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We consider the Brans-Dicke Reissner-Nordström spacetime in isotropic coordinates and the electro-

static field of an electric point charge placed outside its surface of inversion. We treat the static electric

point charge as a linear perturbation on the Brans-Dicke Reissner-Nordström background. We develop a

method based upon the Copson method to convert the governing Maxwell equation on the electrostatic

potential generated by the static electric point charge into a solvable linear second-order ordinary

differential equation. We obtain a closed-form fundamental solution of the curved-space Laplace equation

arising from the background metric, which is shown to be regular everywhere except at the point charge

and its image point inside the surface of inversion. We also develop a method that demonstrates that the

solution does not contain any other charge that may creep into the region that lies beyond the surface of

inversion and which is not covered by the isotropic coordinates. The Brans-Dicke Reissner-Nordström

spacetime therefore is linearly stable under electrostatic perturbations. This stability result includes the

three degenerate cases of the fundamental solution that correspond to the Brans Type 1, the Reissner-

Nordström and the Schwarzschild background spacetimes.
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I. INTRODUCTION

The effect of gravitation on electromagnetic phenomena
is of great interest due to its applications in both particle and
astrophysics. To the astrophysicist, such study sheds light on
phenomena occurring around black holes and other strong
gravitational sources. Of particular interest to the authors
of this paper are the closed-form fundamental solutions for
electric potential that can be found for these situations. Such
solutions, when they exist, are particularly interesting as
they provide the basis for research on, amongst others,
particle self-interaction (e.g. Refs. [1–4]) and electromag-
netic phenomena around wormholes (e.g. Refs. [5–8]).
See also Refs. [9–11]. This paper investigates the stability
of a class of electrovac Brans-Dicke spacetimes linearly
perturbed by a static electric point charge.

In 1927, Whittaker [12] investigated electric phenomena
in gravitational fields including the study of the electro-
static potential generated by a static electric point charge
in a Schwarzschild and a quasiuniform gravitational
background. Using the method of separation of variables,
he was able to find an infinite-series solution describing the
former and a closed-form solution for the latter.

Shortly thereafter, in 1928, Copson [13] used Hadamard’s
[14] theory of ‘‘elementary solutions’’ (referred to in recent
literature as fundamental solutions) of partial differential
equations to not only reproduceWhittaker’s original expres-
sion for the quasiuniform field but to go on and derive an
exact closed-form expression for the potential generated by
a static electric point charge in a Schwarzschild spacetime
written in isotropic coordinates. Copson noted that his result

differed from Whittaker’s infinite-series solution by a
zeroth-order term (see Sec. VI for further discussion on
Whittaker’s and Copson’s solutions).
Independently, in the 1970s Cohen and Wald [15] and

Hanni and Ruffini [16] used the method of separation of
variables to express the electrostatic potential generated by a
static electric point charge in a Schwarzschild background
as an infinite series which concurred with Whittaker’s
earlier result.
Copson’s result was ammended by Linet [17] who applied

the boundary condition at infinity and an asymptotic expan-
sion of Copson’s solution to prove that it was for not one but
two charges, the second residing within the horizon. Linet
resolved this issue by excising the second charge, his result
coinciding with those found using multipole expansions
by Cohen and Wald [15], Hanni and Ruffini [16] and
Whittaker [18]. Linet was also able to transform Copson’s
fundamental solution from isotropic coordinates into the
usual Schwarzschild coordinates.
Using the Copson-Hadamard method Linet went on to

derive expressions for the potential of a static electric point
charge in the Reissner-Nordström field with Leaute [19]
and in a Brans-Dicke-Schwarzschild field with Teyssandier
[20]. Copson revisited his method of solution in 1978 [21],
developing a closed-form solution for the potential gener-
ated by a static electric point charge (what he terms an
‘‘electron’’) in a Reissner-Nordström background field. His
result again differed to that obtained by Leaute and Linet
[19] due to a different choice of boundary conditions,
which will be discussed in Sec. VI.
The Copson method for solving for the electric potential

involves identifying a new independent variable that con-
verts the governing Maxwell equation into a linear second-
order ordinary differential equation. Linet and co-authors
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adopted the form of Copson’s independent variable to
consider the Reissner-Nordström and Brans-Dicke-
Schwarzschild cases and were able to find the correspond-
ing governing equations for the above-mentioned cases
as second-order ordinary differential equations (see also
Ref. [22]). The results obtained by these authors were on a
case-by-case basis. Here we introduce a method by which
one is able to extract the form of the new independent
variable and obtain the general second-order ordinary
differential equation for all the electrovac spherically
symmetric Brans-type solutions which are reducible to
the Schwarzschild and Reissner-Nordström black hole
solutions in the Einstein theory.

As Copson’s method involves solving a linear second-
order ordinary differential equation which would naturally
produce two linearly independent solutions, it is necessary
to impose appropriate boundary conditions that would allow
one to determine the relationship between the two constant
coefficients of the general solution. As mentioned earlier, it
was due to a different choice of boundary condition that
Copson’s result differed from that found by Linet and co-
authors, and thus it is clear to see how the interpretation of
the solution hinges upon the choice of boundary condition.
As a result of his choice of boundary conditions Copson’s
solution exhibited two charges, which was in contradiction
to Hadamard’s theory of ‘‘elementary’’ solutions that stip-
ulates that there must exist only one singular point. Here we
impose a boundary condition such that a Gauss’ law-type
integral over any closed surface in space not enclosing the
perturbing charge must vanish even if that region contains a
surface of inversion, which exists in all Brans Type I solu-
tions which are reducible to the Schwarzschild and
Reissner-Nordström black hole cases (see Theorem 1 in
Sec. II). This boundary condition proves to be sufficient in
determining the relationship between the constant coeffi-
cients such that they are in agreement with known multipole
solutions found using the method of separation of variables
[15,16,18] and those found using Hadamard’s definition of
‘‘elementary’’ solutions [17,19,20].

In Sec. II we give a detailed overview of the Brans-
Dicke Reissner-Nordström background which is the exact
solution for the gravitational field generated by a point
charge in a scalar-tensor field. The general Brans-Dicke
electrovac solution has six constants of integration, two of
which can be determined by scaling the coordinates r and t.
Luke and Szamosi [23] showed that the remaining four
constants of integration can be constrained such that the
solution reduces to the Reissner-Nordström solution in
Einstein’s theory. The salient feature of these Brans-
Dicke metrics is that in isotropic coordinates a surface of
inversion separates the solution into two regions. This
results in a double covering of the spacetime region cor-
responding to the exterior of a nonrotating black hole in
general relativity. It is also important to detail the choice of
constants and their subsequent physical interpretations

as this will influence our choice of boundary condition
(see Appendix A for more details). As demonstrated by
Arnowitt, Deser and Misner (ADM) [24,25], the interpreta-
tions of the source terms of a spherically symmetric
spacetime in isotropic coordinates requires careful analysis.
The results in this section, together with the analysis in
Appendix A, extend some of the results in Refs. [24,25]
done using the ADM technique on Schwarzschild and
Reissner-Nordström spacetimes. We also state the appropri-
ate choice of parameter values for the static spherically
symmetric Brans-Dicke electrovac solutions as required by
the weak-field approximation. We briefly discuss observa-
tional constraints on ! as this is of particular interest due to
the fact that scalar fields and the variable cosmological
‘‘constant’’ have become two of the most popular candidates
for dark energy [26–30].
In Sec. III, we briefly outline Hadamard’s theory of

fundamental solutions of curved-space Laplace equations
containing first-order terms. In Sec. IV we extend Copson’s
method to find the first four terms of the fundamental
solution describing the potential generated by a static
electric point charge placed outside the surface of inversion
in a Brans-Dicke Reissner-Nordström background. We
then develop a method of identifying the new independent
variable using the Brans-Dicke field equations as outlined
in Appendix A.
In Sec. V, we solve the linear second-order differential

equation to give us a closed-form solution, which can be
used to construct the fundamental solution that represents
the electric potential generated by a point charge residing
outside the surface of inversion in a Brans-Dicke Reissner-
Nordstöm spacetime. It is important to note that due to the
nature of the background metric in isotropic coordinates,
the region interior to the surface of inversion is an exact
copy of the exterior. Therefore the closed-form solution
obtained has an additional singular point at the inversion
point of the perturbing static electric point charge.
In Sec. VI, we introduce a boundary condition that will

allow one to determine the relationship between the two
constant coefficients and essentially eliminate the singularity
that creeps into the spacetime region that lies beyond the
inversion surface and which is not covered by the isotropic
coordinates. Hence we obtain a process to derive the funda-
mental solution for a class of curved-spaceLaplace equations
containing first-order terms, thus making it unnecessary to
compare with multipole expansion solutions.
Lastly, in Sec. VII we show how our method also yields

the fundamental solutions of the three known cases
(Schwarzschild, Reissner-Nordström, Brans-Dicke Type I),
which are summarized in Table I.
In Appendix A, details of how the scalar field, themetric

functions and the electrostatic potential are all essentially
a combination of the metric variable r2�e�þ� are dis-
cussed. Appendix A also outlines how the Brans-Dicke
Reissner-Nordström background metric can be determined.
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The surface integral inner boundary condition is outlined in
Appendix B for the Brans-Dicke Reissner-Nordström
background.

II. SCALAR-TENSOR FIELD THEORY

The field equations in the Brans-Dicke theory are

Rab�1

2
gabR¼ 8�Tab

c4�
þ 1

�
ðra@b��gabh�Þ

þ !

�2

�
@a�@b��1

2
gabg

cd@c�@d�

�
; (1)

h� ¼ 8�T

ð2!þ 3Þc4 ; (2)

where

h� :¼ rbðgab@a�Þ ¼ 1ffiffiffiffiffiffiffi�g
p @bð ffiffiffiffiffiffiffi�g

p
gab@a�Þ (3)

and h is the scalar wave operator.
Here the notations have their usual meaning. The con-

tribution of the electromagnetic field, encoded in the
Faraday tensor Fab, to the energy-momentum tensor is

Tab ¼ FacF
c
b �

1

4
gabFcdF

cd; Ta
a ¼ 0; (4)

where Fab satisfies the source-free Maxwell equations

rbF
ab ¼ 0; r½cFab� ¼ 0: (5)

Following the method of Luke and Szamozi [23] while
at the same time conforming to the choice of boundary
conditions in Brans [31] [see Eqs. (19)–(24)] one can verify
that an electrically charged Brans-Dicke field that reduces
to the Reisnner-Nordström solution in isotropic coordi-
nates when the long-range field equals the reciprocal of
the gravitational constant, i.e. � ¼ ðG0Þ�1, can be sum-
marized as follows (see Appendix A for a brief derivation).
Theorem 1.—A static spherically symmetric electrically

charged Brans-Dicke Reissner-Nordström (BDRN) solu-
tion of Eqs. (1), (2), and (5) in isotropic coordinates
ðt; r; �; �Þ is given by the line element

ds2 ¼ �c2e2�ðrÞdt2 þ e2�ðrÞ½dr2 þ r2ðd�2 þ sin �d�2Þ�;
(6)

where the static electric potential V0ðrÞ, the Faraday tensor
Fab and the corresponding energy-momentum tensor
Ta
b are

V0ðrÞ ¼ Q
Z r

1
e�ðrÞ��ðrÞ

r2
dr; (7)

Fab ¼ �cV 0
0ðrÞ

0 1 0 0

�1 0 0 0

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA; (8)

TABLE I. The four cases and their solutions for the electrostatic potential generated by a charged particle at r ¼ b where k ¼ Cþ2
2� .

Brans-Dicke-Reissner-Nordström Brans-Dicke Reissner-Nordström Schwarzschild

e2�
e2�0 jr�B

rþBj
2
�

�ðrÞ2 e2�0 j r�B
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b

�0
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r
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ðr�BÞ12
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3B2ð1þ4
3ð1�k2ÞÞ

2ðr2�B2Þðb2�B2ÞU0
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U2
B2ð1þ4

3ð1�k2ÞÞð�5þ4
3ð1�k2ÞÞ

8ðr2�B2Þ2ðb2�B2Þ2 U0
B2ð1þ4
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U3
B6ð1þ4
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3ð1�k2ÞÞ
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�ðrÞðrþBÞ2 ðr�B
rþBÞk�1Fð�Þ r

ðrþBÞ2 ðr�B
rþBÞk�1Fð�Þ r�0

�ðrÞðrþBÞ2 Fð�Þ r�0

ðrþBÞ2 Fð�Þ

Vðr; �Þ 	0r
�ðrÞðr2�B2Þ ½r�B

rþB�k bBðb2�B2Þk�1

½p2
þðbþBÞ2k�p2�ðb�BÞ2k�

� p2
þð

ffiffiffiffiffiffiffi
�þ1

p
þ ffiffiffi

�
p Þ2k�p2�ð

ffiffiffiffiffiffiffi
�þ1

p
� ffiffiffi

�
p Þ2k

2
ffiffiffi
�

p ffiffiffiffiffiffiffi
�þ1

p

	0r
r2�B2 ½r�B

rþB�k bBðb2�B2Þk�1

ðbþBÞ2k

� ð
ffiffiffiffiffiffiffi
�þ1

p
þ ffiffiffi

�
p Þ2k

2
ffiffiffi
�

p ffiffiffiffiffiffiffi
�þ1

p

	0r
�ðrÞðrþBÞ2

bB
½p2

þðbþBÞ2�p2�ðb�BÞ2�

� p2
þð

ffiffiffiffiffiffiffi
�þ1

p
þ ffiffiffi

�
p Þ2�p2�ð

ffiffiffiffiffiffiffi
�þ1

p
� ffiffiffi

�
p Þ2

2
ffiffiffi
�

p ffiffiffiffiffiffiffi
�þ1

p

	0r
ðrþBÞ2

bB
ðbþBÞ2

� ð
ffiffiffiffiffiffiffi
�þ1

p
þ ffiffiffi

�
p Þ2

2
ffiffiffi
�

p ffiffiffiffiffiffiffi
�þ1

p

ELECTROSTATIC POTENTIAL OF A POINT CHARGE IN . . . PHYSICAL REVIEW D 88, 045007 (2013)

045007-3



Ta
b ¼ � e4�ðrÞQ2

2r4

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
BBBBB@

1
CCCCCA: (9)

The reduced long-range scalar field wave equation
derived from Eq. (1) is

½r2 exp ð��ðrÞ þ �ðrÞÞV 0
0ðrÞ�0 ¼ 0: (10)

The metric functions e2�ðrÞ and e2�ðrÞ are

e2�ðrÞ ¼ e2�0 j r�B
rþB j

2
�

ðp2þ � p2�j r�B
rþB j

Cþ2
� Þ2 ; (11)

e2�ðrÞ ¼ e2�0

�
1þ B

r

�
4
��������r� B

rþ B

��������
2ð��C�1

� Þ

�
�
p2þ � p2�

��������r� B

rþ B

��������
Cþ2
�

�
2
; (12)

and the long-range scalar field �ðrÞ is

� ¼ �0

��������r� B

rþ B

��������
C
�

: (13)

The functions V0ðrÞ, e2�ðrÞ, e2�ðrÞ and �ðrÞ are defined for
all non-negative r except at r ¼ B. The boundary values
e�0 and e�0 can be rescaled to unity by scaling the t and r
coordinates, respectively. The nine parameters Q, B, p2þ,
p2�, �,C,�0, e

2�0 and e2�0 in Eqs. (11)–(13) are related via

4�2 ¼ ð2!þ 3ÞC2 þ ðCþ 2Þ2; ! � � 3

2
; (14)

B ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B � q2B

q
; (15)

mB :¼ 2M

c2�0

e�0�

Cþ 2
; qB ¼ 2

ffiffiffiffiffiffiffi
4�

�0

s
Q

c2
e�0�

Cþ 2
; (16)

p2� ¼ mB �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B � q2B

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B � q2B

q ; (17)

p2þ � p2� ¼ 1; (18)

where M and Q are non-negative real constants and are
identified, respectively, as mass measured in conventional
units (kg) and charge measured in electrostatic units (e.s.u),

which has the dimensions of ½mass�12½length�32½time��1. Here
! is the coupling constant that couples the scalar field to
matter, while c is the speed of light in a vacuum.

Taking into account Eqs. (14)–(16), there remain only
four essential parameters in the BDRN solution. We adopt
the independent parameter set M, Q, C, �0.

(1) The choice of the physical parameters of mass, M,
and charge, Q, in the characterization of the BDRN
metric is natural.

(2) As opposite charges neutralize one another, in most
astrophysical applications it is reasonable to assume

M � ffiffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p
Q � 0, and hence the parameter B in

Eq. (15) is non-negative.
(3) �0 is the value of the long-range scalar field at

spatial infinity. It has the dimensions of ½mass��
½length��3½time�2.

(4) The parameter C is dimensionless and relates to the
local strength of the long-range scalar field �ðrÞ.
Equation (14) gives �2 as a quadratic expression in
C with the discriminant � ¼ �ð2!þ 3Þ. Thus

when !>� 3
2 , C is real and

ffiffiffiffiffiffiffiffiffiffi
2!þ3
2!þ4

q
< j�j<1.

Constraining the BDRN solutions to conform with
the weak-field approximation (see Ref. [32]), we
expand the metric functions and the scalar field,
Eqs. (11)–(13), to the order of 1=r, and obtain the
following restrictions on the parameters:

�0 ¼ �0 ¼ 0; (19)

�0 ¼ 1

G0

�
2!þ 4

2!þ 3

�
; (20)

� ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!þ 3

2!þ 4

s
; (21)

C ffi � 1

!þ 2
; (22)

mB ffi M

c4�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!þ 4

2!þ 3

s
; (23)

qB ffi
ffiffiffiffiffiffiffi
4�

�0

s
Q

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!þ 4

2!þ 3

s
; (24)

whereG0 is defined as the gravitational constant (for
the BDRN spacetimes), while G denotes Newton’s
universal constant of gravity (see Case 2 and Case 3
below).

(5) Observational constraints put even stronger require-
ments on the values of!. The latest results obtained
from the Cassini-Huygen experiment [33] put the
value of ! at over 40 000. The coupling constant !
represents the strength of the coupling between the
scalar field and the gravitational field. Therefore its
value is of great importance in any discussion
regarding (a) the existence and properties of
Brans-Dicke black holes and (b) candidates for
dark energy.

(6) When an inversion is applied, that is, transforming

from r to r� ¼ B2

r , the region B< r <1 is mapped
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one-to-one onto the region 0< r < B. Under such a
reflection at the sphere of rBDRN ¼ B, the functions

V0ðrÞ, e2�ðrÞ, �ðrÞ and the line element (6) remain

invariant while the metric function e2�ðrÞ is trans-

formed into e2�ðr�Þ ¼ r4

B4 e
2�ðrÞ and the flat 3-metric

d‘2 :¼ ½dr2 þ r2ðd�2 þ sin 2�d�2Þ� is mapped

conformally onto the flat metric dð‘�Þ2 ¼ r4

B4 d‘2.

Therefore the spherical surface at rBDRN :¼ B ¼ 1
2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
B � q2B

q
is an inversion surface in the sense that

the BDRN solution in isotropic coordinates is
invariant under the geometric inversion transforma-
tions rðr�Þ ¼ B2. The two copies of the BDRN
spacetime—one exterior to and the other interior to
the inversion surface—are identical. At the spherical
surface of inversion rBDRN ¼ B, the line element (6)
is singular. It is the inaccessible boundary of the two
identical copies of the BDRN spacetime in isotropic
coordinates. Throughout this article we use the
exterior copy where B < r <1, unless stated other-
wise. This will have important consequences (see
below) on how to interpret the Copson-Hadamard
method [13] in the construction of the fundamental
solution to the Laplace equation of a perturbed elec-
trostatic potential in a BDRN background solution.

(7) An investigation by Ref. [34] found that Brans Type I
solutions may represent an external gravitational
field for nonsingular spherically symmetric matter
sources. They concluded, however, that Brans-Dicke
black holes cannot exist, as a condition equivalent to
Eq. (22) (that is, theweak-field approximation) would
require that �2>!>�ð2þ 1ffiffi

3
p Þ, a requirement

which clearly violates observational constraints [33].
By choosing various combinations of the four indepen-

dent parameters M, Q, C and �0 to vanish, we obtain the
following limiting solutions.

Case 1 Brans Type I (BS) metric in isotropic coordinates.
By setting the charge parameter Q to zero, it
implies that B ¼ mB

2 ¼ M
2c2�0

, p2þ ¼ 1 and p2� ¼
0. We recover the Brans Type I metric [31] of the
Brans-Dicke theory,

�ðrÞ ¼ �0

��������r� B

rþ B

��������
C
�

; (25)

e2�ðrÞ ¼ e2�0

��������r� B

rþ B

��������
2
�

; (26)

e2�ðrÞ ¼ e2�0

�
1þ B

r

�
4
��������r� B

rþ B

��������
2ð��C�1

� Þ
; (27)

where B < r <1 and the inversion spherical
surface is at rBS ¼ B ¼ M

2c2�0
and is a curvature

singularity.

Case 2 Reissner-Nordström (RN) metric in isotropic
coordinates.
By setting the parameters C ¼ �0 ¼ �0 ¼ 0, it

implies that �2 ¼ 1, �0 ¼ ðGÞ�1, B ¼ 1
2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 � q2
p

, p2þ¼mþ
ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p
2

ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p and p2� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p
2

ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p ,

where m :¼ GM
c2

and q :¼
ffiffiffiffiffiffiffi
4�G

p
Q

c2
are, respectively,

the mass and the electric charge measured in
gravitational units. The metric functions reduce
to the usual Reissner-Nordström solution in iso-
tropic coordinates,

e2�ðrÞ ¼

�
r�

ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p
2

�
2
�
rþ

ffiffiffiffiffiffiffiffiffiffiffi
m2�q2

p
2

�
2

ðrþ m�q
2 Þ2ðrþ mþq

2 Þ2 ; (28)

e2�ðrÞ ¼ ðrþ m�q
2 Þ2ðrþ mþq

2 Þ2
r4

; (29)

where 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q2

p
< r <1, and the inversion

spherical surface is at rHþ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q2

p
, which

is also the outer event horizon of the RN space-
time in isotropic coordinates.
The Reisnner-Nordström metric in isotropic
coordinates was first derived in the form given
in Eqs. (28) and (29) above using the ADM
technique (see Refs. [24,25]).

Case 3 Schwarzschild (S) metric in isotropic coordinates.
By setting the parameters Q ¼ C ¼ �0 ¼ �0 ¼
0, it implies that �2 ¼ 1, �0 ¼ ðGÞ�1, B ¼ m

2 ¼
GM
2c2

, p2þ ¼ 1 and p2� ¼ 0, where m ¼ GM
c2

is the

mass in gravitational units. The metric functions
reduce to the well-known Schwarzschild solution
in isotropic coordinates,

e2�ðrÞ ¼
�
1� m

2r

1þ m
2r

�
2
; e2�ðrÞ ¼

�
1þm

2r

�
4
; (30)

where 1
2m< r <1 and the inversion spherical

surface is at rH ¼ 1
2m, which is also the event

horizon of the Schwarzschild spacetime in iso-
tropic coordinates.

III. ELECTROSTATICS AND THE
HADAMARD METHOD

We now consider the electrostatic potential due to a
‘‘small’’ static electric charge �	0ðj	0j � mBÞ situated
outside the spherical surface of inversion B.
We let Vðr; �;�Þ denote the linearly perturbated electro-

static potential so that the perturbed Faraday tensor Fab

takes the form

F0i ¼ �Fi0 ¼ �c@iVðr; �; �Þ; Fij ¼ 0;

i; j ¼ 1; 2; 3 . . . : (31)
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The perturbed Maxwell equations r½aFbc� ¼ 0 are

automatically satisfied by Eq. (31).
Without loss of generality, the perturbed Maxwell

equations due to a single electrostatic charge yield

1ffiffiffiffiffiffiffi�g
p @bð ffiffiffiffiffiffiffi�g

p
FabÞ ¼ J0; (32)

which implies

r2Vðr; �;�Þ � ð�0ðrÞ � �0ðrÞÞ @Vðr; �; �Þ
@r

(33)

¼ ce2ð�ðrÞþ�ðrÞÞJ0; (34)

where the current density J0 ¼ � 4�	0
cr2

e�2�ðrÞ�3�
ðr�
bÞ
ðcos �� cos �0Þ. Here �ðrÞ and �ðrÞ are given by

Eqs. (11) and (2), respectively, and r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2

is the three-dimensional Euclidean-space Laplacian with
x ¼ r sin � cos�, y ¼ r sin � sin� and z ¼ r cos�. Note
that @r ¼ x

r @x þ y
r @y þ z

r @z. We define

�ðr; �Þ ¼ r2 þ b2 � 2br cos �; (35)

which is equal to the square of the ‘‘radial’’ distance from
the charged particle at z ¼ b.

A brief overview of Hadamard’s theory of fundamental
solutions [14] is necessary to fully understand Copson’s
construction [13,21]. We adapt Hadamard’s result that
includes Eq. (33) as a particular case as follows.

Theorem 2 (Hadamard’s Theorem).—Consider a
second-order linear partial differential equation of the form

=ðuÞ ¼ X3
i;j¼1


ij @2u

@xi@xj
þX3

i¼1

hðrÞ x
i

r

@u

@xi
¼ 0; (36)

where 
ij is the Kronecker tensor and hðrÞ is a differ-
entiable function of r ¼ 
ijx

ixj. The fundamental solution

of Eq. (36) is continuous and differentiable everywhere
except at the singular point ðr; �; �Þ ¼ ðb; �0; �0Þ and can
be written as

u ¼ Uðr; �; �Þ
�

1
2

; (37)

where � is given by Eq. (35) and the function Uðr; �; �Þ
is real analytic everywhere in the domain of definition of
Eq. (36), including the singular point ðr; �; �Þ ¼
ðb; �0; �0Þ. UðrÞ is expandable as a convergent power
series in � such that

Uðr; �;�Þ ¼ U0ðrÞ þU1ðrÞ�þU2ðrÞ�2 þ 	 	 	 ; (38)

where Un is given by the recurrent formula

UnðrÞ ¼ U0

4ðn� 1
2Þs

Z s

0

sn�1

U0

=ðUn�1Þds;

n ¼ 1; 2; 3 	 	 	 ;
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2 � 2rb cos �

p
;

(39)

and

U0ðrÞ ¼ exp

�
�

Z r

b
hðrÞdr

�
: (40)

In the case of the BDRN metric, the coefficient hðrÞ in
Eqs. (36) and (40) is given by

hðrÞ ¼ ��0ðrÞ þ �0ðrÞ: (41)

IV. EXTENSION OF THE COPSON
CONSTRUCTION

Equation (33) for the BDRN metric can be expressed in
the form

r2V þ 2B

r2 � B2

�
2k

�
��ðrÞ
�ðrÞ

�
þ B

r

�
@V

@r
¼ ce2ð�ðrÞþ�ðrÞÞJ0;

(42)

where

k ¼ Cþ 2

2�
; �ðrÞ ¼ p2þ � p2�

�
r� B

rþ B

�
2k
; (43)

��ðrÞ ¼ �p2þ � p2�
�
r� B

rþ B

�
2k
: (44)

Instead of using the formal expression in Eq. (39), we
follow Copson [13] by substituting Eq. (38) into Eq. (42).
After some algebra we obtain the first four terms of the
recurrent series of the Brans-Dicke Reissner-Nordström
metric,

U0ðrÞ ¼ r

b

�0

�ðrÞ
ðr� BÞk�1

2

ðrþ BÞkþ1
2

ðbþ BÞkþ1
2

ðb� BÞk�1
2

; (45)

U1ðrÞ ¼
3B2ð1þ 4

3 ð1� k2ÞÞ
2ðr2 � B2Þðb2 � B2ÞU0; (46)

U2ðrÞ ¼
B2ð�5þ 4

3 ð1� k2ÞÞ
4ðr2 � B2Þðb2 � B2ÞU1; (47)

U3ðrÞ ¼
B2ð�7þ 4

3 ð1� k2ÞÞ
10ðr2 � B2Þðb2 � B2ÞU2; (48)

where �0 ¼ �ðbÞ. See Table I for the three degenerate
cases.
We introduce the method by which the substitution can

be determined for any background with a line element of
the form given by Eq. (6), which satisfies the Brans-Dicke
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electrovac field equations (see Appendix A for the govern-
ing equations). Like Copson, from the first few terms given
above we find that the ratio of the (nþ 1)th term to the nth
term of the power series (39) is proportional to

B2

b2 � B2

�

r2 � B2
; (49)

where r2 � B2 is proportional to�r2e�þ� [see Eq. (A8) in
Appendix A].

Furthermore, the first term of the infinite series, U0

�1=2 ,

given by Eq. (40) is proportional to

e
1
2ð���Þ

�1=2
¼ 1

�1=2
ffiffiffiffi
�

p
re�

; (50)

where

�ðr; �Þ ¼ B2

b2 � B2

�ðr; �Þ
�r2e�ðrÞþ�ðrÞ : (51)

Now we introduce a new dependent variable Fð�Þ such
that the perturbed electrostatic potential takes the form

Vðr; �; �Þ ¼ Fð�Þffiffiffiffi
�

p
re�ðrÞ

: (52)

For the Brans-Dicke Reissner-Nordström background,
Eqs. (52) and (51), become, respectively,

Vðr; �Þ ¼ r�0

�ðrÞðrþ BÞ2
�
r� B

rþ B

�
k�1

Fð�Þ; (53)

�ðr; �Þ ¼ B2

b2 � B2

�ðr; �Þ
r2 � B2

: (54)

Substituting Eqs. (53) and (54) into Eq. (42) gives us a
second-order linear differential equation in Fð�Þ,

�ð�þ 1ÞF00ð�Þ þ 3

2
ð2�þ 1ÞF0ð�Þ þ ð1� k2ÞFð�Þ ¼ 0:

(55)

We have allowed the right-hand side of the above equation
to vanish as we are only interested in regions away from the
point source where the right-hand side of Eq. (55) is zero.
We later use our boundary condition to verify that the
delta-function source term is satisfied and to also deter-
mine the constants of integration of the solution to Eq. (55).

V. FUNDAMENTAL SOLUTIONS

Equation (55) can be solved if we transform the
independent variable � as

� ¼ sinh 2 �

2
; (56)

which implies

�þ 1 ¼ cosh 2 �

2
; (57)

and we write the dependent variable Fð�Þ as
Fð�Þ ¼ �ð�Þ: (58)

By using Eqs. (56) and (58), Eq. (55) can be written in
terms of the new variables as follows:

�00ð�Þ þ 2 coth ��0ð�Þ þ ð1� k2Þ�ð�Þ ¼ 0; (59)

which has the closed-form solution (see Ref. [35])

�ð�Þ ¼ k

sinh �
ðŴ1e

k� � Ŵ2e
�k� Þ; (60)

where Ŵ1 and Ŵ2 are integration constants. The solution in
terms of � is therefore

Fð�Þ ¼ k

2
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p ½Ŵ1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p þ ffiffiffiffi
�

p Þ2k

� Ŵ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p � ffiffiffiffi
�

p Þ2k�: (61)

Substituting Eq. (61) into Eq. (53) gives the electrostatic
potential Vðr; �Þ as follows:

Vðr;�Þ¼ k

2�ðrÞ ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffi
�þ1

p r

ðrþBÞ2
�
r�B

rþB

�
k�1

�½Ŵ1ð
ffiffiffiffiffiffiffiffiffiffiffiffi
�þ1

p þ ffiffiffiffi
�

p Þ2k� Ŵ2ð
ffiffiffiffiffiffiffiffiffiffiffiffi
�þ1

p � ffiffiffiffi
�

p Þ2k�:
(62)

Consider the inversion point of the static electric point

charge ð0; 0; ðb�ÞÞ, where ðb�Þ ¼ B2

b . Let

�� ¼ B2

B2 � ðb�Þ2
� � ðr; �Þ
B2 � r2

; (63)

�� ¼ r2 þ ðb�Þ2 � 2ðb�Þr cos�: (64)

Thus �� is equal to the square of the ‘‘radial’’ distance
from the inversion point at z ¼ ðb�Þ. It is straightforward to
verify that

�þ 1 ¼ � � : (65)

The electrostatic potential Vðr; �Þ in Eq. (62) is therefore
singular at the point charge z ¼ b and also at its inversion
point z ¼ ðb�Þ. One can also verify that as the field point r
approaches the inversion surface r ¼ B, the potential
approaches a finite limit value provided that C>�2.
Finally, to determine the fundamental solution for the

electrostatic potential, which allows only one free parame-
ter to arise from the presence of the perturbing electrostatic
charge, it is necessary to establish the relationship between
the two arbitrary constants in Eq. (62).
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VI. DETERMINATION OF INTEGRATION
CONSTANTS

In 1927, Whittaker, using the method of separation of
variables in the usual Schwarzschild coordinates, found the
solution expressing the electrostatic potential of a charge in
a Schwarzschild background as an infinite series [12]. His
result was later confirmed by Cohen and Wald [15] in 1971
and Hanni and Ruffini [16] in 1973. A commonality of
these works is the use of a boundary condition stating that a
charge should not arise inside the horizon as a result of the
presence of the perturbing electric charge situated outside
the horizon.

This boundary condition was not implemented by
Copson in his determination of integration constants in
Refs. [13,21] due to the fact that the region inside the
horizon is excised in the isotropic coordinates. Instead,
Copson chose values for the integration constants such
that the overall solution would be symmetric in interchang-
ing the position of the field point r with the position of the
perturbing charge b. As a result, his solution, as he pointed
out himself, was in contradiction toWhittaker’s solution by
the existence of a nonvanishing zero-order term. Linet
[17], using the boundary condition at infinity and Gauss’
theorem, found that this second charge—which was nec-
essarily excised—gave a result which was in accordance to
those given by Refs. [12,15,16].

In Ref. [20], Linet and Teyssandier found a single closed-
form solution describing the electrostatic potential gener-
ated by a perturbing charge in a Brans-Dicke background.
They expressed the fundamental solution as a sum of this
solution and Legendre functions before performing a
multipole expansion and writing the fundamental solution
completely in terms of Legendre functions. By expressing
the solution as a multipole expansion they were then able to
impose boundary conditions at infinity to get a meaningful
solution upon which Gauss’ theorem could then be
implemented to yield their final closed-form solution.

Here we introduce a method of determining the integra-
tion constants of Eq. (62) which does not require one to
expand the closed-form solution into an infinite series
and which is even more stringent than those set by
Refs. [12,15,36]. We impose the condition that any inte-
gration over a closed spatial region not containing the
perturbing charge must be exactly zero even if that area
contains a surface of inversion. Naturally, an integration
over an area containing the perturbing charged particle
must therefore equal exactly 4�	, where 	 is the charge
of the particle. From Appendix B we know that for the
Brans-Dicke Reissner-Nordström background, the gener-
alized Gauss’s theorem can be written as the following:

Z
<
J0d� ¼

Z 2�

0

Z �

��
�ðrÞ2ðrþ BÞ2

�
r� B

rþ B

���C�2
�

� @VðrÞ
@r

sin �d�d�: (66)

Here, < is a region of three-dimensional space residing
in a hypersurface and @< is its closed two-dimensional
boundary. Again, d� is an element of spatial proper volume
in <. In order to integrate the above we convert Eq. (62)

into a function of sinh � where � ¼ sinh 2 �
2 . We find that

the only term that requires integration is the term contain-
ing the integration constants, the integral of which is

Z �

��

Ŵ1e
k� � Ŵ2e

�k�

sinh �
sin�d�

¼ 2brB2½ðbþ BÞ2k � ðb� BÞ2k�
kðb2 � B2Þk�1ðr2 � b2Þk�1

� ½Ŵ1ðrþ BÞ2k � Ŵ2ðr� BÞ2k� (67)

for B< r < b and

Z �

��

Ŵ1e
k� � Ŵ2e

�k�

sinh �
sin�d�

¼ 2brB2½ðrþ BÞ2k � ðr� BÞ2k�
kðb2 � B2Þk�1ðr2 � b2Þk�1

� ½Ŵ1ðbþ BÞ2k � Ŵ2ðb� BÞ2k� (68)

for B< b< r.
When we insert Eq. (67) into Eq. (66) it is fairly

straightforward to see that for the electrostatic potential
to vanish for the region not containing a charge the
integration constants must be chosen as the following:

Ŵ1 ¼ p2þŴ; (69)

Ŵ2 ¼ p2�Ŵ; (70)

where Ŵ is a constant yet to be determined.
By inserting Eq. (68) into Eq. (66) and under the

condition that for this region (B< b< r), Eq. (66) must

equal �4�	0, we can quickly solve for Ŵ, giving

Ŵ ¼ bBðb2 � B2Þk�1
ffiffiffiffiffiffi
�0

p
	0

k½p2þðbþ BÞ2k � p2�ðb� BÞ2k� : (71)

VII. DEGENERATE CASES

The relationship between the four cases and the process
by which one reduces to the other is made obvious in
Table I. It is straightforward to convert the equations in
the Reissner-Nordström and Schwarzschild spacetimes
into their more familiar form when one conducts the trans-
formations given in Sec. II of this paper. When the trans-
formations are made we find that the solutions are in
agreement with the closed-form solutions given by Linet
[17], Leaute and Linet [19] and Linet and Teyssandier [20],
and with the multipole expansions given by Hanni and
Ruffini [16] and Cohen and Wald [15].

M. WATANABE AND A.W.C. LUN PHYSICAL REVIEW D 88, 045007 (2013)

045007-8



VIII. CONCLUSION

In this paper we have established an ansatz to solve the
perturbed Maxwell equations due to an electrostatic charge
in a Brans-type spacetime in isotropic coordinates which is
reducible to the Schwarzschild and Reissner-Nordström
black hole solutions by extending Copson’s method. As
Copson’s solution is based on Hadamard’s theory of fun-
damental solutions of general Laplace equations it would
be interesting to see whether Hadamard’s infinite series
converges to give Copson’s closed-form result.

By finding the coefficients to U0; U1; U2; . . . through
the direct substitution of Hadamard’s infinite series into
the field equations one is able to compare them with the
coefficients given in this paper using Copson’s method.

In a separate paper, a formal proof of Hadamard’s
fundamental solution equation (36) is given. We find that
Copson’s results in Ref. [13] are in fact exactly equal to
those found using Hadamard’s method and go on to inves-
tigate how the Hadamard method relates to the results
obtained by Linet in Ref. [22]. We also find that the
discrepancy between Copson and Hadamard and those
from the literature—including Whittaker, Hanni and
Ruffini, and Cohen and Wald—lies in the domain of defi-
nition of fundamental solutions in the presence of a surface
of inversion when considering the situation in isotropic
coordinates.

Furthermore, we investigate the scope of applicability of
Hadamard’s theorem, including its application to more
general scalar-tensor-vector theories and fðRÞ theory and
in particular to other branches of the Brans-Dicke theory
such as the Barker and Schwinger cases (see also
Ref. [37]). For detailed discussions on the scope of appli-
cability of the Copson method in higher dimensions see
Ref. [22].

In a separate paper, we convert the results given in this
paper from isotropic coordinates to the usual Schwarzschild
coordinates using Linet’s transformation (outlined in
Ref. [17]) and plot equipotential surfaces in both coordinate
systems. As alluded to in Item 7 of Sec. II, Ref. [34] found
that Brans-Dicke black holes cannot exist if the weak-field
approximation is to be upheld. In our next paper we
postulate that the weak-field approximation need not be
satisfied [38–41]. Thus we find it worthwhile to plot the
results of this paper in the usual coordinates to gain better
insight into the behavior of the scalar field inside the horizon
and thereby shed light on the physical possibility of
Brans-Dicke black holes.
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APPENDIX A: BRANS-DICKE REISSNER-
NORDSTRÖM BACKGROUND

The Brans-Dicke electrovac equations (1), (2), and (5)
arising from the static spherically symmetric line element
(6) in isotropic coordinates can be simplified when the
following substitutions are introduced:

~AðrÞ :¼ �ðrÞ þ 1

2
½ln�ðrÞ�; (A1)

~BðrÞ :¼ �ðrÞ þ 1

2
½ln�ðrÞ�: (A2)

The electrovac equations [e2�Gt
t, e

2�Gr
r and e

2�ðGr
r þG�

�Þ]
from Eq. (1) can then be written as

2 ~B00ðrÞ þ ~B0ðrÞ2 þ 4

r
~B0ðrÞ þ 4�Q2e�2 ~BðrÞ

c4

þ 2!þ 3

4
ð½ln�ðrÞ�0Þ2 ¼ 0; (A3)

~B0ðrÞ2 þ 2 ~A0ðrÞ ~B0ðrÞ þ 2

r
ð ~A0ðrÞ þ ~B0ðrÞÞ þ 4�Q2e�2 ~BðrÞ

c4

� 2!þ 3

4
ð½ln�ðrÞ�0Þ2 ¼ 0; (A4)

~A00ðrÞ þ ~B00ðrÞ þ ðð ~AðrÞ þ ~BÞ0Þ2 þ 3

r
ð ~A0ðrÞ þ ~B0ðrÞÞ ¼ 0:

(A5)

The above three equations are not linearly independent,
but instead are related via the following:

� ~A0ðrÞe2�Gt
t þ

�
d

dr
þ

�
~A0ðrÞ þ 2 ~B0ðrÞ þ 4

r

��
e2�Gr

r

� 2

�
~B0ðrÞ þ 1

r

�
e2�ðGr

r þG�
�Þ ¼ 0: (A6)

We point out here that the integrations below are carried
out formally without taking into account the signature or

actual boundary values of ~Ab, ~Bb, ~A0
b þ ~B0

b, �b and �0
b,

where the former are the corresponding values of ~AðrÞ,
~BðrÞ, ~AðrÞ0 þ ~BðrÞ0,�ðrÞ and�ðrÞ0 at the boundary point at
infinity.
Equation (A5) can be expressed as a Cauchy-Euler

equation,

ðe ~AðrÞþ ~BðrÞÞ00 þ 3

r
ðe ~AðrÞþ ~BðrÞÞ0 ¼ 0; (A7)

which can be solved to give

e
~AðrÞþ ~BðrÞ ¼ e

~Abþ ~Bb

�
1� "2B2

r2

�
; (A8)
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and

lim
r!1r

3ð ~A0ðrÞ þ ~B0ðrÞÞ ¼ 2"2B2; (A9)

"2 2 f�1;þ1g: (A10)

The reduced long-range scalar field wave equation

Eq. (10) can be written in terms of ~A and ~B as

�
r2e

~Aþ ~B�0ðrÞ
�

�0 ¼ 0: (A11)

By integrating Eq. (A11) twice from r to infinity we obtain

� ¼ �0

�
r� "B

rþ "B

� C
"�
; (A12)

where

�2 ¼ "2

4
ðð2!þ 3ÞC2 þ ðCþ 2Þ2Þ> 0: (A13)

We rewrite the modified field equation (A4) in the
following form:

~A0ðrÞ2 ¼ ð ~Aþ ~BÞ0
�
~A0 þ ~B0 þ 2

r

�
þ 4�Q2e�2 ~BðrÞ

c4

� 2!þ 3

4
ð½ln�ðrÞ�0Þ2: (A14)

Using Eqs. (A8) and (A12), after some algebra we obtain
a first-order second-degree separable differential equation,

�
d

dr
ðe� ~AðrÞÞ

�
2 ¼ 4�Q2e�2ð ~Abþ ~BbÞ

c4ðr2�"2B2Þ2

�
��

c4B2e2ð ~Abþ ~BbÞðCþ2Þ2
4�Q2�2

�
e�2 ~AðrÞ þ1

�
:

(A15)

Since e
~Ab ¼ ffiffiffiffiffiffi

�0

p
e�b and e

~Bb ¼ ffiffiffiffiffiffi
�0

p
e�b the solution to

this equation gives

e��ðrÞ ¼ e��b

�
r� "B

rþ "B

� C
2"�

�
p2þ

�
r� "B

rþ "B

�Cþ2
2"�

� p2�
�
r� "B

rþ "B

�� C
2"�

�
; (A16)

where pþ and p� are given in Eq. (17),

e�ðrÞ ¼ e�b

�
1þ "B2

r2

��
r� "B

rþ "B

�� C
2"�

�
p2þ

�
r� "B

rþ "B

�Cþ2
2"�

� p2�
�
r� "B

rþ "B

�� C
2"�

�
: (A17)

When "2 ¼ þ1 the above coincides with the BDRNmetric
given in Theorem 1 in Sec. II above. The solutions corre-
sponding to the Brans Type II, Type III and IV solutions are
given by setting, respectively, 	2 ¼ �1 and taking the limit

when 	 ! 0 (using L’Hopital’s rule) in Eqs. (A12), (A16),
and (A17).

APPENDIX B: GAUSS’ THEOREM

In order to determine the integration constants in
Eq. (62) we use Gauss’s theorem, a brief overview of which
is given here. Let< be a region of three-dimensional space
residing in a hypersurface % and let @< be its closed two-
dimensional boundary. Gauss’ theorem states that for the
electric field Ea (and indeed for any given vector field;
see Wald Ref. [42])

Z
<
raE

ad� ¼
Z
@<

Ea 	 nadS; (B1)

where d� is an element of spatial proper volume in<, na is
the outward-facing unit vector orthogonal to the closed
two-dimensional boundary @< and dS is the usual surface
element dS ¼ r2 sin �d�d�.
We know that the electric field is related to the Faraday

tensor by the following:

Ea ¼ Fabnb: (B2)

Using the above and Eq. (31) we find that the electric field
is indeed equal to the gradient of the electrostatic potential
Vðr; �; �Þ and therefore the right-hand side of Eq. (B1) can
be written as

Z
d<

Ea 	 nadS ¼
Z
d<

rV 	 n̂dS: (B3)

FromMaxwell’s equations the left-hand side of Eq. (B1)
can be written as

R
< J0d�, where

J0 ¼ � 4�	0
cr2

e�2�ðrÞ�3�
ðr� bÞ
ðcos�� cos�0Þ (B4)

is the charge density.
It follows that for the region B< b< r containing the

point charge �	0 positioned at r ¼ b, � ¼ 0 the left-hand
side of Eq. (B1) becomes �4�	0 and for any region not
containing the charge, i.e. B< r < b, and the left-hand
side vanishes.
For the Brans-Dicke Reisnner-Nordström spacetime—

as na is orthogonal to @<—the only term that remains is
the r term and Eq. (B1) becomes

Z
<
J0d� ¼ �ðrÞ2ðrþ BÞ2

�
r� B

rþ B

�
1�2k

�
Z 2�

0

Z �

��

@Vðr; �Þ
@r

sin �d�d�: (B5)

The left-hand side of Eq. (B5) is determined by whether
or not the region < contains the singular point at r ¼ b.
In particular, for the purposes of this investigation the
theorem determines the choice of integration constants in
Vðr; �Þ, as can be seen in the main section of this article.
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