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We present a detailed analysis of a recently introduced version of causal dynamical triangulations that

does not rely on a distinguished time slicing. Focusing on the case of 2þ 1 spacetime dimensions, we

analyze its geometric and causal properties, present details of the numerical setup, and explain how to

extract ‘‘volume profiles.’’ Extensive Monte Carlo measurements of the system show the emergence of a

de Sitter universe on large scales from the underlying quantum ensemble, similar to what was observed

previously in standard causal dynamical triangulation quantum gravity. This provides evidence that the

distinguished time slicing of the latter is not an essential part of its kinematical setup.
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I. INTRODUCTION

First attempts in the 1990s to define quantum gravity
nonperturbatively with the help of dynamical triangulations
(DTs) were based on an intrinsically Euclidean path integral,
whose configuration space consists of four-dimensional,
curved Riemannian spaces. DT works with a regularized
version of this space in terms of triangulations, piecewise
flat spaces of positive definite metric signature. Its elemen-
tary building block is a four-simplex, a generalization to four
dimensions of a triangle (two-simplex) and a tetrahedron
(three-simplex). An individual building block is a piece of
flat four-dimensional Euclidean space and therefore does not
carry any curvature. However, numerical investigations of
the nonperturbative dynamics of DT quantum gravity found
that it has neither a large-scale limit compatible with general
relativity [1–3] nor a second-order phase transition allowing
for a continuum limit in the sense of lattice quantum field
theory [4,5].Despite the negative nature of this result, the fact
that the model contains criteria which could be used for its
falsification should be appreciated. Formany other candidate
theories of quantum gravity, this is not obviously the case.

Causal dynamical triangulations (CDT) were introduced
in Ref. [6] in an attempt to overcome these problems. The
key new idea of CDT is to incorporate aspects of the causal
structure of classical general relativity at a more funda-
mental level into the nonperturbative gravitational path
integral.1 The elementary building blocks of CDT quantum
gravity are flat four-simplices of Lorentzian signature, that
is, pieces of Minkowski space. The carrier space of the
corresponding path integral consists of piecewise flat sim-
plicial manifolds assembled from these building blocks. In
addition, each path integral history has a distinguished
discrete foliation and an associated notion of (discrete)

proper time, which ensures the presence of a well-defined
causal structure globally (see Refs. [7,8] for details on
motivation, construction, and results in CDT). Numerical
simulations in 3þ 1 dimensions have shown that these
modifications lead to a completely different quantumdynam-
ics, compared to the earlier Euclidean DT model: CDT
quantumgravity in3þ 1 dimensions contains a phasewhose
nonperturbative ground state of geometry is extended, mac-
roscopically four-dimensional, and on large scales can be
matched to a de Sitter universe [9,10]. Moreover, the theory
has recently been shown to possess a second-order phase
transition, which according to standard arguments is a
prerequisite for the existence of a continuum limit [11].
The causal structure of CDTis realized by putting together

its simplicial building blocks such that each CDT configura-
tion has a product structure, not just at the level of topology—

usually chosen as ½0; 1� � ð3Þ�, for fixed three-topology
ð3Þ�—but as triangulations. A (3þ 1)-dimensional CDT
geometry consists of a sequence of slabs or layers, each of
thickness 1, which may be thought of as a single unit of
proper time. The orientation of the light cones of all
four-simplices in a given slab is consistent with this notion
of time. In this way the causal structure becomes linked to a
preferred discrete foliation of spacetime.
To understand better how the preferred time foliation on

the one hand and the causal structure on the other contrib-
ute to the evidence of a good classical limit—the key
distinguishing feature of CDT quantum gravity—it would
be highly desirable to disentangle these two elements of
‘‘background structure.’’ We recently proposed a modifi-
cation of standard CDT which does exactly that [12]. The
main idea, applicable in any spacetime dimension d, is to
enlarge the set of d-simplices by new types of simplicial
building blocks, also pieces of d-dimensional Minkowski
space, but with different link-type assignments and there-
fore a different orientation of the light cone relative to the
boundaries of the simplex. Including the new building
blocks is in general not compatible with the preferred
foliation of CDT. Nevertheless, with a suitable choice of

*s.jordan@science.ru.nl
†r.loll@science.ru.nl
1By contrast, Euclidean gravity does not distinguish between

space and time and therefore has no causal structure and no
notion of causality.
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gluing rules one, can still obtain Lorentzian simplicial
manifolds with a well-defined causal structure, at least
locally. In this way the issue of causality becomes disso-
ciated from the notion of a preferred foliation. The inter-
esting question is then whether the quantum-gravitational
model using ‘‘nonfoliated CDT’’ can reproduce the results
of the standard formulation, especially those concerning
the large-scale properties of quantum spacetime. The main
conclusion of the present paper, previously announced in
Ref. [12], is that it can, at least in spacetime dimension
2þ 1. At least in higher dimensions, this result appears to
weaken the potential link of CDT quantum gravity with
Hořava—Lifshitz gravity [13,14], where the presence of
a preferred foliation is a key ingredient.2

To summarize, our intention is to get rid of the distin-
guished foliation (and associated discrete time label t) of
CDT, whose leaves for integer t coincide with simplicial
spatial hypermanifolds consisting entirely of spacelike
subsimplices of codimension 1. This does not mean that
the nonfoliated CDT configurations cannot in principle be
foliated with respect to some continuous notion of time
but only that there is in general no canonical way of doing
this in terms of a distinguished substructure of the trian-
gulated spacetimes.

Of course, having a notion of time at the level of the
regularized geometries is important. In the standard for-
mulation of CDT, we get a notion of (discrete proper) time
t for free, simply by counting consecutive ‘‘slabs,’’ as
described earlier. The presence of this time label allows
us to define a transfer matrix and an associated propagator
with the correct behavior under composition (whose con-
tinuum limit in dimension 1þ 1 can be computed analyti-
cally [6]) and prove a version of reflection positivity [16].
Yet another advantage of having an explicit time variable is
that we can construct observables like the volume profile,
which measures the distribution of spatial volume as a
function of time. The analysis of these volume profiles in
3þ 1 dimensions has been crucial in relating the large-
scale behavior of CDT to a de Sitter cosmology in the
continuum [10,17].3

By contrast, in the enlarged CDT setup we will be
considering, typical triangulations will be more compli-
cated, in the sense that the purely spatial subsimplices of
codimension 1 will no longer align themselves into a neat
sequence of simplicial hypermanifolds but instead will
form branching structures, as will be explained in more

detail below. This also implies that we no longer have a
distinguished time variable at our disposal. Nevertheless,
as we shall demonstrate for the nontrivial case of 2þ 1
dimensions, it is possible to construct a meaningful time
variable, whose restriction to standard, nonbranching CDT
configurations agrees with the usual proper time label t.
This will enable us to extract volume profiles from the
numerical simulations and compare their dynamics with
that of the standard formulation.
There is a number of good reasons for beginning our

investigation in 2þ 1 dimensions, as we are doing in the
present work. In standard CDT, the large-scale properties
of the quantum universe generated by the nonperturbative
quantum dynamics are qualitatively very similar to those
in 3þ 1 dimensions and are well described by a (three-
dimensional) Euclidean de Sitter universe [18,19].
Furthermore, as we will describe in Sec. VI, the nonfoli-
ated CDT model requires new Monte Carlo moves, which
are significantly more difficult to implement than the
generalized Pachner moves used in standard CDT.
Writing the simulation software for the new model be-
comes a very challenging task already in 2þ 1 dimen-
sions. At the same time, the increased complexity of the
simulation software leads to longer simulation times. It is
not even clear currently whether analogous simulations
in 3þ 1 dimensions could be performed with acceptable
running times using contemporary simulation hardware.
Before embarking on our exploration of the dynamics of

nonfoliated CDT, let us comment briefly on prior work,
which considered explicitly a possible relaxation of CDT’s
strict time slicing.4 A soft way of relaxing the foliation in
1þ 1 dimensions was studied in Ref. [21], where under
certain conditions the timelike links were allowed to have
varying length. In this approach the foliation is still
present, since the connectivity of the underlying triangu-
lation is unchanged, but the individual leaves of the folia-
tion are not placed at equidistant intervals. The authors
argued that this should not affect the continuum limit of the
model. A similar idea in 2þ 1 dimensions was considered
in Ref. [22], where it was also suggested to add new
elementary building blocks to CDT, which extend over
two slabs of the foliation instead of one. This study did
not include details of how the path integral of the corre-
sponding generalization of CDT quantum gravity should
be formulated or simulated.
The remainder of this article is structured as follows. We

begin with a brief review of causal dynamical triangula-
tions in Sec. II. In Sec. III we discuss aspects of CDT
without preferred foliation in 1þ 1 dimensions, to illus-
trate the basic geometric idea behind the enlarged model.
Section IV contains a detailed study of the kinematical

2This differs from 1þ 1 dimensions, where CDT is a
quantum-mechanical system of a single length variable and
has been shown to coincide with projectable Hořava–Lifshitz
gravity [15].

3One does not know a priori whether t or any other time label
of the regularized model will assume a distinguished physical
role in the continuum theory; this can only be determined by
studying suitable continuum observables, like the volume
profiles.

4In CDT in 1þ 1 dimensions, one can rederive the exact
continuum propagator without invoking an explicit proper-time
slicing (see, for example, Ref. [20]). It is unclear how to
generalize such a construction to higher dimensions.
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aspects of nonfoliated CDT in 2þ 1 dimensions. Section V
deals with actions and the Wick rotation, and Sec. VI
summarizes the new numerical setup. This includes an
overview of the Monte Carlo moves in 2þ 1 dimensions,
a prescription for how a notion of time can be defined on
the quantum ensemble and how the corresponding volume
profiles can be extracted. In Sec. VII we explore the phase
diagram of the model numerically. In Sec. VIII we study
distributions of tetrahedra as a function of the coupling
constants, which allows us to understand how foliated
(in the sense of regular CDT) typical configurations are.
The results of our analysis of the volume profiles and their
matching to a de Sitter universe are presented in Sec. IX
and our conclusions in Sec. X. Further details on the
numerical implementation as well as a documentation of
the relevant software can be found in Ref. [23].

II. REVIEW OF CAUSAL DYNAMICAL
TRIANGULATIONS

To set the stage for our subsequent generalization, we
recall in the following some elements of causal dynamical
triangulations, mainly based on the original literature on
CDT in 1þ 1 [6], 2þ 1 [18], and 3þ 1 dimensions [9,10].
For more extensive reviews and lecture notes on CDT, we
refer the interested reader to Refs. [7,8,24].

The central object of interest in the CDT approach to
quantum gravity is the gravitational path integral, which in
the continuum can be written formally as

ZðG;�Þ ¼
Z
geometries ½g�

D½g� exp ðiSEH½g�Þ; (1)

where SEH½g� is the Einstein–Hilbert action, written as a
functional of the metric g, D½g� is a measure on the space
of geometries (the space of equivalence classes ½g� of
metrics under the action of the diffeomorphism group), G
is Newton’s constant, and � is the cosmological constant.
To define the path integral properly, it needs to be regular-
ized, which in CDT is done by performing the ‘‘sum over
histories’’ (1) over a set of piecewise flat, simplicial
Lorentzian geometries—in other words, triangulations—
effectively discretizing the curvature degrees of freedom of
spacetime. The way in which triangulations encode curva-
ture is illustrated best in two dimensions. In the Euclidean
plane, consider a flat disk consisting of six equilateral
triangles which share a central vertex, and remove one of
the triangles (Fig. 1, left). By identifying the opposite sides
of the gap thus created, the piecewise flat disk acquires
nontrivial (positive Gaussian) curvature, whose magnitude
is equal to the deficit angle �=3 at the vertex (Fig. 1, right).
This also coincides with the rotation angle undergone by
a two-dimensional vector parallel transported around the
vertex and is therefore an intrinsic property of the two-
dimensional disk. The principle of encoding curvature
through deficit angles (located at subsimplices of dimension

d� 2 in a d-dimensional triangulation) works in any
dimension and for any metric signature.
Let us review the difference between the (Euclidean) DT

and the (Lorentzian) CDT path integral, again for simplic-
ity in dimension two. Recall that the geometric properties
of a flat triangle (or, in higher dimensions, a flat simplex)
are completely determined by the lengths of its edges,5

including the signature of the flat metric in the building
block’s interior. In the Euclidean DT approach in two
dimensions, oneworks with a single type of building block,
an equilateral triangle of Euclidean signature, all of whose
edges have some fixed spacelike length, the same length
for all triangles in the triangulation. As we have seen
above, the number of such triangles around each interior
vertex of the triangulation characterizes the local curvature
at that vertex. In this way the formal integral over curved
geometries in the continuum path integral (1) is turned into
a sum over triangulations, typically subject to some mani-
fold conditions, which ensure that the triangulation looks
like a two-dimensional space everywhere.
By contrast, the flat triangles used in CDT quantum

gravity have Lorentzian signature, something that cannot
be achieved for equilateral triangles. The standard choice of
an elementary CDT building block in 1þ 1 dimensions is
one whose base has squared length ‘2s > 0 (and therefore is
spacelike) and whose remaining two edges both have
squared length ‘2t < 0 (and therefore are timelike). From
the point of view of triangulating Lorentzian spacetimes,
one could in principle have chosen ‘2t to be space- or light-
like, but then CDT’s prescription of a Wick rotation—to be
described below—would no longer be applicable.
Figure 2 illustrates the fundamental building blocks of

two-dimensional DT (left) and CDT (right) and how they
are put together to obtain piecewise flat manifolds of
Euclidean and Lorentzian signature. The two-dimensional
graphs correctly represent the neighborhood relations of
adjacent triangles, but not the actual length assignments,
since it is impossible to flatten out a curved surface and
preserve the edge lengths at the same time. Note that in

FIG. 1 (color online). A disk in the flat Euclidean plane is
triangulated in terms of six equilateral triangles, one of which is
subsequently removed (left). Regluing the remaining triangles, one
obtains a disk with positive curvature, characterized by a deficit
angle � ¼ �=3 and independent of the embedding space (right).

5To treat space-, time-, and lightlike edges on the same foot-
ing, it is convenient to work with the squared edge lengths.
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the Lorentzian case, the spacelike edges form a sequence
of one-dimensional simplicial submanifolds, which can
be interpreted as hypermanifolds of constant time t ¼
0; 1; 2; . . . , endowing each triangulation with a distin-
guished notion of (proper) time. This time can be extended
continuously to the interior of all triangles [25].

The ensemble of spacetimes forming the carrier space of
the CDT path integral are all triangulations which consist
of a fixed number ttot of triangulated strips �t ¼ 1, where
each strip is an arbitrary sequence of up and down triangles
between times t and tþ 1. The topology of space (usually
chosen to be S1) is not allowed to change in time; that is,
branchings into multiple S1 universes are forbidden. It was
shown in Ref. [26] that the global foliation of a 1þ
1-dimensional CDT spacetime into such strips can be
understood as consequence of a local regularity condition,
namely, that precisely two spacelike edges be incident on
any vertex. Note that these geometries are causally well
behaved and obey a piecewise linear analogue of global
hyperbolicity.

As already described in the introduction, the idea of
creating individual path integral configurations with a
well-behaved causal structure by imposing a preferred
foliation on the underlying simplicial manifold is also real-
ized in CDT in higher dimensions. Figure 3 shows part of a
2þ 1-dimensional CDT spacetime. Each leaf at integer t of

the foliation forms a two-dimensional triangulation of the

same fixed topology ð2Þ� and consists of equilateral space-
like triangles with link length ‘s. Adjacent triangulated
spatial hypermanifolds are connected using Lorentzian tet-
rahedra to form a 2þ 1-dimensional simplicial manifold

with spacetime topology ½0; 1� � ð2Þ�, which again is a
sequence of ttot triangulated slabs �t ¼ 1. Each such ge-
ometry comes with a time label t, which can be defined
continuously throughout the triangulation, and for integer
values coincides with the discrete labeling of the simplicial
leaves just described [25]. For reasons of simplicity, in the
simulations time is often compactified. The topology then

becomes S1 � ð2Þ�.
The fundamental building blocks of three-dimensional

CDT quantum gravity are flat Minkowskian tetrahedra,
whose geometric properties are determined by their edge
lengths. As in 1þ 1 dimensions, one considers two differ-
ent link lengths, one spacelike with squared length ‘2s and
one timelike with ‘2t ¼ ��‘2s . Without loss of generality,
we have introduced here a positive constant �, which
quantifies the relative magnitude of space- and timelike
edge lengths and in what follows will be referred to as the
asymmetry parameter.
CDT path integral configurations are assembled from

two different tetrahedron types, which can be distinguished
by their orientation with respect to the preferred foliation.
As can be seen from Fig. 3, spacelike edges of a tetrahe-
dron are always contained in a spatial submanifold of
integer t, whereas timelike edges always connect different
spatial slices. The (3, 1)-tetrahedron has three spacelike
links forming a spacelike triangle, while the (2, 2)-
tetrahedron contains only two spacelike links. The notation
ði; jÞ indicates that i vertices of the tetrahedron are located
on one spatial slice and the remaining j vertices on an
adjacent one.
The kinematical setup of CDT quantum gravity in 3þ 1

dimensions can be defined in a similar way. The leaves of
the preferred foliation are three-dimensional Euclidean
triangulations of fixed topology, and neighboring slices
are connected using Minkowskian four-simplices. Path
integral configurations are simplicial manifolds assembled
from two types of these building blocks, denoted by (4, 1)
and (3, 2), depending on how their vertices are distributed
among adjacent spatial slices. By labeling the foliation
with increasing integers, we again get a time variable for
free, with every vertex being assigned a definite discrete
time label.
Another ingredient that needs to be specified to make the

model complete is an implementation on piecewise flat
geometries of the Einstein–Hilbert action in the path in-
tegral (1), which in CDT quantum gravity is done follow-
ing Regge’s prescription [27]. One should point out that
models of the type we are studying tend to be very robust
with respect to changes in the precise form of the action
(which obviously is subject to discretization ambiguities)

FIG. 2 (color online). Two-dimensional triangulations: from
Euclidean DT, consisting of equilateral triangles with
Euclidean signature (left), and from Lorentzian CDT, con-
structed from Minkowskian triangles with one spacelike and
two timelike links (right). In both cases, curvature is present at
all interior vertices whose coordination number (number of
triangles meeting at the vertex) is not six. Timelike links are
shown in red and spacelike ones in blue.

FIG. 3 (color online). Two adjacent spatial slices in a piece of
foliated CDT triangulation in 2þ 1 dimensions. Tetrahedra of
both types are shown.
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and of the configuration space, in the sense that a wide
range of different regularizations and kinematical ingre-
dients will lead to the same continuum physics, if the latter
can be defined meaningfully. An exception to this is of
course the imposition of causality constraints, which dis-
tinguishes CDT from DT quantum gravity and leads in all
dimensions studied so far to genuinely different continuum
results. In two dimensions, this can be demonstrated ex-
actly, for example, by comparing specific observables and
critical exponents, since the CDT model can be solved
analytically [6]. In higher dimensions, information about
the behavior of observables comes primarily from numeri-
cal simulations; three-dimensional CDT quantum gravity
has only been solved partially and for restricted classes of
triangulations [28], while in four dimensions analytical
methods are mostly unavailable, and one must resort to
Monte Carlo simulations to extract physical results.

In order to analyze the dynamics of CDT quantum
gravity using such simulations, a Wick rotation must be
performed to convert the complex path integral amplitudes
to real Boltzmann weights. This can be achieved by
performing an analytic continuation of the asymmetry
parameter by rotating it in the lower half of the complex
plane such that� is mapped to�� [16]. As a consequence,
the gravitational path integral becomes a statistical parti-
tion function of the form

Z ¼ X
T2C

1

CðTÞ exp ð�SeuclReggeðTÞÞ; (2)

where C is the space of all causal, Lorentzian triangulations
T, SeuclRegge the Euclideanized Regge action, and 1=CðTÞ the
discrete analog of the path integral measure, with CðTÞ
denoting the order of the automorphism group of T. In
Sec. V below, we will derive and discuss the explicit
functional form of the Regge implementation of the three-
dimensional Einstein–Hilbert action in terms of the triangu-
lation data and the coupling constants of the nonfoliated
CDT model.

III. RELAXING THE FOLIATION: 1 þ 1
DIMENSIONS

As a warm-up for the three-dimensional case, we will in
this section illustrate our general strategy for relaxing the
distinguished foliation by discussing the situation in 1þ 1
dimensions. The key idea is to add new elementary
Minkowskian building blocks, while sticking to two types
of links, one spacelike and one timelike, where we will
continue to use the notation ‘2s and ‘2t ¼ ��‘2s for their
squared lengths. Figure 4 shows the four types of triangles
which can be built from these two link types. By calculat-
ing the metric inside the triangles, one finds that there are
exactly two which have Lorentzian signature ð�þÞ, the
two at the center of the figure. We will call them the
sst- and the tts-triangle, respectively, in reference to

the spacelike (s) and timelike (t) edges they contain.
Note that in standard CDT in two dimensions, only the
tts triangle is used.
The use of Lorentzian building blocks is not a sufficient

condition for the triangulation to have a well-defined
causal structure locally; we also need to check that we
obtain well-defined light cones in points where triangles
are glued together. If the gluing happens according to the
standard rule of only identifying links of the same type
(spacelike with spacelike, timelike with timelike), the only
local causality violations6 can occur at the vertices of the
triangulation. Counting past and future light cones sepa-
rately, the point is that one may obtain more or fewer than
the required two light cones at a vertex, as illustrated by the
local neighborhoods depicted in Fig. 5. Local causality
implies crossing exactly two light cones when going
around a vertex or, equivalently, crossing exactly four
lightlike lines emanating radially from the vertex.
As a next step, we will consider the global causal struc-

ture of individual triangulated manifolds satisfying the
local vertex causality condition everywhere. This global
structure will in general depend on the chosen topology.
For simplicity, we will restrict ourselves to the cases
½0; 1� � S1 (space is a compact circle) and ½0; 1� � ½0; 1�

FIG. 4 (color online). The four triangle types which can be
constructed from using just two link lengths, spacelike (blue)
and timelike (red). Only the two Minkowskian triangles (of types
sst and tts) at the center have the correct signature for triangu-
lating two-dimensional Lorentzian spacetimes. The green lines
inside the Lorentzian triangles indicate light rays through the
corner vertices.

FIG. 5 (color online). Three examples of vertex neighborhoods
in 1þ 1 dimensions. Causality is violated at the central vertex
whenever the number of light cones is not two (left and center).
At a causally well-behaved vertex, one crosses exactly two light
cones (equivalently, four lightlike directions) when going around
the vertex (right).

6Whenever we talk about geometries being causal, what we
have in mind is that they possess a well-behaved causal structure.
This should not be confused with the notion of causality in
standard (quantum) field theory, which refers to the behavior of
matter fields on a given background that typically already comes
with a fixed causal structure.
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(space is a closed interval), where the initial and final
boundary are assumed to be spacelike and any other
boundaries (in the second case) timelike. We will call
such a spacetime globally causal if it does not contain
any closed timelike curves. A ‘‘timelike curve’’ for our
purposes will be a sequence of oriented, timelike links in a
triangulation. Since the interior of every Minkowskian
triangle has a well-defined light cone structure, a choice
of orientation (i.e., a choice of which one is the past and
which one the future light cone) induces an orientation on
its timelike edges, which can be captured by drawing a
future-pointing arrow onto the edge. Conversely, these
arrow assignments fix the orientation of the triangle
uniquely. To follow the ‘‘flow of time’’ in a triangulation,
it is convenient to also associate a future-pointing arrow
with each spacelike edge, which is drawn perpendicular
to the edge; see Fig. 6.

Choosing a consistent orientation for all building blocks
in standard CDT in this way is completely straightforward:
each triangle sits in a strip between discrete times t and
tþ 1, which fixes its orientation uniquely. Independent of
the spatial boundary conditions, there are no closed time-
like curves (unless we impose periodic boundary condi-
tions in time, which trivially makes any timelike curve
closed, a situation we are not considering here).

By contrast, the situation in nonfoliated CDT is slightly
more involved. Given a time-oriented triangle, the orienta-
tion of a neighboring triangle that shares an edge with the
first one is uniquely determined by consistency. It is easy to
see that when vertex causality is violated (like in the
example of Fig. 5, left), inductively assigning orientations
in this way will fail—i.e., lead to contradictions—even for
a local vertex neighborhood. If vertex causality is satisfied,
one can show that for noncompact spatial topology, there
are no closed timelike curves [29]. For compact spatial
slices, where the spacetime topology is that of a cylinder,
one can construct explicit geometries which exhibit non-
contractible, closed timelike curves. Of course, we do not
know a priori whether the presence of closed timelike
curves in individual path integral configurations has any
influence on the continuum limit of the model and perhaps

leads to undesirable continuum properties. It appears that
in the context of our present investigation, this issue is
largely circumvented. Although the causality conditions
we impose are of a local nature, and may admit the
presence of closed timelike curves, it turns out that the
geometries dominating the sum over histories dynamically
retain a weak degree of foliation (see Sec. VIII below),
which suggests that such curves are certainly not abundant.
We have not seen closed timelike curves in random
samples but have not systematically tested for their pres-
ence either.
Anticipating the choice of boundary conditions we will

make in 2þ 1 dimensions, we may relax the local cau-
sality constraint slightly by allowing for the presence of
an isolated ‘‘source’’ and ‘‘sink’’ of time. By this we mean
a vertex where only timelike links meet, all of them either
time oriented away from the vertex (source) or toward it
(sink), as illustrated by Fig. 7. For compact spatial bound-
ary conditions, choosing a source and a sink as initial and
final (degenerate spatial) boundaries will convert the
cylinder into a spherical S2-spacetime topology. A similar
choice of boundary conditions in 2þ 1 dimensions will
lead to a S3-spacetime topology, with the source and sink
forming the south and north pole of the sphere, as we
will see later.
There is a particular substructure of the triangulations,

called a bubble [29], which involves the newly added
building blocks and is helpful in analyzing the geometry
of nonfoliated CDT. In 1þ 1 dimensions it is simply a pair
of sst triangles with a chain of tts triangles in between.
This is the general structure of a two-dimensional con-
nected region bounded by a closed loop of spacelike links,
and whose interior contains only timelike links, as shown
in Fig. 8, left (we are assuming that vertex causality is
satisfied everywhere). This should be contrasted with the
structure of a strip, which likewise denotes a two-
dimensional piece of triangulations bounded by spacelike
links and without spacelike links in its interior but whose
boundary is disconnected (Fig. 8, right). CDT quantum

FIG. 6 (color online). Two Lorentzian triangles with consistent
assignments of future-pointing arrows to its edges, as explained
in the text (left). The time orientation of a given triangle
determines the time orientation of its direct neighbors (right).

FIG. 7 (color online). A source and a sink of time in 1þ 1
dimensions. In both cases, vertex causality is violated at the
central vertex.

FIG. 8 (color online). A bubble (left) and a strip configuration
(right) in 1þ 1 dimensions.
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gravity in 1þ 1 dimensions has only strips, whereas the
version without distinguished foliation has both strips and
bubbles. Analogous structures will play a role in our analy-
sis in 2þ 1 dimensions, too, where also the interior struc-
ture of a bubble can become more complicated.

IV. RELAXING THE FOLIATION: KINEMATICS
IN 2 þ 1 DIMENSIONS

A. Local causality conditions

Following an analogous procedure in 2þ 1 dimensions
to arrive at a model without distinguished simplicial hyper-
manifolds, we first must determine which flat tetrahedra—
again only built from two types of edge lengths—give rise
to Minkowskian building blocks of the correct Lorentzian
signature ð� þþÞ. Figure 9 shows all types of tetrahedra
which can be constructed using space- and timelike links
with fixed squared lengths ‘2s and ‘2t ¼ ��‘2s , respec-
tively. In the rest of this document, we will set ‘s ¼ 1.
By calculating the metric in the interior of each tetrahedron
type, one finds that only T2, T3, T5, and T9 have the
required signature for all values �> 0 of the asymmetry
parameter and type T7 only for 0<�< 1. Note that
standard CDT quantum gravity only uses the tetrahedra
T5 and T9, in Sec. II referred to as (3,1)- and
(2,2)-tetrahedra, respectively. In the present work, we
will for reasons of simplicity investigate the version of
the model where causal spacetimes are assembled from
the tetrahedral types T2, T3, T5, and T9 (without T7). As we
will see, this already serves our purpose of breaking up
the fixed foliated structure.

In 2þ 1 dimensions violations of local causality—which
should therefore be forbidden by the gluing rules—can in
principle occur at the links and the vertices of a triangula-
tion. To check whether the light cone structure at a given
link is well-behaved, it is sufficient to consider the geometry
of a two-dimensional piecewise flat surface orthogonal to
the link at its midpoint. This geometry is completely
characterized by the set of tetrahedra sharing the link, the
so-called star of the link (Fig. 10, center). Each tetrahedron
in the star contributes a dihedral angle, defined by the
intersection of the tetrahedron with the plane perpendicular
to the link (Fig. 10, left). The plane segments spanned by all
the dihedral angles associated to the given link form a new
plane,7as shown in Fig. 10 (right).

We can distinguish between two cases. If the link at the
center of the star is timelike, the metric of the plane has
Euclidean signature, all dihedral angles are Euclidean, and
there are no further causality conditions to be satisfied. If
on the other hand the link is spacelike, the orthogonal plane
is Lorentzian, and so are the dihedral angles. Like in the
1þ 1 dimensional case discussed in the previous section,

we must then require that there is exactly one pair of light
cones at the central vertex and that we encounter exactly
four lightlike directions when circling around it. We say
that the triangulation satisfies link causality if this condi-
tion is satisfied for every spacelike link.
Link causality guarantees that light cones everywhere in

the triangulation are regular, except possibly at vertices.
Intersecting the light cone(s) at a vertex V with the surface
of a unit ball around V, we obtain two disconnected circles
if and only if local causality holds at V; see Fig. 11 (left). In
terms of the triangulated surface S of the unit neighbor-
hood around V, vertex causality can be characterized as
follows. Mark the end of a timelike link between V and S
by a red dot and that of a spacelike one by a blue dot. In
addition, whenever the light cone through V crosses a link
on S, mark the link with a green dot. Recalling the situation
depicted in Fig. 4, it is clear that a green dot will always
occur on a surface link which connects a red and a blue dot.
If we cut all links that are marked with a green dot, the
surface triangulation will break up into a number of
connected components. If two of the components thus
obtained contain red vertices and one component contains
blue vertices, we say that vertex causality holds at V. If this
is true for all vertices, we say that the triangulation satisfies
vertex causality. We have not found any Monte Carlo
moves which destroy vertex causality but maintain link
causality. Also, we have not been able to explicitly
construct a triangulation that satisfies link causality and
violates vertex causality, but we do not currently have a
proof that link causality implies vertex causality.
In order to compute the explicit action for the general-

ized CDT model of 2þ 1 dimensional quantum gravity,
we will need the values of all dihedral angles. As usual, we
will use Sorkin’s complex angle prescription [30] for the
latter, which conveniently keeps track of both Euclidean
and Lorentzian angles. The analytic expressions for the
cosines and sines of the dihedral angles are listed in Table I,
from which the angles can be computed uniquely. Closer
inspection of the geometry of the tetrahedra reveals that a
dihedral angle contains a light cone crossing whenever the
two triangles bounding the angle are a pair of a spacelike
(Euclidean) and a Lorentzian triangle. Local link causality
therefore implies that the triangle type changes exactly
four times between spacelike and nonspacelike when we
circle around a spacelike link once. The number of light
cone crossings in the case of a Lorentzian angle is also
contained in the table.
Just like in 1þ 1 dimensions, choosing a time orienta-

tion for a tetrahedron induces an orientation on its timelike
links, as well as on the normal to any of its spacelike
triangles. It is operationally convenient to keep track of
these data in terms of future-oriented arrow assignments, as
illustrated by Fig. 12. Again, the local causality conditions
do not guarantee that the time orientation can be extended
to the full triangulation. In addition to these conditions, we

7This is a slight misnomer; in general, this ‘‘plane’’ will not be
flat because the vertex at the center will carry a nonvanishing
deficit angle.
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will therefore require (and enforce by way of our computer
algorithm) that the complete triangulation can be time
oriented consistently.

B. Simplicial substructures

In trying to understand the local geometry of nonfoliated
CDT configurations and how it is affected by the

Monte Carlo moves defined in Sec. VI below, it is useful
to isolate specific local substructures built from the funda-
mental tetrahedra of Fig. 12. To start with, note that only
tetrahedra of type T2 and T3 contain triangles with exactly
two spacelike edges. Furthermore, both tetrahedra have
exactly two such triangles. If we glue two of them together
along such a triangle, the resulting simplicial complex
again has two such triangles on its boundary. Iterating
this gluing procedure, we end up with a chain of tetrahedra
of type T2 and T3. We conclude that in a triangulation
without boundary, the set of all tetrahedra of type T2 and T3

necessarily organizes itself into a collection of closed

FIG. 9 (color online). All tetrahedra in 2þ 1 dimensions that can be constructed from time- and spacelike links of fixed squared
length, allowing for any signature. The tetrahedra highlighted in yellow have the correct Lorentzian signature; for the T7 tetrahedron,
this only holds for �< 1. The link labeling shown for the first tetrahedron will be used for the other tetrahedra, too.

FIG. 10 (color online). Dihedral angle at the link with label
‘‘2’’ of a T2 tetrahedron (left). Star of a link, all of whose
tetrahedra contribute dihedral angles at the link (center). Two-
dimensional cut perpendicular to the link. In the case depicted,
the space is Lorentzian, with green lines representing light rays
originating at the center (right).

FIG. 11 (color online). In a triangulation obeying vertex cau-
sality, intersecting the boundary of a spherical vertex neighbor-
hood with the light cones at the vertex V results in two
disconnected circles (left). Part of the surface triangulation of
a unit ball around V, showing timelike radial links as red,
spacelike ones as blue, and light cone crossings as green dots
(right).

TABLE I. Dihedral angles � for all tetrahedra types, given in
terms of their trigonometric functions. The link numbers refer to
the numbering given in Fig. 9. For Lorentzian angles, also the
number of light cone crossings is given.

Tetrahedron Links cos ð�Þ sin ð�Þ
Light cone

crossings

T2 1, 3, 5, 6 iffiffi
3

p ffiffiffiffiffiffiffiffi
�

4þ�

p
2ffiffi
3

p
ffiffiffiffiffiffiffiffi
3þ�

pffiffiffiffiffiffiffiffi
4þ�

p 1

2 1þ 2�
3

2i
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð3þ�Þ

p
3 0

4 2þ�
4þ�

2
ffiffiffiffiffiffiffiffi
3þ�

p
4þ� N/A

T3 1 ið1þ2�Þffiffiffiffiffiffiffiffiffiffiffi
3þ12�

p 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�ð4þ�Þ
3þ12�

q
1

2, 3 2þ�ffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð4þ�Þ

p 2ffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�ð4þ�Þ
�ð4þ�Þ

q
1

4, 5 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ4

�þ4�
p 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ �
1þ�ð4þ�Þ

p N/A

6 2þ�ð4þ�Þ
�ð4þ�Þ � 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�ð4þ�Þ

p
�ð4þ�Þ 0

T5 1, 2, 3 � iffiffi
3

p ffiffiffiffiffiffiffiffiffi
1þ4�

p 2ffiffi
3

p
ffiffiffiffiffiffiffiffiffi
1þ3�

pffiffiffiffiffiffiffiffiffi
1þ4�

p 1

4, 5, 6 1þ2�
1þ4�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ3�Þ

p
1þ4� N/A

T9 1, 6 3þ4�
1þ4� � 2i

ffiffiffiffiffiffiffiffiffi
2þ4�

p
1þ4� 0

2, 3, 4, 5 � 1
1þ4�

2
ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ2�Þ

p
1þ4� N/A
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rings. In a triangulation with boundary, also open chains
are possible.

Using these simplicial substructures, we can construct
three-dimensional analogues of the ‘‘bubbles’’ of Sec. III
above, by which we will mean connected pieces of trian-
gulation enclosed by a surface made of only spacelike
triangles, with no such triangles in its interior. If a ring
only contains tetrahedra of type T2, we get a simple bubble,
consisting of two spatial disks with identical structure and
a timelike link in its interior [Fig. 13(a)]. By inserting T3

tetrahedra into a ring of T2 tetrahedra, we can form more
complicated bubbles, as illustrated by Fig. 13(b). More
general bubbles consist of an outer ring of T2 and T3

tetrahedra, enclosing one or more tetrahedra of the other
two types, like the one shown in Fig. 13(c).

We can also consider a ring of T3 tetrahedra, as depicted
in Fig. 13(d). The spacelike triangles marked in yellow
form a spatial disk, with a similar spacelike disk just below.
Both disks meet in a single vertex, their respective centers,
which we will refer to as a pinching at that vertex. This
situation can be generalized by inserting tetrahedra of type
T2 into the T3 ring, as shown in Fig. 13(e). The effect is that
the two spatial disks now intersect in a link rather than a
vertex. Bubbles and pinchings can occur in combination to
create even more complicated structures, an example of
which is shown in Fig. 13(f). A feature of bubbles which
we have not yet mentioned is that they can self-overlap, in
the sense that the spherical (or possibly higher-genus)

surface bounding a bubble may touch itself along some
subset of the surface triangulation. As explained below, we
will exclude one kind of self-overlapping bubbles from our
simulations, namely, those that wrap nontrivially around
the spatial two-sphere.

C. Kinematical constraints

The simplest information one can extract from a trian-
gulation is the number of its subsimplices of a particular
type. We will use the following counting variables for the
four fundamental tetrahedra and the lower-dimensional
subsimplex types, as well as their sums in each dimension:

N0 ¼ number of vertices

Ns
1 ¼ number of spacelike links

Nt
1 ¼ number of timelike links N1 :¼ Ns

1 þ Nt
1

Nsss
2 ¼ number of triangles with three spacelike links

Nsst
2 ¼ number of triangles with two spacelike links

Ntts
2 ¼ number of triangles with one spacelike link

N2 :¼ Nsss
2 þ Nsst

2 þ Ntts
2

NT2

3 ¼ number of tetrahedra of typeT2

N
T3

3 ¼ number of tetrahedra of typeT3

NT5

3 ¼ number of tetrahedra of typeT5

N
T9

3 ¼ number of tetrahedra of typeT9

N3 :¼ NT2

3 þ NT3

3 þ NT5

3 þ N
T9

3 : (3)

There exist linear identities among these numbers,
which for CDT have been described in Ref. [16]. Here
we will repeat the analysis for the extended ensemble,
including the new tetrahedral building blocks. The first
identity,

FIG. 13 (color online). (a) A ring of T2 tetrahedra, forming a simple bubble. (b) By inserting tetrahedra of type T3, we can form more
complicated bubbles. (c) More general bubbles also contain other tetrahedra types. (d) A ring of T3 tetrahedra gives rise to a pinching,
where two spatial disks meet in a single vertex. (e) By adding two T2 tetrahedra, the pinching is extended to a link. (f) Bubbles and
pinchings can occur in combination (timelike links are omitted here).

FIG. 12 (color online). The four fundamental tetrahedral
building blocks, each equipped with one (out of two possible)
time orientations.
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N0 � N1 þ N2 � N3 ¼ �; (4)

involves the Euler characteristic � of the simplicial
spacetime manifold. Since every tetrahedron contains four
triangles and every triangle is shared by two tetrahedra, we
also have the constraint

N2 ¼ 2N3: (5)

Both relations (4) and (5) are shared by Euclidean DT and
standard CDT. In the latter we also have the foliation

constraint 2Nsss
2 ¼ N

T5

3 , which expresses the fact that in

CDT every spacelike triangle is shared by two tetrahedra
of type T5, while every such tetrahedron contains exactly
one spacelike triangle. In the present case, the analogous
relation is

2Nsss
2 ¼ 2NT2

3 þ N
T3

3 þ N
T5

3 : (6)

This is easily understood by counting all spacelike faces in
the triangulation—the right-hand side of Eq. (6)—and
noting that the number of spacelike triangles is half the
number of spacelike faces.

In CDT we have two more constraints which explicitly
involve the leaves of the preferred foliation. One is the
Euler constraint N0 � Ns

1 þ Nsss
2 ¼ ttot ~�, where ttot counts

the number of leaves (for periodic boundary conditions in
time), and ~� is the Euler characteristic of a spatial section.
This constraint no longer exists in the generalized model,
since we have Monte Carlo moves which change the
quantity N0 � Ns

1 þ Nsss
2 . Furthermore, in standard CDT

every spacelike triangle has three spacelike links, and
every spacelike link is shared by two spacelike triangles,
yielding the relation Ns

1 ¼ 3Nsss
2 =2. As shown in Ref. [23],

this can be generalized to the case at hand, leading to the
linear relation

Ns
1 ¼

1

2
ð3Nsss

2 � NT2

3 Þ: (7)

Lastly, a constraint which does not have a counterpart in
foliated CDT follows directly from our earlier observation
of T2 and T3 tetrahedra forming closed rings (assuming
compact spatial topology), namely,

Nsst
2 ¼ NT2

3 þ NT3

3 : (8)

We have checked that the Monte Carlo moves for the
nonfoliated CDT model, described in Sec. VI below, are
not compatible with the existence of other linear relations
among the counting variables (3). This means that we have
a total of 5 such relations for 10 variables, compared with 5
relations for 7 counting variables for standard CDT quan-
tum gravity in 2þ 1 dimensions. In the next section, we
will express the gravitational action as a function of the five
remaining independent counting variables.

V. ACTION AND WICK ROTATION

The gravitational path integral (1) assigns to every
spacetime geometry ½g� a complex amplitude exp ðiS½g�Þ,
where S½g� is its classical action. As already noted, we will
use the same Regge implementation of the Einstein–
Hilbert action in 2þ 1 dimensions as previous work on
CDT quantum gravity [16], namely,

SRegge ¼ k
X

spacelike l

VðlÞ 1
i

�
2�� X

tetrahedra at l

�

�

þ k
X

timelike l

VðlÞ
�
2�� X

tetrahedra at l

�

�

� �
X

tetrahedra T

VðTÞ; (9)

where k and � are the gravitational and cosmological
couplings (up to rescaling), VðlÞ and VðTÞ the volumes of
a link l and a tetrahedron T, and

P
� denotes the sum

over dihedral angles contributed by the tetrahedra sharing a
link l. It was shown inRef. [16] that an analytic continuation
� � �� in the asymmetry parameter through the lower-
half complex plane defines a nonperturbativeWick rotation
which converts the amplitudes exp ðiSReggeÞ to real weights
exp ð�SeuclReggeÞ, and thereby makes it possible to analyze the

path integral with the help of Monte Carlo simulations.
Maintaining the relation ‘2t ¼ ��‘2s between time- and
spacelike length assignments, this implies that timelike
links acquire a positive squared length after the Wick rota-
tion and therefore effectively become spacelike. The re-
quirement that the full set of link lengths corresponds to a
proper triangulation after theWick rotation means that they
have to obey triangle inequalities, which in turn puts a
restriction on the value of � before the Wick rotation, which
for CDT in 2þ 1 dimensions takes the form �> 1=2.
Let us study how the enlargement of the ensemble of

configurations in nonfoliated CDT affects the behavior of
the Regge action (9) under the map � � ��. In the first
term, VðlÞ ¼ 1 because the link is spacelike. The plane
orthogonal to the link has Lorentzian signature. Because
we have imposed link causality, wewill cross the light cone
four times when circling around the link in the plane.
According to our complex angle prescription, each cross-
ing adds a real contribution �=2 to the total dihedral angle,
such that the deficit angle—the expression (2��P

�)
inside the parentheses—becomes purely imaginary, like in
usual CDT, and under the analytic continuation becomes a
real deficit angle.
In the second term, the plane orthogonal to the timelike

link is Euclidean and remains so after the Wick rotation.
On the other hand, we have VðlÞ ¼ ffiffiffiffi

�
p

, which acquires a
factor of �i under the analytic continuation. This implies
that the second term changes from real to purely imaginary,
as it should. To evaluate the third term, we need the
volumes of the tetrahedra, which are shown in Table II.
The three-volumes as functions of � are useful quantities
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to look at. In the Lorentzian sector (�> 0), they are all
real and positive. After Wick rotation, a vanishing of the
volume VðTÞ signals a geometric degeneracy of the under-
lying (Euclidean) tetrahedron T, associated with a viola-
tion of the triangle inequalities. In addition, note that for
the Wick-rotated expressions to give the correct contribu-
tions to the Euclidean action, the arguments of the square
roots in the second column have to be negative after the
substitution � by ��, leading to the restrictions on the
original � values displayed in the third column of the table.
Since all of these constraints have to be satisfied simulta-
neously, we conclude that in nonfoliated CDT in three
dimensions, we need

1

2
<�< 3 (10)

in order for the usual Wick rotation to be well defined,
which is stronger than the corresponding condition 1=2<�
in CDT, where only the building blocks T5 and T9 are
used.

Evaluating the Regge action (9) with the help of the
expressions in Tables I and II and applying the Wick
rotation leads to

Seucl ¼ ~c1N0 þ ~c2N3 þ ~c3N
T2

3 þ ~c4N
T3

3 þ ~c5N
T5

3 (11)

for the Euclideanized Regge action, as a function of a
specific linearly independent subset of the counting varia-
bles (3), where the explicit functional form of the coeffi-
cients ~ci ¼ ~ciðk; �; �Þ has been derived in Ref. [23].

For the special case � ¼ �1 and after some manipula-
tions using the kinematical constraints, the action (11) can
be written as

Seucl ¼ �2k�N1 þ
�

�

6
ffiffiffi
2

p þ 6k arccos
1

3

�
N3; (12)

which coincides with the action of Euclidean dynamically
triangulated gravity in three dimensions. We have also

checked that by setting NT2

3 ¼ N
T3

3 ¼ 0, the action (11)

can be rewritten to precisely match the Regge action for
standard CDT quantum gravity in 2þ 1 dimensions given
in Ref. [16].

VI. NUMERICAL SETUP

A. Monte Carlo moves

To set up numerical simulations of nonfoliated CDT
quantum gravity in 2þ 1 dimensions, we need to define
a set of Monte Carlo moves. In this section, we will present
a compact description of the moves, which fall into two
groups; further details can be found in Ref. [23]. The first
group contains generalizations of the moves that were
already used for CDT simulations in 2þ 1 dimensions
[16] and which in turn are adapted versions of the original
Pachner moves for Euclidean DT [31,32].
Figure 14 shows the three adapted Pachner moves in

2þ 1 dimensions. They all change the interior of a small
compact region of the simplicial manifold, while leaving
its boundary invariant. For CDT triangulations, once the
location of a link to be added has been fixed, its type
(timelike or spacelike) is also fixed. This is no longer
true in the nonfoliated CDT model, where each of these
moves comes in several ‘‘flavors.’’ A move of this kind is
called am ‘‘m-n move’’ if m and n are the numbers of
tetrahedra in the local simplicial neighborhood before
and after the move is executed. The 2-6 move is the only
generalized Pachner move which creates a new vertex.
The Monte Carlo moves in the second group are new

compared to standard CDT. Three of them implement the
collapse of a link and only differ in the types of links and
the local neighborhood involved, as illustrated by Fig. 15.
They can be seen as special cases of the most general link
collapse move, of which we currently do not know whether
and how it can be implemented efficiently.
The bubble move (Fig. 15, top left) operates on a ring of

T2 tetrahedra with a single timelike link in its interior,
forming a bubble according to the definition given in
Sec. IV. It collapses the timelike link to a single vertex

TABLE II. Volumes of the four elementary tetrahedra and
conditions on the asymmetry parameter �, which ensure that
the building blocks after the Wick rotation are well defined.

Tetrahedron Volume Wick rotation condition

T2
1
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð3þ �Þp

0<�< 3

T3
1
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�þ �2

p
2� ffiffiffi

3
p

<�< 2þ ffiffiffi
3

p

T5
1
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�

p
1
3 <�

T9
1
6

ffiffiffiffiffiffiffiffiffiffiffiffi
1
2 þ �

q
1
2 <�

FIG. 14 (color online). The three generalized Pachner moves for CDT in 2þ 1 dimensions: 2-6 move (left), 2-3 move (center),
and 4-4 move (right). The links shown in green are removed or created by the corresponding move.
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and simultaneously collapses the bubble to a spatial disk.
The pinching move (Fig. 15, bottom left) operates on a pair
of spatial disks whose centers are connected by a timelike
link. It collapses this link, leading to a configuration where
the disks touch in a single vertex, thereby forming a
‘‘pinching’’ as described in Sec. IV [cf. Fig. 13(d)].

We have also implemented a move which collapses a
spacelike link (Fig. 15, top right). Note that in the configu-
ration before the collapse, the link types of the upper and
lower disk do not necessarily have to match. In the special
cases when they do, we call this move symmetric. It means
that during the collapse, only links of the same type get
identified pairwise. To keep the complexity of the imple-
mentation at a manageable level, we have restricted our-
selves to the symmetric version of this move.

Lastly, recall our introduction in Sec. III of an isolated
source and sink of time in 1þ 1 dimensions (Fig. 7). We
will use a straightforward generalization to 2þ 1 dimen-
sions of these local (causality-violating) configurations as
our boundary conditions. The polar move operates on the
neighborhood of such a source or sink of time, and moves it
around. Figure 15 (bottom, right) illustrates the situation
for a time source, initially located at the top of the single
tetrahedron on the left. The move subdivides the tetrahe-
dron into four, with the newly created vertex at the center
becoming the new source of time.

An important feature of a set of Monte Carlo moves is
that it should be ergodic; that is, any element of the
configuration space can be reached in a finite number of

moves. In our case, the configuration space ~C consists of all
locally causal gluings of the elementary building blocks
T2, T3, T5, and T9 that can be time oriented consistently and
satisfy further regularity conditions specified in the next
subsection. We have made the standard choice of a direct
product ½0; 1� � S2 for the spacetime topology. It is pos-
sible that the moves described here are ergodic in this
configuration space; in fact, the original motivation for
introducing additional building blocks was to let us move
around in the space of triangulations more efficiently.
However, we do not have a proof of ergodicity and suspect

this could be rather nontrivial, given the nonlocal character
of part of the causality conditions.

B. Defining the ensemble

As already mentioned in Sec. II, previous simulations of
CDT in 2þ 1 dimensions have worked with a fixed space-

time topology of direct-product form ½0; 1� � ð2Þ�, or

S1 �ð2Þ � if time is compactified. The standard, simplest
choice8 for the spatial topology—which we will also em-

ploy in the present work—is the sphere, ð2Þ� ¼ S2.
A posteriori, the choice of compactifying time in this
case does not appear to make much of a difference because
it turns out that the dynamics of 2þ 1 CDT quantum
gravity (for sufficiently large time extension ttot of the
configurations) drives the shape of the universe toward a
de Sitter space with S3 topology [18].
As we will now go on to explain, the most convenient

choice of boundary conditions for nonfoliated CDT is that
of a direct-product spacetime ½0; 1� � S2, where the begin-
ning and end of time are allowed to degenerate to a point,
leading effectively to an S3 topology. Recall that in simu-
lations of CDT quantum gravity, the number of time steps
ttot is fixed. Since genuine foliated CDT triangulations

form a subset of the present ensemble ~C, the question arises
whether it is possible to go from one strictly foliated
configuration to another one with a different number t0tot
of time steps via nonfoliated configurations and using the
Monte Carlo moves described in the last subsection. As
explained in detail in Ref. [23], the answer is yes. It follows
that if there is a region in the phase diagram where the
configurations are close to foliated, the standard CDT
notion of the ‘‘number of time steps’’ will also make sense
approximately, and one can ask which equilibrium value
for this quantity is found after thermalization. During early

test simulations in the ensemble ~C with compactified time,
we did find configurations that were approximately foli-
ated, but the number of time steps would not thermalize

FIG. 15 (color online). NewMonteCarlomoves in nonfoliatedCDT.Three link collapsemoves: bubblemove (top left), pinchingmove
(bottom left), and link collapsemove for spacelike links (top right). Also shown is the polarmove (bottom right), with arrows indicating a
time orientation. Spacelike links are blue, timelike ones are red, and purple links (top right) can be either space- or timelike.

8For a recent investigation with toroidal slices, see Ref. [33].
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properly. We have been able to circumvent this problem by
not compactifying time and adding a source and a sink of
time as the two poles of a three-sphere.

Another technical issue which appeared during early
test runs was that the simulations would often end up in
‘‘frozen’’ states where virtually no progress could be made
using the implemented Monte Carlo moves. The problem
could be traced back to the presence of globally self-
overlapping bubbles, winding once or multiple times
around the spatial sphere (cf. our discussion in Sec. IV).
Since we were unable to overcome this problem by finding
additional moves, we looked for a mechanism to prevent
the globally self-overlapping bubbles from appearing. We
found that these problematic structures do not form when
we forbid all moves which merge or split bubbles. The
moves of Fig. 15 are essentially unaffected by these re-
strictions (see Ref. [23] for details). The simulations on the
reduced ensemble behaved much better after this altera-
tion, although there are still phase space regions where they
do not thermalize sufficiently well, as we will discuss later.

Finally, we will use local regularity conditions for the
gluings that make the triangulations into simplicial mani-
folds, whichmeans that each (interior) vertex has a ball-like
neighborhood whose surface is a triangulated two-sphere.
This is the choice made in most of the work on higher-
dimensional CDT quantum gravity and will allow for a
better comparison of results.

C. Reintroducing time

The distribution of spatial volume as a function of time
is an important large-scale observable, and its analysis has
been instrumental in relating CDT quantum gravity to a de
Sitter minisuperspace cosmology in 2þ 1 and 3þ 1 di-
mensions [10,18]. In order to perform a similar analysis
also in nonfoliated CDT, we need to define a time coor-
dinate on its generalized configurations. As explained in
the introduction, the fact that spatial slices will generally
branch and form bubbles means that we can no longer use
them to define a distinguished time variable.

To explain our alternative prescription of ‘‘time,’’ con-

sider a time-oriented member of the configuration space ~C.
Given a vertex V, consider the set of all future-oriented
paths connecting V with the north pole. The number of
links in each path defines a distance between V and the
north pole. By averaging this quantity over all paths, we
obtain an average distance df. Repeating the procedure for

past-oriented paths, connecting v to the south pole, gives
another average distance dp. The time coordinate of V is

then defined as t ¼ df � dp. Note that for foliated CDT

configurations, this coincides with the usual discrete proper
time, up to a trivial factor. We have experimented with
other notions of time, including that of shortest distance to
the poles; they generally lead to a ‘‘washing out’’ of the
tetrahedron distributions described below. It is possible
that alternative notions of time are more appropriate or

practical for observables different from the ones studied
here.
Since the number of oriented paths between a vertex and a

pole can become very large, in practice we used a modified
algorithm, which calculates t in an approximate fashion.
For each vertex we constructed a fixed number of future-
oriented paths, using a random process which jumps iter-
atively from a vertex to a randomly chosen future neighbor
until the north pole is reached. We then repeated this process
for past-oriented paths and finally calculated the time coor-
dinate as the difference of both average distances.
Given this new notion of time, we can now also assign an

(average) time to spatial slices. We define a spatial slice in
nonfoliated CDT—with boundary conditions as specified
above—as any subset of spatial triangles forming a two-
sphere, such that by cutting along the sphere, the spacetime
triangulation decomposes into two disconnected parts,
with time flowing consistently from one side of the cut to
the other. In other words, the future-pointing arrows intro-
duced in Fig. 12 are all lined up to point in the same
direction away from the slice. The time coordinate we
assign to such a slice is the average of all time coordinates
of its vertices. Note that unlike in standard CDT, where
different spatial slices are always disjoint, spatial slices
here can have any amount of overlap.
We now have all the ingredients to measure the desired

volume profiles. Since the number of spatial slices of an
individual path integral configuration can become very
large, we use a statistical method to generate a subset of
spatial slices which is evenly distributed along the time
direction. In order to perform an ensemble average of
the volume distribution, we use a nontrivial averaging
algorithm, the details of which are described in Ref. [23].

VII. EXPLORING THE PHASE DIAGRAM

We have developed the necessary Monte Carlo simula-
tion software, using Cþþ as programming language and
taking advantage of object-oriented design principles to
incorporate modularity and flexibility into the software.
We had anticipated that the software would be more com-
plex than for the CDT simulations but in the event its
complexity even surpassed our expectations. An extended
discussion of the details of the software implementation,
with special emphasis on the Monte Carlo moves, is given
in Ref. [23]. In what follows, we will present the results
obtained with the simulation software, beginning with an
exploration of the phase diagram of nonfoliated CDT
quantum gravity in 2þ 1 dimensions.
TheRegge form (9) of thegravitational action contains two

couplings, k and�, which are proportional to the inverse bare
Newton’s constant and the bare cosmological constant, re-
spectively. When evaluating the action on causal triangula-
tions, a third parameter—the asymmetry �—naturally
appears because of the distinction between space- and time-
like links. Together they span a three-dimensional space of
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bare actions. Of course, from the way � is introduced in the
regularized theory, there is no a priori reason why it should
play the role of a coupling constant.Different� values should
lead to the samecontinuumgravity theory. This expectation is
consistent with the dynamical results found below.9

As usual in dynamically triangulated systems, we do
simulations at fixed system size N3 and then perform a
finite-size scaling analysis to extrapolate to the limit of
infinite size. This means that the phase diagram of the
model is spanned by the parameters k and �. As we have
derived in Sec. V, the existence of a Wick rotation limits
the allowed values for � to the region 1=2<�< 3.
Sticking with the notation ‘‘�’’ for this parameter also
after the analytic continuation, the Wick rotation maps
this region to the range �3<�<�1=2. The phase dia-
gram of our generalized CDT model is therefore a strip
bounded by these two � values, as illustrated by Fig. 16.

In the followingwewill analyze the dynamics of ourmodel
at a range of points along the two axes drawn in the figure.
While the simulations work well on the axis defined by
constant � ¼ �1, we encountered difficulties when explor-
ing the axis of constant k ¼ 0 in the region �3<�<�1.
As one moves away from � ¼ �1 toward � ¼ �3, the
number of accepted Monte Carlo moves goes down signifi-
cantly, and the thermalization time increases rapidly. A closer
analysis revealed that the severity of the problems correlates
with the presence of bubbles with a complicated internal
structure. These problems imply that we currently must con-
centrate our investigation on the region�1<�<�1=2.

A. Bounds on the vertex density

In 2þ 1 dimensions there are kinematical bounds on the
ratios of certain counting variables, like the vertex density

N0=N3 and the link density N1=N3. In the case of CDT, the
link density satisfies 1 � N1=N3 � 5=4 [16], which should
be compared with the weaker bound 1 � N1=N3 � 4=3 for
DT. Using the linear relations (4) and (5), one easily
derives N0=N3 ¼ N1=N3 � 1 in the infinite-volume limit,
which means that we can translate the link density bounds
into the vertex density bounds 0 � N0=N3 � 1=4 for CDT
and 0 � N0=N3 � 1=3 for Euclidean triangulations.
The derivation of the link density bound in CDT in-

volves the spatial Euler constraint, which is not present in

the ensemble ~C we have specified in Sec. VI above. To find
the analogous bound for nonfoliated CDT configurations,
we follow Ref. [16] in considering all Monte Carlo moves
that create a vertex. Since all of them change the number of
tetrahedra by some amount �N3, the strategy is to select
those moves for which �N3 is minimal. Starting with a
minimal triangulation and repeatedly applying only the
selected moves, the vertex density and thus also the link
density will be maximized, and the corresponding bounds
follow upon taking the infinite-volume limit.
In the case at hand, we have two Monte Carlo moves

which create one vertex and three tetrahedra, namely,
the bubble move and the polar move described in Sec. VI
above. Both are unconstrained moves which can always
be executed. We conclude that in nonfoliated CDT
quantum gravity, the vertex and link densities satisfy the
bounds

0 � N0

N3

� 1

3
and 1 � N1

N3

� 4

3
: (13)

These relations agree with those for Euclidean DT, but
the configurations which saturate them differ substantially,
as we will see. Note that a relaxation (in the sense of
Ref. [34]) of the local regularity conditions for a simplicial
manifold would weaken these bounds, since then bubbles
with fewer than three tetrahedra can occur.
Figure 17 shows the measurements of the average vertex

densities for various values of the coupling k, from simu-
lations with � ¼ �1 and system size N3 ¼ 40:000. The
vertex density increases monotonically with k, which is not
surprising since (at fixed N3) larger values of k favor the
creation of vertices. This can be seen easily by rewriting
Eq. (12) with the help of the kinematical constraints,
yielding Seucl ¼ �2k�N0 plus a term proportional to N3.
As expected, the measured curve in Fig. 17 approaches the
upper kinematical bound of 1=3 for large values of k.
We also see a clear signal of a phase transition between
k ¼ 0:24 and k ¼ 0:28, from a phase of low to one of high
vertex density, reminiscent of the first-order transitions in
the inverse gravitational coupling found in both DT [35]
and CDT [18]. Analogous measurements for fixed k ¼ 0
and varying � show that the vertex densities are approxi-
mately constant at low values, without any sign of a phase
transition. Of course, since we are only investigating the
region �1<�<�1=2 of the phase diagram, we cannot

FIG. 16 (color online). The phase diagram of nonfoliated CDT
quantum gravity is the region inside the strip �3<�<�1=2,
visualized in green. Our investigation has probed the phase space
along the two axes drawn in the figure: at various k values for
constant � ¼ �1 and at various � values for constant k ¼ 0.

9In 3þ 1 dimensions the status of the analogous parameter �
is more involved [8,11].
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exclude the presence of further phase transitions in the
complementary region.

B. Emergence of foliated triangulations

Foliated CDT geometries form a subset of the ensemble
~C, characterized by the condition NT2

3 ¼ N
T3

3 ¼ 0.10 By

plotting the number of tetrahedra of these two types as

function of the couplings, we can therefore look for regions
in phase space where foliated triangulations emerge dy-
namically. Figure 18 shows the numbers of all tetrahedral
types used, averaged over the configurations sampled from
~C, as a function of the coupling constant k. In the phase
with low vertex density on the left, although the building
blocks of standard CDT dominate, also the other two types
appear in significant numbers, from which we deduce that
the triangulations along the line� ¼ �1 apparently are not
foliated.
Conversely, Fig. 19 shows the expectation values of the

numbers of tetrahedra at fixed k ¼ 0, as function of �.
Note that the phase boundary � ¼ �0:5 does not belong to
the phase diagram, since the Wick rotation is not defined
there. The measurements corresponding to the rightmost
data points in the figure have been performed at � ¼
�0:52. We find that both NT2

3 and NT3

3 approach zero as

we move toward the phase boundary. At � ¼ �0:52 we

have measured hNT2

3 i � 2:9 and hNT3

3 i � 14:3, which

means that in the entire system consisting of 40.000 tetra-
hedra, almost none of the building blocks belong to the
new types T2 and T3.
We conclude that the configurations appearing close to

� ¼ �0:5 are almost perfectly foliated and belong to the
phase with low vertex density. Effectively, the dynamics
should therefore be very close to the known dynamics of
2þ 1-dimensional CDT in the extended phase [18], and
we would expect the geometries to be macroscopically
extended with a characteristic blob-shaped volume distri-
bution. These expectations will be confirmed later on.

VIII. TETRAHEDRON DISTRIBUTIONS

We have seen in the last section that foliated configura-
tions emerge close to the boundary of the phase diagram.
As we move away from the boundary, the configurations
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FIG. 18 (color online). The numbers of tetrahedra of each of
the four types, averaged over the sampled triangulations, as
function of the coupling k, at � ¼ �1 and N3 ¼ 40:000.

0

5000

10000

15000

20000

25000

-1 -0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5

FIG. 19 (color online). The numbers of tetrahedra of each of
the four types, averaged over the sampled triangulations, as a
function of the coupling �, at k ¼ 0 and N3 ¼ 40:000.
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FIG. 17 (color online). Measurement of the average vertex
density N0=N3 as a function of the inverse gravitational coupling
k, for � ¼ �1 and system size N3 ¼ 40:000. The dots represent
actual measurements and the lines linear interpolations. The
dashed lines mark the kinematical bounds for standard DT
(upper line) and CDT (lower line).

10With periodic boundary conditions in time, one could in
principle construct a triangulation obeying NT2

3 ¼ NT3

3 ¼ 0 con-
sisting of a single bubble winding around both space and time,
which clearly is not foliated. However, such configurations do
not lie in ~C because in our case, time is not compactified, and we
do not allow for globally self-overlapping bubbles.
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become less foliated. A strict foliation is attained whenever

NT2

3 ¼ NT3

3 ¼ 0, but it is unclear how to translate nonzero

values into a measure of foliatedness of a triangulation. We
would like to have a more refined observable which tells us
how foliated a triangulation is. In the following we will use
tetrahedron distributions based on the time coordinate in-
troduced in Sec. VI as a qualitative tool to investigate the
degree of foliatedness of a triangulation.

To start with, let us assume that all vertices have been
assigned a time coordinate using the algorithm described in
Sec. VI. For each tetrahedron we then calculate the sum of
the time coordinates of its four vertices and round this
value to the nearest integer. By definition, this value gets
assigned to the tetrahedron as its new time coordinate. This
tetrahedron time clearly has a different relative normaliza-
tion compared to the ‘‘vertex time’’ from which it was
derived, but this does not matter as long as we do not use
both time coordinates simultaneously.

In a given configuration, we can now count the number
of tetrahedra that share the same value of (tetrahedron)
time and plot these numbers as a function of time to
generate a tetrahedron distribution. Figure 20 (left) shows
such a distribution for a strictly foliated CDT geometry,
which we have generated by running our simulation with
foliation constraint enabled. We observe that the distribu-
tion appears as a superposition of two blob-shaped distri-
butions. One can show that one of them consists of T5

tetrahedra and the other one of T9 tetrahedra [18]. An
enlarged version of the central part of the distribution is
shown in Fig. 20 (right), which illustrates that the peaks are
organized in groups of three. One can show that every such
group corresponds to a ‘‘thick slice,’’ which is the triangu-
lation enclosed between two adjacent simplicial spatial
hypermanifolds [23], the higher-dimensional analogue of
a ‘‘strip’’ in 1þ 1 dimensions. Note that for pure CDT
configurations, the tetrahedron time is effectively a refine-
ment of the number of time steps associated with the
preferred foliation, similar to what was considered in
Ref. [36] to produce finer-grained volume distributions in
3þ 1 dimensions.

Let us return to the more general setting of nonfoliated
CDT quantum gravity and focus on triangulations which
are a little further away from the phase boundary. Figure 21
shows the tetrahedron distribution of a single triangulation
extracted from a simulation at k ¼ 0, � ¼ �0:7, with
volume N3 ¼ 40:000. We observe a sequence of peaks,
with some remnants of the three-peak structure exhibited
by Fig. 20. The tendency of these structures to become
blurred most likely depends both on changes in the actual
triangulation and on the precise algorithm used to define
the time coordinate and the tetrahedron distribution.
Consequently, the relevant information lies not so much
in the precise structure of the peaks but in the overall
pattern formed by the succession of all the peaks.
Comparison of the two configurations suggests that every
peak in Fig. 21 corresponds to a group of three peaks in
Fig. 20 and describes a structure which resembles a thick
slice in a foliated triangulation. Another aspect in which
the two configurations differ is the fact that the gaps
between each group of three peaks in Fig. 20 (right)—
marking the location of spatial triangulated hypermani-
folds—are getting filled in when the foliation is relaxed.
This can be interpreted as a ‘‘decoration’’ of the spatial
slices by the creation of bubbles.
Based on these findings, we can interpret the pattern

shown in Fig. 21 as a triangulation where decorated spatial
slices alternate with modified thick slices. A triangulation
exhibiting such a structure will be called weakly foliated.
This is obviously not a sharp definition since we are not
providing a sharp criterion for when a weakly foliated
triangulation changes into a truly nonfoliated one. We will
take an operational point of view here and consider a
triangulation to beweakly foliated whenever the tetrahedron
distribution shows the characteristic alternating pattern.
The next important step is to understand how the foliat-

edness of a triangulation changes as one moves around in
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FIG. 20. Typical tetrahedron distribution of a strictly foliated
CDT configuration as function of ‘‘tetrahedron time,’’ extracted
from a simulation with foliation constraint enabled (left).
Zooming in on the central region of the distribution, one obtains
the graph shown on the right.
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FIG. 21. Tetrahedron distribution of a typical path integral
history from a simulation of the generalized CDT model at
k ¼ 0:0, � ¼ �0:7.
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phase space. Figure 22 shows a sequence of typical tetra-
hedron distributions of single triangulations extracted from
simulations at k ¼ 0, for various choices of �. From an
almost strict foliation at � ¼ �0:52, the signal—although
remaining distinctly visible—gradually weakens as we
move toward � ¼ �1. It would be interesting to follow
the development of this pattern beyond this point toward
the other phase boundary, but technical issues currently
prevent us from doing so, as we have discussed earlier. We
have performed a similar analysis on the line of constant
� ¼ �1 and have observed that the alternating pattern
remains visible but becomes less pronounced when one
moves from k ¼ 0 toward k ¼ �1, indicating a further
weakening of the foliation. When going from k ¼ 0 in
the other direction toward the phase transition, the data
quality decreases significantly, to such an extent that
an interpretation based on the tetrahedron distribution

becomes unreliable. To summarize, it appears that all in-
vestigated configurations in the phase of low vertex density
exhibit some kind of (weak) foliation, whose degree varies
significantly, from an almost strict foliation near the phase
boundary at ðk; �Þ ¼ ð0;�0:5Þ to a much less pronounced
one for larger j�j.

IX. VOLUME DISTRIBUTIONS

A. Phase of extended geometry

In Sec. VI we introduced the notions of time and spatial
slices for a general, nonfoliated CDT geometry. The pres-
ence of these ingredients allows us to measure volume
distributions—also called volume profiles—just like in
standard CDT quantum gravity. In the following we will
present the results of our numerical investigations.
Figure 23 shows the expectation value of the measured
volume distributions for various values of the coupling k,
for fixed � ¼ �1. In all cases the average geometry is
macroscopically extended, and the average volume profile
has a characteristic blob shape, strongly reminiscent of
what is found in CDT in the physically interesting phase
[18]. We will report later in this section on a quantitative
analysis of the average volume distributions.
Figure 23 illustrates that with increasing k, the time

extension of the average geometry also increases. In addi-
tion, as one approaches the phase transition, the emergent
geometry develops a ‘‘tail’’ at both ends of the volume
profile, by which we mean a region of small, approxi-
mately constant spatial volume. Since this structure is not
resolved in Fig. 23, we have replotted the distributions
close to the phase transition (at k ¼ 0, 0.2, 0.24) in
Fig. 24, with an enlarged scale for the time axis and a
small upward shift of the distribution curves. This tail
looks similar to the stalk observed in simulations of CDT
but is not necessarily related because of the different
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FIG. 22. Tetrahedron distributions of typical path integral con-
figurations from simulations at coupling k ¼ 0:0 and system size
N3 ¼ 40:000, for various choices of the asymmetry parameter �.
Note that all geometries display some degree of being weakly
foliated, which becomes weaker with increasing j�j.
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FIG. 23. Average volume profile hN2ðtÞi as function of time t, measured at � ¼ �1 for various values of k. The scale of the vertical
axis is the same for all plots. Some of the profiles have a tail which is not visible here but is shown in Fig. 24 below.
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choices of boundary conditions. In CDT its presence is
enforced by the fact that the simulations are run at a fixed
total time extent (equal to the number of spatial slices in
the foliation), and that the two-volume is not allowed to
vanish, but is bounded below by a minimum of four
triangles, set by the manifold conditions. In the present
case, we employ the same regularity condition, but the time
extension of the geometry is dynamical, and the stalk
develops spontaneously as we move from k ¼ 0 toward
the phase transition. Anticipating our interpretation below
of the volume profiles in terms of de Sitter universes, the
appearance of the tails could be related to quantum cor-
rections to the underlying effective minisuperspace action
near the phase transition.

Consider now a volume distribution on the line � ¼ �1
beyond the transition, that is, in the phase of high vertex
density. Figure 25 shows a volume distribution of a typical
path integral configuration from a simulation at ðk; �Þ ¼
ð0:4;�1Þ with 40.000 tetrahedra. The qualitative picture in
this phase is completely different: the vast majority of
spatial slices have (almost) minimal size N2ðtÞ, and the
triangulation forms a very long stalk with minimal spatial
extent almost everywhere. At this phase space point, we
have checked that the time extension of the stalk scales
linearly with the system size. In the infinite-volume limit, it

would therefore appear that the ‘‘universe’’ becomes a one-
dimensional timelike string.
We can now summarize our findings. At all phase space

points investigated, we have found average geometries
which are macroscopically extended and whose volume
profile has a characteristic bloblike shape. The time exten-
sion of the average geometry increases with increasing k,
and near the phase transition, the geometry starts to
develop tails. On the other side of the transition, the
geometries degenerate into long tubes, unrelated to any
2þ 1-dimensional classical geometry.

B. Evidence for three dimensionality from
finite-size scaling

Wewill investigate next whether we can assign a macro-
scopic dimensionality to the extended structure of the
volume profiles found in the phase of low vertex density
by performing a systematic finite-size scaling analysis. To
this end, we have run another extended series of simula-
tions, taking data at six points along the axis of constant
� ¼ �1, ranging from k ¼ �1:0 to k ¼ 0:0, and at six
points along the axis of constant k ¼ 0, ranging from � ¼
�0:52 to � ¼ �1:0. At each point we have performed four
simulations with different system sizes, namely, N3 ¼ 40,
80, 120, and 160k.
Figure 26 (left) shows the measurements of the expec-

tation value of the volume distributions for the four differ-
ent system sizes at ðk; �Þ ¼ ð0:0;�1:0Þ. Following the
strategy of Ref. [10] for foliated CDT triangulations in
3þ 1 dimensions, we will use finite-size scaling to
achieve a best overlap of these curves. Assuming that the
average geometry has macroscopic dimension d, we

expect time intervals to scale like N1=d
3 and spatial volumes

like Nðd�1Þ=d
3 . When plotting the distributions with axes

rescaled accordingly, the measured curves should fall on
top of each other.
To find an estimate for d, we have run an algorithm

that scans through an interval of d values in steps of
�d ¼ 0:005, which for each d value measures how well

FIG. 24. The last three average volume profiles from Fig. 23,
with a different scaling of the time axis and a small upward shift
away from the axis to exhibit the tails of the distributions.
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FIG. 25. Volume distribution N2ðtÞ of a typical triangulation
from a simulation at ðk; �Þ ¼ ð0:4;�1Þ and N3 ¼ 40:000 in the
phase of high vertex density. The plot shows individual mea-
surement points.
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FIG. 26 (color online). Average volume profiles at ðk; �Þ ¼
ð0:0;�1:0Þ for four different system sizes N3 ¼ 40, 80, 120 and
160k, before (left) and after (right) rescaling the axes as indi-
cated, with d ¼ 2:91 to achieve a best overlap, which is seen to
be of excellent quality.
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the volume profiles overlap. We have employed a standard
least-squares measure with appropriate normalization to
quantify the quality of the overlap. The value of d which
minimizes this measure is taken as an estimate for the
macroscopic dimension. For the case at hand, the algo-
rithm yields a best estimate of d ¼ 2:91. The plot in Fig. 26
(right) shows all four distributions with axes rescaled using
this value for the dimension, resulting in a virtually perfect
overlap.

We have repeated the same analysis for the other points
in the phase diagram. Figure 27 summarizes the calculated
estimates for the macroscopic dimension d, for fixed
� ¼ �1 (left) and fixed k ¼ 0 (right). The large dots
indicate measurements with an overlap of excellent quality
and the small dots those of a somewhat lesser quality. We
observe that all six high-quality measurements yield mac-
roscopic dimensions between d ¼ 2:85 and d ¼ 3:00,
while the values from the remaining six measurements
have a larger spread.

We have not included error bars in the plots of Fig. 27 and
the values obtained for the dimension d because they are
dominated by systematic errors we currently cannot esti-
mate, one possible source being algorithmic dependencies.
The calculation of the dimension observable is highly non-
trivial and involves several algorithmic choices which po-
tentially affect the final result. Recall that we first had to
define a time coordinate, which we did by calculating the
average distance between a vertex and the poles of the three-
sphere. Second, we assigned a time coordinate to the spatial
slices by averaging over the time coordinates of the vertices
in the slice. Finally, we ran a rather sophisticated averaging
algorithm to produce the final distributions. The nonunique-
ness of this entire process is likely to lead to systematic
errors not captured by standard error algorithms such as the
bootstrap method.

It is clear from this discussion that a single dimension
measurement does not provide sufficient evidence to
support the d ¼ 3 hypothesis, which would imply
compatibility with the standard CDT result. On the other
hand, all twelve results together suggest strongly that

the average geometries in the phase of low vertex density
are three dimensional. The results on the functional form of
the volume profiles presented below will strengthen this
preliminary conclusion even further.

C. Comparison with the three-sphere

A crucial piece of evidence that CDT quantum gravity
has a well-defined classical limit comes from matching the
average distributions of spatial volumes with those of a
Wick-rotated version of a solution to the classical Einstein
equations, namely, a de Sitter universe [10]. More specifi-
cally, the distributions coming from the simulations have
been compared to a volume profile of the form V3ðtÞ ¼
a cos 3ðbtÞ, where t is by assumption proportional to proper
time. This is the volume profile of Euclidean de Sitter
space (equivalently, the round four-sphere), where the
two free parameters a and b depend on the overall size
of the universe and a finite relative scaling between space-
like and timelike directions. The measured volume profiles
in 3þ 1-dimensional CDT can be fitted with high accuracy
to the analytical cos 3 expression [10,36], with the excep-
tion of the region very close to the end points of the curve,
which cannot be resolved with sufficient precision and is
obscured by the regularity condition hN2ðtÞi � 4, as we
have discussed earlier.
We will perform an analogous analysis of nonfoliated

CDT in 2þ 1 dimensions, using the average volume dis-
tributions from our simulations. The volume profile of the
corresponding continuum de Sitter universe in three di-
mensions has the functional form V2ðtÞ ¼ a cos 2ðbtÞ,
where a and b are constants. To extract an optimal fit to
this two-parameter family of curves from our Monte Carlo
data, we have selected only those points in the phase
diagram where the rescaled average volume profiles
overlap with excellent quality and where we have a
well-defined curve to compare to.
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FIG. 27 (color online). Estimates for the macroscopic dimen-
sion d from finite-size scaling, from measurements at fixed
� ¼ �1:0 (left plot) and fixed k ¼ 0:0 (right plot). Large dots
represent measurements where the volume profiles overlap with
excellent quality; the smaller dots stand for overlaps of lesser
quality.
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FIG. 28 (color online). Rescaled average volume profiles at
ðk; �Þ ¼ ð0:0;�1:0Þ, corresponding to dimension d ¼ 2:91 and
best fit to the cos 2 ansatz.
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Figure 28 shows the outcome of this comparison at the
point ðk; �Þ ¼ ð0:0;�1:0Þ. Obviously, the only relevant
part of the fit function is the region between the two zeros
of the cos 2 function. We see that the functional ansatz fits
the average volume distributions almost perfectly, except
at the two ends, where the simulation data show a small tail
which is not present in the fit function oncewe cut away the
parts outside the two minima. We have already commented
earlier on the appearance of such tails in the vicinity of the
phase transition (see also Fig. 24); in the context of the de
Sitter interpretation of our universe, they indeed seem to be
related to small-scale deviations from the classically ex-
pected result.

From this point of view, it is interesting to understand
how the situation changes when one repeats the compari-
son at a point further away from the phase transition.
Figure 29 shows the result of the same analysis performed
at the point ðk; �Þ ¼ ð�0:8;�1:0Þ. We again observe an
almost perfect fit in the region where the spatial volume
N2ðtÞ is nonminimal. Remarkably, now even the total time
extension of the dynamically generated universe and the de
Sitter fit function between the two minima agrees, and we
get an almost perfect semiclassical matching. The quality
of the fit becomes slightly reduced toward both ends, which
is not surprising because discretization effects become
large when the spatial volumes become small.

X. SUMMARYAND CONCLUSIONS

We begun our investigation with the aim to isolate and
understand the role of the preferred time slicing in standard
CDT quantum gravity, while maintaining causality of the
individual path integral histories. In this article we have
presented many details of the kinematical and dynamical
properties of the new, nonfoliated CDT model in 2þ 1
dimensions, which implements the dissociation of the
causal structure and the preferred notion of time. Due to

the presence of new elementary building blocks, the folia-
tion in terms of equally spaced triangulated spatial hyper-
manifolds is broken up in this extended version of CDT,
acquiring novel simplicial substructures such as bubbles
and pinchings.
Gravitational dynamics in the new model is imple-

mented in terms of the standard Regge action, defined as
a linear function on the space of independent counting
variables, which is five-dimensional, compared to CDT’s
two dimensions. After fixing the total system size, there are
two coupling constants spanning the phase space of the
model, the bare inverse Newton coupling k and the cou-
pling �, which quantifies the anisotropy between space-
and timelike length assignments in the regularized theory.
This asymmetry parameter has to satisfy the inequalities
1=2< j�j< 3 for the Wick rotation to exist, which is
necessary to be able to probe the nonperturbative proper-
ties of the model with the help of Monte Carlo simulations.
This introduces two boundaries in the phase diagram.
The presence of thermalization problems, preventing the

effective implementation of theMonte Carlo algorithm, led
us to eliminate certain global simplicial substructures. This
allowed us to investigate the region �1 & �<�1=2 of
the phase diagram (in terms of the analytically continued
�), while we still observed severe thermalization problems
in the complementary region. We ran the simulations with
the spacetime topology of a three-sphere with a source and
a sink of (Euclidean) time at the two poles.
In terms of results, we have found two phases of geometry

with low and high vertex density, for k values below and
above some critical value kc of the inverse gravitational
coupling, respectively. The analysis of the tetrahedron distri-
butions revealed that the triangulations remain weakly foli-
ated throughout the investigated phase space region of low
vertex density but that the strength of this signal varies sig-
nificantly as a function of the bare couplings. In addition, we
observed the emergence of almost perfectly foliated simpli-
cial geometries close to the boundary� ¼ �1=2 of the phase
diagram. We constructed a volume distribution observable
and an averaging procedure to study the expectation value of
the volume profiles of the emergent geometries in the weakly
foliated phase. A finite-size scaling analysis provided strong
evidence that the extended geometries are macroscopically
three dimensional. Additional support for this came from
fitting the measured profiles to a cos2 ansatz corresponding
to a classical de Sitter universe,which found an almost perfect
agreement.Wehave repeated the analysis for various points in
the phase diagram, giving consistent results.
These results provide compelling evidence that the phases

of low vertex density of both foliated and nonfoliated
CDT quantum gravity have the same large-scale properties
in the continuum limit and lie in the same universality class.
Since apart from removing the distinguished time slicing we
essentially left all other ingredients of the kinematics intact,
this would imply that the presence or absence of a preferred
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FIG. 29 (color online). Rescaled average volume profiles at
ðk; �Þ ¼ ð�0:8;�1:0Þ, corresponding to dimension d ¼ 2:98
and best fit to the cos 2 ansatz.
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foliation in CDT is not a relevant ingredient. As remarked
already in the introduction, the same is not true for Hořava–
Lifshitz gravity [13]—to the extent that our nonperturbative,
coordinate-free setup can be compared with this continuum
formulation—where a fixed spatial foliation is essential. It
does not mean that CDT, or suitable extensions like that
studied in Ref. [37], cannot provide a framework suitable for
studying anisotropic gravity models. Our results also con-
form with the expectation that in 2þ 1 dimensions, the
value of the parameter � is irrelevant from the point of
view of the continuum theory.

Because of the strong similarities of the large-scale
properties of CDT quantum gravity in 2þ 1 and 3þ 1
dimensions, it is plausible to conjecture that also in 3þ 1
dimensions, the presence or absence of a direct-product
structure of the triangulations does not influence the

final outcome. If this is the case, one may want to
stick with the simpler ‘‘standard’’ formulation of causal
dynamical triangulations as a matter of convenience and
computational simplicity, as we have already pointed out
elsewhere [12].
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R. K. Kommu, and P. R. Zulkowski, Phys. Rev. D 85,
044027 (2012).

S. JORDAN AND R. LOLL PHYSICAL REVIEW D 88, 044055 (2013)

044055-22

http://dx.doi.org/10.1103/PhysRevD.88.024015
http://dx.doi.org/10.1016/S0550-3213(98)00679-8
http://dx.doi.org/10.1016/0370-2693(92)91663-T
http://dx.doi.org/10.1016/0550-3213(92)90444-G
http://dx.doi.org/10.1016/j.nuclphysb.2011.03.019
http://dx.doi.org/10.1103/PhysRevD.85.044027
http://dx.doi.org/10.1103/PhysRevD.85.044027

