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UNESP, Campus de Guaratinguetá, DFQ Avenida Ariberto Doutor Pereira da Cunha,
333 CEP 12516-410 Guaratinguetá, São Paulo, Brazil
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It is possible to show that there are three independent families of models describing a massive spin-2

particle via a rank-2 tensor. One of them contains the massive Fierz-Pauli model, the only case described

by a symmetric tensor. The three families have different local symmetries in the massless limit and can not

be interconnected by any local field redefinition. We show here, however, that they can be related with the

help of a decoupled and nondynamic (spectator) field. The spectator field may be either an antisymmetric

tensor B�� ¼ �B��, a vector A� or a scalar field ’, corresponding to each of the three families. The

addition of the extra field allows us to formulate master actions which interpolate between the symmetric

Fierz-Pauli theory and the other models. We argue that massive gravity models based on the Fierz-Pauli

theory are not expected to be equivalent to possible local self-interacting theories built up on top of the

two new families of massive spin-2 models. The approach used here may be useful to investigate dual

(nonsymmetric) formulations of higher-spin particles.
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I. INTRODUCTION

Speculations about a possible massive gravity theory
were raised long ago. In particular, the problems of mass
discontinuity and the appearance of ghosts have been
pointed out in Refs. [1–3], respectively. In the last few
years the interest in massive gravity has increased; see e.g.
the review work [4] and references therein. Those works
were driven by both the accelerated expansion of the
universe and more recently by the discovery [5–7] of
appropriate mass terms in spin-2 theories which furnish
a correct counting of degrees of freedom. The fact that
those works are all based on the usual massive Fierz-Pauli
(FP) [8] theory, described by a symmetric rank-2 tensor,
impels us to search for other descriptions of massive spin-2
particles.

In particular, a weak-field expansion in a frame-like
formulation of gravity e�a ¼ ��a þ h�a naturally leads

to a nonsymmetric field h�a � ha�. The general case of a

second-order (in derivatives) Lagrangian for an arbitrary
rank-2 tensor e�� has been investigated in the past in

Refs. [9–13]. They concluded that the massive FP theory
is the only possibility which avoids ghosts. In Refs. [14,15]
other possibilities were found, which have motivated our
previous work [16] where we revisited the classification of
all possible (second-order) descriptions of a massive spin-2
particle in D ¼ 3þ 1. We conclude that there are three
ghost-free one-parameter families of solutions. In two of
those families the auxiliary1 fields e½��� are required: only in
the FP family is there a special casewith a purely symmetric

tensor eð��Þ with only one auxiliary field, the trace e ¼
���e��. In the next sections the results of Ref. [16] are

confirmed in a rather simple way and the connection be-
tween the new models and the symmetric FP theory is
clarified by means of interpolating master actions [17].

II. THREE FAMILIES

In Ref. [16] we considered a general Lorentz-covariant
second-order quadratic action for a rank-2 tensor e�� with

ten arbitrary real constants. Requiring that the propagator
contains only one massive pole in the spin-2 sector, with
positive residue (no ghost), we have obtained, up to the field
redefinitions e�� ! e�� þ a���e and e�� ! Ae�� þ
ð1� AÞe��, three one-parameter families of models, which

are displayed in Eqs. (5), (8), and (10). All three families
lead on-shell to the Fierz-Pauli conditions,

e½��� ¼ 0; (1)

e ¼ 0; (2)

@�e�� ¼ 0; (3)

ðh�m2Þe�� ¼ 0: (4)

The first family depends on the arbitrary real
constant d�,

LFPðd�Þ ¼ LFP½eð��Þ� þ d�
m2

2
e2½���; (5)

and contains the usual (d� ¼ 0) massive FP theory,
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1We use basically the same notation of Ref. [16], in particular,

��� ¼ diagð�;þ;þ;þÞ, eð��Þ ¼ ðe�� þ e��Þ=2 and e½��� ¼ðe�� � e��Þ=2.

PHYSICAL REVIEW D 88, 045003 (2013)

1550-7998=2013=88(4)=045003(5) 045003-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.045003


LFP½eð��Þ� ¼ � 1

2
@�eð��Þ@�eð��Þ þ 1

4
@�e@�e

þ
�
@�eð��Þ � 1

2
@�e

�
2 �m2

2
½e2ð��Þ � e2�:

(6)

The massless limit of LFPðd�Þ is invariant under
�e�� ¼ @��� þ���; (7)

where ��� ¼ ����. We remark that although d� is com-

pletely arbitrary in the free theory (5), it has been argued in
Ref. [18], based upon a Stueckelberg-like formulation, that
one should fix d� ¼ 1.

The second family of models [15] depends on the free
parameter c and is given by

LnFPðcÞ ¼ � 1

2
@�eð��Þ@�eð��Þ þ 1

6
@�e@�eþ ½@�eð��Þ�2

� 1

3
½ð@�e��Þ2 þ ð@�e��Þ2�

�m2

2
ðe��e

�� þ ce2Þ: (8)

The acronym nFP stands for non-Fierz-Pauli, since the
mass term does not need to fit in the Fierz-Pauli form
(c ¼ �1). Analogous to LFPðd�Þ, the massless limit of
LnFPðcÞ describes a massless spin-2 particle (see
Refs. [15,19]), which is invariant under linearized repar-
ametrizations plus Weyl transformations,

�e�� ¼ @��� þ ����: (9)

The Weyl symmetry can be extended to the whole massive
theory if we choose c ¼ �1=4, in which case we get rid of
the trace e ¼ ���e�� such that we only have e½��� as

auxiliary fields.
The third and last family depends on the arbitrary real

constant a1 introduced in Ref. [16],

La1 ¼�1

2
@�eð��Þ@�eð��Þþ

�
a1þ1

4

�
@�e½@�e�2@�eð��Þ�

þ½@�eð��Þ�2þ
�
a1�1

4

�
ð@�e��Þ2

�m2

2
ðe��e

���e2Þ: (10)

Differently from LFPðd�Þ and LnFPðcÞ, the massless limit
of La1 describes a massless spin-2 particle plus a massless

scalar field (scalar-tensor). The massless theory is unitary if
a1 � �1=12 or a1 � 1=4; see Ref. [16]. At a1 ¼ 1=4 the
family La1 becomes the massive FP theory with d�¼1,

while at a1 ¼ �1=12 it becomesLnFPðc ¼ �1Þ. These are
the only intersecting points of La1 with the other two

families.
The massless limit of La1 is invariant only under line-

arized reparametrizations in general,

�e�� ¼ @���; (11)

except at a1 ¼ 1=4 where the massless symmetry is en-
larged by antisymmetric shifts, as in Eq. (7), and at a1 ¼
�1=12 where a Weyl symmetry shows up, as in Eq. (9).
The case a1 ¼ �1=4 corresponds to the model of Ref. [14]
where it was coupled to a maximally symmetric back-
ground. In the next section we interconnect the models
(8) and (10) with the symmetric massive FP theory
LFPðd� ¼ 0Þ via master actions.

III. MASTER ACTIONS

There is no local field redefinition which relates Eqs. (8)
or (10) to the symmetric massive FP model. The difficulty
lies in the presence of the antisymmetric tensor e½��� in the
derivative terms of Eqs. (8) and (10). However, since all
three families have the same particle content (for nonzero
mass) one should be able to interconnect them somehow.
Since the FP family (5) is obtained from the usual FP
theory by the addition of a pure (arbitrary) mass term for
a decoupled nondynamic field e½���, we might try to add to

the symmetric FP model (d� ¼ 0) a mass term for some
other field. This is what we do in the next two subsections.

A. Scalar spectator

First, let us add a scalar field and define

Lb ¼ LFP½h��� � bm2’2 þ h��T
��; (12)

whereLFP½h��� is given in Eq. (6) and h�� ¼ h�� is some

symmetric tensor. We have also added a symmetric exter-
nal source T��. The additional decoupled mass term does
not change the particle content of the massive FP theory.
After a shift with an arbitrary real constant s,

h�� ! h�� � s���’� 2s

m2
@�@�’: (13)

The Lagrangian Lb becomes

Lb ¼ LFP½h��� þm2ð6s2 � bÞ’2 � 3s2@�’@�’

� 3sm2’hþ h��T
�� � s’T

� ð2s=m2Þ’@�@�T��: (14)

The shift (13) is defined by requiring that derivative cou-
plings between’ and h vanish. By introducing an auxiliary
vector field and integrating by parts we can rewrite Eq. (14)
in a first-order form,

Lb ¼ LFP½h��� þ 3s2m2A�A� þm2ð6s2 � bÞ’2

þ h��T
�� � s’

�
6sm@ � Aþ 3m2h

þ T þ 2

m2
@�@�T

��

�
: (15)
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Due to the specific form of the usual Fierz-Pauli mass term
in LFPðd� ¼ 0Þ it is possible to generate a Maxwell
Lagrangian by making another shift in Lb and using the
identity

L FP½h�� þ rð@�A� þ @�A�Þ�

¼ LFP½h��� �mr2

2
F2
��ðAÞ þ 2m2rA�ð@�h�� � @�hÞ:

(16)

If we choose r ¼ �s=m we cancel out the @ � A term in
Eq. (15). We can bring an antisymmetric field B�� into the

game by rewriting the Maxwell term in a first-order form.
We end up with a master Lagrangian which now involves
three extra fields ð’; A�; B��Þ besides h��,

LM1¼LFP½h���þ3m2s2A�A��2msA�

�
@�B��þ@�h��

�@�h�
@�T��

m2

�
þm2

2
B2
��þm2ð6s2�bÞ’2

�s’

�
3m2hþTþ 2

m2
@�@�T

��

�
þh��T

��:

(17)

We can define the generating function

ZM1½T� ¼
Z

Dh��D’DA�DB��e
i
R

d4xLM1 : (18)

If we functionally integrate over the extra field B��

in Eq. (18) and reverse the shift (13), we come back
to the massive FP theory with the source term we have
started with, namely Eq. (12). On the other hand, if we
integrate over ’ and A� in the first place we obtain2 the

Lagrangian

Lðs; bÞ ¼ LFP½h��� þm2

2
B2
�� � 1

3

�
@�B�� þ @�h��

� @�h� @�T��

m2

�
2 � s2

4m2ð6s2 � bÞ�
3m2hþ T þ 2

m2
@�@�T

��

�
2
: (19)

The arbitrariness appears in front of the mass term
proportional to m2h2, as in the nFP family (8). Indeed,
defining e�� ¼ h�� þ B��, the Lagrangian Lðs; bÞ can be

rewritten as

Lðs; bÞ ¼ LnFPðcÞ þ h���T
�� þOðT2Þ; (20)

where OðT2Þ stands for quadratic terms in the source, and
the dual field h��� is given by

h��� ¼ eð��Þ � 1þ c

3
���e� 2ð1þ cÞ

3m2
@�@�e

� ð@�@�e�� þ @�@
�e��Þ

3m2
; (21)

with the arbitrary parameter c defined through

bð1þ cÞ ¼ 6s2ðcþ 1=4Þ: (22)

Comparing Eq. (20) with Eq. (12) we conclude that the
master Lagrangian (17) interpolates between the symmet-
ric massive FP theory (5) and the second family of one-
parameter models nFP given in Eq. (8). Moreover, the
correlation functions of h�� on the FP side are mapped

into correlation functions of the dual field h��� on the dual

nFP side, up to contact terms, such that we have the dual
map ðh��ÞFP $ ðh���ÞnFP.
Since on the nFP side we have both symmetric h�� and

antisymmetric B�� tensors, one might ask what is the dual

of B�� on the FP side. If we add a source term J��B
�� to

the master Lagrangian (17); the reader can check that
correlation functions of B�� vanish up to contact terms.

This is not surprising, since in the nFP theory we have on-
shell e½��� ¼ B�� ¼ 0 and the equations of motion are

enforced at the quantum level in the correlation functions
up to contact terms.3 Likewise, we have on-shell
���e�� ¼ h ¼ 0 ¼ @�e��, which completes the FP con-

ditions (1)–(3). Therefore, up to contact terms, we see from
Eq. (21) that h�� in the FP theory is mapped simply into

eð��Þ in the nFP family.

Lastly, we remark that if b ¼ 0, the arbitrary parameter s
disappears from Eq. (19) and we end up with the traceless
nFP theory with c ¼ �1=4; see Eq. (22). So the arbitrari-
ness of the nFP family stems indeed from the arbitrary
mass term in Eq. (12) and not from the arbitrariness in the
shift (13). In the next subsection we use a fixed shift.

B. Vector spectator

Next we interconnect the third family (10) with the
usual massive FP theory. Inspired by Eqs. (5) and (12)
we add an arbitrary mass term for a vector field to the
symmetric FP theory,

L~b ¼ LFP½h��� þ ~b
m2

2
A�A� þ h��T

��: (23)

After the shift

2We can always assume b � 6s2.

3This follows from the functional integral of a total derivative,R
DB �

�BðxÞ ½ei
R

d4xBK̂BBðx1Þ � � �BðxNÞ� ¼ 0.
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h�� ! h�� þ ð@�A� þ @�A�Þ=m; (24)

we obtain a Maxwell term [see Eq. (16)], which can be
brought to first order again via an antisymmetric field B��,

such that we derive from Eq. (23) the master Lagrangian

LM2 ¼ LFP½h��� þ ~b
m2

2
A�A� þm2

2
B2
��

þ h��T
�� þ 2mA�

�
@�B�� þ @�h��

� @�h� 1

m2
@�T��

�
: (25)

On the one hand, if we integrate over B�� and reverse the

shift (24) we return to our starting point, Eq. (23). On the
other hand, by integrating over A� in the first place we

deduce

LM2 ¼LFP½h���þm2

2
B2
��� 2

~b
ð@�B��þ@�h���@�hÞ2:

(26)

Defining once again e�� ¼ h�� þ B�� and identifying
~b ¼ �2=ða1 � 1=4Þ, we rewrite4 LM2 in the form of the
third family (10),

LM2 ¼ La1½e��� þ ~h��T
�� þOðT2Þ; (27)

where

~h�� ¼ eð��Þ þ
�
1

4
� a1

�
½ð@�@�e�� þ @�@

�e��Þ
� 2@�@�e�: (28)

We conclude that the master action (25) interpolates be-
tween the usual massive FP theory [see Eq. (23)] and La1 .

Since the equations of motion ofLa1 lead to @
�e�� ¼ 0 ¼

e ¼ e½���, all such terms have vanishing correlation func-

tions up to contact terms. So we have from Eq. (28) the
simple map ðh��ÞFP $ ðeð��ÞÞa1 .

Regarding the introduction of interactions, if we had
nonlinear self-interacting termsLSI½h��� in Eq. (12), after
the shift (13) we would have some nonlinear’ dependence
in LSI½h�� � s���’� ð2s=m2Þ@�@�’�. There is no rea-

son a priori for the self-interaction to be invariant under
these spin-0 transformations. Similarly, the shift h�� !
h�� � sð@�A� þ @�A�Þ=m would lead to some nonlinear

A� dependence since we do not expect linearized repar-

ametrization invariance for the full nonlinear theory. Of
course, we would still be able to introduce an antisymmet-
ric field in order to bring the Maxwell term to first order.
However, the nonlinear terms in ’ and A� in the master

action would lead to a nonlocal dual model after their
functional integrals. A similar conclusion [see Eq. (24)]
is drawn for the second case (23).

IV. CONCLUSION

With the help of spectator fields we have been able to
interconnect via the master theories (17) and (25) the new
one-parameter families of massive spin-2 models (8) and
(10) with the symmetric massive Fierz-Pauli theory (6).
Our master actions offer an alternative proof of the equiva-
lence of the newmodels, which use a nonsymmetric tensor,
with the fully symmetric FP theory. They confirm the
results of Refs. [14–16] regarding the existence of other
ghost-free second-order models different from the FP the-
ory, contrary to early works [9–13].
We have remarked that nonlinear massive gravity mod-

els based on the usual FP theory are not expected to be
equivalent to possible local nonlinear completions of the
new models. The situation is similar to the duality between
the second-order Abelian Maxwell-Chern-Simons theory
[20] and the first-order self-dual model of Ref. [21]. Both
models describe a helicityþ1 (or�1) mode inD ¼ 2þ 1.
Although there is a master action [17] relating those
Abelian (quadratic) models, the duality does not go
through their non-Abelian (nonlinear) counterparts due to
extra nonlocal terms; see a discussion in Ref. [22].
The next step is to consider nonlinear (self-interacting)

completions of the new families (8) and (10) with a correct
counting of degrees of freedom as expected for a massive
spin-2 particle. Eventually, the consistency of the self-
interacting theory may fix the arbitrary parameters c and
a1 in Eqs. (8) and (10). For the FP family (5) a
Stueckelberg-like approach [18] has led to d� ¼ 1. In
Ref. [23] one finds further evidence in favor of d� ¼ 1,
since the linearized new massive gravity in three [24] and
four dimensions [23] can be directly (at action level)
deduced from LFPðd� ¼ 1Þ by a derivative field redefini-
tion which holds even at coinciding points (no contact
terms). For instance, one can choose (see Ref. [25]) e�� ¼
@	���	, where the mixed symmetry tensor ���	 ¼
���	� is traceless, ������	 ¼ 0.

Finally, since each of the three dual families is obtained
by the addition of a different (i.e., one with less compo-
nents) kind of spectator field B��, ’, A� appearing in

Eqs. (5), (12), and (23), it is expected that the approach
used here could be generalized in order to find dual spin-S
models not necessarily described by fully symmetric rank-
S tensors h�1;...;�S

.
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4Recall that at a1 ¼ 1=4 the third family (10) becomes the
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