
Fully renormalized stress tensor correlator in flat space

Markus B. Fröb1,2,*
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We present a general procedure to renormalize the stress tensor two-point correlation function on a

Minkowski background in position space. The method is shown in detail for the case of a free massive

scalar field in the standard Minkowski vacuum state, and explicit expressions are given for the counter-

terms and finite parts, which are in full accordance with earlier results for the massless case. For the

general case in position space, only regularized—but not renormalized—results have been obtained

previously. After a Fourier transformation to momentum space, we also check agreement with a previous

calculation there. We generalize our results to general Hadamard states. Furthermore, the proposed

procedure can presumably be generalized to the important case of an inflationary spacetime background,

where the transition to momentum space is in general not possible.
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I. INTRODUCTION

The fundamental vertex of the perturbative interaction
between any type of matter and gravity is given by habT

ab,
where hab is the graviton field (i.e., the perturbation of a
fixed background) and Tab is the stress tensor of the matter
fields under study. To calculate interaction processes
between matter and n gravitons, it is therefore necessary
to obtain n-point functions of the stress tensor, and if
gravity interacts with a large number of matter fields, those
processes will dominate over graviton self-interactions
(this fact can be formalized by treating N matter fields in
an 1=N expansion [1,2]).

However, because of their extreme smallness, quantum
effects of gravity are very difficult to detect. Except maybe
for analogue models of gravity [3], the only field where we
can realistically hope to see any quantum effects is cosmol-
ogy, where precision measurements became recently avail-
able [4–6]. Quantum fluctuations in the early Universe are
believed to have seeded structure formation, and a conve-
nient cosmological observable is the power spectrum of
primordial gravitational perturbations which manifests
itself through temperature fluctuations of the cosmological
microwave background. Therefore, obtaining quantum cor-
rections to this power spectrum is an important task, and a
basic building block is the two-point function of the stress
tensor of matter fields, most importantly of inflaton fields.
The general case is of course hard, and so in this paper we
restrict ourselves to Minkowski spacetime and hope to
generalize this to curved backgrounds in a later work. On
the other hand, the proper definition of stress tensor n-point
functions is also interesting from a mathematical point of
view, and having a very concrete procedure may help with a
following precise mathematical investigation.

The first obstacle one faces is that the n-point functions
obtained in the naive way by taking the expectation value
of n stress tensor operators are not well-defined distribu-
tions, since they involve products of fields at the same
space-time point. One can improve the situation by defin-
ing a renormalized stress tensor operator which has a finite
expectation value, or, alternatively, by working with con-
nected n-point functions (n > 1), which gives a finite result
as long as all points in the correlation function are not
lightlike related to each other. However, this is still not a
well-defined distribution since there remain divergences
for lightlike separations which have to be subtracted by
counterterms (e.g., for the two-point function, those are
terms quadratic in the curvature tensors), and the extraction
of those divergences and the exhibition of the finite part is
in general a hard problem. Only for the one-point function,
i.e., the expectation value of the stress tensor, the renor-
malization for a generic Hadamard state in a generic
curved background is known in full generality [7–11]
(this can be used to define the above-mentioned renormal-
ized stress tensor operator). For the two-point function,
only specific examples are known where one can properly
separate divergent and finite parts and perform renormal-
ization, which include scalar fields on a Minkowski back-
ground in momentum space [12], massless conformally
coupled scalars on conformally flat backgrounds [13,14],
and massless minimally coupled scalars in de Sitter space
[15], while higher n-point functions become tremendously
complicated (see Refs. [16–20] for examples in conformal
theories).
In this paper, we present a procedure to renormalize the

two-point correlation function of the stress tensor in
Minkowski spacetime in a relatively easy way. We explain
all steps on the concrete example of a massive, minimally
coupled scalar field. The method works in position space,
and so we expect it to be more easily generalizable to*mfroeb@ffn.ub.edu
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curved spaces than momentum space techniques which are
ubiquitous in Minkowski space quantum field theory
(QFT) calculations. In the first section, we give a very
short summary of Mellin–Barnes integrals which are cen-
tral to our method and derive some integral formulas which
are needed later.1 The next section gives the first step of our
procedure, which is the derivation of the (connected) stress
tensor two-point function for a massive scalar field. This
correlation function is regulated in n dimensions and given
in Mellin–Barnes form. In the second step, done in the
section afterward, differential operators are extracted to
lower the naive degree of divergence. The resulting
expression is what in momentum space would be given
as the regularized form before renormalization. In continu-
ation we split the result into divergent and finite parts
(as n ! 4) and renormalize it by adding local counter-
terms. At the end of the section, we present the fully
renormalized result. The following section generalizes
our results to arbitrary Hadamard states (including a con-
crete simple example), and in the penultimate section, the
accordance of our results with previously obtained special
cases is shown. Subsequently, a possible generalization of
the procedure to curved spacetimes is discussed.

We employ the ‘‘þþþ’’ sign convention of Ref. [26]
and use Latin indices only. The covariant derivative with
respect to the general metric gab is denoted by ra. In flat
space, we also use the symbol h ¼ �ab@a@b. We use
dimensional regularization in n dimensions.

II. INTEGRAL GAMES

In this section we explain and derive formulas that will
be put to good use in the rest of the paper. All of our results
are derived by the judicious application of Mellin–Barnes
integrals—contour integrals in the complex plane which
involve products of � functions. An example is given by

Z
C
�ðaþ zÞ�ðbþ zÞ�ðc� zÞ�ðd� zÞxz dz

2�i
; (1)

and the corresponding integration path C is shown in Fig. 1
for a ¼ 1

4 , b ¼ 1
2 ð1þ iÞ, c ¼ 3

16 ð�2þ iÞ, and d ¼ 0. In

general, the integration path goes from �i1 to i1, sepa-
rating left poles [poles of the � functions of the form
�ðaþ zÞ] from right poles [poles of the � functions which
are of the form �ða� zÞ]. This is always possible as long
as no difference between the a’s is an integer, so that no left
pole coincides with any right pole. Since the � functions
decay exponentially in imaginary directions, these inte-
grals are well defined, and when they decay also in a real
direction z ! �1, they can be evaluated by contour in-
tegration, summing the resulting series of residues. An
important case is given by Barnes’ lemma [27,28]

Z
C
�ðaþ zÞ�ðbþ zÞ�ðc� zÞ�ðd� zÞ dz

2�i

¼ �ðaþ cÞ�ðaþ dÞ�ðbþ cÞ�ðbþ dÞ
�ðaþ bþ cþ dÞ : (2)

Another case which we need in the sequel is given by

Z
C

�ð�þ zÞ�ð�zÞ
�ð�Þ xz

dz

2�i
¼ 1

ð1þ xÞ� ; (3)

where the contour can be closed to the left if jxj> 1 and to
the right if jxj< 1.
After this very short introduction to Mellin–Barnes inte-

grals, we use them to calculate Fourier transforms that will
be important later on. Namely, we need the Fourier trans-
form of the Feynman propagator 1=ðp2 þm2 � i�Þ in the
standard Minkowski vacuum state [with the limit � ! 0þ
understood in the sense of distributions, forwhichwe simply
write 1=ðp2 þm2 � i0Þ]. Wewill start with a general power
of the massless case, which is (Ref. [21], Eq. (A.40);
Ref. [29], Eq. (8.715) converted to our conventions)

Z eipx

ðp2 � i0Þ�
dnp

ð2�Þn ¼ i
�ðn2 � �Þ
4��

n
2�ð�Þ

1

ðx2 þ i0Þn2��
: (4)

This is a priori only defined for 0<<�< n
2 , but using the

reduction formula

ðx2Þ�p ¼ 1

2ð1� pÞðn� 2pÞhðx2Þ1�p (5)

and the fact that the Fourier transform of the d’Alembertian
operator is �p2, this can be extended to all complex
�, except � ¼ 0 and � ¼ n

2 where the � functions diverge

and the Fourier transform is between a constant and a �
distribution,

Z
eipx

dnp

ð2�Þn ¼ �nðxÞ: (6)

FIG. 1. The integration path C for the example Mellin–Barnes
integral. It separates the complex plane in a left (unshaded) and a
right (shaded) half such that the left poles (shown in white) all lie
in the left half and the right poles (shown in black) all lie in the
right half.

1Mellin transform techniques have also been used for the
calculation of Feynman diagrams in momentum space (see
Ref. [21] for an overview) and in the AdS/CFT correspondence
(see, e.g., Refs. [22–25]).
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Themassive case then follows by application of Eq. (3) [30]
and yields

Z eipx

ðp2 þm2 � i0Þ�
dnp

ð2�Þn

¼ i
Z
C

ðm2Þz
ðx2 þ i0Þn2���z

�ðn2 � �� zÞ�ð�zÞ
4�þz�

n
2�ð�Þ

dz

2�i

¼ i
mn�2�

2
n
2�1þ��

n
2�ð�Þ ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ i0

p
Þ�n

2þ�Kn
2��ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ i0

p
Þ;

(7)

which for � ¼ 1 is just the Fourier transform of the
Feynman propagator [31]. Note that in this case, the contour
may only be closed to the right because in the other half-
plane the integrand is exponentially diverging as z ! �1.
However, for the following we will only need the
Mellin–Barnes representation and use the notation

Gðx2Þ¼
Z
C
ðm2Þzðx2Þzþ1�n

2

�ðn2�1� zÞ�ð�zÞ
41þz�

n
2

dz

2�i
: (8)

In a similar manner, one obtains the coordinate space
Wightman function using

�ðp0Þ�ðp2 þm2Þ

¼�ðp0Þ�ð�p2Þ
2�i

�
1

p2 þm2 � i0
� 1

p2 þm2 þ i0

�
(9)

and [Ref. [29], Eq. (8.730) converted to our conventions]

Z 1

ðx2 þ i0 sgntÞ� e
�ipxdnx

¼ 2�2�þnþ1�
n
2þ1

�ð1� n
2 þ �Þ�ð�Þ

�ðp0Þ�ð�p2Þ
ð�p2Þn2��

: (10)

It is just given by Gðx2 þ i0 sgntÞ, so that in coordinate
space, the various two-point functions only differ by the
type of continuation needed to get around the singularity
at x2 ¼ 0.
For derivatives, it follows

GðkÞðx2Þ ¼
Z
C
ðm2Þzðx2Þzþ1�k�n

2ð�1Þk

� �ðn2 � 1� zþ kÞ�ð�zÞ
41þz�

n
2

dz

2�i
: (11)

For the product of two propagators (and their derivatives),
we calculate by shifting the inner integration variable

GðkÞðx2ÞGðlÞðx2Þ ¼
Z
C
ðm2Þzðx2Þzþ2�k�l�n

� ð�1Þkþl

42þz�n
Kðk; l; zÞ dz

2�i
(12)

with

Kðk; l; zÞ ¼
Z
C
�

�
n

2
� 1þ y� zþ k

�
�ðy� zÞ�

�
n

2
� 1� yþ l

�
�ð�yÞ dy

2�i

¼ �ðn� 2þ kþ l� zÞ�ðn2 � 1þ k� zÞ�ðn2 � 1þ l� zÞ�ð�zÞ
�ðn� 2þ kþ l� 2zÞ ; (13)

where we used Barnes’ lemma (2) for the evaluation of the
Mellin–Barnes integral. It is important that in the whole
process, the contour could be chosen such that no pole was
traversed. Again, one could evaluate the final integral (12)
by closing the contour to the right (since the integrand
diverges exponentially as z ! �1), but it is more useful to
keep the Mellin–Barnes representation.

III. REGULARIZATION

The action of a free massive and minimally coupled
scalar field is well known

S½g;�� ¼ � 1

2

Z
ðra�ra�þm2�2Þ ffiffiffiffiffiffiffi�g

p
dnx: (14)

By taking a functional derivative with respect to �, we
obtain its equation of motion

ðrara �m2Þ� ¼ 0; (15)

while by deriving with respect to the metric, we obtain the
stress tensor

Tab ¼ ra�rb�� 1

2
gabðrc�rc�þm2�2Þ; (16)

which, using the equation of motion for � (15), is
covariantly conserved raTab ¼ 0. This can be written as

TabðxÞ ¼ lim
y!x

Pabðx; yÞ�ðxÞ�ðyÞ (17)

with

Pabðx; yÞ ¼
�
�c
ða�

d
bÞ �

1

2
gabg

cd

�
rx

cry
d �

1

2
gabm

2; (18)

and the subscript indicates on which field the derivative
acts.
We now specialize to flat space and consider the con-

nected two-point correlation function of the stress tensor,

hTabðxÞTcdðx0Þi ¼ h0jTabðxÞTcdðx0Þj0i � hTabðxÞihTcdðx0Þi
¼ h0jðTabðxÞ � hTabðxÞiÞ

� ðTcdðx0Þ � hTcdðx0ÞiÞj0i; (19)
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in some state j0i for the scalar field, which we will take to
be the standard Minkowski vacuum. The advantage of
considering the connected correlation functions is that
they are finite as long as the points x and x0 are not null
(lightlike) separated, since the divergences that arise from
�2ðxÞ (and its derivatives) in the definition of the stress
tensor are absent in the difference TabðxÞ � hTabðxÞi.
However, in the null separation limit ðx� x0Þ2 ! 0, the
correlation functions still diverge after smearing with test
functions; they are not well-defined distributions in four
dimensions.

To obtain explicit expressions, we insert the definition of
the stress tensor (16) into the connected two-point function
(19) and evaluate the expectation values of k matter fields
� by Wick’s formula. To simplify the resulting expression,
we take advantage of the fact that the operator Pmnðx; yÞ
(18) is symmetric under the interchange of x and y, and it
results

hTabðxÞTcdðx0Þi ¼ 2lim
y!x
y0!x0

Pabðx; yÞPcdðx0; y0ÞGðx; x0ÞGðy; y0Þ;

(20)

where

Gðx; yÞ ¼ h0j�ðxÞ�ðyÞj0i: (21)

This two-point function only depends on the coordinate
difference x� y because of Poincaré invariance of the
standard Minkowski vacuum j0i, and for simplicity we
may set y ¼ 0. We then get for the two-point function

hTabðxÞTcdð0Þi¼1

2
�ab�cd½16ðx2G00Þ2þ16x2G0G00

þ4ðn�4þ2m2x2ÞðG0Þ2þm4G2�
þ8�aðc�dÞbðG0Þ2þ32xða�bÞðcÞxdÞG0G00

�4ð�abxcxdþxaxb�cdÞ½4x2ðG00Þ2
þ4G0G00 þm2ðG0Þ2�þ32xaxbxcxdðG00Þ2;

(22)

where G00 ¼ @2Gðx; 0Þ=@ðx2Þ2 ¼ G00ðx2Þ and analogously
for G0 and G. In the above condensed notation, the
equation of motion for the scalar field (15) implies

4x2G00 þ 2nG0 ¼ m2G; (23)

and using it the two-point function may be simplified
somewhat; also covariant conservation can be checked
easily.
The attentive reader may have noticed that so far

the entire discussion has been in terms of Wightman
functions, while for in-out calculations, Feynman
propagators (time-ordered functions) are needed.2

While they are quite different in momentum space, in
coordinate space these various functions differ only
by the type of analytic continuation needed to get
around the singularity in the propagator as x2 ! 0, as
shown in the previous section. When acting with
derivatives on the Feynman (or Dyson) propagator,
naively additional local terms ��nðxÞ are obtained, so
in this case, one should find additional local terms in the
above expressions for the stress tensor correlation func-
tion. However, since a priori the time-ordered stress
tensor correlation function is not well defined, there is
no reason to keep those local terms. We will instead
assume the working hypothesis that the time-ordered
two-point function of the stress tensor is obtained by
using the Feynman prescription after performing the
manipulations in this section and the first half of the
next section. This is in accordance with momentum
space calculations, where a derivative @a is just multi-
plication with ipa, and the manipulations in the next
section just correspond to a reordering of those pa,
without additional terms.
We now put the Mellin–Barnes representation (12) for

the product of two propagators (and their derivatives) into
the stress tensor two-point function (22). After shifting
some integration variables, we obtain

hTabðxÞTcdð0Þi ¼
Z
C
ðm2Þzðx2Þz�n 1

4zþ2�n
TabcdðzÞ

�ðn� zÞ�2ðn2 � zÞ�ð�zÞ
�ðnþ 2� 2zÞ

dz

2�i
; (24)

with

TabcdðzÞ ¼ 2½�ab�cdðn2 � n� 4� 2zð2n� 1Þ þ 4z2Þ þ 4�aðc�dÞb�ðnþ 1� 2zÞðn� 2zÞ
� 16

xða�bÞðcÞxdÞ
x2

ðn� zÞðn� 2zÞðnþ 1� 2zÞ þ 8
xaxbxcxd
ðx2Þ2 ðnþ 1� zÞðn� zÞðn� 2zÞ2

� 4
�abxcxd þ xaxb�cd

x2
ðn� zÞðn� 2zÞðn� 2� 2zÞðnþ 1� 2zÞ: (25)

2In the in-in formalism, one even needs the full arsenal, including in addition Dyson (anti-time-ordered) functions and positive and
negative frequency Wightman functions.
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Although this result looks complicated, it is quite simple
and has a very nice property. Namely, on physical grounds
one expects any stress tensor correlation function to be
renormalizable if it fulfills the properties expected from
such a function, which is symmetry in the index pairs ðabÞ
and ðcdÞ and conservation. No matter what the exact
dependence on the spacetime coordinates looks like, as
long as those properties are fulfilled, it is conceivable that
there is some theory and some quantum state that has this
function as the correlation function of its stress tensor.
It is now easily checked that the integrand is conserved,
independently of the value of z,

@a½ðx2Þz�nTabcdðzÞ� ¼ 0; (26)

and so it should be possible to rearrange and renormalize
the integrand which is simpler than the whole (integrated)
result. That this in fact can be quite simply done is shown
in the next section.

IV. RENORMALIZATION

The expression for the two-point function (24) derived
in the previous section is not yet suited for renormalization.
The residue of the first pole in the Mellin–Barnes repre-
sentation (24) is proportional to ðx2Þ�n, which is more
singular than the leading singularity in the product of
two propagators ½Gðx2Þ�2 � ðx2Þ2�n (12). This is of course
due to the fact that we took derivatives, which in momen-
tum space just correspond to multiplications by pa. To
reduce the strength of the singularity, we therefore have
to extract differential operators (which in momentum
space corresponds to a reordering of the pa), and to reduce
the singularity to ðx2Þ2�n, we see that we need fourth-order
differential operators. We are led to the exact form
of the differential operators we need to extract by the

conservation of the stress tensor. Of the five terms appear-
ing in the kernel (25), conservation entails three relations
between them so that we need two independent functions.
Furthermore, conservation should be automatically
guaranteed by the form of the differential operators. We
therefore consider the operators

Sab ¼ @a@b � �abh; (27)

which fulfill @aSab ¼ 0 identically (i.e., acting on any
tensor Tm���n). An ansatz for the stress tensor two-point
function which respects the symmetries is then given by

hTabðxÞTcdð0Þi¼2ðSaðcSdÞb�SabScdÞfðx2ÞþSabScdgðx2Þ;
(28)

where now the functions f and g are unconstrained.3

To determine fðx2Þ and gðx2Þ, we make for them the ansatz

fðx2Þ¼
Z
C
ðm2Þzðx2Þzþ2�n 1

4zþ2�n

�ðn�zÞ�2ðn2�zÞ�ð�zÞ
�ðnþ2�2zÞ

�FðzÞ dz
2�i

(29)

and analogously for gðx2Þ. Plugging this into the general
ansatz (28) and comparing with the regularized result
(24), we obtain five relations for FðzÞ and GðzÞ which are
solved by

FðzÞ ¼ 2z� n

2ðzþ 2� nÞðzþ 1� nÞð2zþ 2� nÞ
GðzÞ ¼ ðn� 2zÞ2

2ðzþ 2� nÞðzþ 1� nÞ ;
(30)

so that we obtain

hTabðxÞTcdð0Þi ¼ ðSaðcSdÞb � SabScdÞ
Z
C
ðm2Þzðx2Þzþ2�n

�ðn� 2� zÞ�ðn2 � 1� zÞ�ðn2 þ 1� zÞ�ð�zÞ
22zþ4�n�ðnþ 2� 2zÞ

dz

2�i

þ SabScd
Z
C
ðm2Þzðx2Þzþ2�n

�ðn� 2� zÞ�2ðn2 þ 1� zÞ�ð�zÞ
22zþ3�n�ðnþ 2� 2zÞ

dz

2�i
: (31)

The contour runs left of <z ¼ 0, where the first pole is encountered. In four dimensions, the residue of this pole
is proportional to ðx2Þ�2 which is still not a well-defined distribution. However, the residues of all other poles are
(with the proper Feynman or Wightman prescription) well-defined distributions in four dimensions. We therefore lift the
contour over this pole (see Fig. 2) to extract the problematic term and take the limit n ! 4 in the remaining integral. This
leaves us with

hTabðxÞTcdð0Þi¼
�ðn�2Þ�ðn2Þ�ðn2þ1Þ
16ðn�2Þ�n�ðnþ2Þð2SaðcSdÞbþðn2�2n�2ÞSabScdÞðx2Þ2�nþðSaðcSdÞb�SabScdÞ

Z
C�
ðm2Þzðx2Þz�2

��ð�zÞ�ð1�zÞ�ð2�zÞ�ð3�zÞ
22zþ4�4�ð6�2zÞ

dz

2�i
þSabScd

Z
C�
ðm2Þzðx2Þz�2�ð�zÞ�ð2�zÞ�2ð3�zÞ

22zþ3�4�ð6�2zÞ
dz

2�i
: (32)

3As a side note for later generalization to curved space backgrounds, we note that R ¼ Sabh
ab up to linear order (see Appendix A).
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To treat the problematic term, we apply the reduction
formula (5) to obtain

ðx2Þ2�n ¼ 1

2ðn� 3Þðn� 4Þhðx2Þ3�n; (33)

and the limit n ! 4 could be taken to obtain a well-defined
distribution, were it not for the explicit power ðn� 4Þ�1. It
is now that the difference between time-ordered functions
and Wightman functions becomes important. Namely, for
the (massless) Feynman propagator, we have [Eq. (4) for
� ¼ 1]

hh0jT�ðxÞ�ð0Þj0i¼h

�
�ðn2�1Þ
4�

n
2

1

ðx2þ i0Þn2�1

�
¼ i�nðxÞ;

(34)

while for the Wightman function, the right-hand side
vanishes. We therefore add to (33) zero in the form of
�n�4½ðx2Þ1�n

2 � ðx2Þ1�n
2� with an arbitrary mass scale �,

use the relation (34), and take the limit n ! 4 where
applicable to obtain

ðx2 þ i0Þ2�n ¼ � 1

4
h

�
ln ð�2x2 þ i0Þ

x2 þ i0

�
þOðn� 4Þ

þ i�2

�
2

n� 4
� 2þ �þ ln ð��2Þ

�
�nðxÞ:

(35)

To obtain the result for the Wightman prescription, the last
line has to be dropped.
This formula just effects the extension of the problem-

atic term to the diagonal x2 ¼ 0. That is, it coincides with
the original term for all x2 � 0 but is a well-defined
distribution (in four dimensions) also when smearing
with test functions which have support at x2 ¼ 0. The
procedure described above is just dimensional regulariza-
tion and renormalization in coordinate space [21,32,33],
and the connection with the usual momentum space
techniques is described in Appendix B.
Summarizing, we can decompose the stress tensor two-

point function into a singular and regular part, where the
singular part is local and only appears for the Feynman
(and Dyson) propagator. The singular terms have to be
subtracted with counterterms, while the regular part is
the renormalized stress tensor correlation function.
Schematically, we write for the various two-point functions
(T �1 stands for anti-time ordering)

hT TabðxÞTcdð0Þi¼ ihTabTcdisingðxÞþhTabTcdiregðx2þ i0Þ
hTabðxÞTcdð0Þi¼hTabTcdiregðx2þ i0sgntÞ
hTcdð0ÞTabðxÞi¼hTabTcdiregðx2� i0sgntÞ

hT �1TabðxÞTcdð0Þi¼�ihTabTcdisingðxÞ
þhTabTcdiregðx2� i0Þ; (36)

where the regular part is given by

hTabTcdiregðx2Þ ¼ ðSaðcSdÞb � SabScdÞ
�
�h

�
ln ð�2x2Þ
3840�4x2

�
þ

Z
C�
ðm2Þzðx2Þz�2 �ð�zÞ�ð1� zÞ�ð2� zÞ

512�
7
2�ð72 � zÞ

dz

2�i

�

þ SabScd

�
�h

�
ln ð�2x2Þ
960�4x2

�
þ

Z
C�
ðm2Þzðx2Þz�2 �ð�zÞ�ð2� zÞ�ð3� zÞ

256�
7
2�ð72 � zÞ

dz

2�i

�
; (37)

and the singular part reads

hTabTcdisingðxÞ ¼ 1

960�2

�
2

n� 4
� 46

15
� �� ln�þ 2 ln�

�
ðSaðcSdÞb þ 3SabScdÞ�nðxÞ þ 3

480�2
SabScd�

nðxÞ: (38)

We now show that those singular terms can be subtracted by known counterterms which are quadratic in curvature tensors.
For this we need that up to surface terms and to linear order in the perturbation hab, we have

FIG. 2. The first Mellin–Barnes integral appearing in the stress
tensor correlation function. There are simple poles at z ¼ k
(black dots), at z ¼ n� 2þ k (white dots), and at z ¼ n

2 � 1þ
k (black squares) and double poles at z ¼ n

2 þ 1þ k (white

squares), shown here for n ¼ 3:75. The original contour C runs
left of all poles. We lift it over the pole at z ¼ 0 to obtain the
contour C� and the residue of this pole (shown in gray). In the
remaining integral over C�, we can take the limit n ! 4, and
the poles flow together (shaded circles).
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Z
habSadSbch

cdd4x¼
Z
RabcdRabcd

ffiffiffiffiffiffiffi�g
p

d4x¼
Z
ð4RabRab�R2Þ ffiffiffiffiffiffiffi�g

p
d4x

Z
habSabScdh

cdd4x¼
Z
R2 ffiffiffiffiffiffiffi�g

p
d4x;

(39)

which can be easily proven using the expansions given in Appendix A. We therefore obtain

480�2
Z

habðxÞhTabTcdisingðx� x0Þhcdðx0Þd4xd4x0

¼ �6
Z

RabRab

ffiffiffiffiffiffiffi�g
p

d4xþ
�

2

n� 4
� 1

15
� �� ln�þ 2 ln�

�Z
ð2RabRab þ R2Þ ffiffiffiffiffiffiffi�g

p
d4x: (40)

The infinite part of this expression coincides with well-
known results [34,35].

V. GENERAL HADAMARD STATES

A general state of a free quantum field is called
Hadamard if near coincidence its two-point function is of
the form

Gðx;x0Þ�� uðx;x0Þ
4�2ðx�x0Þ2þvðx;x0Þlnððx�x0Þ2Þþwðx;x0Þ;

(41)

where uðx; x0Þ, vðx; x0Þ, and wðx; x0Þ are smooth functions
with uðx; xÞ ¼ 1 [36,37]. Hadamard states have a lot of
nice physical properties (for example, the Hadamard form
is preserved under Cauchy evolution, and vacuum states in
static spacetimes are Hadamard), and it has been shown in
examples that non-Hadamard states have unpleasant be-
havior (such as an infinite stress tensor expectation value
with usual renormalization procedures) [38–47]. In par-
ticular, the standard Minkowski vacuum state j0i is a

Hadamard state, which follows by expanding the two-point
function (7) in four dimensions near x2 ¼ 0,

G0ðx2Þ¼� m

ð2�Þ2
ffiffiffiffiffi
x2

p K1ðm
ffiffiffiffiffi
x2

p
Þ

�� 1

4�2x2
þ m2

16�2
ð1�2�� lnðm2x2=4ÞÞþOðx2Þ:

(42)

Since vðxÞ is fully determined by the geometry of the
underlying spacetime, two Hadamard states differ only
by a smooth function. Especially, the two-point function
in any Hadamard state jHi can be written as

GHðx; x0Þ ¼ G0ððx� x0Þ2Þ þ wHðx; x0Þ; (43)

where wHðx; x0Þ is a smooth function. If we therefore
calculate the stress tensor correlation function in a general
Hadamard state, we obtain [using Eq. (20) and ð@G0ÞwH ¼
@ðG0wHÞ �G0ð@wHÞ]

hTabðxÞTcdðx0ÞiH ¼ hTabðxÞTcdðx0Þi0 þ 1

2
m4�ab�cdwHwH þm4�ab�cdG0wH þ 2�kl

ab�
pq
cd ð@xk@x0pwHÞð@xl @x0q wHÞ

�m2�ab�
pq
cd ½ð@x0pwHÞð@x0q wHÞ þ 2@x

0
q ðG0@

x0
pwHÞ � 2G0@

x0
q @

x0
pwH� �m2�cd�

kl
ab½ð@xkwHÞð@xl wHÞ

þ 2@xl ðG0@
x
kwHÞ � 2G0@

x
l @

x
kwH� þ 4�kl

ab�
pq
cd ½@xk@x0p ðG0@

x
l @

x0
q wHÞ þG0@

x
k@

x
l @

x0
p@

x0
q wH

� @xkðG0@
x
l @

x0
p@

x0
q wHÞ � @x

0
p ðG0@

x
k@

x
l @

x0
q wHÞ� (44)

with the short-hand notation

�kl
ab ¼ �k

ða�
l
bÞ �

1

2
�ab�

kl; (45)

and wH and G0 depend on x and x0. If we replace
hTabðxÞTcdðx0Þi0 by its renormalized value (37), this is
already a well-defined distribution because derivatives of
a smooth function (of wH) are still smooth and a distribu-
tion (G0) can be multiplied by a smooth function to yield
another well-defined distribution. Especially, the counter-
terms (40) which one needs to subtract the divergences as
n ! 4 are the same for all Hadamard states.

As a simple example, with the scalar field decomposed
in the standard creation and annihilation operators [31,48],

we consider the states j�; ki ¼ exp ½i�ðayk þ akÞ�j0i
for real � and in the massless case m ¼ 0. Using the
Baker–Campbell–Hausdorff formula [49], we see that
they are normalized, and an exercise in commutation
relations4 then gives the two-point function in such a state
which is

4Derive first ½ðayq þaqÞk;�ðxÞ�¼�ikð2=jqjÞ12½sinðqxÞ�q0¼jqj�
ðayq þaqÞk�1, and then commute the exponential with the fields.
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h�;kj�ðxÞ�ðx0Þj�;ki¼h0j�ðxÞ�ðx0Þj0i

þ2�2

jkj ½sinðkxÞsinðkx
0Þ�k0¼jkj: (46)

The smooth difference between the Minkowski vacuum
two-point function and this special Hadamard state is
therefore given by

w�;kðx; x0Þ ¼ 2�2

jkj sin ðkx� jkjtÞ sin ðkx0 � jkjt0Þ; (47)

and its renormalized stress tensor two-point function reads

hTabðxÞTcdðx0Þireg�;k

¼�ðSaðcSdÞbþ3SabScdÞh
�
lnð�2ðx�x0Þ2Þ
3840�4ðx�x0Þ2

�

þ8�4kakbkckd
k2

cos2ðkxÞcos2ðkx0Þ

þ 2�2

�2jkj cosðkxÞcosðkx
0Þ�kl

ab�
pq
cd kkkp@l@qðx�x0Þ�2;

(48)

where k0 ¼ jkj is understood.

VI. COMPARISON WITH EARLIER RESULTS

In earlier calculations, only partial results were obtained.
The general regularized case (including a general coupling
to the curvature 	R�2 in the action) was considered in
Ref. [50], which coincides with our result (22) if one
replaces Gðx2Þ with the explicit form (7). However, no
renormalization was performed.

In Refs. [35,51] renormalization was performed, but
only for the massless case. In this limit, the Mellin–
Barnes integral in the renormalized result (37) vanishes
because the modified contour C� has<z > 0, so that we are
left with the first term only

lim
m!0

hTabTcdiregðx2Þ

¼ � 1

3840�4
ðSaðcSdÞb þ 3SabScdÞh

�
ln ð�2x2Þ

x2

�
: (49)

By inserting the explicit definition of the operators Sab (27),
one obtains exactly the result in Ref. [35], whereas to show
agreement with the result of Ref. [51], we must extract
another d’Alembertian operator

hln 2ð�2x2Þ ¼ 8½ln ð�2x2Þ þ 1�
x2

: (50)

Since there only the Wightman function was considered
where no additional local terms arise, we obtain

hhln2ð�2x2þ i0sgntÞ¼8h

�
lnð�2x2þ i0sgntÞ

x2þ i0sgnt

�
(51)

and find full agreement with our result.

The only fully renormalized result for general mass and
coupling to curvature was derived in Ref. [12], but in
momentum space where the calculation is cumbersome
as stated by the authors themselves. To compare this with
our coordinate space result, we need to take the Fourier
transform for all the different prescriptions. Since the in-
tegration over the contour C� in the finite part (37) is
absolutely convergent, we can exchange this integration
with the Fourier transformation and Fourier transform the
integrand. For the Feynman prescription, we may use the
formula (4), while for the Wightman prescription, formula
(10) is the right one. To fully transform the renormalized
result (37), we need also the Fourier transforms of
ln ðx2Þ=x2 for the different prescriptions. This can be ob-
tained by writing

ln ðx2Þ
x2

¼ lim
�!0

1

�

�
1

ðx2Þ1þ�
� 1

ðx2Þ1þ2�

�
; (52)

and by using Eqs. (4) and (10), we calculate

Z ln ðx2 þ i0Þ
ðx2 þ i0Þ e�ipxd4x

¼ 4i�2

ðp2 � i0Þ ½2�� ln 4þ ln ðp2 � i0Þ� (53)

Z ln ðx2 þ i0sgntÞ
ðx2 þ i0sgntÞ e�ipxd4x ¼ 8�3�ðp0Þ�ð�p2Þ 1

p2
:

Combining all of the above, for the Feynman prescription,
we obtain from Eq. (37)

Z
hTabTcdiregðx2þ i0Þe�ipxd4x

¼ i

960�2
ðPaðcPdÞbþ3PabPcdÞð2�� ln4

þ lnðp2� i0Þ� lnð�2ÞÞ� i

512�
3
2

ðPaðcPdÞb�PabPcdÞ

�
Z
C�

z�ðzÞ�ð�zÞ�ð1�zÞ

�ð72�zÞ
dz

2�i

� i

256�
3
2

PabPcd

Z
C�

z�ðzÞ�ð�zÞ�ð3�zÞ

�ð72�zÞ
dz

2�i
; (54)

where the operators Pab ¼ p2�ab � papb are the Fourier
transforms of the operators Sab (27) and we defined


 ¼ 4m2

p2 � i0
: (55)

Note that because of the product of � functions �ðzÞ�ð�zÞ
in the numerator, the standard Mellin–Barnes contour C is
not defined for those integrals, but the modified contour C�
(see Fig. 2) works. We may then close the contour to the
left if j
j> 1 or to the right if j
j< 1 and sum the residues
to obtain
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Z
hTabTcdiregðx2 þ i0Þe�ipxd4x

¼ i

240�2
PabPcd

�
47

30
þ 2�þ 2 ln

�
m

2�

�

þ 1

7

X1
k¼0

�ð92Þ�ðkþ 4Þ
ðkþ 1Þ�ðkþ 9

2Þ
ð�1Þk
�k�1

�

þ i

480�2
ðPaðcPdÞb � PabPcdÞ

�
46

30
þ �þ ln

�
m

2�

�

þ 1

7

X1
k¼0

�ð92Þ�ðkþ 1Þ
�ðkþ 9

2Þ
ð�1Þk
�k�1

�
: (56)

With hindsight, we rewrite this as a sum over 1þ 
 using

X1
k¼0

ak

�k�1 ¼ X1

m¼0

ð1þ 
Þm
m!

�X1
k¼0

ak
ðkþmÞ!

k!
ð�1Þkþ1

�
:

(57)

The sums in the expression (56) then can be done in terms
of Gauss’s hypergeometric function which reduces to even
simpler functions for the cases considered, and it results

X1
k¼0

�ð92Þ�ðkþ 1Þ
�ðkþ 9

2Þ
ð�1Þk
�k�1

¼ � X1
m¼0

ð1þ 
Þm
m!

�X1
k¼0

�ð92Þ�ðkþmþ 1Þ
�ðkþ 9

2Þ
�

¼ � 7

15
½3þ 5ð1þ 
Þ þ 15ð1þ 
Þ2�

þ 7ð1þ 
Þ52artanh ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p
(58)

and

X1
k¼0

�ð92Þ�ðkþ 4Þ
ðkþ 1Þ�ðkþ 9

2Þ
ð�1Þk
�k�1

¼ � 7

60
ð94� 45
þ 45
2Þ

þ 7

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p ð8� 4
þ 3
2Þartanh ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p
: (59)

For the Fourier transform of the Feynman prescription
stress tensor correlation function (56), we therefore obtain

Z
hTabTcdiregðx2 þ i0Þe�ipxd4x

¼ i

480�2
ðPaðcPdÞb � PabPcdÞ

�
�þ ln

�
m

2�

�

� 1

3

ð7þ 3
Þ þ ð1þ 
Þ52artanh ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 

p �

þ i

960�2
PabPcd

�
8�þ 8 ln

�
m

2�

�
þ 3
ð1� 
Þ

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p ð8� 4
þ 3
2Þartanh ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p �
: (60)

The result of Ref. [12] is given for the minimally
coupled case and for the Feynman prescription as (ex-
pressed in our notation)

hTabTcdiregðx2 þ i0Þ ¼ i

ð4�Þ2
�

1

180
ð3SaðcSdÞb � SabScdÞ

Z
ð1þ 
Þ2�ðp2Þeipx d4p

ð2�Þ4

þ 1

72
SabScd

Z
ð
� 2Þ2�ðp2Þeipx d4p

ð2�Þ4

�m2

�
2

135
ð3SaðcSdÞb � SabScdÞ þ 1

27
SabScd

�Z
eipx

1

p2

d4p

ð2�Þ4
�

(61)

up to local terms, which anyway depend on the exact
renormalization scheme used. In their appendix we find

�ðp2Þ ¼ �2þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p � 1

�

¼ �2þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p
artanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p
; (62)

and so their result for the Feynman prescription is (up to
local terms)

Z
hTabTcdiregðx2þ i0Þe�ipxd4x

¼ i

480�2
ðPaðcPdÞb�PabPcdÞ

�
�1

3

ð7þ3
Þ

þð1þ
Þ52artanh ffiffiffiffiffiffiffiffiffiffiffiffi
1þ


p �
þ i

960�2
PabPcd½3
ð1�
Þ

þð8�4
þ3
2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ


p
artanh

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ


p �: (63)

This coincides exactly with our result (60).
For the Wightman prescription, we do the same steps.

The Fourier transform of the Mellin–Barnes integral gives
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Z
hTabTcdiregðx2 þ i0 sgn tÞe�ipxd4x ¼ �ðp0Þ�ð�p2ÞðPaðcPdÞb � PabPcdÞ

�
1

480�
þ 1

256�
1
2

Z
C�
ð�
Þz �ð�zÞ

�ð72 � zÞ
dz

2�i

�

þ�ðp0Þ�ð�p2ÞPabPcd

�
1

120�
� 1

128�
1
2

Z
C�
ð�
Þz �ð3� zÞ

z�ð72 � zÞ
dz

2�i

�
: (64)

However, now�
 is real and positive so that for j
j> 1 when we close the contour to the left, the result vanishes, and we
therefore obtain an extra �ð1þ 
Þ. Continuing the evaluation in the same way as above, we obtain

Z
hTabTcdiregðx2 þ i0 sgn tÞe�ipxd4x ¼ 1

960�
�ðp0Þ�ð�p2Þ�ð1þ 
Þ½ðPaðcPdÞb � PabPcdÞ2ð1þ 
Þ52

þ PabPcd

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p ð8� 4
þ 3
2Þ�: (65)

For this prescription, the result of Ref. [12] reads (expressed in our notation, and taking into account a sign change in the
integrand)

hTabTcdiregðx2 þ i0 sgn tÞ ¼ �2

45
ð3SaðcSdÞb � SabScdÞ

Z
ð1þ 
Þ2Ið�pÞeipx d4p

ð2�Þ4

þ �2

18
SabScd

Z
ð
� 2Þ2Ið�pÞeipx d4p

ð2�Þ4 ; (66)

where

IðpÞ ¼ 1

8ð2�Þ3 ð1� sgnp0Þ�ð�p2 � 4m2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p ¼ 1

32�3
�ð�p0Þ�ð�p2Þ�ð1þ 
Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 

p

; (67)

and therefore they have

Z
hTabTcdiregðx2 þ i0 sgn tÞe�ipxd4x ¼ 1

480�
ðPaðcPdÞb � PabPcdÞ�ðp0Þ�ð�p2Þ�ð1þ 
Þð1þ 
Þ52

þ 1

960�
PabPcd�ðp0Þ�ð�p2Þ�ð1þ 
Þð8� 4
þ 3
2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 

p

; (68)

also in full accordance with our result (65).
In summary, we may conclude that our result is in full

agreement with earlier findings.

VII. CONCLUSIONS

We have presented an explicit procedure to obtain re-
normalized two-point functions of stress tensors directly in
coordinate space and have given the full renormalized
result (36) for the case of a minimally coupled scalar field
in Minkowski spacetime. Our result provides an important
check on earlier partial results and results obtained in
momentum space. This result can now be used to deter-
mine quantum matter corrections to the background
geometry which give rise to a variety of interesting effects,
also in curved spacetime [52–73].

Our method rests on two points: first, a linearization
formula (12) for the product of two propagators and their
derivatives, representing them as a Mellin–Barnes integral
and, second, the extraction of differential operators to bring
the correlation function into a form well suited for renor-
malization (31). The method works directly in coordinate
space and so should be more easily generalizable to curved
spacetimes where no Fourier transform is defined, which is
especially important in the cosmological context. In fact,

for the relevant case of a de Sitter background, a similar
linearization formula for the product of two (undifferenti-
ated) propagators has been derived [74–76] and used in
some applications [77–79] (see also Refs. [80,81]). Of
course, the linearization formula derived in this article
depends on the fact that the two-point function of a scalar
field state invariant under the Poincaré group only depends
on the invariant distance ðx� x0Þ2. For a generalization to
curved spacetimes, this will not be the case; however, say
for a Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
Universe with scale factor að�Þ depending on the confor-
mal time �, it is conceivable that a similar Mellin–Barnes
representation exists with the kernel additionally depend-
ing on � and �0. For such a representation, presumably a
linearization formula can be found and the short-distance
singularity extracted as in Minkowski space (since the
kernel, even though it depends explicitly on time, has a
finite limit as x0 ! x).
The second important point—extracting differential

operators—exploits the fact that conservation restricts the
form that the stress tensor two-point function can take. For
a Poincaré invariant state, taking into account conservation
reduces the number of independent functions from five to
two, and we extract those operators such that conservation
is fulfilled automatically. The remaining two functions are
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then in principle completely arbitrary, so that one can
perform renormalization separately on the most divergent
terms which are the only ones that need to be renormalized.
It has the further advantage that the strength of the diver-
gence in those functions is reduced to the one of a product
of undifferentiated propagators, which need counterterms
that diverge like ðn� 4Þ�1 as appropriate for a one-loop
calculation. For the stress tensor correlation function of the
massless, minimally coupled scalar, this idea is used in
Refs. [35,51] in Minkowski space and in Ref. [15] in de
Sitter space; it also arises quite naturally in Fourier space in
a Minkowski background [12]. However, in curved space-
time it is not easy to find the appropriate generalization for
the operators Sab (27), whose definition was motivated by
their symmetry and vanishing divergence. As noted before,
Sab with both indices referring to the same point can
presumably be substituted by the expansion of the Ricci
scalar up to linear order in the metric perturbations
R ¼ Sabh

ab. However, the term SaðcSdÞb where the index

pairs ðabÞ and ðcdÞ refer to different spacetime points will
generally fail to be divergence free when acting on a scalar
function when generalized in the obvious way by substitut-
ing parallel propagators for the metric; it is only in
Minkowski space where the parallel propagator coincides
with the metric that its divergence vanishes. In Ref. [15],
the differential operator obtained by the expansion of the
Weyl tensor was proposed but yields unwieldy results.5

From the gauge invariance of the interaction habT
ab and

the fact that the curvature tensors (minus their background
value) are gauge invariant, one may strongly suspect that
those differential operators have to come from the expan-
sion of curvature tensors, so that maybe the choice of the
Riemann tensor instead of the Weyl tensor will give nicer
results.

The calculation of the stress tensor correlation function
for other types of fields can be done with the same ease;
since their propagators are obtained by taking derivatives
of the scalar propagator, the exactly same Mellin–Barnes
representation can be used. The only nontrivial issue
(in the author’s opinion) is to check if the integrand in
the analogue of Eq. (24) is conserved on its own so that the
rest of the procedure goes through.
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APPENDIX A: CURVATURE
TENSOR EXPANSIONS

In this appendix we present the expansion of curvature
tensors around a Minkowski background up to linear order
in the perturbation.
The perturbed metric and the Christoffel symbols are

given by

gab ¼ �ab þ hab gab ¼ �ab � hab

ffiffiffiffiffiffiffi�g
p ¼ 1þ 1

2
h �a

bc ¼
1

2
ð@bhac þ @ch

a
b � @ahbcÞ;

(A1)

where the indices on hab are raised using the background
Minkowski metric, and the curvature tensors follow
straightforwardly:

Rab
cd ¼ �2@½a@½ch

b�
d�

Rab ¼ 1

2
ð@a@dhbd þ @b@

dhad � @a@bh�hhabÞ
R ¼ @a@bh

ab �hh:

(A2)

APPENDIX B: MOMENTUM SPACE
REGULARIZATION AND RENORMALIZATION

In this appendix we show how dimensional regulariza-
tion and renormalization in position space is related to the
usual momentum space techniques. For simplicity, we will
treat the massless case, which also is the only term we need
to renormalize after extracting differential operators from
the stress tensor two-point function. Using the formula (4)
for the Fourier transform of the massless Feynman propa-
gator, we obtain the well-known expression

Z 1

ðx2 þ i0Þn2�1
e�ipxdnx ¼ �i

4�
n
2

�ðn2 � 1Þ
1

p2 � i0
: (B1)

To the product in coordinate space corresponds a convolu-
tion in momentum space,

Z 1

ðx2 þ i0Þn2�1

1

ðx2 þ i0Þn2�1
e�ipxdnx

¼ � 16�n

�2ðn2 � 1Þ
Z 1

ðp� qÞ2 � i0

1

q2 � i0
dnq

¼ �i
42�n

2�
n
2�ð2� n

2Þ
�ðn� 2Þ

1

ðp2 � i0Þ2�n
2
; (B2)

which can be done in n dimensions but is divergent as
n ! 4. In momentum space one now expands around
n ¼ 4 to get

5This includes strong divergences like ðn� 4Þ�3 in intermedi-
ate steps, which, however, may be an artifact of the concrete
calculation—the final result is the expected one, and the
counterterms coincide with well-established ones.
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Z 1

ðx2 þ i0Þn�2
e�ipxdnx ¼ i�2

�
2

n� 4
� 2þ 3�� ln 4þ ln�þ ln ðp2 � i0Þ

�
þOðn� 4Þ: (B3)

The Fourier transform of the logarithm can be taken using the formula (4) by rewriting it as

Z
ln ðp2 � i0Þeipx d4x

ð2�Þ4 ¼ h

�
lim
n!4

2

n� 4

Z
ððp2 � i0Þ�1 � ðp2 � i0Þn2�3Þeipx dnx

ð2�Þn
�
¼ ih

�
2�� ln 4þ ln ðx2 þ i0Þ

4�2ðx2 þ i0Þ
�
;

(B4)

and by using h½4�2ðx2 þ i0Þ��1 ¼ i�4ðxÞ, we get, combining all of the above,

1

ðx2 þ i0Þn�2 ¼ i�2

�
2

n� 4
� 2þ �þ ln�

�
�4ðxÞ � 1

4
h

�
ln ðx2 þ i0Þ
x2 þ i0

�
þOðn� 4Þ: (B5)

This is, of course, exactly the result we obtained previously in coordinate space (35).

[1] E. Tomboulis, Phys. Lett. 70B, 361 (1977).
[2] J. B. Hartle and G. T. Horowitz, Phys. Rev. D 24, 257

(1981).
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