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We describe a generic mechanism by which a system of Dirac fermions in thermal equilibrium acquires

electric charge in an external magnetic field. To this end the fermions should have an additional quantum

number, isospin, or color and should be subject to a second magnetic field, which distinguishes the isospin or

color, as well as to a corresponding isospin chemical potential. The role of the latter can be also played by a

nontrivial holonomy (Polyakov loop) along the Euclidean time direction. The charge is accumulated since the

degeneracies of occupied lowest Landau levels for particles of positive isospin and antiparticles of negative

isospin are different. We discuss two physical systems where this phenomenon can be realized. One is

monolayer graphene, where the isospin is associated with two valleys in the Brillouin zone, and the strain-

induced pseudomagnetic field acts differently on charge carriers in different valleys. Another is hot QCD, for

which the relevant non-Abelian field configurations with both nonzero chromomagnetic field and a nontrivial

Polyakov loop can be realized as calorons—topological solutions of Yang-Mills equations at finite tempera-

ture. The induced electric charge on the caloron field configuration is studied numerically. We argue that due

to the fluctuations of holonomy, the external magnetic field should tend to suppress charge fluctuations in the

quark-gluon plasma and estimate the importance of this effect for off-central heavy-ion collisions.
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I. INTRODUCTION

Interactions of chiral fermions with magnetic fields are
the origin of a number of nontrivial physical phenomena,
which have been intensively studied in the last few years
[1]. Some of the most notable examples of such phenomena
are the chiral magnetic effect [2,3], which is the generation
of electric current in a system of chiral fermions at finite
chiral chemical potential, and the chiral separation effect
[4,5], the generation of chiral current in a system of chiral
fermions at finite chemical potential. The most striking
feature of such phenomena is that electric current is gen-
erated due to the magnetic field, so that no electric field is
needed to initiate the transport of charge or chirality.
Rather, this current has a topological nature related to the
axial anomaly for chiral fermions and spin projection in the
lowest Landau level [2,6] and flows without dissipation
even for interacting fermions [5,7,8]. Experimentally,
such phenomena are supposed to manifest themselves in
specific features of the distributions of charged particles
produced in heavy ion collisions [9].

In this paper we describe a similar phenomenon, in
which an electric charge, rather than current, is generated
in a system of Dirac fermions in the presence of an external
magnetic field. For this reason we call it ‘‘charge catalysis
by a magnetic field.’’ To this end the fermions, in addition
to charge and chirality, should carry yet another quantum
number, which we call isospin �3 (not to be confused with
the term isospin commonly used in particle physics) and

assume that it takes values �3 ¼ �1. In QCD, this addi-
tional quantum number is naturally associated with color.
The fermions should also interact with an isospin magnetic
field, or a chromomagnetic field in the case of QCD, for
which the vector potential A0

� enters the action as

i �c �3A
0
���c . We consider a grand canonical ensemble

at nonzero isospin chemical potential �3, which enters
the action as �3

�c �3�0c and thus favors particles with
�3 ¼ þ1 and antiparticles with �3 ¼ �1 and disfavors
particles with �3 ¼ �1 and antiparticles with �3 ¼ þ1.
For QCD, the role of imaginary isospin chemical potential
can be also played by the timelike component of non-
Abelian gauge field. The generated charge is also imaginary
in this case, and shows up only in charge fluctuations after
the functional integration over the non-Abelian gauge field.
While the mechanism of the described effect is not directly
related to the axial anomaly, it is still similar to chiral
magnetic effect in the sense that charge generation (which
also manifests itself as spatial separation of positive and
negative charges, as we will demonstrate in subsection II C)
is caused by magnetic, rather than electric field, and has a
purely quantum origin related to the two-dimensional index
theorem. As we argue in subsection IIB, for a classical gas
of charged particles this effect would be absent.
It should be stressed that it is the assumption of a grand

canonical ensemble that makes the generation of charge
possible: the system is not isolated, but rather coupled to an
environment, with which it can exchange particles. Thus
the extra charge comes from the environment, and charge
conservation is not violated. The system then acquires
electric charge only if all three factors are present: an
ordinary magnetic field, an isospin magnetic field, and a
nonzero isospin chemical potential �3. At vanishing
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temperature, the latter can be arbitrarily small. The mecha-
nism of this phenomenon can be also reversed, so that an
isospin polarization is generated at nonzero ordinary chemi-
cal potential � (which couples to electric charge), again in
the presence of both ordinary and isospin magnetic fields.

We should note here that this work was in fact originally
motivated by an attempt to describe the chiral magnetic
effect [2,3] by using calorons, topologically nontrivial
classical solutions of finite-temperature Yang-Mills
equations [10–12], in external magnetic fields as a model
for topological transitions in QCD at finite temperature
(see subsection IVB). While we have found no traces of
electric current flowing along the magnetic field, we have
noticed the emergence of a nonzero imaginary charge
density induced by a magnetic field parallel to the caloron
axis. The present work was initiated as an attempt to
understand this peculiar effect.

The paper is organized in the following way: in Sec. II
we start with a simple description of charge catalysis at
zero temperature and at small values of the isospin chemi-
cal potential, and in subsection II B discuss the case of
arbitrary temperatures and chemical potentials. The depen-
dence of the induced charge on isospin chemical potential
turns out to be quite nontrivial and is in some sense similar
to Shubnikov–de Haas oscillations. In subsection II C we
consider the case of spatially localized magnetic and
isospin magnetic fields. We demonstrate that even in the
case when the net induced charge is zero, there is still an
excess of charge in the region with nonzero field strength,
which is compensated by an excess of charge of opposite
sign in a ‘‘halo’’ around that region. Thus in such a setting
the magnetic field induces spatial charge separation. In
Sec. III we illustrate the described mechanism on a very
simple and at the same time physically relevant example of
strained monolayer graphene. In this case the isospin index
corresponds to two distinct valleys in the graphene
Brillouin zone and the isospin magnetic field is the
pseudo-magnetic field arising due to mechanical strain
[13,14]. In Sec. IV we discuss possible manifestations of
charge catalysis in finite-temperature QCD, for which the
role of isospin is played by the color of quarks and that of
the isospin chemical potential by a nontrivial holonomy
(Polyakov loop) of a gauge field configuration. We first
consider a simple example of a constant non-Abelian
gauge field and demonstrate that while the net electric
charge vanishes in this case due to integration over all
values of the holonomy, the described phenomenon still
manifests itself in the suppression of charge fluctuations. In
Subsection IVB we consider a more realistic example of
an SUð2Þ caloron gauge field configuration. We show
numerically that the induced charge is localized between
the monopole and the antimonopole which constitute the
caloron, that is, in the region where the chromomagnetic
field is approximately constant. Finally, in Subsection IVC
we roughly estimate the possible contribution of the

discussed effect to charge fluctuations in off-central heavy-
ion collisions, using both the model of a uniform chromo-
magnetic field with fluctuating holonomy (Subsection IVA)
as well as a model of a dilute caloron gas [15].

II. CHARGE CATALYSIS IN UNIFORM
MAGNETIC FIELDS AND ISOSPIN CHEMICAL

POTENTIALS: MECHANISM

A. The limit of zero temperature and
small isospin chemical potential

Let us denote the strength of the ordinary magnetic
field as B, and the strength of the isospin magnetic field
as F. For simplicity we first assume that the fermions
are (2þ 1)-dimensional, but our arguments can be easily
generalized to (3þ 1)-dimensional case. The magnetic and
the isospin magnetic fields in (2þ 1) dimensions have
only a single component, B � Bxy ¼ @xAy � @yAx ¼
const and F � Fxy ¼ @xA

0
y � @yA

0
x ¼ const. The energy

spectrum of fermions in such a background is given by
the Landau levels (we assume magnetic fields in the
Centimetre-Gram-Second system of units1),

Eðq;�3Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏev2

F

c
jqBþ �3qFjn

s
; (1)

where n ¼ 0; 1; 2; . . . , the labels q ¼ �1 and �3 ¼ �1
denote particle/antiparticle states and the isospin quantum
number, respectively, e is the electron charge, c is the
speed of light, and vF is the Fermi velocity. For relativistic
fermions (electrons or quarks in quark-gluon plasma),
vF ¼ c, but for Dirac quasiparticles in graphene vF is
significantly smaller, vF � c=300 [13].2 Finally, for
QCD applications, the electron charge e in (1) should be
replaced by the quark charge �1=3e or 2=3e.
The degeneracies of the Landau levels are

gnjq�B þ �3q�Fj; (2)

where g0 ¼ 1, gn>0 ¼ 2 and �B ¼ ð2�ℏÞ�1
R
S dxdyeB

and �F ¼ ð2�ℏÞ�1
R
S dxdyeF are the fluxes of the mag-

netic and the isospin magnetic fields through the area S of
the system. For definiteness, we have assumed periodic
boundary conditions for spatial directions, which implies
that �B and �F take integer values [16]. From now on we
work in natural units with ℏ ¼ e ¼ c ¼ 1 in order to
shorten the notation (in particular, this means that the
physical electron or quark charge is absorbed into the units
in which F and B are expressed). It also follows from (1)
that the effect of the Fermi velocity vF is to simply rescale

1For SI units one would take away the factor of c in the
denominator.

2For graphene applications, depending on the definition of the
strain magnetic field, the factor of c=vF � 300 may appear in
front of F, while for QCD, where F is the chromomagnetic field,
a factor of g=e may appear.
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all the energies by vF. Thus for the sake of simplicity we
also assume that vF ¼ c ¼ 1. The results of Sec. III, in
which we consider charge catalysis in graphene, will not
depend on vF anyway.

At nonzero isospin chemical potential �3 the Fermi
energies for particles/antiparticles with �3 ¼ �1 become

Eðq;�3Þ
F ¼ q�3�3. For simplicity let us first assume that

�3 <minð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jF� Bjp

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jFþ Bjp Þ and that the tempera-

ture is zero (these conditions will be relaxed in the next
subsection). In this case only the lowest Landau levels for
particles (q ¼ þ1) with �3 ¼ þ1 and antiparticles
(q ¼ �1) with �3 ¼ �1 will be occupied. The degener-
acies of these levels are j�B þ�Fj and j ��B þ�Fj,
respectively, and thus different (see Fig. 1). Therefore, if
both�B and�F are present, there is an unequal number of
particles and antiparticles on these levels, and the system
has a nonzero electric charge:

Q ¼ j�B þ�Fj � j ��B þ�Fj
¼ 2signð�F�BÞminðj�Bj; j�FjÞ: (3)

If the strength of the isospin magnetic field F is kept
constant, the charge grows linearly with B for jBj< jFj
and then saturates atQ ¼ �2j�Fj. If jBj< jFj, increasing
the flux �B by one flux quantum produces two elementary
charges. We also note that since the existence of
zero energy level in the magnetic field is topologically
protected in (2þ 1) dimensions, the result (3) is also valid
for nonuniform gauge fields as long as �3 is smaller than
the first nonzero energy level.

Finally, we note that the mechanism described above
can be reversed by switching on the ordinary chemical
potential which couples to electric charge and thus
increases the Fermi energy for particles and decreases it
for antiparticles. Then only the lowest Landau levels for
particles will be occupied, independently of �3. The de-
generacies of the lowest Landau levels for particles with
�3 ¼ þ1 and �3 ¼ �1 are again given by j�B þ�Fj and
j ��B þ�Fj, respectively, and thus different again.
Therefore, a nonzero isospin charge Q3 ¼ j�B þ�Fj �
j ��B þ�Fj is produced.

B. Charge catalysis at arbitrary temperatures
and isospin chemical potentials

Let us now discuss how the generated charge (3) is
changed at higher values of isospin chemical potential
and/or at nonzero temperature, when higher Landau levels
are also populated. Consider first the case of zero tempera-
ture but an arbitrary value of isospin chemical potential.
Equation (3) is then easily generalized to

Q ¼ j�B þ�Fj � j ��B þ�Fj þ 2

�
�2

3

2jBþ Fj
�
j�B

þ�Fj � 2

�
�2

3

2j � Bþ Fj
�
j ��B þ�Fj; (4)

where b. . .c is the floor function. The first line coming from
the lowest Landau levels is the same as in Eq. (3). The
second line in (4) counts the charge of the particles on
higher Landau levels (left side of Fig. 2 and the leftmost
column in Fig. 1), while the last line comes from the
contribution of antiparticles (right side of Fig. 2 and
the rightmost column in Fig. 1). The factor of two in the
second and the third lines comes from the spin degeneracy
gn>0 ¼ 2 of the higher Landau levels.
The expression (4), although being conceptually very

simple, leads to quite a nontrivial dependence of the gen-
erated charge on the chemical potential and the magnetic
field, see Fig. 3 for an illustration. Depending on howmany
Landau levels occupied by particles or antiparticles lie
below�3, the chargeQ can take both positive and negative
values. The charge decreases if one of the more closely
spaced negatively charged states sinks below the Fermi
energy and increases if this happens for one of the more
widely separated positively charged states. It is also easy to

FIG. 1 (color online). Schematic illustration of the degeneracies
of the lowest Landau levels and the Fermi energies for particles
and antiparticles with �3 ¼ �1 for�F ¼ 3,�B ¼ 1. The number
of short horizontal lines in each column denotes the degeneracy of
the lowest Landau level for the corresponding quantum numbers
and the long horizontal line denotes the zero energy level.

FIG. 2 (color online). Occupied Landau levels for particles in
the �3 ¼ þ1 sector (leftmost column on Fig. 1) and antiparticles
in the �3 ¼ �1 sector (rightmost column on Fig. 1) at some
finite value of an isospin chemical potential. The level degener-
acies are labeled below as j ��B þ��Fj. Horizontal dotted
lines illustrate two values of �3, one ‘‘small’’ (i.e., �2

3 < 2j �
Bþ Fj) and one large.
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prove that the charge (4) is a periodic function of�2
3 with a

period equal to ��2
3 ¼ 4�

S LCMðj�F þ�Bj; j�F ��BjÞ,
where LCMðn;mÞ stands for the least common multiple of
two integers n and m.

The dependence of the induced charge density on the
magnetic field at fixed isospin chemical potential exhibits
oscillations similar to Shubnikov–de Haas oscillations, see
Fig. 3 below. However, while in the latter case the period of
oscillations tends to zero at zero magnetic field, here this
happens at F close to B, when the spacing between energy
levels for antiparticles with �3 ¼ �1 becomes very small.

In case of finite temperature the floor functions in (4) are
smoothed out by the corresponding Fermi factors, so that
the charge is given by

Q ¼ Xþ1

n¼0

gn

0
@ j�B þ�Fj
1þ e

E
ðþþÞ
n ��3

T

� j�B þ�Fj
1þ e

E
ð��Þ
n þ�3

T

þ j�B ��Fj
1þ e

E
ðþ�Þ
n ��3

T

� j�B ��Fj
1þ e

E
ð�þÞ
n þ�3

T

1
A: (5)

We have evaluated these sums numerically. The resulting
dependence of the generated charge on �3, F and B is
illustrated in Fig. 3. One can see that now the dependence
of the generated charge on �3, F and B becomes continu-
ous. However, the charge still changes sign as �3 is
changed. Since the asymptotic density of states for
Landau levels in both sectors with �3 ¼ �1 is equal
(since smaller spacing between Landau levels is com-
pensated for by smaller level degeneracy), at very high
temperatures and/or isospin chemical potentials the
generated charge should vanish. Asymptotic equality of
the density of states in both sectors implies also that the
described effect should vanish in the classical limit, when a
macroscopically large number of levels is occupied.

C. Spatial charge separation

As discussed in the Introduction, the generation of
charge is only possible for the grand canonical ensemble,
that is, for a system coupled to some environment, from
which the charge is ‘‘borrowed,’’ and charge conservation
is not violated. In this Subsection we investigate in
more details the situation in which the charge density is
generated locally, but the net charge is still zero. We show
that this situation can be interpreted as spatial charge
separation.
Let us formally assume that the space is infinite and the

magnetic field strengths are described by some localized
functions.3 In this case normalizable eigenmodes with zero
energy exist also for noninteger values of the fluxes �B,
�F [17]. Their number is given by the floor functions of
�B and �F, so that the Eq. (3) reads in this case

Q ¼ bj�F þ�Bjc � bj ��F þ�Bjc: (6)

In deriving (6) we have again assumed that there is a
small but finite isospin chemical potential �3 so that
only the particle zero energy states with �3 ¼ þ1 and
antiparticle zero energy states with �3 ¼ �1 are filled.
We now restrict ourselves to the situation in which

both fluxes �F and �B are nonzero, but the total charge
(6) is still zero. For example, one can take �F ¼ nþ 1=2
and 0<�B < 1=2. If the region in which the magnetic
field is localized is sufficiently small, one can still have
very large magnetic fields locally. We would like to study
here whether the charge is generated locally in this case,
and how it is distributed.
As the simplest example let us assume that both fields B

and F take constant values in the region r � R, where r is
the radial coordinate in two spatial dimensions, and are
equal to zero outside of this region. The wave functions of
the zero energy states can be found analytically as [17]

c nðx; yÞ ¼ c�n zne���ðx;yÞs"; n ¼ 0; 1; . . . ; N�; (7)
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FIG. 3 (color online). Top: the density h�i ¼ Q=S of gener-
ated charge as a function of isospin chemical potential squared
(in units of the next-to-lowest Landau level E2

1 ¼ 2jB� Fj)
for ðF� BÞ=ðFþ BÞ ¼ 1=6 (blue solid line, red dashed line
and yellow dotted line) and ðF� BÞ=ðFþ BÞ ¼ 5=13 (green
dot-dashed line) and different temperatures. Bottom: the density
of generated charge at �3 ¼ 1:5

ffiffiffiffi
B

p
as a function of isospin

magnetic field F for different temperatures.

3This means that they decay sufficiently quickly at infinity.
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where z ¼ xþ iy, sþ is the unit spinor which is the eigen-
state of the projection of the spin operator on the magnetic
field with eigenvalue s ¼ þ1=2, N� ¼ bj�F ��Bjc � 1
and �ðx; yÞ is the solution of the Poisson equation

ð@2x þ @2yÞ��ðx; yÞ ¼ Bðx; yÞ � Fðx; yÞ: (8)

It is easy to see that the eigenvectors (7) are orthogonal to
each other for cylindrically symmetric distributions of
magnetic field (in the absence of cylindrical symmetry
this might not be the case). Solving the Eq. (8) for magnetic
field which is localized in a cylinder of radius R we obtain

��ðrÞ ¼
� ðB� FÞðr2 � R2Þ=4; r � R

ðB� FÞR2=2 ln ðr=RÞ; r > R
: (9)

The wave functions (7) are then

c�
n ðx; yÞ ¼ c�n zns"

8><
>:
e
1
4jF�BjðR2�r2Þ r � R�
R
r

�1
2jF�BjR2

r > R
: (10)

Although the normalization constants c�n can be calculated
analytically, the resulting expressions are not very instruc-
tive and we do not give them here. It is important to note,
however, that for large j�B ��Fj and n � j�B ��Fj
they behave as

c�n � 1ffiffiffiffi
�

p
�jF� Bj

2

�nþ1
2 e�j�B��Fjffiffiffiffiffi

n!
p : (11)

Under the assumption that all the zero energy states are
occupied, the charge density is given by

�ðx; yÞ ¼ XNþ

n¼0

jcþ
n ðx; yÞj2 �

XN�

n¼0

jc�
n ðx; yÞj2; (12)

where N� ¼ bj�B ��Fjc � 1. This result is illustrated on
Fig. 4, where we plot the charge density as a function of the
radial coordinate r for the values of �B and �F for which
the net generated charge (6) vanishes. One can see that
while positive charge is accumulated in the region with
nonzero field strength (r < R), the excess of negative charge
is accumulated in the exterior of that region. At large
distances r � R, the negative charge density behaves as

�ðrÞ � 1=r2þ2�; �¼minðj�B ��Fj � bj�B ��FjcÞ;
(13)

where the last expression is just the smallest fractional part
of the fluxes j�B ��Fj. Thus the charge distribution has a
negative ‘‘heavy tail,’’ which compensates for the positive
charge accumulated in the region with nonzero field
strengths. Such exact compensation becomes obvious if
one integrates (12) over thewhole space, taking into account
the normalization of the eigenmodes c�

n ðx; yÞ. The total
charge is then just Q ¼ Nþ � N� ¼ bj�F þ�Bjc � bj �
�F þ�Bjc, which is equal to zero for field configurations
under consideration (�F ¼ nþ 1=2, 0<�B < 1=2).

In order to better illustrate the existence of this heavy tail,
on the lower plot of Fig. 4 we show the absolute value of the
charge density in a logarithmic scale over a wider range of r.
Let us now consider charge density for r � R and

assume that the fluxes j�B ��Fj are large. Since at small
r the eigenfunctions (10) behave as c�

n ðrÞ � rn, the con-
tributions of states with n � 1 are strongly suppressed,
and one can safely extend the summation over n in (12) to
infinity. Using now the asymptotic expression (11) for the
normalization constants c�n , we find for the charge density

�ðr � RÞ � Xþ1

n¼0

1

�

jBþ Fjnþ1r2n

2nþ1n!
e�jBþFjr2=2

� Xþ1

n¼0

1

�

jB� Fjnþ1r2n

2nþ1n!
e�jB�Fjr2=2

� 1

2�
ðjBþ Fj � jB� FjÞ; (14)

which is precisely the charge density which can be ob-
tained from the expression (3) valid in the case of uniform
fields. We thus conclude that even if the system does not
exchange electric charge with the environment, the charge
generation still takes place due to spatial charge separation,
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2

FIG. 4 (color online). Top: Charge density (12) as a function of
the polar coordinate r. The fluxes are �B ¼ 0:4 and �F ¼ 1:5,
2.5, 10.5 for solid-blue, dashed-red and dot-dashed green lines,
respectively. Bottom: The absolute value of same charge density
on a logarithmic plot, to emphasize the region with negative
charge density at r * R.
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and for sufficiently large fluxes j�B ��Fj the charge
density in the center of a region with nonzero field strength
is given precisely by (3). One can see from Fig. 4 that the
charge density near r ¼ 0 is indeed very close to this
asymptotic value (which is equal to �R2 ¼ 2�B=� if
�B <�F) for �F * 2:5. For smaller values of �F the
charge density is somewhat higher near the origin and
smaller at the periphery. The requirement of sufficiently
large flux simply means that the typical extent of the wave

functions of the Landau states RB � 1=
ffiffiffiffi
B

p
should be much

smaller than R, so that the fermions effectively do not feel
the boundary of the region with nonzero F and B.

Another interesting example is that of magnetic fields
with the following profile

BðrÞ ¼ 2�B�
2
B

ðr2 þ �2
BÞ2

; FðrÞ ¼ 2�F�
2
F

ðr2 þ �2
FÞ2

; (15)

for which the zero energy eigenstates again take the
form (10) with the functions ��ðx; yÞ given by

��ðrÞ ¼ �B=2 ln ð1þ r2=�2
BÞ ��F=2 ln ð1þ r2=�2

FÞ:
(16)

Note that for unit flux this profile is the profile of
the winding number density of the soliton in the two-
dimensional Oð3Þ model, where this density can also be
interpreted as the magnetic field of an auxiliary Abelian
gauge field [18].

The charge density in this case reads

�ðrÞ ¼ XNþ

n¼0

jcþn j2r2n
�
1þ r2

�2
F

���F
�
1þ r2

�2
B

���B

� XN�

n¼0

jc�n j2r2n
�
1þ r2

�2
F

���F
�
1þ r2

�2
B

�þ�B

; (17)

where we have assumed that �F >�B. In Fig. 5 we plot
the charge density (17) for the case of a strong F field
localized in a small region with �F � �B. It is interesting
to note that in this case the charge density has a dip in the
center (although remaining positive for r & �F). This dip
emerges due to the suppression of the densities of eigen-
states with large n by a factor proportional to r2n. In the
case of uniform fields this contribution conspired with the
gaussian envelope to make the distribution uniform. Here,
however, the envelope is not gaussian and the effects of
modes with n > 0 is to create a dip in the center of the
region with nonzero strength of isospin magnetic field F.
The mode with n ¼ 0, which is monotonically decreasing
with r, still creates a finite charge density at r ¼ 0, but this
contribution becomes smaller as compared to the contri-
bution of higher modes at intermediate values of r. Note
also that if maxðNþ; N�Þ � 1, only the n ¼ 0 mode con-
tributes, and the dip does not exist (see, for example, the
solid red curve on Fig. 5, for which �B ¼ 0:4, �F ¼ 1:5).
Again, since bj�F þ�Bjc � bj ��F þ�Bjc ¼ 0, the

excess of positive charge around r ¼ 0 must be compen-
sated by a negative charge density at large r, which decays
as (13). In order to illustrate this slow decay of negative
charge density, on the second plot on Fig. 5 we plot the
absolute value of �ðrÞ at large r � �F on a logarithmic
scale. One can see that indeed at some large r � �F the
charge density changes sign and then decays very slowly.

III. CHARGE CATALYSIS IN
STRAINED GRAPHENE

Let us demonstrate now how the described phenomenon
can be realized in graphene, a two-dimensional hexagonal
crystal lattice of carbon atoms. The dispersion relation of
valence electrons in graphene has two zeros - the Dirac
points Kþ and K�. The vicinities of these points are called
valleys Kþ and K�, respectively. The low-energy excita-
tions in both valleys can be described as Dirac fermions
[13], which couple to magnetic fields in the usual way.
However, by applying mechanical strain in certain direc-
tions one can also induce a pseudo-magnetic field which
has opposite signs for the two valleys, but does not distin-
guish between particles and holes (playing the role of
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FIG. 5 (color online). Top: Charge density (17) in units of �2
B

as a function of r for �B ¼ 0:4, �F=�B ¼ 0:01 and �F ¼ 1:5
(solid red line), �F ¼ 2:5 (dashed blue line) �F ¼ 3:5
(dot-dashed green line) and �F ¼ 10:5 (dotted yellow line).
The vertical thin dashed line indicates the value of �F.
Bottom: The absolute value of the same charge densities on a
logarithmic scale and for a much larger range of r.
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antiparticles) [14]. This pseudo-magnetic field has been
recently studied experimentally, and Landau levels which
correspond to pseudo-magnetic field strengths larger than
300 Tesla have been observed [19].

Thus it is natural to associate the isospin quantum
number with different valleys. Then we should also intro-
duce the ‘‘valley’’ chemical potential �K, so that the two
valleys have different numbers of charge carriers in them.
A practical method which can be used to generate valley
currents (and thus imbalance in valley populations in some
part of the sample) by cyclic application of strain and
chemical potential has been discussed recently in [20].
Note that in contrast to the general derivation given above,
the degeneracies of the lowest Landau levels in such a
setting are given by jqBþ �3Fj and the chemical potential
couples to �3 rather than to q�3 (see Fig. 6, top panel), but
the principle by which the charge is generated is the same.
Namely, now the lowest Landau levels for particles and
holes in the valley Kþ are populated. Again, the level
degeneracies for particles and holes in this valley are
different and given by j�B þ�Fj and j ��B þ�Fj,
respectively. Thus there are more particles than holes,
and the graphene sample should acquire nonzero electric
charge.

Considering the realistic experimental situation in which
the strength of the magnetic field is much smaller than the
strength of the pseudo-magnetic field [19], the charge
density per unit area can be estimated from (3) as
Q=ðSBÞ � 1011 cm�2 T�1. For sufficiently strong mag-
netic fields of order of 1 T, such charge density can be

easily measured using modern experimental methods such
as scanning tunnelling spectroscopy.
Again we can invert the mechanism of charge accumu-

lation: if instead of the valley chemical potential the
ordinary chemical potential is nonzero, the lowest
Landau levels will only be populated for particle states in
both Kþ and K�, as illustrated in Fig. 6 at the bottom. The
degeneracies of these levels are given by j�B þ�Fj
and j�B ��Fj. Thus there are more particles in Kþ than
in K�, and the ‘‘valley charge’’ with density jQKþ �
QK�j=ðSBÞ � 1011 cm�2 T�1 is generated. Estimating the
value of charge density in the valley pumping device of
[20] as jQKþ �QK�j=S� 108 cm�2 (the ratio of the
estimated ‘‘valley charge’’ per pumping cycle to a typical
area of the device), we see that for B� 1 T the magneti-
cally induced valley asymmetry is much larger. Thus the
described phenomenon can be also potentially useful for
applications in (at present hypothetical) valley-based
electronics [20]. We note that the possibility of breaking
the symmetry between the two valleys due to combined
effect of mechanical strain and magnetic field has also been
discussed in [21], but the possibility of charge catalysis
was not considered.

IV. HOT QCD IN MAGNETIC FIELD

In QCD, we associate the isospin quantum number with
the color of quarks, and the isospin magnetic field with the
chromomagnetic field. The external magnetic field will
then change the degeneracies of energy levels in different
color sectors, as in Eq. (3). Recently, it was demonstrated
that this difference of level degeneracies leads to the
appearance of nonzero electric dipole moment in the back-
ground of topologically nontrivial configurations of non-
Abelian gauge fields [22]. However, the existence of the
‘‘color chemical potential’’, which would be required to
produce electric charge in this situation, is clearly prohib-
ited by gauge invariance.
Still, the weights of different Landau levels in the

partition function can be different for different color sec-
tors if the gauge field configuration in the Euclidean path
integral representation of the thermal partition function has
a nontrivial non-Abelian holonomy (Polyakov loop)

Pð ~xÞ ¼ P exp

�
i
Z 	

0
dx0Aa

0ðx0; ~xÞ�a
�
; (18)

around the compact Euclidean time direction x0 2 ½0; 		.
Here P is the path-ordering operator, 	 ¼ T�1 is the
inverse temperature and �a are the generators of the gauge
group. The timelike component of the gauge field Aa

0ðx0; ~xÞ
couples to quarks in a way similar to imaginary ‘‘color’’
chemical potential. This is easiest to see after diagonaliz-
ing P, which then does not couple the states with �3 ¼ þ1
and �3 ¼ �1 anymore. However, in the Euclidean path
integral A0 plays the role of the Lagrange multiplier for the
Gauss law and thus should be integrated over. By virtue of

FIG. 6 (color online). Schematic illustration of the degenera-
cies of the lowest Landau levels and the Fermi energies for
particles and holes in different valleys in the graphene Brillouin
zone at nonzero ‘‘valley’’ chemical potential (top panel) and at
nonzero chemical potential (bottom panel). As in Fig. 1, the
number of short horizontal lines in each column denotes the
degeneracy of the lowest Landau level for the corresponding
quantum numbers and the long horizontal line denotes the zero
energy level.
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charge conjugation invariance the net electric charge is
clearly zero after such integration. Nevertheless, as we
demonstrate below, the ‘‘virtual’’ charge which appears
due to nontrivial holonomy still manifests itself as a nega-
tive contribution to the fluctuations of electric charge.

A. Charge catalysis in constant chromomagnetic
fields and the effect of holonomy

As a model assumption, let us consider the configuration
of SUð2Þ 
Uð1Þ gauge fields in (3þ 1) dimensions with
uniform and parallel magnetic and chromomagnetic fields
with strengths B � Bxy and F � F3

xy and a nontrivial hol-

onomy (Polyakov loop) P ¼ ei	v�3=2 which corresponds to
a constant timelike component of non-Abelian gauge field:

Aa
0ðx0; ~xÞ�a ¼ v

2
�3: (19)

In the language of spontaneous symmetry breaking, v
plays the role of a Higgs vacuum expectation value.

Such a field configuration can be thought of as an
approximation of the gauge field in the so-called caloron
solution, which is the topologically nontrivial saddle point
of Euclidean path integral of finite-temperature gauge
theories and for gauge group SUð2Þ consists of a pair of
non-Abelian monopole and antimonopole [11,12].4 The
chromomagnetic field between them can be roughly
approximated as constant. While direct numerical studies
of induced charge in the caloron background will be
described in the next subsection IVB, here we use this
simple approximation to illustrate the basic features of
charge catalysis.

Assuming periodic boundary conditions in spatial
directions, the fermion partition function for massless
quarks in such a background can be written as

logZfðv;�Þ=V

¼
Z dkz

2�

Xþ1

n¼0

gn

�jBþ Fj
2�

log ð1þ e
�	Eþ

n;kz
þi	v=2þ	�Þ

þ j � B� Fj
2�

log ð1þ e
�	Eþ

n;kz
�i	v=2�	�Þ

þ jB� Fj
2�

log ð1þ e
�	E�

n;kz
�i	v=2þ	�Þ

þ j � Bþ Fj
2�

log ð1þ e
�	E�

n;kz
þi	v=2�	�Þ

	
; (20)

where kz is the momentum along the magnetic fields, V is
the total spatial volume and

E�
n;kz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jB� Fjnþ k2z

q
; (21)

are the Landau levels for particle/antiparticle states with
�3 ¼ �1. We have also introduced an infinitesimally small
chemical potential � as a source for electric charge. In the
end it will be set to zero. The third and the fourth lines in
(20) correspond to the particle and antiparticle states in the
�3 ¼ þ1 sector, while the fifth and the sixth line are the
same for the �3 ¼ �1 sector. To simplify the discus-
sion further, let us assume that the temperature is suffi-
ciently small (T2 � minðjF� Bj; jFþ BjÞ), so that the
lowest Landau levels with E�

0;kz
¼ jkzj dominate in (20).

Calculating now the derivative of (20) with respect to � at
� ¼ 0 and evaluating the resulting integrals over kz ana-
lytically, we obtain for the expectation value of the charge
density over the fermion states:

hqif ¼ T

V
Z�1

f ðv;�Þ @

@�
Zfðv;�Þj�!0

¼ iv

ð2�Þ2 ðjBþ Fj � jB� FjÞ;
	v 2 ½�2�; 2�	: (22)

We also note that the Polyakov loop (18), the partition
function (20) and the fermionic expectation value of a
charge (22) are periodic functions of v with the period
4�T, thus v is treated as a compact variable with
v 2 ½�2�T; 2�T	.
This result is very similar in form to (3), except for the

factor of i in front. The origin of this factor is clear from
(20): the holonomy plays the role of imaginary chemical
potential for the �3 quantum number and thus induces
imaginary electric charge. However, in contrast to (3),
the quantity (22) does not correspond to the expectation
value of a Hermitian operator in the ground state of
some Hamiltonian. The correspondence with the canonical
formalism is only recovered after integration over the
holonomy, which obviously results in zero expectation
value of the physical charge operator. Consider, however,
the fermionic expectation value of the squared charge:

hQ2if ¼ T2Z�1
f ðv;�Þ @2

@�2
Zfðv;�Þj�!0

¼ VTmaxðF; BÞ
�2

� 4v2V2 minðB2; F2Þ
ð2�Þ4 : (23)

The first summand is the contribution of connected
fermion diagram and is independent of the holonomy.
The second term corresponds to disconnected fermion
diagrams and is exactly the square of the ‘‘virtual’’ charge
given by (22). We see thus that the effect of holonomy is to
reduce the charge fluctuations. We note that a suppression
effect of nontrivial holonomy on charge density at finite
chemical potential (without magnetic fields) has also been
found in [24].

4The approximation considered here would also work for the
region between the monopole and the antimonopole belonging to
the caloron and anticaloron, respectively, as well as for quasi-
Abelian monopole–antimonopole pairs which appear in the
models of QCD vacuum with Abelian dominance [23].
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Finally, we have to integrate the above expression over
all values of the holonomy with the weight Zfðv;� ¼ 0Þ.
Assuming again that the lowest Landau level gives the
dominant contribution to the partition function and per-
forming the integration over kz in (20), we obtain

Zfðv;� ¼ 0Þ ¼ const� exp

�
�VmaxðjFj; jBjÞ

8�2T
v2

�
:

(24)

Approximating the compact integral over v 2
½�2�T; 2�T	 by a Gaussian integral over the whole real
axis (which makes sense for sufficiently large volumes),
we obtain the following result for the expectation value of
the squared charge

hQ2i ¼ VTmaxðjFj; jBjÞ
�2

�
1� minðF2; B2Þ

maxðF2; B2Þ
�
: (25)

Thus charge fluctuations become suppressed as the mag-
netic field grows until the strength of chromomagnetic and
magnetic fields become equal. At that point the fluctuations
become zero, and then start growing again.

Note also that for the integration over the holonomy in
(25) we did not use the SUð2Þ Haar measure dvsin 2ð v2TÞ,
but rather the Uð1Þ Haar measure on the interval
½�2�T; 2�T	. The inclusion of the full Haar measure
would be justified only if we considered the full path
integral over the gauge fields. Indeed, one can easily check
that the expectation value hQ2i calculated with the SUð2Þ
Haar measure becomes negative if jFj=jBj is close to unity.
Since hQ2i is the expectation value of the square of the
Hermitian operator and should be manifestly positive, we
conclude that the inclusion of the Haar measure alone leads
to an inconsistent result. On the other hand, one can try to
take into account the gaussian fluctuations of the gauge
fields around the background field F. In this case the
contribution of the fluctuations of the longitudinal compo-
nents of the gauge field to the Polyakov loop effective
action exactly cancels the Haar measure contribution
(see, for example, equation (22) in [25]). Thus the posi-
tivity of hQ2i would be recovered if we self-consistently
improved our calculation by including both the SUð2ÞHaar
measure and the fluctuations of the background field (in the
gaussian approximation). In view of this observation, it
seems more natural to use the flatUð1Þmeasure in case one
considers only a constant background field configuration
without taking into account any fluctuations on top of it.
In any case, our main qualitative conclusion - the decrease
of charge fluctuations with increasing magnetic field - will
not change if we modify the integration weight for v.

B. Electric charge and current on
caloron configurations

As a more realistic model of quantum fluctuations in
non-Abelian gauge theory one can consider a gas of topo-
logically nontrivial gauge field configurations, such as an

instanton gas [26]. However, at finite temperature instan-
tons are no longer the solutions of classical Euclidean
Yang-Mills equations. A generalization of the instanton
solution to Euclidean space with compact time direction
is the caloron solution, either with a trivial [10] or non-
trivial [11,12,27–29] holonomy at spatial infinity. The
former is stable at sufficiently high temperatures, while
the latter is believed to dominate at lower temperatures
[15]. Much like instantons, calorons are strongly localized
solutions. For SUð2Þ gauge group, they consist of a pair of
Bogomol’ny-Prasad-Sommerfield monopole and antimo-
nopole, separated by some distance. In the region of
space between the monopole and the antimonopole the
chromomagnetic and chromoelectric fields can be roughly
approximated as constant and parallel to the caloron axis,
see Fig. 7. Hence, if the magnetic field is also parallel to the
caloron axis, such solution can realize the case of parallel
magnetic and chromomagnetic fields described above.
We can thus expect that the magnetic field superimposed
on the caloron configuration leads to the appearance of
nonzero (imaginary) electric charge.
Explicit expressions for the Dirac propagator in the

combined background of a caloron plus magnetic field

B
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FIG. 7 (color online). Characteristic gluonic quantities of an
SUð2Þ caloron with maximally nontrivial holonomy on a 243 � 6
lattice in two spatial dimensions with monopoles separated along
x3. The third color component of the chromomagnetic field is
depicted by short blue arrows. We also show the direction of the
Abelian magnetic field (for the case when it is parallel to the
caloron symmetry axis) with a long black arrow. The Polyakov
loop is characterized by its contour lines 1=2 � TrP ¼ �0:4. At
the monopole/antimonopole, the Polyakov loop becomes trivial
1=2 � TrP ! �1, while outside of the monopoles the Polyakov
loop becomes diagonal (proportional to �3) and traceless,
1=2 � TrP ! 0, v ! �T.
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are not known, therefore we have to find it numerically.
To this end, we put the SUð2Þ caloron field configurations
on the lattice. The explicit form of the caloron field con-
figuration which we use is given by the expression (57) in
[11]. We use calorons of maximally nontrivial holonomy
meaning that the asymptotic Polyakov loop becomes
traceless (i.e., v ¼ �T asymptotically), for which the
monopole and antimonopole have equal topological
charges 1=2. Lattice discretization is done by assigning
each link variable with the path-ordered exponent of the
continuum gauge field Aa

�ðxÞ�a along the link. More details

on the lattice discretization of the caloron solutions can be
found in [15,30–32]. To keep discretization errors under
control, we have also performed calculations for field
configurations obtained from the initial caloron configura-
tion after several cooling steps. We have found that cooling
makes no significant effect on the generated charge, thus
discretization artifacts should be quite small.

Since we are studying the phenomena closely related to
quark chirality (in particular, zero quark mass is important
to ensure the existence of the lowest Landau level of zero
energy), we use the chirally invariant Neuberger’s overlap
Dirac operator [33] to calculate the vacuum expectation
value of the current. Since the caloron configuration has a
unit topological charge, the Dirac operator has exactly one
zero mode, which makes it formally noninvertible in the
massless limit. To regulate this trivial divergence, we in-
troduce a small quark mass mq ¼ 0:01 in lattice units.

Then the Dirac operator is inverted using the SHUMR
method [34,35]. In order to check that our results are not
affected by finite-volume and boundary effects, we con-
sider caloron configurations of the same size on 163 � 4,
203 � 4, and 243 � 4 lattices. The dependence on the
lattice spacing is checked by rescaling the caloron configu-
ration that has been put on the 163 � 4 lattice by a factor
3=2 and putting it on the 243 � 6 lattice. Thus we assume
that the lattice spacing is a ¼ 1 for the 163 � 4, 203 � 4
and 243 � 4 lattices, and a ¼ 2=3 for the 243 � 6 lattice.
Since the current and charge densities are operators of
canonical dimension 3, their expectation values are also
multiplied by ð3=2Þ3. Similarly, the magnetic field strength
is rescaled by a factor ð3=2Þ2. Note that the magnetic flux is
a dimensionless quantity which is not changed when we
simultaneously increase the lattice size by some factor and
decrease the lattice spacing by the same factor. Of course,
there is no intrinsic physical dimensionful scale in our
problem, since we deal with a fixed gauge field configura-
tion. The physical scale can be restored, for example, from
the characteristic size of calorons in the phenomenological
model of the caloron gas [15]. This will be done at the end
of the paper, where we will discuss possible experimental
consequences of our results.

To start with, we consider the imaginary part of the net
electric charge J0ðx0Þ and the net electric current JBðx0Þ in
the direction of the magnetic field ~B as a function of

Euclidean lattice time x0. Spatial components of the
current are manifestly real, since in Euclidean space they
are still given by functional derivatives of the free energy
over the gauge field A�ðxÞ:

hjiðxÞif � 



AiðxÞ log detðD½A�ðxÞ	Þ
� �iTrðD�1½A�ðxÞ	�iÞ; i ¼ 1; 2; 3; (26)

where by h. . .if we again denote the expectation value

with respect to the fermion fields only. Since the Dirac
operator D½A�ðxÞ	 ¼ ��ð@� � iA�ðxÞÞ is anti-Hermitian

and Euclidean gamma-matrices are Hermitian, the result-
ing expression is real. On the other hand, the expectation
value of the charge is the derivative of the partition
function with respect to the chemical potential:

hQif � @

@�
log detðD½A�ðxÞ	 þ��0Þj�!0

� TrðD�1½A�ðxÞ	�0Þ; (27)

for which the real part is identically zero at � ¼ 0.
As discussed above in Subsection IVA, this imaginary
charge should vanish after functional integration over the
timelike component of the gauge field A0ðxÞ.
The net charge and current are obtained by summing the

local charge and current densities over fixed time slices in
Euclidean space,

J0ðx0Þ ¼
Z

d3xhj0ðx0; ~xÞi; (28)

JBðx0Þ ¼
Z

d3xh ~jðx0; ~xÞi � ~B=jBj; (29)

where

hj�ðx0; ~xÞif ¼ TrðD�1ðx0; ~x; x0; ~xÞ��Þ: (30)

We introduce this volume integration as an estimate of the
macroscopic currents, which are studied in experiments at
scales which are much larger than the typical correlation
length of the QCD vacuum [2].
In Fig. 8 we plot the net overall current JBðx0Þ as well as

the imaginary part of the charge density Im J0ðx0Þ for the
163 � 4 lattice, for magnetic fields both parallel and per-
pendicular to the caloron symmetry axis (which is parallel
to the ~e3 basis vector) and for different field strengths.
Despite the fact that we use a fixed and sufficiently smooth
gauge field configuration, the inversion of the overlap
Dirac operator still takes a lot of computer time, and the
calculation of the Dirac propagator D�1ðx; xÞ in (27) and
(26) for all lattice sites would be prohibitively expensive.
To overcome this difficulty, we perform the integration
over the spatial coordinates ~x in the definitions of J0ðx0Þ
and JBðx0Þ by a Monte-Carlo method, spreading the points
~x uniformly over time slices and summing up the local
current densities in these points. We use from 50 to 100
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random points, depending on the lattice size. Error bars on
Figs. 8 and 9 illustrate the estimated uncertainties of the
Monte Carlo integration.

For the parallel case, one can clearly see that the imagi-
nary part of the net electric charge grows with the field
strength and practically does not depend on x0. For the
perpendicular case, the charge is close to zero for all x0.
The net current in the direction of the magnetic field JBðx0Þ
is smaller than the imaginary part of the charge density by
more than two orders of magnitude. The electric current is
nonzero in both the parallel and the perpendicular cases,
but shows an oscillating behavior, so that the sum over all
x0 is zero within the errors of Monte Carlo integration.
Note that the caloron we use has almost static topological
charge and action density, whereas the gauge fields in its
constituent monopoles’ cores are gauge-rotated in time
with respect to each other [11]; this twist could cause the
change of sign of the current JBðx0Þ. Such behavior of
JBðx0Þ suggests that no net electric charge is transported
in the direction of the magnetic field in the tunneling event

and thus this caloron cannot be considered as a model field
configuration for the chiral magnetic effect. On the other
hand, the induced imaginary electric charge should con-
tribute to the fluctuations of the net macroscopic charge, as
discussed in subsection IVA above. In the following, we
consider only the more interesting case when the magnetic
field is parallel to the caloron axis (that is, parallel to ~e3).
In Fig. 9 we plot the imaginary part of the net electric

charge Im J0ðx0Þ, averaged over all x0, on different lattices
as a function of the magnetic field strength. The value of
the magnetic field strength B on different lattices is
kept constant (the total magnetic flux �B is changed
correspondingly). At moderately small field strengths the
charge rises approximately linearly, and then seems to
saturate at strong magnetic fields. Such behaviour is in
complete agreement with the considerations of the previous
subsection IVA. The solid line on Fig. 9 is a linear fit
through data points with B< 0:2, which yields J0 ¼ ð8�
2ÞB. The results obtained on different lattices agree within
the uncertainties of the Monte Carlo integration, which
suggests that the induced charge is not a finite-volume
nor a discretization artifact. Some specific lattice artifacts
for the density of induced charge will be discussed below.
Next we investigate the longitudinal profile of the imagi-

nary part of the charge density Im hj0ðxÞi along the caloron
symmetry axis with x1 ¼ L=2, x2 ¼ L=2, and the trans-
verse profile in the direction perpendicular to it. We con-
sider the fixed time slice x0 ¼ 0, where the net charge is
maximal. In Fig. 10 we show the longitudinal profiles of
the charge density on lattices of different size and spacing.
For the left and the right plots of Fig. 10, the magnetic field
strengths differ by a factor of two. The coordinate x3 on the
plots is shifted by�2 or rescaled by 2=3 in order to match
the positions of the monopole and the antimonopole on
different lattices. These positions are marked by red
(monopole) and blue (antimonopole) vertical lines on
Fig. 10. In what follows, we denote the corresponding x3
coordinates as xðmÞ

3 and xðaÞ3 , respectively. For the 163 � 4
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FIG. 8 (color online). Imaginary part of the net electric charge J0ðx0Þ (left) and the net electric current in the direction of the
magnetic field JBðx0Þ (right) as a function of the discrete lattice time x0 on the 163 � 4 lattice. The data points are slightly displaced
along the horizontal axis in order to make the plots more illustrative.
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FIG. 9 (color online). Imaginary part of the net electric charge
J0ðx0Þ, averaged over all x0, as a function of the magnetic field
strength on different lattices.
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and 243 � 6 lattices xðmÞ
3 ¼ L=4 and xðaÞ3 ¼ 3L=4. For the

203 � 4 and 243 � 4 lattices we simply add more space
around the caloron, so that the distance between the mono-

pole and the antimonopole xðaÞ3 � xðmÞ
3 ¼ L=2 and the po-

sition of the midpoint between them ðxðaÞ3 þ xðmÞ
3 Þ=2 ¼ L=2

are fixed.
One can see that the charge density has a characteristic

three-peak structure. Namely, there is an excess of positive
imaginary charge peaked around the monopole position,
and an excess of negative imaginary charge near the
antimonopole. Furthermore, the charge density has a
pronounced positive peak right in the middle between the
monopole and the antimonopole, which is higher than the
peaks near the monopole and the antimonopole. The height
of the middle peak becomes almost two times larger as the
magnetic field strength doubles. The side peaks become
also higher and more pronounced. Comparing the charge
profiles for all four different lattices, we conclude that
boundary effects and finite-spacing artifacts are rather
small and do not exceed 20%.

In order to investigate the transverse profiles of the

charge density, we set x3 ¼ xðmÞ
3 , x3 ¼ ðxðmÞ

3 þ xðaÞ3 Þ=2
and x3 ¼ xðaÞ3 and change the transverse coordinate x1.

The dependence of the charge density on x1 for these three
values of x3 is illustrated in Fig. 11. The caloron symmetry
axis goes through the centers of all the plots. Again, the
coordinates were shifted and rescaled in order to match the
caloron axis at x1 ¼ L=2, x2 ¼ L=2 on different lattices.
The magnetic field strengths are the same as for the left plot
of Fig. 10.
For all three values of x3, the charge density is peaked

around the caloron symmetry axis. There is also a large
excess of positive imaginary charge density close to the
boundaries of the lattice, which clearly diminishes as
the lattice size increases. A comparison of the profiles for
the 163 � 4 lattice and the rescaled 243 � 6 lattice shows
that the profiles practically do not depend on the lattice
spacing. This suggests that these boundary peaks are finite-
volume, rather than discretization, artifacts. For asymptoti-
cally large volumes one can therefore expect that the
charge density is localized near the caloron axis only.
These findings can be readily interpreted along the lines

of the previous subsection IVA. Namely, the monopole and
the antimonopole which constitute the caloron create a
chromomagnetic field between them. In the vicinity of a
midpoint this field is approximately constant, uniform,
parallel to the caloron axis and proportional to the �3
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FIG. 10 (color online). Profiles of the charge density along the symmetry axis of the caloron on lattices of different sizes for fixed
values of the magnetic field strength B. Red and blue vertical lines mark the positions of the monopole and the antimonopole.
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FIG. 11 (color online). Profiles of the imaginary part of the charge density Im hj0ðxÞi in the direction perpendicular to the symmetry
axis of the caloron for different lattice parameters and at different x3: at the monopole position (left), at the midpoint between the
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�B ¼ 5 units of magnetic flux through the 163 � 4 lattice.
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matrix in the color space. The nontrivial holonomy of the
caloron solution, i.e., the Polyakov loop outside of the
monopole and the antimonopole, is also proportional to
�3 and thus plays the role of an imaginary isospin chemical
potential. If a constant Abelian magnetic field parallel to
the caloron symmetry axis is superimposed on such a field
configuration, an imaginary electric charge should appear
between the monopole and the antimonopole.

The origin of the charge excess which is localized
directly on the monopole or the antimonopole is not so
clear to us. A possible explanation could be the following:
since the monopole and the antimonopole also create chro-

moelectric fields ~E��~r=r3�3, in a state of thermal equi-
librium the fermions would tend to decrease this electric
field by forming Debye screening clouds of negative and
positive �3 charge, respectively. This screening clouds
should be seen in the isospin density h �c ðxÞ�0�

3c ðxÞi
(note that this is written in the particular gauge where the
holonomy is in the �3 direction). However, they would not
contribute to the electric charge density as there would be
an equal amount of particle as well as antiparticle states
due to the �3 symmetry. This argument, however, is no
longer valid when the magnetic field is in place, as we have
seen that the combined effect of magnetic field and non-
trivial holonomy is to lift this symmetry. This would cause
otherwise invisible Debye clouds to be seen in the charge
density as bumps of positive/negative charge around the
cores of the monopoles.

C. An estimate of possible experimental importance

Let us now roughly estimate the importance of the
described phenomenon for heavy-ion collisions. As the
simplest approximation, we first adopt the picture of
‘‘spaghetti’’ QCD vacuum [36], assuming that it consists
of domains with roughly constant chromomagnetic field F.
According to (25), the relative decrease of the dispersion of

charge fluctuations is given by the ratio minðF2;B2Þ
maxðF2;B2Þ . We

estimate the typical strength of chromomagnetic field in
QCD at temperatures close to the deconfinement phase
transition as F� 0:1 GeV2 basing on the lattice measure-
ments of the finite-temperature gluon condensate [37]. As a
moderate estimate of the magnetic field strength, we take
ð2e=3ÞB ¼ m2

� � 0:02 GeV2 (here 2e=3 is the physical
charge of the u quark) which corresponds to Au-Au colli-
sion with impact parameter b ¼ 4 fm at

ffiffiffi
s

p ¼ 200 GeV
[38,39]. Then from (25) it follows that the effect of
magnetic field of such strength is to suppress the charge
fluctuations by several percent. This estimate of course
does not take into account any inhomogeneities of the
magnetic and the chromomagnetic fields as well as differ-
ent orientations of the latter in the color space and thus can
only be considered as a qualitative prediction. Also higher
magnetic fields will lead to much stronger suppression of
charge fluctuations—according to (25), the most signifi-
cant suppression occurs when the strengths of external

magnetic field and of chromomagnetic field are nearly
equal. The effect might be also somewhat larger for real
QCD due to larger degeneracy of states for SUð3Þ gauge
group as compared to SUð2Þ gauge group considered here.
As a more advanced model of QCD vacuum, one can

consider a model of a dilute caloron gas [15]. We first fix
the lattice spacing a in physical units by using the expres-
sion for the distance between the monopole and the
antimonopole in the caloron d ¼ ��2T, where T is the
temperature and � is the caloron size parameter, for which
we take a characteristic value � ¼ 0:33 fm from [15].
Taking into account that for the 163 � 4, 203 � 4 and
243 � 4 lattices the distance between the monopole and
the antimonopole is eight lattice spacings, we obtain
a � 0:10 fm for these lattices. Then from the linear fit
on Fig. 9 we roughly estimate the total charge induced
on a single caloron as Im J0ðBÞ � cB, where B is the
projection of the magnetic field on the caloron symmetry
axis and c � 2 GeV�2. For a dilute gas of calorons and
anticalorons with concentration n � 1 fm�4 [15] in a four-
volume V4d we estimate the contribution of the induced
imaginary charge Im J0 to the expectation value of the
squared total charge Q as


Q2 � �1=3hhJ20ðBÞiinV4d; (31)

where hh. . .ii is the average over the caloron ensemble.
Here we have assumed that the topological charges of all
‘‘quasiparticles’’ in a gas are statistically independent and
take the values�1 (corresponding to either a caloron or an
anticaloron) with equal probabilities. The factor

1=3 ¼ 1

4�

Z �

��
2�d cos �cos 2�

comes from averaging over all possible caloron
orientations in the three-dimensional space. For our simple
estimate, we take V4d as the product of a typical three-
dimensional volume of the fireball created in Au-Au
heavy-ion collisions, V3d � ð5 fmÞ3, times the inverse criti-
cal temperature of the deconfinement phase transition
Tc � 200 MeV � ð1 fmÞ�1. The magnetic field is again
estimated as ð2e=3ÞB � 0:02 GeV2. With such collision
parameters, we estimate the contribution of an imaginary
charge induced on calorons to the fluctuations of the total
charge as 
Q2 � �0:05. It can be easily changed by an
order of magnitude, for example, if one takes into account
the non-Poisson distribution of the number of calorons in a
fixed volume [15].
We thus conclude that within the simple models which

we have considered the effect of the magnetic field would
be to decrease charge fluctuations in off-central heavy-ion
collisions by several percent. Clearly, for off-central col-
lisions it is practically impossible to change the value of
the induced magnetic field without changing the volume
of the fireball. As the impact parameter of the collision
grows, the magnetic field induced by spectators also
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grows [38,39], but, on the other hand, the volume V3d of
the fireball decreases. Thus one can expect that the few-
percent-level effect of the decrease of charge fluctuations
due to increasing magnetic field would not be visible
behind the much stronger effect of decreasing charge
multiplicities due to decreasing fireball volume V3d.
Therefore if it is possible at all to detect the described
effect, it should primarily manifest itself in the centrality
dependence of the volume-independent observables such
as D ¼ hQ2i=hNtoti [40], where Ntot � V3d is the total
number of detected charged particles.

We should also make a common cautionary remark
concerning the use of the grand canonical ensemble ap-
proximation to describe the fluctuations of charge in heavy
ion collisions. Namely, the total charge of all produced
particles is of course conserved, but in experiment charged
particles are only detected in a certain rapidity range. The
charge of detected particles does fluctuate and for some
reasonable choice of rapidity range these fluctuations can
be described by a grand canonical ensemble of quark-
gluon plasma at some finite chemical potential.

V. CONCLUSIONS

In this paper we have described a mechanism by which a
combination of magnetic field and isospin magnetic field
can lead to the emergence of a net electric charge in a gas
of Dirac fermions in the presence of isospin chemical
potential or a nontrivial holonomy of a non-Abelian gauge
field. If the system is described in terms of a grand canoni-
cal ensemble at finite chemical potential, then the gener-
ated charge is borrowed from the environment to which the
system is coupled and which keeps the chemical potential
constant. We have also demonstrated that in case when no
charge is exchanged with the environment, the charge
density still appears due to spatial charge separation, so
that the region with nonzero field strength acquires the
excess of charge of one sign, and its exterior acquires the
charge of opposite sign. In its simplest form, the effect can
be realized and observed in strained monolayer graphene,

where a combination of mechanical strain, magnetic field
and valley imbalance should lead to the emergence of
nonzero electric charge.
A more subtle case is that of non-Abelian gauge theory,

in which the role of the isospin quantum number is played
by the color of quarks and the nontrivial holonomy of
gauge field configurations (Polyakov loop) is equivalent
to an imaginary isospin chemical potential. In this case the
induced charge is also imaginary for a fixed field configu-
ration and vanishes after averaging over field configura-
tions with all possible values of the holonomy. However,
this imaginary charge still yields a negative contribution to
the expectation value of the squared total charge in the
system. We have explicitly studied the induced imaginary
charge and its effect on charge fluctuations in the back-
grounds of a constant chromomagnetic field and an SUð2Þ
caloron with superimposed Abelian magnetic field. We
found that the induced charge is localized between the
monopole and the antimonopole which constitute the
caloron. Simple estimates made in subsection IVC suggest
that the described effect should tend to slightly suppress
charge fluctuations in off-central heavy-ion collisions.
It might be also interesting to test the dependence of charge
fluctuations on the external magnetic field in lattice QCD
simulations. In this case, one can measure the charge
fluctuations with very good precision, and the magnetic
field strength can take very high values [41].
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