� cocycles are regard as equivalent if they are differ
by a coboundary. Clearly _Hdþ1

� ðBG;R=ZÞ contains
Hdþ1ðBG;R=ZÞ as a subgroup.

Hdþ1ðBG;R=ZÞ 	 Zdþ1ðBG;R=ZÞ=Bdþ1ðBG;R=ZÞ
� _Hdþ1

� ðBG;R=ZÞ: (61)

However, although in definition, _Hdþ1
� ðBG;R=ZÞ is more

general than Hdþ1ðBG;R=ZÞ, at the moment, we do not
know if _Hdþ1

� ðBG;R=ZÞ is strictly larger than Hdþ1ðBG;
R=ZÞ. It might be possible that _Hdþ1

� ðBG;R=ZÞ ¼
Hdþ1ðBG;R=ZÞ.

Using the � cocycles �dþ1 2 _Hdþ1
� ðBG;R=ZÞ, we can

construct generic locally null topological terms as

S
gauge
top ðMdþ1

BG Þ ¼ 2�h�dþ1;M
dþ1
BG i: (62)

Thus locally null topological terms in weak-coupling
gauge theories in (dþ 1)-dimensional space-time are
classified by _Hdþ1

� ðBG;R=ZÞ. Since the non–locally null
topological terms are classified by Free½H dþ1ðG;
R=ZÞ�, we obtain the following:

The gauge anomalies in bosonic weak-coupling

gauge theories with gauge group G in

d-dimensional space-time are classified by

Free½H dþ1ðG;R=ZÞ� � _Hdþ1
� ðBG;R=ZÞ.

The gauge anomalies in fermionic weak-coupling

gauge theories with gauge group G in

d-dimensional space-time are partially described

by Free½H dþ1ðG;R=ZÞ� � _Hdþ1
� ðBG;R=ZÞ.

As an Abelian group, _Hdþ1
� ðBG;R=ZÞ may contain

R=Z, Z, and/or Zn. Dis½ _Hdþ1
� ðBG;R=ZÞ� is the discrete

part of _Hdþ1
� ðBG;R=ZÞ, which is obtained by dropping the

R=Z parts. We can show that, for finite group G (see
Appendix D),

_H dþ1
� ðBG;R=ZÞ ¼ Dis½ _Hdþ1

� ðBG;R=ZÞ�;
_Hdþ1
� ðBG;R=ZÞ ¼ Tor½H dþ1ðG;R=ZÞ�

¼ H dþ1ðG;R=ZÞ:
(63)

VI. BOSONIC GAUGE ANOMALIES AND
FERMIONIC GAUGE ANOMALIES

Why does the�-cohomology theory developed above fail
to classify all the fermionic gauge anomalies? In this sec-
tion, wewill reveal the reason for this failure. Our discussion
also suggests that the �-cohomology theory may provide a
classification of all bosonic gauge anomalies.
We have been studying gauge anomalies in

d-dimensional space-time through a bulk gapped theory
in (dþ 1)-dimensional space-time. The anomalous gauge
theory is defined as the theory on the d-dimensional bound-
ary of the (dþ 1)-dimensional bulk. In our discussion, we
have made the following assumption. We first view the
gauge field as nondynamical probe field (i.e., take the
gauge coupling to zero). When the (dþ 1)-dimensional
bulk has several disconnected boundaries, we assume that
the total low energy Hilbert space of the matter fields for all
the boundaries is a direct product of the low energy Hilbert
spaces for each connected boundary. So the total low
energy Hilbert space of the matter fields can be described
by independent matter degrees of freedom on each bound-
ary. In this case, when we glue two boundaries together,
other boundary will not be affected. This assumption
allows us to use cochains in the classifying space to
describe the low-energy effective theory with boundaries.
In the following, we like to argue that the above assump-

tion is valid for bosonic theories. This is because when we
studied gauge anomalies, we made an important implicit
assumption: we only study pure gauge anomalies. Had we
broken the gauge symmetry, we would be able to have a
nonperturbative definition of the theory in the same dimen-
sion. This implies that the matter degrees of freedom in the
(dþ 1)-dimensional bulk form a short-range entangled
state [48] with a trivial intrinsic topological order. For
bosonic systems, short-range entangled bulk state implies
that the total Hilbert space for all the boundaries is a direct
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product of the Hilbert spaces for each connected boundary,
for any bulk gauge configurations. This result can be
obtained directly from the canonical form of the bosonic
short-range entangled states suggested in Refs. [37,38].

However, above argument breaks down for fermionic
systems, as demonstrated by the 2þ 1D pþ ip=p� ip
fermionic superconductor with Z2 � Z2 symmetry. The
edge state of the pþ ip=p� ip superconductor is de-
scribed by Eq. (19), which has a Z2 � Z2 fermionic gauge
anomaly. If we break the Z2 � Z2 symmetry down to the
fermion parity symmetry, the 1þ 1D theory (19) can
indeed be defined on 1D lattice. Thus the pþ ip=p� ip
superconductor has no intrinsic topological order.
However, we do not know the canonical form for such
short-range entangled fermionic state. The bulk short-
range entanglement does not imply that the total Hilbert
space for all the boundaries is a direct product of the
Hilbert spaces for each connected boundary, for any bulk
Z2 � Z2 gauge configurations. We believe this is the reason
why the cohomology theory fail to described all the
fermionic gauge anomalies.

VII. THE PRECISE RELATION BETWEEN GAUGE
ANOMALIES AND SPT STATES

Despite the very close connection between gauge anoma-
lies and SPT states, different gauge anomalies and different
SPT phases do not have a one-to-one correspondence.

Remember that the gauge anomaly is a property of a low
energy weak-coupling gauge theory. It is the obstruction to
have a nonperturbative definition (i.e., a well-defined UV
completion) of the gauge theory in the same dimension.
While a SPT phase is a phase of short-range entangled
states with a symmetry.

To see the connection between gauge anomalies and
SPT phases, we note that the low energy boundary excita-
tions of a SPT state in dþ 1 space-time dimensions can
always be described by a pure boundary theory, since the
bulk SPT states are short-range entangled. However, the
on-site symmetry of the bulk state must become a non-on-
site symmetry on the boundary, if the bulk state has a
nontrivial SPT order. If we try to gauge the non-on-site
symmetry, it will lead to an anomalous gauge theory in d
space-time dimensions.

Every gauge anomaly can be understood this way. In
other words, every gauge anomaly correspond a SPT state
which give rise to a non-on-site symmetry on the boundary.
However, some times, two different gauge anomalies may
correspond to two SPT states that can be smoothly con-
nected to each other. For example, 3þ 1D Uð1Þ gauge
topological terms

R
	

2!ð2�Þ2 @�A�@�A��
���� gives rise to

different 2þ 1DUð1Þ gauge anomalies for different values
of 	 (see Sec. III E). However, the Uð1Þ gauge topological
terms with different values of 	 correspond to SPT states
that can connect to each other without phase transition.
Thus, the different 2þ 1D Uð1Þ gauge anomalies

correspond to the same SPT phase. The gauge anomalies
and the SPT phases in one-higher dimension are related by
an exact sequence (a many-to-one mapping):

d-dimensional gauge anomalies of gauge groupG

!dþ 1-dimensional SPT phases of symmetry groupG

!0:

Using such a relation between gauge anomalies and SPT
phases, we can introduce the notions of gapless gauge
anomalies and gapped gauge anomalies. We know that
some SPT states must have gapless boundary excitations
if the symmetry is not broken at the boundary. We call
those gauge anomalies that map into such SPT states as
‘‘gapless gauge anomalies’’. We call the gauge anomalies
that map into the SPT states that can have a gapped
boundary states without the symmetry breaking ‘‘gapped
gauge anomalies’’.
It appears that all the ABJ anomalies are gapless gauge

anomalies. The 2þ 1D continuous Uð1Þ gauge anomalies
discussed above (see Sec. III E) are examples of gapped
gauge anomalies, which are non-ABJ anomalies. The first
discrete 2þ 1D Uð1Þ � ðUð1Þ 2Z2Þ gauge anomaly dis-
cussed in Sec. III G 3 is an example of gapless gauge
anomaly, which is also a non-ABJ anomaly. All the 1þ 1D
gauge anomalies are gapless gauge anomalies, since 2þ 1D
SPT state always have gapless edge excitations if the
symmetry is not broken [37].

VIII. NONPERTURBATIVE DEFINITION OF
CHIRAL GAUGE THEORIES

In this section, we will discuss an application of the
deeper understanding of gauge anomalies discussed in
this paper: a lattice nonperturbative definition of any
anomaly-free chiral gauge theories. This idea can be used
to construct a lattice nonperturbative definition of the
SOð10Þ grant unification chiral gauge theory [79].

A. Introduction

The Uð1Þ � SUð2Þ � SUð3Þ standard model
Refs. [80–85] is the theory which is believed to describe
all elementary particles (except the gravitons) in nature.
The standard model is a chiral gauge theory where the
SUð2Þ gauge fields couple differently to right-/left-hand
fermions. For a long time, we only know a perturbative
definition of the standard model via the perturbative ex-
pansion of the gauge coupling constant. The perturbative
definition is not self consistent since the perturbative ex-
pansion is known to diverge. In this section, we would like
propose a nonperturbative definition of any anomaly-free
chiral gauge theories. We will construct well-regulated
Hamiltonian quantum models [86] whose low-energy
effective theory is any anomaly-free chiral gauge theory.
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Our approach will apply to the standard model if the
standard model is free of all anomalies.

There are many previous researches that try to give
chiral gauge theories a nonperturbative definition. There
are lattice gauge theory approaches, [87] which fail since
they cannot reproduce chiral couplings between the gauge
field and the fermions. There are domain-wall fermion
approaches Refs. [88,89]. But the gauge fields in the
domain-wall fermion approaches propagate in one-higher
dimension: 4þ 1 dimensions. There are also overlap-
fermion approaches [90–93]. However, the path integral
in overlap-fermion approaches may not describe a
Hamiltonian quantum theory (for example, the total
Hilbert space in the overlap-fermion approaches, if it ex-
ists, may not have a finite dimension, even for a space-
lattice of a finite size).

Our construction has a similar starting point as the
mirror fermion approach discussed in Refs. [94–97].
However, later work either fail to demonstrate [98–100]
or argue that it is almost impossible [101] to use mirror
fermion approach to nonperturbatively define anomaly-
free chiral gauge theories. Here, we will argue that the
mirror fermion approach actually works. We are able to use
the defining connection between the chiral gauge theories
in d-dimensional space-time and the SPT states in (dþ 1)-
dimensional space-time to show that, if a chiral gauge
theory is free of all the anomalies, then we can construct
a lattice gauge theory whose low energy effective theory
reproduces the anomaly-free chiral gauge theory. We show
that lattice gauge theory approaches actually can define
anomaly-free chiral gauge theories nonperturbatively with-
out going to one-higher dimension, if we include a proper
direct interactions between lattice fermions.

B. A nonperturbative definition of any anomaly-free
chiral gauge theories

Let us start with a SPT state in (dþ 1)-dimensional
space-time with a on-site symmetry G [see Fig. 3(a)].
We assume that the SPT state is described by a cocycle

� 2 H dþ1ðG;R=ZÞ. On the d-dimensional boundary, the
low energy effective theory will have a non-on-site sym-
metry (i.e., an anomalous symmetry) G. Here we will
assume that the d-dimensional boundary excitations are
gapless and do not break the symmetryG. After ‘‘gauging’’
the on-site symmetry G in the (dþ 1)-dimensional bulk,
we get a bosonic chiral gauge theory on the d-dimensional
boundary whose anomaly is described by the cocycle �.
Then let us consider a stacking of a few bosonic SPT

states in (dþ 1)-dimensional space-time described by co-
cycles �i 2 H dþ1ðG;R=ZÞwhere the interaction between
the SPT states are weak [see Fig. 3(b)]. We also assume
that

P
i�i ¼ 0. Because the stacked system has a trivial

SPT order, if we turn on a proper G-symmetric interaction
between different layers on one of the two boundaries, we
can fully gap the boundary excitations in such a way that
the ground state is not degenerate. (Such a gapping process
also do not break the G symmetry.) Thus the gapping
process does not leave behind any low energy degrees of
freedom on the gapped boundary. Now we ‘‘gauge’’ the
on-site symmetry G in the (dþ 1)-dimensional bulk. The
resulting system is a nonperturbative definition of
anomaly-free bosonic chiral gauge theory described by �i

with
P

�i ¼ 0. Since the thickness l of the (dþ 1)-
dimensional bulk is finite (although l can be large so that
the two boundaries are nearly decoupled), the system
actually has a d-dimensional space-time. In particular,
due to the finite l, the gapless gauge bosons of the gauge
group G are gapless excitations on the d-dimensional
space-time.
The same approach also works for fermionic systems.

We can start with a few fermionic SPT states in (dþ 1)-
dimensional space-time described by super-cocycles �i

(Ref. [51]) that satisfy
P

�i ¼ 0 (i.e., the combined
fermion system is free of all the gauge anomalies). If we
turn on a properG-symmetric interaction on one boundary,
we can fully gap the boundary excitations in such a way
that the ground state is not degenerate and does break the
symmetry G. In this case, if we gauge the bulk on-site
symmetry, we will get a nonperturbative definition of
anomaly-free fermionic chiral gauge theory.

C. A nonperturbative definition of some anomalous
chiral gauge theories

In the above nonperturbative definition of some
anomaly-free chiral gauge theories, the lattice gauge
theories reproduce all the low energy properties of the
anomaly-free chiral gauge theories, including all the low
energy particle-like excitations and degenerate ground
states. This is because the gapped mirror sector on the
other boundary has a nondegenerate ground state.
However, for the application to high energy physics, in

particular, for the application to nonperturbatively define
the standard model, we only need the nonperturbatively
defined theory to reproduce all the low energy particle-like
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FIG. 3 (color online). (a) A SPT state described by a cocycle
� 2 H dþ1ðG;R=ZÞ in (dþ 1)-dimensional space-time. After
‘‘gauging’’ the on-site symmetry G, we get a bosonic chiral
gauge theory on one boundary and the ‘‘mirror’’ of the bosonic
chiral gauge theory on the other boundary. (b) A stacking of a
few SPT states in (dþ 1)-dimensional space-time described by
cocycles �i. If

P
i�i ¼ 0, then after ‘‘gauging’’ the on-site

symmetry G, we get a anomaly-free chiral gauge theory on
one boundary. We also get the ‘‘mirror’’ of the anomaly-free
chiral gauge theory on the other boundary, which can be gapped
without breaking the ‘‘gauge symmetry’’.
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excitations. In this case, the gapped mirror sector on the
other boundary can have degenerate ground states and
nontrivial topological orders.

If we only need the nonperturbatively defined theory to
reproduce all the low energy particle-like excitations, we
can even define certain anomalous chiral gauge theories
nonperturbatively, following the method outlined in the
previous section. Using the notions of ‘‘gapless gauge
anomalies’’ and ‘‘gapped gauge anomalies’’ introduced
in the last section, we see that we can use a lattice gauge
theory to give nonperturbative definition of an anomalous
chiral gauge theory, if the chiral gauge theory has a
‘‘gapped gauge anomaly.’’

Thus all the chiral gauge theories with the ABJ anoma-
lies do not have a nonperturbative definition. The 2þ 1D
chiral gauge theories with the first discrete 2þ 1D Uð1Þ �
ðUð1Þ 2Z2Þ gauge anomaly discussed in Sec. III G 3 also do
not have a nonperturbative definition. However, many
other anomalous chiral gauge theories have ‘‘gapped gauge
anomalies’’ and they do have a nonperturbative definition.
The gapped boundary states of those anomalous chiral
gauge theories have nontrivial topological orders and
ground state degeneracies.

IX. SUMMARY

In this paper, we introduced a �-cohomology
theory to systematically describe gauge anomalies. We
propose that bosonic gauge anomalies in d-dimensional
space-time for gauge group G are classified by the ele-
ments in Free½H dþ1ðG;R=ZÞ� � _Hdþ1

� ðBG;R=ZÞ, where
_Hdþ1
� ðBG;R=ZÞ is the �-cohomology class of the classi-

fying space BG of group G. We show that the
�-cohomology class _Hdþ1

� ðBG;R=ZÞ contains the topo-
logical cohomology class Hdþ1

� ðBG;R=ZÞ as a subgroup.
The �-cohomology theory also apply to fermion

systems, where Free½H dþ1ðG;R=ZÞ� � _Hdþ1
� ðBG;R=ZÞ

describes some of the fermionic gauge anomalies. The
gauge anomalies for both continuous and discrete groups
are treated at the same footing.

Motivated by the �-cohomology theory and the closely
related group cohomology theory, we studied many ex-
amples of non-ABJ anomalies. Many results are obtained,
which are stressed by the framed boxes.

The close relation between gauge anomalies and SPT
states in one-higher dimension allows us to give a non-
perturbative definition of any anomaly-free chiral gauge
theory in terms of lattice gauge theories. In this paper, we
outline a generic construction to obtain such a nonpertur-
bative definition.

The close relation between gauge anomalies and
SPT states also allows us to gain a deeper understanding
for both gauge anomalies and SPT states. Such a deeper
understanding suggests that gravitational anomalies are
classified by topological orders [46,47] (i.e., patterns of
long-range entanglement, see Ref. [48]) in one-higher

dimension. To see such a connection, we like to point out
that if a theory cannot be nonperturbatively defined in the
same dimension even after we break all the gauge symme-
tries, then the theory should have an anomaly that is
beyond the gauge anomaly. This more general anomaly
can be identified as gravitational anomaly. A theory with
gravitational anomaly can only appear as an effective
theory on the boundary of a bulk theory in one-higher
dimension, which has a nontrivial intrinsic topological
order [46,47]. This line of thinking suggests that the gravi-
tational anomalies are classified by topological orders
(i.e., patterns of long-range entanglement [48]) in one-
higher dimension, leading to a new fresh point of view
on gravitational anomalies.
We also like to remark that in Ref. [55], quantized

topological terms in d-space-time-dimensional weak-
coupling gauge theory are systematically constructed
using the elements inH dþ1ðG;ZÞ. The study in this paper
shows that more general quantized topological terms
can be constructed using the discrete elements in
Free½H dðG;R=ZÞ� � _Hd

�ðBG;R=ZÞ.
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APPENDIX A: THE NON-ABJ GAUGE
ANOMALIES AND THE GLOBAL

GAUGE ANOMALIES

The non-ABJ gauge anomalies described by
_Hdþ1
� ðBG;R=ZÞ is closely related to bosonic global gauge

anomalies. The definition of bosonic global gauge anoma-
lies is very similar to the definition of the fermionic SUð2Þ
global gauge anomaly first introduced byWitten [3]. In this
section, wewill followWitten’s idea to give a definitions of
bosonic global gauge anomalies for continuous gauge
groups [4]. We then discuss the relation between the non-
ABJ gauge anomalies and newly defined bosonic global
gauge anomalies, for the case of continuous gauge groups.
We like to point out that the bosonic global gauge

anomalies defined here are potential global gauge anoma-
lies. They may or may not be realizable by boson systems.

1. A definition of bosonic/fermionic global gauge
anomalies for continuous gauge groups

We use the gauge noninvariance of the partition function
under the ‘‘large’’ gauge transformations to define the
global gauge anomalies. Let us consider a weak-coupling
gauge theory in closed d-dimensional space-time Sd which
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has a spherical topology. We also assume a continuous
gauge group G. If �dðGÞ is nontrivial, it means that there
are exist nontrivial ‘‘large’’ gauge transformations that
does not connect to the identity gauge transformation
(i.e., the trivial gauge transformation). Note that �dðGÞ
forms a group. Under a ‘‘large’’ gauge transformation,
the partition function may change a phase

Z½A0
�� ¼ ei	Z½A��; A0

� ¼ g�1A�g� ig�1@�g; (A1)

where gðxÞ is a nontrivial map fromMd to G. The different
choices of the phases ei	 correspond to different one-
dimensional representations of �dðGÞ, which are classified
by first group cohomology classes H 1½�dðGÞ;R=Z�. So
the potential global gauge anomalies are described by
H 1½�dðGÞ;R=Z�.

The potential global gauge anomalies in

d-dimensional space-time and for gauge group G
are described by H 1½�dðGÞ;R=Z�.

Since �dðGÞ is an Abelian group, we have
H 1½�dðGÞ;R=Z� ¼ �dðGÞ. In Table I, we list �dðGÞ for
some groups. For a more general discussion of global
gauge anomalies along this line of thinking, see Ref. [4].

We will refer those global gauge anomalies that appear
in a pure bosonic systems as bosonic global gauge anoma-
lies. Wewill refer those global gauge anomalies that appear
in a fermionic systems as fermionic global gauge anoma-
lies. Witten’s SUð2Þ global anomaly is a special case of
fermionic global gauge anomalies, which exists because
�4ðSUð2ÞÞ ¼ Z2. So for a fermionic SUð2Þ gauge theory
defined on space-time manifold S4, its partition function
Z½A�� may change sign as we make a large SUð2Þ gauge
transformation:

Z½A0
�� ¼ �Z½A��; A0

� ¼ g�1A�g� ig�1@�g;

gðxÞ 2 G; (A2)

where gðxÞ is a nontrivial map from S4 to SUð2Þ.
This is described by the nontrivial element in
H 1½�4½SUð2Þ�;R=Z�.

2. The non-ABJ gauge anomalies and the bosonic
global gauge anomalies

We note that�dðGÞ also describes the classes ofG gauge
configurations on Sdþ1 that cannot be continuously
deformed into each others. Those classes of G gauge
configurations on Sdþ1 correspond to classes of embedding
Sdþ1 ! BG that cannot be continuously deformed into
each others. This picture explains a mathematical result
�dðGÞ ¼ �dþ1ðBGÞ. So the potential global gauge
anomalies in d-dimensional space-time are defined as
one-dimensional representations H 1½�dþ1ðBGÞ;R=Z�.
Each � cocycle �dþ1 in _Hdþ1

� ðBG;R=ZÞ induces a
one-dimensional representation of �dþ1ðBGÞ via

h�dþ1; S
dþ1
BG imod 1; (A3)

where Sdþ1
BG is an embedding Sdþ1 ! BG. Thus we have a

map

_H dþ1
� ðBG;R=ZÞ ! H 1½�dþ1ðBGÞ;R=Z�: (A4)

The above map represents the relation between the
non-ABJ gauge anomalies described by _Hdþ1

� ðBG;R=ZÞ
and the global gauge anomalies described by
H 1ð�dþ1ðBGÞ;R=ZÞ. If a one-dimensional representation
of �dþ1ðBGÞ cannot be induced by any� cocycle, then the
corresponding global gauge anomaly is not realizable by
local bosonic systems.

APPENDIX B: _Hd
�ðBG;R=ZÞ ¼ H dðG;R=ZÞ

FOR FINITE GROUPS

WhenG is finite, any closed complexMBG in BG can be
deformed continuously into a canonical form where all the
vertices of MBG is on the same point in BG. All the edges
ofMBG is mapped to�1ðBGÞ ¼ G. So each edge ofMBG is
labeled by a group element. All the canonical complex
MBG, with all the vertices on the same point and with fixed
the group elements on all the edges, can deform into each
other, since �nðBGÞ ¼ 0 for n > 1 if G is finite. In this
case, an evaluation of a � cocycle on MBG is a function of
the group elements on the edges. Such a function is a group
cocycle. This way we map a � cocycle to a group cocycle.
We also note that the group cocycle condition implies

that the evaluation on any d-sphere is trivial. So a group
cocycle is also a � cocycle. The fact that � cocycle ¼
group cocycle for finite groups allows us to show
_Hd
�ðBG;R=ZÞ ¼ H dðG;R=ZÞ.

APPENDIX C: RELATION BETWEEN
Hdþ1ðBG;ZÞ AND H d

BðG;R=ZÞ
We can show that the topological cohomology of the

classifying space, Hdþ1ðBG;ZÞ, and the Borel-group
cohomology, H d

BðG;R=ZÞ, are directly related:

Hdþ1ðBG;ZÞ ’ H d
BðG;R=ZÞ: (C1)

TABLE I. A list of homotopy groups �dðGÞ which describe
the global gauge anomalies in d space-time dimensions.

�d: Gnd 1 2 3 4 5 6

Uð1Þ Z 0 0 0 0 0

SUð2Þ 0 0 Z Z2 Z2 Z12

SUð3Þ 0 0 Z 0 Z Z6

SUð5Þ 0 0 Z 0 Z 0

SOð3Þ Z2 0 Z Z2 Z2 Z12

SOð10Þ Z2 0 Z 0 0 0

Spinð10Þ 0 0 Z 0 0 0
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This result is obtained from Ref. [102], p. 16, where it is
mentioned in Remark IV.16(3) that H d

BðG;RÞ ¼ Z1

[there, H d
BðG;MÞ is denoted as H d

MooreðG;MÞ which is
equal toH d

SMðG;MÞ]. It is also shown in Remark IV.16(1)

and in Remark IV.16(3) that H d
SMðG;ZÞ ¼ HdðBG;ZÞ

and H d
SMðG;R=ZÞ ¼ Hdþ1ðBG;ZÞ, (where G can have

a nontrivial action on R=Z and Z, and Hdþ1ðBG;ZÞ is the
usual topological cohomology on the classifying space
BG of G). Therefore, we have

H d
BðG;R=ZÞ ¼ H dþ1

B ðG;ZÞ ¼ Hdþ1ðBG;ZÞ;
H d

BðG;RÞ ¼ Z1; d > 0: (C2)

These results are valid for both continuous groups and
discrete groups, as well as for G having a nontrivial action
on the modules R=Z and Z.

APPENDIX D: GROUP COHOMOLOGY H �
BðG;MÞ

AND TOPOLOGICAL COHOMOLOGY H�ðBG;MÞ
ON THE CLASSIFYING SPACE

First, we can show that

Hdþ1ðBG;ZÞ ’ H d
BðG;R=ZÞ; (D1)

where H d
BðG;R=ZÞ is the Borel group cohomology

classes. In the main text of this paper, we drop the subscript
B. This result is obtained from Ref. [102], p. 16, where it is
mentioned in Remark IV.16(3) that H d

BðG;RÞ ¼ 0 (there,
H d

BðG;MÞ is denoted as H d
MooreðG;MÞ which is equal to

H d
SMðG;MÞ). It is also shown in Remark IV.16(1) and in

Remark IV.16(3) that H d
SMðG;ZÞ ¼ HdðBG;ZÞ and

H d
SMðG;R=ZÞ ¼ Hdþ1ðBG;ZÞ, (whereG can have a non-

trivial action on R=Z and Z, and Hdþ1ðBG;ZÞ is the usual
topological cohomology on the classifying space BG of
G). Therefore, we have

H d
BðG;R=ZÞ ¼ H dþ1

B ðG;ZÞ ¼ Hdþ1ðBG;ZÞ;
H d

BðG;RÞ ¼ 0; d > 0: (D2)

These results are valid for both continuous groups and
discrete groups, as well as for G having a nontrivial action
on the modules R=Z and Z. We see that, for integer
coefficient, H d

BðG;ZÞ and HdðBG;ZÞ are the same.
To see howH d

BðG;R=ZÞ and HdðBG;R=ZÞ are related,
we can use the universal coefficient theorem (E10) to
compute HdðBG;R=ZÞ:
HdðBG;R=ZÞ ¼ Con½HdðBG;ZÞ� � Tor½Hdþ1ðBG;ZÞ�

¼ Con½H d
BðG;ZÞ� � Tor½H dþ1

B ðG;ZÞ�
¼ Con½H d�1

B ðG;R=ZÞ�
� Tor½H d

BðG;R=ZÞ�; (D3)

where Con½Z� ¼ R=Z, Con½Zn� ¼ 0, and Con½M1 �
M2� ¼ Con½M1� � Con½M2�.

For d ¼ odd, we also have

Free½HdðBG;ZÞ� ¼ Free½H d�1
B ðG;R=ZÞ� ¼ 0;

HdðBG;R=ZÞ ¼ Tor½Hdþ1ðBG;ZÞ�:
¼ Tor½H d

BðG;R=ZÞ�: (D4)

For finite group G and any d, we have

Free½HdðBG;ZÞ� ¼ Free½H d�1
B ðG;R=ZÞ� ¼ 0;

HdðBG;R=ZÞ ¼ Tor½Hdþ1ðBG;ZÞ�;
¼ Tor½H d

BðG;R=ZÞ�: (D5)

APPENDIX E: THE KÜNNETH FORMULA

The Künneth formula is a very helpful formula that
allows us to calculate the cohomology of chain complex
X� X0 in terms of the cohomology of chain complex X
and chain complex X0. The Künneth formula is given by
(see Ref. [103], p. 247)

HdðX � X0;M �R M0Þ
’ ½�d

k¼0H
kðX;MÞ �R Hd�kðX0;M0Þ�

� ½�dþ1
k¼0Tor

R
1 ðHkðX;MÞ; Hd�kþ1ðX0;M0ÞÞ�: (E1)

Here R is a principle ideal domain and M, M0 are
R-modules such that TorR1 ðM;M0Þ ¼ 0. We also require
that M0 and HdðX0;ZÞ are finitely generated, such as
M0 ¼ Z � � � � � Z � Zn � Zm � � � � .
A R-module is like a vector space over R (i.e., we can

‘‘multiply’’ a vector by an element of R.) For more details
on principal ideal domain and R-module, see the corre-
sponding Wiki articles. Note that Z and R are principal
ideal domains, while R=Z is not. Also, R and R=Z are not
finitely generate R-modules if R ¼ Z. The Künneth for-
mula works for topological cohomology where X and X0
are treated as topological spaces. The Künneth formula
also works for group cohomology, where X and X0 are
treated as groups, X ¼ G and X0 ¼ G0, provided that G0 is
a finite group. However, the above Künneth formula does
not apply for Borel-group cohomology when X0 ¼ G0 is a
continuous group, since in that case H d

BðG0;ZÞ is not
finitely generated.
The tensor-product operation�R and the torsion-product

operation TorR1 have the following properties:

A �Z B ’ B �Z A;

Z �Z M ’ M �Z Z ¼ M;

Zn �Z M ’ M �Z Zn ¼ M=nM;

Zn �Z R=Z ’ R=Z �Z Zn ¼ 0;

Zm �Z Zn ¼ Zhm;ni;

ðA � BÞ �R M ¼ ðA �R MÞ � ðB �R MÞ;
M �R ðA � BÞ ¼ ðM �R AÞ � ðM �R BÞ;

(E2)
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and

TorR1 ðA; BÞ ’ TorR1 ðB; AÞ;
TorZ1 ðZ;MÞ ¼ TorZ1 ðM;ZÞ ¼ 0;

TorZ1 ðZn;MÞ ¼ fm 2 Mjnm ¼ 0g;
TorZ1 ðZn;R=ZÞ ¼ Zn;

TorZ1 ðZm;ZnÞ ¼ Zhm;ni;

TorR1 ðA � B;MÞ ¼ TorR1 ðA;MÞ � TorR1 ðB;MÞ;
TorR1 ðM; A � BÞ ¼ TorR1 ðM; AÞ � TorR1 ðM; BÞ;

(E3)

where hm; ni is the greatest common divisor of m and n.
These expressions allow us to compute the tensor-product
�R and the torsion-product TorR1 .

As the first application of Künneth formula, we like to
use it to calculate H�ðX0;MÞ from H�ðX0;ZÞ, by choosing
R ¼ M0 ¼ Z. In this case, the condition TorR1 ðM;M0Þ ¼
TorZ1 ðM;ZÞ ¼ 0 is always satisfied. So we have

HdðX�X0;MÞ’½�d
k¼0H

kðX;MÞ�ZH
d�kðX0;ZÞ�

�½�dþ1
k¼0Tor

Z
1 ðHkðX;MÞ;Hd�kþ1ðX0;ZÞÞ�:

(E4)

The above is valid for topological cohomology. It is also
valid for group cohomology:

H dðG�G0;MÞ ’ ½�d
k¼0H

kðG;MÞ �Z H d�kðG0;ZÞ�
� ½�dþ1

k¼0Tor
Z
1 ðH kðG;MÞ;

H d�kþ1ðG0;ZÞÞ�; (E5)

provided that G0 is a finite group. Using Eq. (D2), we can
rewrite the above as

H dðG�G0;MÞ ’ H dðG;MÞ � ½�d�2
k¼0H

kðG;MÞ
�Z H d�k�1ðG0;R=ZÞ�
� ½�d�1

k¼0Tor
Z
1 ðH kðG;MÞ;

H d�kðG0;R=ZÞÞ�; (E6)

where we have used

H 1ðG0;ZÞ ¼ 0: (E7)

If we further choose M ¼ R=Z, we obtain

H dðG�G0;R=ZÞ
’H dðG;R=ZÞ�H dðG0;R=ZÞ

�½�d�2
k¼1H

kðG;R=ZÞ�ZH d�k�1ðG0;R=ZÞ�
�½�d�1

k¼1Tor
Z
1 ðH kðG;R=ZÞ;H d�kðG0;R=ZÞÞ�; (E8)

where G0 is a finite group.
We can further choose X to be the space of one point

(or the trivial group of one element) in Eq. (E4) or Eq. (E5)
and use

HdðX;MÞÞ ¼
(
M; if d ¼ 0;

0; if d > 0;
(E9)

to reduce Eq. (E4) to

HdðX;MÞ ’ M �Z HdðX;ZÞ � TorZ1 ðM; Hdþ1ðX;ZÞÞ;
(E10)

where X0 is renamed as X. The above is a form of the
universal coefficient theorem which can be used to calcu-
late H�ðX;MÞ from H�ðX;ZÞ and the module M.
The universal coefficient theorem works for topological
cohomology where X is a topological space. The universal
coefficient theorem also works for group cohomology
where X is a finite group.
Using the universal coefficient theorem, we can rewrite

Eq. (E4) as

HdðX � X0;MÞ ’ �d
k¼0H

k½X;Hd�kðX0;MÞ�: (E11)

The above is valid for topological cohomology. It is also
valid for group cohomology,

H dðG�G0;MÞ ’ �d
k¼0H

k½G;H d�kðG0;MÞ�; (E12)

provided that both G and G0 are finite groups.
We may apply the above to the classifying spaces of

group G and G0. Using BðG�G0Þ ¼ BG� BG0, we find

Hd½BðG�G0Þ;M� ’ �d
k¼0H

k½BG;Hd�kðBG0;MÞ�:
Choosing M ¼ R=Z and using Eq. (D2), we have

H d
BðG�G0;R=ZÞ ¼ Hdþ1½BðG�G0Þ;Z�

¼ �dþ1
k¼0H

k½BG;Hdþ1�kðBG0;ZÞ�
¼ H d

BðG;R=ZÞ �H d
BðG0;R=ZÞ

� �d�1
k¼1H

k½BG;H d�k
B ðG0;R=ZÞ�;

(E13)

where we have used H1ðBG0;ZÞ ¼ 0. Using

HdðBG;ZÞ ¼ H d
BðG;ZÞ;

HdðBG;ZnÞ ¼ H d
BðG;ZnÞ; (E14)

we can rewrite the above as

H dðGG� SG;R=ZÞ ¼ �d
k¼0H

k½SG;H d�kðGG;R=ZÞ�
¼ �d

k¼0H
k½GG;H d�kðSG;R=ZÞ�:

(E15)

Equation (E15) is valid for any groups G and G0.

APPENDIX F: LYNDON-HOCHSCHILD-SERRE
SPECTRAL SEQUENCE

The Lyndon-Hochschild-Serre spectral sequence
[104,105] allows us to understand the structure of
H dðGG⋌SG;R=ZÞ to a certain degree. (Here GG⋌SG
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is a group extension of SG byGG: SG ¼ ðGG⋌SGÞ=GG.)
We find that H dðGG⋌SG;R=ZÞ, when viewed as an
Abelian group, contains a chain of subgroups,

f0g ¼ Hdþ1 � Hd � � � � � H1 � H0

¼ H dðGG⋌SG;R=ZÞ; (F1)

such that Hk=Hkþ1 is a subgroup of a factor
group of H k½SG;H d�kðGG;R=ZÞ�, i.e., H k½SG;
H d�kðGG;R=ZÞ� contains a subgroup �k, such that

Hk=Hkþ1 � H k½SG;H d�kðGG;R=ZÞ�=�k;

k ¼ 0; � � � ; d: (F2)

Note that SG has a nontrivial action on H d�kðGG;R=ZÞ
as determined by the structure 1 ! GG ! GG⋌SG !
SG ! 1. We also have

H0=H1 � H 0½SG;H dðGG;R=ZÞ�;
Hd=Hdþ1 ¼ Hd ¼ H dðSG;R=ZÞ=�d: (F3)

In other words, all the elements inH dðGG⋌SG;R=ZÞ can
be one-to-one labeled by ðx0; x1; . . . ; xdÞ with

xk 2 Hk=Hkþ1 � H k½SG;H d�kðGG;R=ZÞ�=�k: (F4)

The above discussion implies that we can also use
ðm0; m1; . . . ; mdÞ with

mk 2 H k½SG;H d�kðGG;R=ZÞ� (F5)

to label all the elements in H dðG;R=ZÞ. However, such a
labeling scheme may not be one to one, and it may happen
that only some of ðm0; m1; . . . ; mdÞ correspond to the ele-
ments in H dðG;R=ZÞ. But, on the other hand, for every
element in H dðG;R=ZÞ, we can find a ðm0; m1; . . . ; mdÞ
that corresponds to it.
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