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We study unquenched QED in four dimensions using renormalized Schwinger-Dyson equations and

focus on the behaviour of the fermion and photon propagators. For this purpose we use an improved

K�z�lersü-Pennington (KP) vertex which respects gauge invariance, multiplicative renormalizability for

the massless case, agrees with perturbation theory in the weak coupling regime, and is free of kinematic

singularities. We find that the KP vertex performs very well as expected especially in comparison with

other vertex choices. We find that the Landau pole problem familiar from perturbative QED persists in the

nonperturbative case with the renormalized inverse photon propagator having zero crossing.
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I. INTRODUCTION

Studies of gauge field theories such as quantum electro-
dynamics (QED) and quantum chromodynamics (QCD) in
the nonperturbative strong-coupling regime are of great
interest as this is where the phenomena of confinement
and dynamical symmetry breaking occur. In order to ex-
plore the strong coupling region of gauge field theories one
needs nonperturbative tools like lattice gauge theories in
discrete space-time and Schwinger-Dyson equations
(SDE) [1–6] in the continuum. They are complementary
techniques, each with their own pros and cons. While
lattice has the strong appeal of being a first-principles
approach, SDEs allow a much greater range of distance
scales to be probed simultaneously. The SDEs are the field
equations of a given quantum field theory, and, as such, are
a useful medium for studying nonperturbative Greens
functions in the strong coupling regime over a very wide
range of momentum.

The shortcoming of working with these equations is that
they form an infinite tower of nested nonlinear integral
equations and hence need to be truncated so that they can
be solved. Although perturbation theory is known as a
consistent truncation scheme to these equations in the
weak coupling regime, in order to understand the behavior
of field theories in the strong coupling regime one needs to
treat the SDEs in such a way that they satisfy the greatest
possible number of requirements including gauge invari-
ance [7–9], multiplicative renormalizability (MR) [10–14],
consistency with perturbation theory in the weak coupling
regime, and so on. The goal is to include as many theo-
retical constraints as possible so that the truncation pre-
serves as much of the true physics of the theory as possible.
In addition, in the longer term further constraints may

emerge over a limited momentum window from comple-
mentary lattice studies.
The structure of the SDEs are such that the 2-point

Green’s functions requires knowledge of 3-point Green’s
functions, the 3-point Green’s functions in principle knows
about n-point Green’s functions, and so on. However the
most important question to answer for nonperturbative
QED studies is, ‘‘What is the necessary and sufficient
knowledge of the fermion-boson vertex in order to describe
the complete and correct behavior of the fermion and
boson propagators?’’ For more than four decades there
have been many challenges to solving these equations
using a variety of truncations and approximations; most
of the efforts to date have concentrated on the fermion
Schwinger-Dyson equation with an assumed form for the
gauge boson propagator.
The most rudimentary truncation scheme is called the

rainbow-ladder approximation [15–25] which replaces the
full (dressed) vertex with the bare vertex and full (dressed)
photon propagator with the bare one. This is a quenched
treatment since it ignores the fermion loops in the photon
propagator. One can therefore study this closed system for
the fermion propagator, which consists of the two scalar
functions (called the fermion wave-function renormaliza-
tion and the mass function). Use of this truncation makes it
possible to perform some analytical calculations as well as
the numerical ones. With the rainbow-ladder treatment, it
was found that the fermion wave function renormalization
has a power-law behavior in the asymptotic regions
[12,13], the dynamical mass also displays a power-law
tail, and the corresponding critical coupling above which
the fermion mass dynamically generated is calculated to be
�=3 [18–20,24]. However this truncation scheme does
not satisfy the Ward-Green-Takahashi identity (WGTI)
[26–28], which is a relationship between the inverse full
fermion propagators and the full fermion-photon vertex
function. Ball and Chiu [29], using the WGTI, showed
that the longitudinal part of the vertex can be uniquely
specified [known as the Ball-Chiu vertex (BC)] whereas
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the transverse vertex remained unconstrained. On the other
hand studies using both bare and BC vertices yield a gauge-
dependent critical coupling [24] while the critical coupling
being a physical quantity must be independent of the gauge
parameter.

Curtis and Pennington [24,30] presented an Ansatz
for the transverse part of the 3-point Greens function which
is known as the CP vertex. Their argument was that
multiplicative renormalization of the propagator functions
constrains the transverse part of the vertex, and therefore
the transverse vertex can be built by making use of these
constraints together with the other vertex requirements and
help of perturbation theory in the weak coupling regime.
The transverse part of the vertex consists of eight form
factors; however, Curtis and Pennington only used one of
them to construct their vertex, in other words with minimal
contribution from the transverse vertex. Following this
progress Atkinson et al. [31] showed that by including
this minimal transverse vertex (CP), the gauge dependence
of the critical coupling is reduced considerably. Later on
Burden and Roberts [32] used gauge covariance concepts
to constrain the fermion-photon vertex. As an implemen-
tation and continuation of this work, Dong et al. [33] wrote
down a vertex Ansatz for massless quenched QED which
respects the Ward identity and makes the fermion propa-
gator gauge covariant, yet their construction involved an
unknown function. Improvements to this study came from
Bashir and Pennington [34,35], who used the same argu-
ments for massive QED and included more form factors
and thereby constructed their transverse vertex in terms of
two unknown functions.

Although all these studies were very useful in many
ways, namely, in understanding the internal structure of
SDE’s, in understanding the role and importance of the
vertex in the propagator functions, in learning about
the phase structure of the quenched theory, and in building
the technology in solving and dealing with these equations,
all these studies were done using quenched approximations
[6,18,19,25,31,33,36–49]. The few previous unquenched
studies [16,50,51] either employ the one-loop perturbative
expansion of the photon propagator in solving a fermion
SDE propagator or introducing some approximations such
as a simpler vertex, choosing a specific gauge in solving
the coupled system of fermion and photon SDEs. Studies
with this minimal inclusion of the dressed photon propa-
gator have served as a valuable stepping stone; neverthe-
less, in order to understand the behavior of the strongly
coupled fermion and photon system a more realistic un-
quenched fermion-photon vertex is needed. Recently
such a vertex has become available through Kizilersü and
Pennington (KP) [14], who constructed their fermion-
photon vertex so as to ensure multiplicatively renormali-
zablity of the fermion and photon propagators, to respect
gauge invariance, and to be consistent with perturbation
theory in the weak coupling regime.

This paper provides a comprehensive study of strongly
coupled unquenched QED in four dimensions in general
covariant gauges by employing the unquenched fermion-
photon vertex of Kizilersü-Pennington [14]. The results are
contrasted together with the other commonly used vertices
such as bare, Ball-Chiu, and Curtis-Pennington for com-
parison. We will analyze this coupled physical system of
SDEs thoroughly by examining their unquenching effects,
testing the vertices for their influence on the behavior of
propagators.
This article is organized such that Sec. II introduces our

notation, conventions, and all the equations that they will
be solved later. In Sec. III we describe our approach and
methodology for solving the Schwinger-Dyson equations
for the propagator functions. We specify the equations for
fermion wave-function renormalization, mass function,
and the photon wave-function renormalization that need
to be solved. Section IV presents our numerical results and
includes a discussion of these results. In Sec. V we con-
clude and outline future work.

II. SCHWINGER-DYSON EQUATIONS APPROACH
AND ITS CONVENTIONS

The SDE equations for the 2-point Green’s functions are
shown diagrammatically in Fig. 1. These diagrammatical
equations display how the full (dressed) propagator func-
tions on the left-hand side (solid and wavy lines with solid
dotes) are connected to the bare and dressed fermion and
boson propagators and to the dressed fermion-boson vertex
function on the right-hand side. Making use of the
Feynman rules for these graphs, the diagrammatic SDEs
can be written down explicitly as a set of nonlinear coupled
integral equations for the inverse fermion propagator S�1

and the inverse photon propagator ��1
��, respectively,

S�1
F ðpÞ ¼ S0�1

F ðpÞ

� ie2
Z 1

0

d4k

ð2�Þ4 �
�ðp; k;qÞSðkÞ�����ðqÞ;

� S0�1ðpÞ ��ðpÞ; (1)

��1
��ðqÞ¼�0�1

�� ðqÞ

þ ie2NFTr
Z 1

0

d4k

ð2�Þ4��ðp;k;qÞSðkÞ��SðpÞ;
��0�1

�� ðqÞþ���ðqÞ; (2)

where e is a bare fermion charge, ��ðp; kÞ is the full

fermion-photon vertex, q ¼ k� p is the photon momen-
tum, �ðp2Þ is the fermion self-energy and ���ðq2Þ is the
photon self-energy or photon polarization, S0 and �0

�� are

the tree level fermion and photon propagators, respectively.
The ultimate goal is to solve the above coupled SDEs

for the propagators, and to do this the necessary unknown
functions we need are the fermion and the photon
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propagators and the fermion-photon vertex, which we will
discuss next.

A. Fermion propagator

The full (dressed) fermion propagator can be defined
in terms of two scalar functions (F and M) or equivalently
(A and B)

iSFðpÞ ¼ i
Fðp2Þ

6p�Mðp2Þ ¼ i
1

Aðp2Þ6p� Bðp2Þ ; (3)

where

Fðp2Þ � 1

Aðp2Þ ; Mðp2Þ � Bðp2Þ
Aðp2Þ : (4)

Here Fðp2Þ is the fermion wave-function renormalization
function andMðp2Þ is the mass function. The bare, or tree-
level form, of the fermion propagator where (Fðp2Þ ¼ 1,
and Mðp2Þ ¼ m0) is

iS0ðpÞ ¼ i
1

6p�m0

¼ i
6pþm0

p2 �m2
0

; (5)

where m0 is the bare mass.

B. Photon propagator

The full photon propagator can be defined in terms of the
scalar function, G

i���ðqÞ ¼ �i

q2

�
Gðq2Þ

�
g�� �

q�q�

q2

�
þ �

q�q�

q2

�
: (6)

Here, � is the covariant gauge parameter and Gðq2Þ is
the photon wave-function renormalization function which
is related to the scalar self-energy part of the photon,
�ðq2Þ, by

Gðq2Þ ¼ 1

1��ðq2Þ : (7)

The bare, or the tree-level form, of the photon propagator
[when Gðp2Þ ¼ 1] is

i�0
��ðqÞ ¼ �i

q2

��
g�� �

q�q�

q2

�
þ �

q�q�

q2

�
: (8)

The inverse full photon propagator is

ði���Þ�1ðqÞ ¼ iq2
�

1

Gðq2Þ
�
g�� �

q�q�

q2

�
þ 1

�

q�q�

q2

�
: (9)

One can also write the photon propagator in terms of its
transverse and longitudinal parts:

i���ðqÞ ¼ �i

q2
½Gðq2Þ�T

�� þ �L
���; (10)

where

�T
��ðqÞ ¼ g�� �

q�q�

q2
; �L

��ðqÞ ¼ �
q�q�

q2
: (11)

C. The full (dressed) fermion-photon vertex

The complete QED vertex involves 12 independent
vector structures which can be formed from the vectors
��, k�, p� and the spin scalars 1, 6k, 6p, and 6k, 6p

��
F ðp; kÞ ¼

X12
i¼1

fiðp2; k2; q2ÞV�
i ðp; k; qÞ; (12)

where fi are coefficient functions and V
�
i are the spin

structures. The full vertex may be split into transverse
and longitudinal components,

��
F ðp; kÞ ¼ ��

T ðp; kÞ þ ��
L ðp; kÞ; (13)

with

q��
�
T ðp; kÞ ¼ 0: (14)

In gauge theories the full vertex satisfies the Ward-Green-
Takahashi identity [26–28] which is a relation between the
longitudinal part of the dressed vertex function through
Eq. (14) and the inverse fermion propagator

q��
�
F ðp;kÞ¼q��

�
L ðp;kÞ¼S�1ðkÞ�S�1ðpÞ

with ðq¼k�pÞ; (15)

and the Ward identity, which is the nonsingular q ! 0 i.e.
k ! p limit of WGTI:

��ðp; pÞ ¼ lim
k!p

��ðk; pÞ ¼ @S�1
F ðpÞ
@p�

with �
�
T ðp; pÞ ¼ 0:

(16)

Therefore both the Ward-Green-Takahashi and Ward iden-
tities ensure that the full vertex and the longitudinal vertex
are free of kinematic singularities, and in return the trans-
verse vertex should be also free of kinematic singularities.

k Γµ

q= k- p

= -

-1 -1

k

Γµ

p= k- q

p p

q q

= -

-1 -1

NF

FIG. 1. The Schwinger-Dyson equations for the fermion and
photon propagators in QED.
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1. The longitudinal vertex

The WGTI, Eq. (15), is a statement about the longitu-
dinal part of the vertex and it does not constrain the
transverse part except that in the limit k ! p the transverse
vertex vanishes. Implementing this idea of longitudinal
vertex being free of kinematic singularities led Ball and
Chiu [29] to uniquely decompose the longitudinal vertex
(the Ball-Chiu vertex) in terms of some specific linear
combination of some spin amplitudes, Vi, in Eq. (12),
and their coefficient functions, fi, as

�
�
L ðp; kÞ ¼ �1ðp2; k2Þ�� þ �2ðp2; k2Þð6kþ 6pÞðkþ pÞ�

þ �3ðp2; k2Þðkþ pÞ�
þ �4ðp2; k2Þðk� þ p�Þ	��; (17)

where the longitudinal form factors �i in Minkowski
space are

�M
1 ðp2; k2Þ ¼ 1

2
½Aðk2Þ þ Aðp2Þ�; (18)

�M
2 ðp2; k2Þ ¼ 1

2ðk2 � p2Þ ½Aðk
2Þ � Aðp2Þ�; (19)

�M
3 ðp2; k2Þ ¼ �1

k2 � p2
½Mðk2ÞAðk2Þ �Mðp2ÞAðp2Þ�;

(20)

�M
4 ðp2; k2Þ ¼ 0: (21)

These longitudinal form factors were determined by Ball
and Chiu in terms of fermion wave function renormaliza-
tion and mass function, and hence 4 of the 12 tensor
structures in the full vertex appear in this BC vertex
construction. Furthermore, all of the singularities (IR not
kinematic ones) in the full vertex are expected to be
encapsulated in the longitudinal vertex. Their conjecture
is supported by the one-loop perturbative calculation
[29,52] of the fermion-photon vertex indicating no such
kinematic singularities.

2. The transverse vertex

The remaining 8 vector structures are used to construct
the transverse part of the vertex; it may be written in
generality as (with q ¼ k� p)

�
�
T ðp; kÞ ¼

X8
i¼1


iðp2; k2; q2ÞT�
i ðp; kÞ; (22)

where the form factors, 
i, are unknown scalar functions
and T�

i ’s,

T
�
1 ðp;kÞ¼p�ðk �qÞ�k�ðp �qÞ;

T
�
2 ðp;kÞ¼ ½p�ðk �qÞ�k�ðp �qÞ�ð6kþ 6pÞ;

T�
3 ðp;kÞ¼q2���q� 6q;

T�
4 ðp;kÞ¼q2½��ð6kþ 6pÞ�ðpþkÞ��þ2ðp�kÞ�k�p�	��;

T�
5 ðp;kÞ¼q�	

��;

T�
6 ðp;kÞ¼��ðp2�k2ÞþðpþkÞ� 6q;

T
�
7 ðp;kÞ¼

1

2
ðp2�k2Þ½��ð6kþ 6pÞ�ðpþkÞ��

þðkþpÞ�k�p�	��;

T
�
8 ðp;kÞ¼���k�p�	��þk� 6p�p� 6k; (23)

are the transverse basis vectors which were previously
defined by Ball and Chiu in [29] as linear combinations
of V�

i in Eq. (12) in such a way that the transverse vertex is
not contributing to the WGTI, namely, satisfying
ðq���

T ðp; kÞ ¼ 0Þ and it vanishes in the limit k ! p i.e.

satisfying �
�
T ðp; pÞ ¼ 0. Their form was also guided by

perturbation theory to avoid kinematic singularities in the
individual form factors as well since these singularities do
not arise in one-loop perturbative calculations of transverse
vertex [29,52]. The higher-order perturbative calculations
are not expected to introduce any such singularities since
WGT and Ward identities are nonperturbative expressions
and as such they have to be respected at all orders by the
same mechanism as the lowest-order terms.
Although the full transverse vertex is expected to be free

of kinematic singularities, the individual form factors do
not have to be. However, the choice of the basis tensors by
Ball and Chiu possess this feature and, consequently, their
one-loop perturbative form factors in the Feynman gauge
� ¼ 1 do not exhibit any such singularities. On the other
hand the complete calculations of one-loop fermion-photon
vertex in general covariant gauge given by K�z�lersü et al.
[52] exhibited that for this choice of basis tensors there are
singularities in that 
4 and 
7 each have a singularity
separately which cancels in the full transverse vertex.
They proposed alternative new basis tensors, T�

4 and T�
7 ,

in which these singularities do not appear. Note that T1;2;3;4

are symmetric under k $ p, while T5;6;7;8 are antisymmet-

ric under the same transformation.
Knowledge of the fermion-boson vertex is essential to

solving the coupled Schwinger-Dyson equations for the
propagator functions, Eqs. (1) and (2). Since the 1950s
there have been many SDEs studies, which employed
various vertices and these are summarized below.

3. Vertices under consideration

a. Bare vertex.—This is the minimal vertex contribution
within the full vertex construction and is the first order
contribution in perturbation theory:
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��
F ¼ ��

Bare ¼ ��: (24)

It is clearly inadequate as it does not satisfy the WGTI
except in the massless quenched approximation in the
Landau gauge (� ¼ 0), nor does it satisfy multiplicative
renormalizability. However, in the Landau gauge at least, it
reproduces qualitatively the features of quenched (where
the fermion loops in the photon propagator are neglected,
i.e. the photon propagator is treated as the bare one) QED,
in that the spinor part of the WGTI is satisfied. There have
been many studies employing Bare vertex and some are
Refs. [15–25].

b. Ball-Chiu vertex.—Strictly speaking, the Ball-Chiu
[29] vertex is the longitudinal part of the fermion-photon
vertex, Eq. (17), with no transverse contribution:

�
�
F ¼ �

�
BC ¼ �

�
L

¼ ��

2
½Aðk2Þ þ Aðp2Þ� þ ð6kþ 6pÞðkþ pÞ�

2ðk2 � p2Þ ½Aðk2Þ

� Aðp2Þ� � ðkþ pÞ�
k2 � p2

½Mðk2ÞAðk2Þ �Mðp2ÞAðp2Þ�:
(25)

Although this vertex satisfies the WGTand Ward identities
and hence is free of any kinematic singularity, it does not
satisfy multiplicative renormalizability.

c. Curtis-Pennington vertex.—The Curtis-Pennington
vertex [30] is the BC longitudinal vertex with a minimal
transverse part with only one nonzero form factor:

�
�
F ¼ �

�
CP ¼ �

�
L þ T

�
6 � 
6; (26)

where


M6 ¼ � 1

2dðk2; p2Þ ðAðk
2Þ � Aðp2ÞÞ; (27)

and ‘‘M’’ denotes Minkowski space and

dðk2; p2Þ ¼ ðk2 � p2Þ2 þ ½M2ðk2Þ þM2ðp2Þ�2
k2 þ p2

: (28)

This vertex is designed to be multiplicative renormalizable
and it is proven to be very successful in many nonpertur-
bative quenched QED studies, it has a dynamical problem
when used in unquenched studies which we will discuss in
Sec. IVA2 in detail.

d. Modified Curtis-Pennington vertex (Mod. CP).—
Because of the undesirable feature of the CP vertex in
unquenched studies noted above, a modified version is
used in an ad hoc (hybrid) fashion. This hybrid vertex
consists of the Curtis-Pennington construction for the fer-
mion Schwinger-Dyson equations and the Ball-Chiu con-
struction for the photon SDE which is also studied in [51].

�
�
F ¼ �

�
CP ¼ �

�
L þ T

�
6 � 
6; for fermionSDE;

�
�
F ¼ �

�
BC ¼ �

�
L for photon SDE:

(29)

e. K{z{lersü-Pennington vertex.—This is a newly pro-
posed vertex [14] that was designed for unquenched stud-
ies. Its form factors carry both fermion and photon
momenta dependence. It satisfies both fermion and photon
SDEs to all orders in leading logarithms and is multiplica-
tively renormalizable by construction in the massless case
and respects the WGT and Ward identities. The KP vertex
studies concluded that there is more than one vertex
construction that satisfies the unique photon limit
k2 ’ p2 � q2 and all necessary constraints but that they
differ from each other only beyond the leading logarithmic
order. Two such constructions mentioned in the original
paper [14] and studied numerically here are given below:

��
F ¼ ��

KP ¼ ��
BC þ T�

2 
2 þ T�
3 
3 þ T�

6 
6 þ T�
8 
8; (30)

where, type 2


E2 ðp2; k2; q2Þ ¼ � 4

3

1

ðk4 � p4Þ ðAðk
2Þ � Aðp2ÞÞ � 1

3

1

ðk2 þ p2Þ2 ðAðk
2Þ þ Aðp2ÞÞ ln

��
Aðk2ÞAðp2Þ
Aðq2Þ2

��
;


E3 ðp2; k2; q2Þ ¼ � 5

12

1

ðk2 � p2Þ ðAðk
2Þ � Aðp2ÞÞ � 1

6

1

ðk2 þ p2Þ ðAðk
2Þ þ Aðp2ÞÞ ln

��
Aðk2ÞAðp2Þ
Aðq2Þ2

��
;


E6 ðp2; k2; q2Þ ¼ 1

4

1

ðk2 þ p2Þ ðAðk
2Þ � Aðp2ÞÞ;


E8 ðp2; k2; q2Þ ¼ 0;

(31)

STRONGLY-COUPLED UNQUENCHED QED4 . . . PHYSICAL REVIEW D 88, 045008 (2013)

045008-5



type 3


E2 ðp2; k2; q2Þ ¼ � 4

3

1

ðk4 � p4Þ ðAðk
2Þ � Aðp2ÞÞ � 2

3

1

ðk2 þ p2Þ2 ðAðk
2Þ þ Aðp2ÞÞ ln

�
1

2

�
Aðk2Þ
Aðq2Þ þ

Aðp2Þ
Aðq2Þ

��
;


E3 ðp2; k2; q2Þ ¼ � 5

12

1

ðk2 � p2Þ ðAðk
2Þ � Aðp2ÞÞ � 1

3

1

ðk2 þ p2Þ ðAðk
2Þ þ Aðp2ÞÞ ln

�
1

2

�
Aðk2Þ
Aðq2Þ þ

Aðp2Þ
Aðq2Þ

��
;


E6 ðp2; k2; q2Þ ¼ 1

4

1

ðk2 þ p2Þ ðAðk
2Þ � Aðp2ÞÞ;


E8 ðp2; k2; q2Þ ¼ 0;

(32)

where ‘‘E’’ denotes the Euclidean space form and these
two types of vertices only differ in their arguments of ln’s
and in the coefficient factors. Although we will be compar-
ing the above type 2 and type 3 vertices in Sec. IVA2,
throughout our numerical studies in Sec. IV we will be
using the type 2 KP vertex.

Later in the paper, in Sec. IV we will make use of the
vertex Ansätze listed above to analyze their performance in
unquenched propagator studies.

III. REGULARIZATION-INDEPENDENT
METHOD FOR UNQUENCHED FERMION

AND PHOTON PROPAGATORS

In quantum field theories the self-energies involve di-
vergent integrals Eqs. (1) and (2); therefore, the two-step
procedure of regularization and renormalization are un-
avoidable. One can employ regularization schemes such
as ‘‘dimensional regularization’’ or ‘‘cutoff regularizaton’’
which both have their own pros and cons in SDE studies.
For instance, while dimensional regularization respects the
translational invariance, its numerical implementation in
SDE studies is challenging and it breaks chiral symmetry
for all values of coupling, �, in quenched QED [53]
until the � ! 0 limit is taken. On the other hand the cutoff
regularization does not respect the translation invariance
but makes the numerical studies tractable [44,45].
However one must use it with care. Figure (4) in
Ref. [45] shows how the correct treatment of cutoff regu-
larization gives excellent agreement with the dimensional
regularization method. The second step in this procedure is
to remove this regulator by renormalizing the theory at the
physical scale �.

In these unquenched studies of four-dimensional
QED we will necessarily need to work with the
renormalized quantities in SDEs in order to study
regularization-independent quantities and hence we next
establish the renormalization procedure.

A. Renormalization

Our renormalization treatment is the standard one as we
relate the regularized unrenormalized quantities to the
renormalized ones in the following multiplicative way:

Sðp2;�2Þ ¼ Z�1
2 ð�2;�2ÞSBareðp2; �2Þ; (33)

��	ðp2;�2Þ ¼ Z�1
3 ð�2;�2Þ�Bare

�	 ðp2; �2Þ; (34)

��ðp2; k2;�2Þ ¼ Z1ð�2;�2Þ�Bare
� ðp2; k2; �2Þ; (35)

� ¼ Z�1
3 ð�2;�2Þ�Bare; (36)

� ¼ Z3ð�2;�2Þ�Bare ðZ1 ¼ Z2Þ; (37)

where Z1, Z2, and Z3 are the renormalization functions for
the vertex, fermion and photon, respectively, � ¼ e2=ð4�Þ
is the coupling, �2 is the renormalization point, and �2 is
our regularization parameter, which is a UV cutoff. Note
that renormalized quantities have an implicit dependence
on �, which we do not show for notational convenience
and where wewill work at sufficiently large� such that the
residual regularization parameter dependence on the re-
normalized quantities is negligible. The renormalization
conditions that we use here at p2 ¼ �2 are

Fð�2;�2Þ¼1; Gð�2;�2Þ¼1; Mð�2Þ¼m�: (38)

Making use of the above renormalization relations, the
renormalized inverse fermion and photon propagators,
Eqs. (1) and (2), are

S�1
F ðp;�Þ ¼ Z2ð�ÞS�1

0 ðpÞ � Z1ð�Þ ��ðpÞ; (39)

��1
��ðq;�Þ ¼ Z3ð�Þ�0�1

�� ðqÞ þ Z1ð�Þ ����ðqÞ; (40)

where Z1 ¼ Z2 fromWGTI and for notational convenience
we will suppress the regularization dependence from now
on leaving it implicit and writing Z1ð�2;�2Þ as Z1ð�Þ,
likewise the renormalized quantities ��ðp;�Þ and
����ðp;�Þ as ��ðpÞ and ����ðpÞ, etc.

B. Regularization-independent formulation of the full
fermion Schwinger-Dyson equation

The fermion self-energy in Eq. (39), Fig. 2 can be

decomposed into Dirac and scalar terms, ��ðpÞ ¼
��dðpÞ6pþ ��sðpÞ which is obtained from �ðpÞ by
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�� dðp2Þ ¼ 1

4
Tr

�
��ðpÞ 6p

p2

�
; ��sðp2Þ ¼ 1

4
Trð ��ðpÞ � 1Þ:

(41)

Multiplying Eq. (39) by 6p and 1, respectively, yields two
separate equations for the inverse fermion wave-function
renormalization and the mass function

F�1ð�2;p2Þ ¼ Z2ð�Þ � Z2ð�Þ ��dðp2Þ; (42)

Bðp2Þ ¼ Mðp2ÞF�1ð�2;p2Þ ¼ Z2ð�Þm0 þ Z2ð�Þ ��sðp2Þ:
(43)

Evaluating Eqs. (42) and (43) at the renormalization point,
p2 ¼ �2, and forming an appropriate difference one can
eliminate the divergent constants Z1 and Z2 to obtain the
renormalized quantities

Fð�2;p2Þ ¼ 1þ Fð�2;p2Þ ��dðp2Þ � ��dð�2Þ;
Mðp2Þ ¼ m� þ ½Mðp2Þ ��dðp2Þ þ ��sðp2Þ�

� ½m�
��dð�2Þ þ ��sð�2Þ�; (44)

where the renormalization conditions Eq. (38) have been
realized. The left-hand side of the above equations being
finite implies that the right-hand side must also be finite,

even though the individual ��s and
��d terms on the right-

hand side may diverge separately as� ! 1. The details of
the regularization-independent method can be found in
[45,54]. The equations in Eq. (44) are the two main equa-
tions that we will be using for the fermion propagator in
our analysis.

1. F equation: The fermion wave-function
renormalization

The fermion wave-function renormalization, F, is de-
fined in terms of the Dirac part of the self-energy in

Eq. (44). Therefore, starting with the Dirac part of the

fermion self-energy, ��d, in Eq. (41), we write it explicitly
in terms of dressed renormalized fermion-photon vertex,
renormalized dressed fermion, and photon propagators as

��dðp2Þ ¼ i��

p2
Tr 6p

�
Z
M

d4k

ð2�Þ4 �
�ðp; k;�ÞSFðk;�Þ�����ðq;�Þ;

(45)

where � � �ð�Þ is the running coupling defined at the
renormalization point. We employed the WGTI for the
longitudinal part of the photon propagator, Eq. (10), and
removed the odd integral

R
d4k6q=q4 which would be zero

under the translational invariant regularization scheme.
After performing the trace algebra and moving from
Minkowski space to Euclidean space using the Wick rota-
tion we have

�� dðp2Þ ¼ �

4�3

Z
E
d4k

1

p2

1

q2
Fðk2Þ

½k2 þM2ðk2Þ�
n
IL

��d
þ IT

��d

o
;

(46)

where IL
��d

and IT
��d

are the integrands related to the longi-

tudinal and transverse components of the fermion-photon

vertex of the Dirac part of the self-energy, ��dðpÞ, respec-
tively, and they can be written as

IL
��d

¼ � �

q2
Aðp2Þfp2k � qþMðk2ÞMðp2Þp � qg

þGðq2Þ
�
1

2
½Aðk2Þ þ Aðp2Þ� 1

q2
½�2�2 � 3q2k � p�

þ 1

2ðk2 � p2Þ ½Aðk
2Þ � Aðp2Þ� 1

q2
½�2�2ðk2 þ p2Þ�

þ 1

ðk2 � p2Þ ½Mðk2Þ2Aðk2Þ �Mðp2ÞMðk2ÞAðp2Þ�

� 1

q2
½�2�2�

�
; (47)

IT
��d

¼ Gðq2Þ
�

E1 ðp2; k2; q2ÞMðk2Þ½�2� þ 
E2 ðp2; k2; q2Þ½��2ðk2 þ p2Þ� þ 
E3 ðp2; k2; q2Þ½2�2 þ 3q2k � p�

þ 
E4 ðp2; k2; q2ÞMðk2Þ½2�2 þ 3q2ðk � pþ p2Þ� þ 
E5 ðp2; k2; q2ÞMðk2Þ½3p � q�
þ 
E6 ðp2; k2; q2Þ½3k � pðp2 � k2Þ� þ 
E7 ðp2; k2; q2ÞMðk2Þ

�
��2 � 3

2
ðk2 � p2Þðp2 þ k � pÞ

�

þ 
E8 ðp2; k2; q2ÞMðk2Þ½�2�2�
�
: (48)

Note that 
’s are in Euclidean space and �2 ¼ ðk � pÞ2 � k2p2.

p p k ΓBC
µ  + ΓT

µ

q = k- p

= -

-1 -1

FIG. 2. Fermion Schwinger-Dyson equation.
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2. M equation: Mass function

In a similar way to fermion self-energy, the mass
function in Eq. (44) is given by both Dirac and the scalar
part of the self-energy. Hence, the scalar part of the fer-

mion self-energy, ��s, in Eq. (41), can be dealt with in a

similar way to ��d

��sðpÞ¼ i��Tr
Z
M

d4k

ð2�Þ4�
�ðp;k;�ÞSFðk;�Þ�����ðq;�Þ;

(49)

and in Euclidean space it is

��sðpÞ ¼ �

4�3

Z
E
d4k

1

q2
Fðk2Þ

½k2 þM2ðk2Þ�
n
IL

��s
þ IT

��s

o
; (50)

where again IL
��s
and IT

��s
are the integrands related to the

longitudinal and transverse part of the fermion-photon

vertex of the scalar part of the self-energy, ��sðpÞ, respec-
tively, and they are

IL
��s
¼ �

q2
1

Fðp2Þ ½k � qMðp2Þ � p � qMðk2Þ� þGðq2Þ
�
1

2
½Aðk2Þ þ Aðp2Þ�Mðk2Þ½3�

þ 1

2ðk2 � p2Þ ½Aðk
2Þ � Aðp2Þ�Mðk2Þ

��4�2

q2

�
þ 1

ðk2 � p2Þ ½Mðk2ÞAðk2Þ �Mðp2ÞAðp2Þ�
�
2�2

q2

��
; (51)

IT
��s
¼ Gðq2Þ

�

E1 ðp2; k2; q2Þ½��2� þ 
E2 ðp2; k2; q2Þ½�2�2�Mðk2Þ þ 
E3 ðp2; k2; q2Þ½�3q2�Mðk2Þ

þ 
E4 ðp2; k2; q2Þ½2�2 þ 3q2ðk � pþ k2Þ� þ 
E5 ðp2; k2; q2Þ½3k � q� þ 
E6 ðp2; k2; q2Þ½�3ðp2 � k2Þ�Mðk2Þ
þ 
E7 ðp2; k2; q2Þ

�
�2 þ 3

2
ðp2 � k2Þðk2 þ k � pÞ

�
þ 
E8 ðp2; k2; q2Þ½0�

�
: (52)

C. Regularization-independent formulation for the full
photon Schwinger-Dyson equation

The renormalized photon SDE, Fig. 3, from Eq. (40) is

��1
��ðqÞ ¼ Z3ð�Þð�0

��Þ�1ðqÞ þ Z1ð�Þ ����ðqÞ; (53)

where ���� is the photon vacuum polarization or self-

energy obtained by evaluating the photon SDE diagram
using the Feynman rules.

Similar to the Ward-Green-Takahashi identity for
fermion propagator, the Ward-Takahashi identity for the
photon propagator is

q���1
�� ¼ q�q2

�
: (54)

Making use of this identity, Eq. (54), for the photon SDE,
Eq. (53), leads us to the well known transversality condi-
tion of the photon self-energy:

q� ���� ¼ 0: (55)

If we contract the photon self-energy with q�,

q� ����ðqÞ ¼ ie2NFTr
Z
M

d4k

ð2�Þ4 ��SðkÞðq � �ðp; kÞÞSðpÞ;
(56)

and use the WGTI,

q� ����ðqÞ ¼ ie2NFTr
Z
M

d4k

ð2�Þ4 ��ðSðkÞ � Sðp ¼ k� qÞÞ:
(57)

One expects that this integral is trivially zero, since the
integration variable in the second term can be shifted so
that it cancels out the first term. Although this is the case if
one employs a gauge-covariant regularization scheme such
as dimensional regularization, it is not true for the cutoff
regularization since this integral is linearly divergent and
one is not allowed to perform any shift in the integration
variable. In a UV cutoff regularization scheme, the bare
quantities are not gauge invariant because the divergent
integrals depend on the position of the four-dimensional
hypersphere defined by the cutoff, i.e., the divergent inte-
grals are not invariant under momentum shifts. However,
the great benefit of the regularization-independent ap-
proach is that by only calculating finite convergent quan-
tities gauge invariance is restored as � ! 1. This occurs
because the differences of the divergent bare integrands in
Eq. (57) give rise to convergent integrands which respect
invariance under momentum shifts as � ! 1.FIG. 3. Photon Schwinger-Dyson equation.
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Therefore if the gauge invariance is respected by
the regularization method, this term is transverse and finite.
The transversality condition suggests that the photon
self-energy tensor must admit the following tensor decom-
position:

�� �� ¼ �q2
�
g�� �

q�q�

q2

�
��ðq2Þ; (58)

where �� is called the scalar self-energy. Using the follow-
ing transverse projector

P�� ¼ �1

ðd� 1Þq2
�
g�� � d

q�q�

q2

�
; (59)

where d is the dimensionality of space-time, the inverse
relation can be found as

�� ¼ P�� ����: (60)

Inserting Eqs (8) and (9) into Eq. (53), imposing the trans-
versality condition, Eq. (58) with Eq. (60), and canceling
the longitudinal components and common factors yields
the following equation for the inverse photon wave-
function renormalization function, G:

1

Gðq2; �2Þ ¼ Z3ð�Þ þ Z1ð�Þ ��ðq2Þ: (61)

From Eq. (2), the photon self-energy tensor can be written
explicitly as

����ðqÞ ¼ ie2NFTr
Z
M

d4k

ð2�Þ4 ��ðp; kÞSðkÞ��SðpÞ;

¼ ie2NF

Z
M

d4k

ð2�Þ4 Tr½��ðp; kÞð6kþMðk2ÞÞ

� ��ð6pþMðp2ÞÞ� 1

Aðk2Þ½k2 �M2ðk2Þ�
� 1

Aðp2Þ½p2 �M2ðp2Þ� : (62)

Using an analogous procedure to the fermion propagator
in Eq. (44), we can form the appropriate subtractions of
the renormalized photon SDEs, Eq. (61), to eliminate the
divergent renormalization constants Z1 and Z3 by recalling
that Gð�2;�2Þ ¼ 1 yields

G�1ð�2; q2Þ ¼ 1þ ½G�1ð�2; q2Þ ��dð�2Þ þ ��ðq2Þ�
� ½ ��dð�2Þ þ ��ð�2Þ�: (63)

1. G equation: The photon wave-function
renormalization

Making use of Eqs. (60) and (58), the photon self-energy
in Euclidean space can be written as

��ðq2Þ ¼ �NF

3�3

Z
E
d4k

1

q2
1

Apðp2 þM2
pÞ

� 1

Akðk2 þM2
kÞ
fIL

� þ IT
�g; (64)

where NF is the number of fermion flavors, IL
� and IT

� are
the integrands related to the longitudinal and transverse
part of the fermion-photon vertex of the photon self-

energy, ��ðq2Þ, respectively. These can be written as

I L
� ¼ 1

2
ðAk þ ApÞ

�
2k � p� 8

q2
ð�2 þ q2k � pÞ

�
þ 1

2

ðAk � ApÞ
ðk2 � p2Þ

�
ð�ðk2 þ p2Þ þ 2MkMpÞ

�
8

q2
ðk � qÞ2 � 3k � q� 2k2

�

� 3ðk2 � p2ÞðMkMp � k2Þ
�
þ ðMkAk �MpApÞ

k2 � p2

�
�ðMk þMpÞ

�
8

q2
ðk � qÞ2 � 3k � q� 2k2

�
þ 3ðk2 � p2ÞMk

�
;

(65)

IT
� ¼ 
E1 ðp2; k2; q2Þ½Mkf�2g þMpf�2g� þ 
E2 ðp2; k2; q2Þ½ðk2 þ p2Þf��2g þMkMpf2�2g�

þ 
E3 ðp2; k2; q2Þ½3q2k � pþ 2�2 þMkMpf3q2g� þ 
E4 ðp2; k2; q2Þ½Mkf3q2k � pþ 2�2 þ 3p2q2g
�Mpf3q2k � pþ 2�2 þ 3k2q2g� þ 
E5 ðp2; k2; q2Þ½Mkf3p � qg �Mpf3k � qg�
þ 
E6 ðp2; k2; q2Þ½3k � pðp2 � k2Þ þMkMpf3ðp2 � k2Þg� þ 
E7 ðp2; k2; q2Þ

�
Mk

�
3

2
ðp2 � k2Þðp2 þ k � pÞ ��2

�

�Mp

�
3

2
ðp2 � k2Þðk2 þ k � pÞ þ �2

��
þ 
E8 ðp2; k2; q2Þ½�2�2�: (66)

To solve the fermion wave-function renormalization, F, mass function, M in Eq. (44), and the photon wave-function
renormalization, G, in Eq. (63), simultaneously and analytically for a given vertex is not possible since these are nonlinear
integral equations, unless one makes major approximations; however, it is possible to solve them numerically using
numerical iteration methods.
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Unquenching the theory adds many challenges to this
procedure and presents itself complications; nevertheless,
it is possible achieve this using advanced numerical calcu-
lation techniques. Below we will present our numerical
results and discuss them in some detail.

IV. NUMERICAL SOLUTIONS

Now we turn to numerical solutions of the coupled
equations for the unquenched fermion and photon propa-
gators, Eqs. (44) and (63), with self-energies given by
Eqs. (46), (50), and (64), respectively. The propagator
functions Fðp2Þ ¼ 1=Aðp2Þ, Mðp2Þ, and Gðp2Þ take their
values on a logarithmically spaced grid of momentum-
squared points covering 10–20 orders of magnitude,
interpolated via cubic splines. The equations are iterated
until they satisfy some convergence criteria, which we
have chosen to be that the propagator functions vary
from their previous incarnations at each point by less
than 1 part in 106.

Clearly this involves the introduction of both an infrared
cutoff �2 and an ultraviolet cutoff �2 in the integrations of
the self-energy equations:Z 1

0
dk2 !

Z �2

�2
dk2: (67)

A more complete analysis would estimate the contribution
from the IR and UV tails, but in the current context
solutions meeting the convergence criteria are obtained
by choosing �2 � �2. Valid numerical solutions need to
be stable against choice of momentum point density and

IR and UV cutoff (which is harder to achieve for massless
solutions, where both 1=A and 1=G are infrared divergent).

A. Numerical solutions renormalized at �2 <�2

In this section, we compare massless and massive
solutions for various vertices (bare, Ball-Chiu, Curtis-
Pennington, modified CP, and Kizilersu-Pennington)
which were identified above, with parameters UV cutoff
�2 ¼ 1012, IR cutoff �2 ¼ 10�2, and renormalization
point �2 ¼ 108.
In Fig. 4 for gauge parameter � ¼ 0:5, we see that in

order for the Curtis-Pennington vertex to satisfy the photon
SDE renormalization condition, the photon field strength is
driven to zero in the IR. Similar pathological behavior for
this vertex is exhibited in the Landau gauge; solutions for
higher � do not even converge. This confirms that the
(unmodified) CP vertex has a dynamical problem in the
unquenched photon SDE which is also mentioned in
Ref. [51] and so we eliminate it from further consideration
in favor of the modified Curtis-Pennington vertex which is
described in Eq. (29).

1. Massless versus massive solutions

We compare the remaining vertices in the massless,
(i.e. M identically zero, M ¼ 0), and massive, M � 0,
unquenched propagators in Landau gauge for � ¼ 0:2 in
Fig. 5. These solutions converge and are similar in form
to the quenched solutions of A andM exhibited previously
[25,40–42,45]. In particular, the massless A and G
functions tend to zero in the IR, while their massive
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counterparts tail off in the IR to a nonzero constant. All
vertices give similar results for the photon propagator, and
for the mass function in the massive case. Only the fermion
finite renormalization function Aðp2Þ results differ: in the
massless case, the BC vertex solution is appreciably differ-
ent from the other vertex solutions; this gives credence to
the view that the BC vertex needs to be supplemented
by a transverse part to restore (and improve) the

characteristic solution. On the other hand, in the massive
case, the bare vertex solution differs from the others.
Massless and massive solutions overlap in the asymptotic
region.
Figure 6 presents the same massless/massive compari-

son of the solutions in a different format for � ¼ 0:2
and � ¼ 0:5. Again, we see that massive solutions of A
and G for small m� share a common asymptotic tail with
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their massless counterparts. We note that increasing m�

results in the flat IR tail increasing towards higher momen-

tum for all the propagator functions, but having the same UV

tail, until m2
� exceeds �2, whereupon the asymptotic tail

itself is shifted towards higher momenta, while the flat IR tail

is shared.
For the remainder of this section, we concentrate on

massive solutions.

2. KP vertex comparison

One of the purposes of this paper is to understand the
effect of the KP vertex in the unquenched fermion and
photon propagators. This vertex is formulated to satisfy the
requirements of multiplicative renormalizability of both
the fermion and photon propagators and these constraints
can be matched by few specific KP vertex constructions,
Eqs. (31) and (32). These type 2 and type 3 KP vertices
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have the same unique photon limit k2 ’ p2 � q2 and both
satisfy all other necessary constraints but they differ from
each other only beyond the leading logarithmic order as
explained in Ref. [14]. Figure 7 displays relative percent-
age difference in the solutions of A, M, and G with the
parameters� ¼ 0:6 and � ¼ 0, 0.5, 1.0 for two types of KP
vertices, Eqs. (31) and (32). They yield almost identical
results for the Landau gauge but in the Feynman gauge the
difference between them is much more evident, and greater
in the IR region than in the UV region for the renormal-
ization point, ð�2 ¼ 108Þ; obviously this conclusion may
change according to the chosen renormalization point.

3. Quenched versus unquenched solutions

Figures 8 and 9 explore the effect of varying the number
of flavors betweenNF ¼ 0, 1, 2 for � ¼ 0:2 and � ¼ 0 and
0:5, respectively.NF ¼ 0 corresponds to the quenched case
and NF ¼ 1 represents the default case used in the other
graphs. As expected, the primary effect of the variation is
on the photon propagator G; its (indirect) effect on the
fermion propagator functions is small, except for A func-
tion in Landau gauge, which is close to unity and thus more
susceptible to variation.

Recall from Ref. [45] that the asymptotic form of the
quenched fermion propagator functions have a (real or
complex) power-law functional form as a consequence of
the scale invariance of the quenched theory (which follows
from the renormalization group equations with constant
coupling). By contrast, the unquenched solutions are not
asymptotically power-law behaved, as a consequence of

fermion loops in the photon SDE destroying the scale
invariance of the unquenched theory.
Figure 10 shows the asymptotic tail comparison between

the numerical solutions and the power-law fit. One can see
that the solutions do not admit a power law behavior for the
unquenched solutions suggesting that they are different
from their quenched partners.

4. Gauge dependence of the solutions

In QED the photon propagator Gðp2Þ should be gauge
invariant, i.e. independent of �, while the fermion propa-
gator should depend on the gauge parameter in accordance
with the Landau-Khalatnikov equations [55]. The effect of
varying the gauge parameter on the different vertices is
explored in Fig. 11, where � is varied between �0:5 and
1.5 for � ¼ 0:2. The photon wave-function renormaliza-
tion function should have no dependence on the gauge
parameter. However, note that Gðp2Þ exhibits large varia-
tion with � for all except the KP vertex, which approaches
the desirable goal of gauge independence.

5. Cutoff dependence of the solutions

In Fig. 12, we increase the cutoff �2 from 1012 (the
default case) to 1018 for � ¼ 0:2 and � ¼ 0. For these
renormalized solutions, we expect very little sensitivity to
the choice of UV cutoff and, for all except the BC vertex,
this is the case. Notably, the A function of the BC vertex
does vary appreciably with �2 and we therefore exclude
this vertex from further consideration.
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6. Multiplicative renormalizability of the solutions

The propagator functions should depend on the renor-
malization point �2 according to the renormalization
group equations (RGE). We call this property the MR
test. For QED, this is simplified by the observation that
both the mass function Mðp2;�2Þ and effective alpha

�eff ¼ ��Gðp2;�2Þ are renormalization-group invariants

and should be unaffected by shifts in the renormalization
point; A should scale instead. Hence, given a solution set
Aðp2;�2Þ, Mðp2Þ, and Gðp2;�2Þ renormalized at �2,
new values for � and m may be looked up from the
effective alpha and mass functions, respectively, at the
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new renormalization point �02. The remaining boundary
conditions are determined by the need for A to be normal-
ized at the new renormalization point, and for � to trans-
form oppositely to �. So the new (primed) solutions are
related to the old (unprimed) solutions by

M0ðp2Þ ¼ Mðp2Þ; (68)

G0ðp2Þ ¼ �

�0 Gðp2Þ ¼ Gðp2Þ=Gð�02Þ; (69)

A0ðp2Þ ¼ Aðp2Þ=Að�02Þ; (70)

where the (un)primed functions are functions of the (un)
primed parameters, respectively, for example,

Aðp2Þ ¼ Aðp2;�2; ��; ��;m�Þ; (71)

A0ðp2Þ ¼ A0ðp2;�02; ��0 ; ��0 ; m�0 Þ; (72)

and the new parameters are related to the old by

m0 ¼ Mð�02Þ; (73)

�0 ¼ �effð�02Þ ¼ �Gð�02Þ; (74)

�0 ¼ �=Gð�02Þ: (75)

The multiplicative renormalizability of the remaining
vertices is explored in Fig. 13, which applies the �2 test,
as explained above, on the � ¼ 0:6, � ¼ 0, �2 ¼ 1012

solution with mass m� ¼ 4 at the renormalization point

�2 ¼ 108. For the bare vertex, the mass function and
effective coupling � of the calculated solutions renormal-
ized at �2 ¼ 1010 and �2 ¼ 1012 (which coincides with
the cutoff same, �2 ¼ 1012) do not coincide with the
original solution. Hence this vertex fails the MR test and
is not multiplicatively renormalizable. By way of contrast,
KP vertexes pass the MR test, reflecting their multiplica-
tively renormalizability by construction; moreover the
modified CP vertex which is a CP vertex for the fermion
SDE equation makes the mass function multiplicatively
renormalizable as it is designed; however, photon SDE
which employs a BC vertex also unexpectedly makes a
photon propagator multiplicatively renormalizable as well.

7. Coupling strength dependence of the solutions

In Fig. 14, � is varied between 0.1 and 0.6 in Landau
gauge for the four vertices under consideration. As �
increases the infrared values of A, G decrease while M
increases and vice versa in the UV region. Note that the
BC solution for � ¼ 0:6 does not converge, and is absent
from the figure. The solutions for �> 0:6 do not converge
for any vertex choice (the limit seems to be just below
� ¼ 0:7); this appears to be a consequence of the existence
of a zero of 1=Gðp2Þ—a Landau pole. This has fatal
consequences for the integrand of the fermion propagator,
which is proportional to �effðk2Þ ¼ ��Gðk2;�2Þ.
To establish an approximate limit on � imposed by the

Landau pole, we consider the first order leading log
solution for G:
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1

Gðp2Þ ¼ 1� ��NF

3�
ln

�
p2

�2

�
: (76)

Since G occurs within the Dirac and scalar self-energy
integrands, Eqs. (47) and (48) and Eqs. (51) and (52),
respectively, as a function of q2, the maximum momentum

evaluated in G is at p2 ¼ 4�2, necessitating an extrapola-
tion beyond the cutoff. So

1=Gðp2Þ> 0 ) ��NF <
3�

ln ð4�2=�2Þ : (77)

Note that this depends on the �2=�2 ratio.
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Choosing�2 ¼ 108 and�2 ¼ 1012 as they were used in
our prior analysis in this section, we find the limit from
Eq. (77) is

�NF < 0:89: (78)

On the other hand, for solutions renormalized at the cutoff,
�2 ¼ �2 ¼ 1012, the limit imposed by Eq. (77) is

�NF < 6:8: (79)

The actual asymptotic behavior and settling down to
convergence invariably lowers this limit.

To summarize, the following defects of the vertices in
our detailed study were noted:

(i) the CP vertex is not dynamically viable,
(ii) the BC vertex is not invariant against the cutoff,
(iii) the bare vertex (and also, we expect, the BC vertex)

is not multiplicatively renormalizable,
(iv) all except the KP vertex have strongly gauge-

dependent photon propagators.
Moreover, in contrast to the quenched case, we cannot

advance the coupling strength � beyond fairly modest

limits for any vertex choice. We summarize this behavior
in Table I.

B. Numerical solutions renormalized at �2 ¼ �2

To overcome the limitation on � seemingly imposed by
the existence of the Landau pole which we discussed in the
last section, we explore solutions renormalized at the cut-
off, which imposes the less draconian limit on Eq. (77)
given by Eq. (79). We use a higher cutoff�2 ¼ 1014 so that
the high-momentum behavior of G is more visible, but this
is largely irrelevant for these renormalized solutions—as
emphasized before, what is important is the �2=�2 ratio.
Although the renormalized � increases with momentum,
we can shift the renormalization point back to study the
effect of the Landau pole on the solutions studied
previously.
In this section, we study massless and massive solutions

for the bare, modified CP, and KP vertices renormalized at
the cutoff �2 ¼ 1014 mindful of the limits imposed by
Eq. (77).
Figure 15 shows the effect of varying � between 0.6 and

4.6 for massless solutions renormalized at the cutoff. That
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TABLE I. Vertex Comparison

Vertices/properties Bare vertex Ball-Chiu Mod. CP KP

Invariance against �2 ✓ � ✓ ✓
Multiplicative renormalization test � � ✓ ✓
Gauge independence of photon propagator � � � ✓
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the upper limit of � ¼ 4:6 in the numerical studies is lower
than the leading log approximations (which predicts
� ¼ 6:8) indicates the presence of higher order effects.
In Fig. 16, we zoom in on the momentum range to see what
happens to � around p2 ¼ 108, the ‘‘old’’ renormalization
point used in the previous section. The limit on �, noted

earlier, is still very evident here, in fact, as �� is increased,
�old increases to 0.7 but then decreases again. Hence, there
exists the possibility of more than one solution satisfying
the renormalization boundary conditions (for example,
when specifying �� between 0.6 and 0.7 for �2 ¼ 108).

Clearly, one of these degenerate solutions cannot satisfy
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the MR test: in practice, a ‘‘high’’ alpha solution reverts to
the ‘‘low’’ alpha solution when used as a guess with the
renormalization point set back from the cutoff.

By way of contrast, the massive solutions (withm� ¼ 4)
renormalized at the cutoff presented in Fig. 17 (and asymp-
totic to the corresponding massless solutions in A and G)
do not exhibit this limiting effect but rather seem to sepa-
rate into two distinct bands, which we label ‘‘low alpha’’
and ‘‘high alpha.’’ The low alpha solutions correspond to
those studied in the previous section. The high alpha
solutions differ from the low alpha solutions in two
ways: (1) � can now exceed the Landau pole limit at
momenta less than the cutoff, and (2) the mass function
is vastly amplified.

To account for how the high alpha solutions seemingly
evade the Landau pole limits, we study the first iteration
cycle behavior of the solutions with the KP vertex for � ¼
1:2 and � ¼ 0:5 renormalized at �2 ¼ 108 with cutoff
�2 ¼ 1014 for two choices of mass; m� ¼ mlow ¼ 4 and

m� ¼ mhigh ¼ 105 which correspond to ‘‘low mass’’ and

‘‘high mass’’ solutions, respectively. The results are pre-
sented in Fig. 18.

We do not expect the low mass solution to converge, and
indeed in the first iteration cycle, the inverse photon propa-
gator goes negative. On the other hand, the high mass
solution remains viable in the first iteration cycle, by
effectively translating the graph of low mass inverse pho-
ton propagator and the Landau Pole to the right by a factor
ðmhigh=mlowÞ2 as well as downwards as can be seen in

Fig. 18. The other propagators are shifted similarly.

The equations resulting from the first iteration
(which are independent of a vertex) may be integrated
analytically; the expressions are presented in the
Appendix. Therein, it is shown that the propagator func-
tions 1=Að¼ FÞ, M, and G at the low and high masses are
related to each other according to a two-step process.
Step 1 scales the solutions according to the relations below:

Fðp2; �2; m2
highÞ ¼ Fðp2=s2; �2=s2; m2

lowÞ; (80)

Mðp2; �2; m2
highÞ ¼ s�Mðp2=s2; �2=s2; m2

lowÞ; (81)

Gðp2; �2; m2
highÞ ¼ Gðp2=s2; �2=s2; m2

lowÞ; (82)

where s2 ¼ m2
high=m

2
low. However during this scaling pro-

cedure the renormalization point of the propagator func-
tions changes by an amount of s2. Therefore the two-step
process involves obtaining the high mass solutions at the
original renormalization point from the scaled solutions.
This procedure is explained in Appendix. Figure 18 shows
the exceptional agreement between analytic and numeric
evaluation of the first-iteration (cycle) of the solutions, as
well as the result of translating the low mass solution to the
high mass solution.
From this we can conclude that the solutions with high�

may exist if the mass is high enough; the mass function
modifies the photon propagator so that it evades the Landau
pole.
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This implies a lower bound on the mass of high alpha
solutions. This lower bound can be seen clearly in Fig. 19;
we lowered the mass of � ¼ 1:1, � ¼ 0, KP vertex solu-
tions from m� ¼ 106 until they failed to converge at

m� ¼ 4� 105, confirming the existence of a lower bound

on the mass.
The solution with zero bare mass is also included in the

figure because if the theory supports dynamical chiral
symmetry breaking, this solution must exist, implying
that the lower bound is lower than the chiral solution.
However, it appears to be not much lower. By way of
contrast, the quenched theory admits a solution for all
masses below the chiral solution, but with oscillations in
the mass function.

V. CONCLUSION

This paper studies quantum electrodynamics in four
dimensions in the strong coupling region where the inter-
actions between the fermions and photons are strong. The
Schwinger-Dyson equations make it possible to analyze
the field theory in this nonperturbative region since these
equations are the field equations of that theory. The diffi-
culty in working with them arises from the fact that they
are an infinite tower of nonlinear integral equations and to
solve these equations even for the 2-point Green’s func-
tions requires a meaningful truncation of this infinite sys-
tem. Although such truncation is inevitable for solving
these equations it must not alter the physics. Along this
line the gauge invariance and the multiplicative renorma-
lizability of the theory must be respected for every accept-
able truncation scheme. During the last five decades many

studies have employed various truncations, such as
rainbow ladder and others. Almost all of the analyses for
these truncation schemes were done using the quenched
approximations, where the fermion loops are ignored and
hence the photon propagator is treated as the bare one.
Although these studies have helped us understand how
these equations behave and how to extract the physical
quantities they are not complete until we are able to study
the full (dressed) theory.
To date the only exploration beyond quenched theory

was done by approximating the photon propagator to its
first order perturbative expression [16,50], which made it
possible to study a fermion and photon coupled system.
This treatment serves as a guide to understanding how this
coupled system works in terms of its components; how-
ever, to determine the complete nonperturbative dynamics
one needs to go beyond the quenched theory to the un-
quenched theory where we can analyze the strongly
coupled fermions and photons.
This goal is achievable now that a more realistic

fermion-photon vertex [14] has become available. By mak-
ing use of this vertex in this paper we have studied in depth
unquenched QED in four dimensions by solving SDEs
numerically for a fermion-photon propagator coupled
system.
This work deals with the renormalized unquenched SDE

for Fermion wave-function renormalization, F, the mass
function, M, and the photon wave-function renormaliza-
tion, G, simultaneously for the vertices most commonly
used (bare, modified CP, and BC) in the past together with
the new KP vertex. This is one of the very first and
comprehensive studies of the unquenched QED4 which is
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compared against the quenched calculations and analyzed
for the vertices mentioned above to conclude which one of
them perform better or worse based on the physics they
must obey.

We reported here that the Curtis-Pennington vertex has a
dynamical problem in the photon SDEs; hence the solu-
tions do not converge. For this reason we used the modified
CP which includes the CP vertex for the fermion SDE and
the BC for the photon SDE. The bare, modified CP, and BC
vertices fail the gauge-invariant photon wave-function re-
normalization test; only the K�z�lersü-Pennington (KP)
vertex leads to a highly gauge-independent photon wave-
function renormalization. All the propagator functions
must respect multiplicative renormalizability and conse-
quently the effective coupling and the mass function must
be renormalization group invariant quantities. While the
bare vertex fails to satisfy this criteria, the modified CP, and
KP vertices pass this test since they were both constructed
to respect MR.

We expect that the renormalized quantities are insensi-
tive to UV cutoff, �2; however, the BC vertex fails to
display this property for the fermion wave-function
renormalization; all other vertices realize this insensitivity
to the cutoff.

When the coupling was increased for all the vertices we
saw that the photon wave-function renormalization expe-
rienced a limiting value for the coupling above which the
1=G has a zero crossing and therefore the solutions stop
converging. We interpreted this phenomenon as a realiza-
tion of the Landau Pole beyond which there are no solu-
tions. To explore this phenomena we renormalized our
propagator functions at the UV cutoff and, as was ex-
pected, we could raise the limiting value of coupling to
one higher than to when the renormalization point was
lower than the UV cutoff. For the massive solutions we
saw that the Landau Pole can be avoided at momenta below
the cutoff for high � solutions if the fermions have very
large masses. We also showed that by unquenching the
theory the tail of the solutions in the asymptotic region do
not exhibit the power-law behavior due to the broken scale
invariance. It is interesting to speculate that if the cutoff is
made large enough, then a Landau pole will always occur
no matter how large the fermion mass is made or how small
the coupling.

This study presents one of the first comprehensive analy-
ses of various fermion-photon vertices and their roles in
SDE for the fermion and photon propagators. We con-
cluded that the K�z�lersü-Pennington vertex is superior to
all other existing vertices for the full strong coupling
QED4. It shows the importance of having an appropriate
unquenched vertex for the unquenched SDE studies by
ensuring that the solutions satisfy the necessary criteria.

We will next examine dynamical mass generation in
QED4 using the KP vertex, as well as studying three-
dimensional QED as a toy model, since it presents

dynamical chiral symmetry breaking as well as the con-
finement. Finally after these investigations we will turn our
focus to QCD.
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APPENDIX: FIRST CYCLE PROPAGATOR
SOLUTIONS OF SDES

In this appendix we obtain the analytical first iteration
cycle solutions of the fermion and photon propagator
functions F, M, and G which are stated in Eqs. (44) and
(63). In order to start the iteration process we first initialize
these functions by choosing Fðp2Þ ¼ 1, Gðq2Þ ¼ 1, and
Mðp2Þ ¼ m� in Eqs. (44) and (63). The fermion wave-

function renormalization, Eq. (44), then reduces to

Fðp2; �2Þ ¼ 1þ ��dðp2; �2Þ � ��dð�2; �2Þ: (A1)

Inserting Fðp2Þ ¼ 1,Gðq2Þ ¼ 1, andMðp2Þ ¼ m� into the

fermion self-energy and its components, Eqs. (46)–(48),
we see that the total contribution comes from IL

��d
and

nothing from IT
��d
:

��dðp2;�2Þ
¼� �

4�3

Z
E
d4k

1

p2q4
1

ðk2þm2Þ
�
�
�½p2k �qþm2p �q�þ½2�2þ3q2k �p�

�
: (A2)

Performing the angular and radial integrals on Eq. (A2)
yields the first iteration cycle solution of the fermion
self-energy

��dðp2; �2Þ ¼ ��

4�

�
ln

p2 þm2

�2 þm2
þm2

p2
�m4

p4
ln
p2 þm2

m2

�
;

(A3)

and the exact first cycle fermion wave-function renormal-
ization is
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Fðp2;�2;m2Þ ¼ 1þ��

4�

�
ln
p2

�2
þ
�
ln

�
1þm2

p2

�
þm2

p2

�m4

p4
ln

�
1þ p2

m2

��
�
�
ln

�
1þm2

�2

�
þm2

�2

�m4

�4
ln

�
1þ�2

m2

���
: (A4)

Observe that in Eq. (A4) all the momenta, mass, and the
renormalization point appear as ratios of p2, m2, and �2.
By inspection we can write

Fðp2; �2; m2Þ ¼ Fðp2=s2; �2=s2; m2=s2Þ: (A5)

Going through the similar process for the mass function
in Eq. (44) we get

Mðp2; �2; m2Þ ¼ mþ ½m ��dðp2; �2Þ þ ��sðp2; �2Þ�
� ½m ��dð�2; �2Þ þ ��sð�2; �2Þ�; (A6)

using the scalar part of the fermion self-energy,
Eqs. (50)–(52)

��sðp2; �2; m2Þ ¼ �m

4�3

Z
E
d4k

1

q2
1

ðk2 þm2Þ
�

�
�

q2
½k � p� p � q� þ 3

�
; (A7)

once again we only have contributions from IL
��s
to the first

cycle calculationswhereasIT
��s
doesnot contribute. Integrating

Eq. (A7) yields the scalar part of the fermion self-energy

��sðp2; �2Þ ¼ �m

4�
ð�þ 3Þ

�
ln
�2 þm2

p2 þm2

þ 1�m2

p2
ln
p2 þm2

m2

�
; (A8)

and the first cycle mass function using Eqs. (A3) and (A8) is

Mðp2; �2; m2Þ ¼ m

�
1þ �

4�

�
�
m2

p2
�

�
3þ �

m2

p2

�

�
�
1þm2

p2

�
ln

�
1þ p2

m2

��

� �

4�

�
�
m2

�2
�

�
3þ �

m2

�2

��
1þm2

�2

�

� ln

�
1þ�2

m2

���
: (A9)

By inspection we see that

Mðp2; �2; m2Þ ¼ s�Mðp2=s2; �2=s2; m2Þ: (A10)

Repeating the same procedure for the photon
wave-function renormalization and vacuum self-energy,
Eqs. (63)–(66) yields

1

Gðq2; �2Þ ¼ 1þ ½ ��ðq2; �2Þ � ��ð�2; �2Þ�; (A11)

��ðq2; �2Þ ¼ �NF

3�3

Z
E
d4k

1

q2
1

ðp2 þm2Þðk2 þm2Þ
�

�
2k � p� 8

q2
ð�2 þ q2k � pÞ

�
: (A12)

Integrating Eq. (A12) yields the exact first cycle expression
for the vacuum self-energy:

��ðq2; �2Þ ¼ �NF

3�
fP1 þ P2 þ P3 þ P4 þ P5 þ P6g;

(A13)

where

P1 ¼ �
�
16

3

�
�6

q6
þ 2

�
1� 8

m2

q2

�
�4

q4
þ 2

�
1� 4

m2

q2
� 8

m4

q4

�
�2

q2
;

P2 ¼
ffiffiffiffiffiffiffi
R�

p m2

q2

��
16

3

�
�4

q4
þ 2

3

�
�1þ 16

m2

q2

�
�2

q2
� 13

6
þ 26

3

m2

q2
þ 16

3

m4

q4

�
;

P3 ¼ ln

�
1

2

ffiffiffiffiffiffiffi
R�

p þ 1

2

�2

m2
� q2

8m2
þ 1

2

�
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P4 ¼ � 1

4
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1þ 4m2

q2

��
� 13
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þ 26

3

m2

q2
þ 16

3

m4

q4

�
;

P5 ¼ 2

�
1� 2m2

q2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

4
þm2

q2

�s
ln

q2

m2 ð� �2

m2 þ q2

4m2 þ 1Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

m2 ð q2
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q
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m2 þ q2
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P6 ¼ �2

�
1� 2m2

q2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

4
þm2

q2

�s
ln

2
4q2
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(A14)
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R� ¼ �4

m4
þ 2

�
1� q2

4m2

�
�2

m2
þ

�
1þ q2

4m2

�
2
; (A15)

and making use of the above expressions one can form the
first cycle photon wave-function renormalization using
Eq. (A11).

Several observation may be made here. First, the first
iteration cycle expression for the photon propagator,
Eqs. (A11) and (A13), which was derived from IL

��
,

Eq. (65), and IT
��
, Eq. (66), did not contribute. Furthermore

all the quadratic and higher powers of � in Eq. (A14)
cancel each other out and do not create any spurious infin-
ities. Moreover it is important to note here that in order to
obtain the correct value of the photon wave-function renor-
malization we had to collect the terms in such a way that
there was numerical cancellation between them and this
required very high precision (i.e. 64 bit processing).

Second, when p2 is at the cutoff the behavior of the 1=G
is 1—function (mass) where that function increases as the
mass decreases for small masses and vice versa for large
masses.

Similar to the fermion wave-function renormalization
and mass function all the p2, m2, and �2 dependence in
this equation are in the form of ratios again; hence, the
scaling also applies to the photon wave-function renormal-
ization as

Gðp2; �2; m2Þ ¼ Gðp2=s2; �2=s2; m2=s2Þ: (A16)

To obtain the high mass solutions from the low mass
ones, one makes use of the above scaling relations by
relabeling them as

Fðp2; �2; m2
highÞ ¼ Fðp2=s2; �2=s2; m2

lowÞ; (A17)

Mðp2; �2; m2
highÞ ¼ s�Mðp2=s2; �2=s2; m2

lowÞ; (A18)

Gðp2; �2; m2
highÞ ¼ Gðp2=s2; �2=s2; m2

lowÞ; (A19)

where s2 ¼ m2
high=m

2
low. However, this scaling procedure

alters the renormalization point. In order to get the solu-
tions at the original renormalization point, �̂2, we can
relate these scaled solutions to the desired ones using
the first cycle analytic expressions from Eqs. (A4), (A9),
and (A11):

Fðp2;�̂2;m2
highÞ¼Fðp2;�2;m2

highÞ�Fð�̂2;�2;m2
highÞþ1;

(A20)

Mðp2;�̂2;m2
highÞ¼Mðp2;�2;m2

highÞ
�Mð�̂2;�2;m2

highÞþm�; (A21)

Gðp2; �̂2; m2
highÞ ¼ Gðp2; �2; m2

highÞ
�Gð�̂2; �2; m2

highÞ þ 1: (A22)

In the region where m2 � �2 massless and massive
solutions share the same UV tail; on the other hand where
m2 � �2 massless and massive solutions give the same IR
constant; see Figs. 6 and 19.
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