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2INRNE-Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

3Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
4School of Mathematics, University of Southampton, Southampton SO17 1BJ, United Kingdom

(Received 24 June 2013; published 28 August 2013)

In the present paper we study the oscillations of fast rotating neutron stars with realistic equations

of state (EoS) within the Cowling approximation. We derive improved empirical relations for

gravitational wave asteroseismology with f-modes, and for the first time we consider not only

quadrupolar oscillations but also modes with higher spherical order (l ¼ jmj ¼ 3, 4). After performing

a systematic comparison with polytropic EoS, we show that the empirical relations found in this case

approximately also hold for realistic EoS. In addition, we show that these relations will not change

significantly even if the Cowling approximation is dropped and the full general relativistic case is

considered, although the normalization used here (frequencies and damping times in the nonrotating

limit) could differ considerably. We also address the inverse problem; i.e., we investigate in detail what

kind of observational data are required in order to determine characteristic neutron star parameters. It

is shown that masses, radii and rotation rates can be estimated quite accurately using the derived

asteroseismology relations. We also compute the instability window for certain models, i.e.,

the limiting curve in a T �� plane where the secular Chandrasekhar-Friedman-Schutz instability

overcomes dissipative effects, and we show that some of the modern realistic EoS will lead to a larger

instability window compared to all of the polytropic ones presented so far in the literature.

Additionally, we calculate the r-mode instability window and compare it with the f-mode case. The

overall results for the instability window suggest that it is vital to take into account oscillations with

l ¼ 3, 4 when considering gravitational wave asteroseismology using the f-mode in rapidly rotating

neutron stars, as these modes can become unstable for a much larger range of parameters than pure

quadrupolar oscillations.
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I. INTRODUCTION

The problem of studying neutron star oscillations has
been considered for several decades now [1–3], and the
current advances in gravitational wave detectors might
lead to actual observations of these oscillations in the
near future. Many scenarios for the excitation of such
oscillations were suggested [4], and one of the most prom-
ising is the formation of a proto-neutron star shortly after a
core-collapse supernova. It is expected that in this stage of
the neutron star evolution, various modes will be excited
and some of them might produce detectable amounts of
gravitational radiation, especially if they are unstable.

One of the major challenges following the detection
of gravitational waves from unstable neutron stars is to
infer its characteristic parameters like mass, radius and
rotation rate via the observed data. Extensive studies
were performed in this direction which examine the
possible information one can obtain by observing one or
several oscillation modes [5–8]. Empirical relations for
gravitational wave asteroseismology were presented there,
which relate the oscillation frequencies and damping times

of different modes with characteristic properties of the
star. But, while the nonrotating case was extensively
studied in full general relativity and with various realistic
equations of state, the rotating case has still not been fully
examined yet [8]. This is the astrophysically relevant case
since newborn neutron stars, as a major source of gravita-
tional waves, are supposed to be rapidly rotating, and
proper asteroseismology has to take this into account.
Furthermore, fast rotating neutron stars can be destabilized
by the so-called Chandrasekhar-Friedman-Schutz (CFS)
instability [9,10]; i.e., certain nonaxisymmetric modes
can become unstable due to the emission of gravitational
radiation for very high rotation rates of the star. If the
requirements for this instability are met, the amplitude of
the modes will grow exponentially even if they are only
weakly excited.
A primary reason why most of the neutron star oscilla-

tion studies up to now only considered the nonrotating case

is because of the difficult numerical task of calculating the

oscillation frequencies and damping times of fast rotating

neutron stars. Also, a linear approach to full general rela-

tivity is usually employed, as solving the full nonlinear

problem for rotating neutron star oscillations is extremely

demanding even on current high-performance hardware;*daniela.doneva@uni-tuebingen.de
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only recently did it become possible to address this

problem properly [11].1

Up to now there has been no numerical implementation
available that solves the full general relativistic (GR)
problem for oscillations of fast rotating neutron stars on a
linear level, and therefore, certain approximation have
been implemented. An example is the so-called slow rota-
tion approximation that was extensively used for studying
the r-modes [12–14], but it is not suitable for studying the
f-modes because the latter get secularly unstable at much
higher rotation rates than the r-modes. Another commonly
used approximation, more suitable for our goals, is the
Cowling approximation, where the perturbations of the
metric are neglected and only the fluid variable perturba-
tions are considered. Solving the linearized perturbation
equations in the Cowling approximation was done for
the first time in [15,16], where the oscillation frequencies
of the f-, g- and r-modes for rapidly rotating polytropes
were computed. These studies were extended later to also
include differential rotation [17,18]. An extensive parame-
ter study concerning oscillation frequencies and damping
times for fast rotating polytropes was performed in [8],
where several empirical relations for the l ¼ jmj ¼ 2
f-mode have been derived and used for gravitational
wave asteroseismology. The instability window and the
evolution of neutron stars through this window were pre-
sented in [19,20] for some selected polytropic models
that favor the onset of the CFS instability. Recently, a
code that computes nonaxisymmetric eigenmodes of
rapidly rotating relativistic stars was developed in [21] by
adopting the spatially conformally flat approximation of
general relativity.

In the present paper we will extend these results as well
as the asteroseismology relations presented in [8] in two
directions. First, we consider for the first time models with
realistic equations of state (EoS).2 Although this extension
seems logical and quite straightforward, it can lead to
severe instabilities in numerical simulations when evolving
the time-dependent perturbation equations. One reason for
this behavior is that realistic EoS are usually given in a
tabulated form where different equations of state are used
to describe the nuclear matter at different densities. For
example, a common practice is to use one EoS for the core
and one or two others for the crust. This means that the
pð�Þ dependence is usually not a smooth function. Besides,
there are also certain physical effects like sharp drops of
the density profile in neutron stars and, as a consequence,

in the fluid sound speed near the neutron drip point,
which can cause numerical instabilities of the time evolu-
tion code and requires further adjustments. Also, a much
higher numerical resolution should be used for realistic
EoS when compared to polytropes due to these numerical
difficulties.
The second important extension of the results in [8]

refers to the empirical relations for gravitational wave
asteroseismology presented there for the quadrupolar
case. As already pointed out in [19,20], the l ¼ m ¼ 3
and l ¼ m ¼ 4 modes are much more promising to
develop the CFS instability, especially at lower rotation
rates, and consequently to produce observable amounts of
gravitation radiation. Therefore, in the present work we
will also derive the empirical relations for l ¼ jmj ¼ 3
and l ¼ jmj ¼ 4 f-modes, which later can be used for
gravitational wave asteroseismology.
We will also address the inverse problem—given some

potentially observed frequencies and damping times of a
single neutron star model, one can use the empirical aster-
oseismology relations derived in this work to determine its
mass, radius and rotation rate. This is the first study that
also considers solving this problem by using f-modes with
l > 2 as well. The results show that the observation of at
least two f-modes with different spherical mode numbers l
can be used to determine the mass, radius and rotation rate
of the star to a good accuracy.
In order to complete the study of the oscillations of fast

rotating neutron stars with realistic EoS in the Cowling
approximation, we also study the f-mode instability
window for some of the realistic EoS. The results show
that their instability window can be larger than the corre-
sponding window for the polytropic EoS considered in
[19,20]. This illustrates that some of the modern realistic
equations of state are more favorable to the secular CFS
instability and could potentially lead to observable
gravitational radiation signals from oscillating neutron
stars. Finally, at the end we briefly compare the f-mode
and the r-mode instability windows for the considered
sequences of rotating configurations.
This paper is organized as follows: In Sec. II we

comment on the formulation of the problem and the
basic relations we are going to use. The extraction of the
oscillation frequencies and damping times is considered in
Sec. III. The results for the computed equilibrium sequen-
ces and the asteroseismology relations are presented in
Sec. IV. The inverse problem and its solution are addressed
in Sec. V, and the instability window for some of the more
optimistic candidates for the CFS instability is computed in
Sec. VI. We conclude this work with a summary and
outlook.

II. BASIC RELATIONS

The numerical implementation of the time evolu-
tion algorithm used in this work is mainly based on the

1But even in this case, presently it is nearly impossible to use
the nonlinear approach for a proper study of an extensive
parameter space both in equations of state and stellar parameters.

2We should note that possible deviations from the standard
oscillation frequencies in GR could also arise when considering
alternative models of neutron stars or alternatives theories of
gravity [22–25], and this might eventually affect gravitational
wave asteroseismology as well.
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experience gained in [17,18], where the perturbation equa-
tions are set up in a formulation introduced by Vavoulidis
and Kokkotas in [26,27]. The independent variables that
are evolved in time are not the primitive hydrodynamic
quantities like velocity or pressure variations. Instead, the
perturbations of the energy-momentum tensor are directly
integrated, and the only hydrodynamic quantity that enters
the evolution equations explicitly is the speed of sound in
the fluid. Additionally, we are also adopting an inertial
frame of reference as opposed to the comoving frame
utilized in [8,15,16].

Here, we will give a brief introduction to the formulation
that is used; more details can be found in the aforemen-
tioned literature. In spherical coordinates x� ¼ ðt; r; �; �Þ,
the line element of the stationary and axisymmetric space-
time induced by a rotating neutron star takes the form

ds2 ¼ �e2�dt2 þ e2c r2sin 2�ðd��$dtÞ2
þ e2�ðdr2 þ r2d�2Þ; (1)

where �, c ,$ and� are functions of r and �. Since we are
working in the Cowling approximation [28,29], where
perturbations of the metric are neglected and only fluid
perturbations are considered, this is also the line element of
the oscillating neutron star; i.e., no spacetime evolution is
required. This approximation leads to good results for the
frequencies of g-modes and higher-order p-modes, while
the error introduced for the frequency of the fundamental
f-mode can be as large as 30% depending on the model,
and it decreases as l is increased [30–33]. The exact value
of the deviation depends on the equation of state and the
compactness. For example, the results in [33] show that the
Cowling approximation overestimates the l ¼ 2, f-mode
frequencies between approximately 15% for the more
compact objects and 30% for the less compact ones. The
error, though, reduces to only about 5%–7% for the l ¼ 4
case.

The perturbation of the energy-momentum tensor in
linearized GR can be written as

�T�� ¼ ð��þ �pÞu�u�
þ ð�þ pÞð�u�u� þ u��u�Þ þ �pg��; (2)

where � is the energy density of the star, p is the pressure,
u� is the fluid four-velocity, g�� is the metric tensor and
�ð� � �Þ denotes the perturbation of the corresponding
quantity. The four-velocity can be represented as u� ¼
ðut; 0; 0; u�Þ in spherical coordinates, and the angular
velocity � of the star is defined by

� ¼ u�

ut
: (3)

The perturbations of the energy-momentum tensor (2) can
also be written in the following matrix form:

�T�� ¼

Q1 Q3 Q4 Q2

Q3 Q6 0 �Q3

Q4 0 Q6=r
2 �Q4

Q2 �Q3 �Q4 Q5

0
BBBBB@

1
CCCCCA; (4)

where Q1; . . . ; Q4 are given by

Q1¼ð��þ�pÞðutÞ2þ2ð�þpÞut�utþ�pgtt;

Q2¼ð��þ�pÞðutÞ2�þð�þpÞð�u�þ��utÞutþ�pgt�;

Q3¼ð�þpÞut�ur; Q4¼ð�þpÞut�u�; (5)

and Q5 and Q6 can be expressed as combinations of Q1

and Q2.
The evolution equations for the Qi variables are derived

from the conservation law of energy momentum. Thus, in
the Cowling approximation we have

r�ð�T��Þ ¼ 0; (6)

where r� is the covariant derivative with respect to the
metric (1). This relation provides us with four evolution
equations for the quantities Q1; . . . ; Q4. The perturbations
of the primitive fluid variables can then be reconstructed
from the Qi variables by inverting relations (5) in combi-
nation with two additional relations. First, because the fluid
four-velocity is normalized, we obtain

�ut ¼ �u�
ut

�u�; (7)

which shows that only three out of the four components of
�u� are independent. Second, the perturbations we
consider are typically adiabatic, and thus �p and �� are
connected by

�p ¼ c2s��; (8)

where cs is the speed of sound in the fluid.
After evolving in time the relevant equations with

appropriate boundary conditions, we can obtain the
frequencies and eigenfunctions of the oscillation modes
by post-processing the simulation data. When associating
corresponding values of l and m to them, we have to keep
in mind the following: In the nonrotating case, the funda-
mental mode frequencies only depend on the spherical
mode index l; i.e., there is a degeneracy in the index m
so that frequencies for fixed values of l but different values
of the azimuthal mode number m are identical. When rota-
tion comes into play, the picture changes considerably—the
degeneracy in m is removed and a nonrotating mode with a
certain spherical index l splits into (2lþ 1) modes with
different frequencies.3 Also in the rotating case, the angular
part of the modes cannot be represented by spherical har-
monics anymore, so strictly speaking it is not possible to
associate a certain index l to the oscillation. Instead, the

3m ranges from �l to þl.
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value of l is defined as the corresponding value that this
particular mode would exhibit in the nonrotating limit.

III. EXTRACTION OF OSCILLATION
FREQUENCIES AND DAMPING TIMES

In order to obtain empirical relations that can later be
used for asteroseismology and for investigating the
instability window of fast rotating neutron stars with real-
istic EoS, we have to extract both the oscillation frequen-
cies and the damping times of the modes. Extracting the
frequencies is straightforward—one only has to perform a
Fourier transform on the computed time series. As ex-
plained above, the use of realistic equations of state causes
some numerical instabilities. For testing purposes, we first
compared the oscillation frequencies for nonrotating mod-
els obtained with our time evolution code with a 1D code
that solves the time-independent perturbation equations in
the Cowling approximation4 [22,23]. The frequencies
computed with both codes are in good agreement.

Calculating the damping times of modes is more
involved since this quantity is defined as the inverse of
the imaginary part of its complex frequency. But since we
are working in the Cowling approximation, the gravita-
tional radiation degrees of freedom are neglected and the
oscillation frequencies are purely real. We have to use an
alternative way of calculating the damping times, and a
common approach is to use an approximate Newtonian
formula, where the emission of gravitational waves is
related to the multipole moments of the neutron star
[34–36]. We will adopt this relation, as it also leads to
satisfactory results in the general relativistic case [8,36].
Moreover, it is expected that the deviation in the calculated
damping times due to the Cowling approximation is much
larger than the corresponding error introduced by using the
approximate multipole formula.

In a more precise formulation, if one assumes that the
time dependence of all perturbation variables is harmonic,
i.e., �ei!t and the energy radiated per cycle is much
smaller than the energy of the mode, the damping time
can be estimated by [36–38]

1

�
¼ � 1

2E

dE

dt
; (9)

where E is the energy of the mode in the comoving frame
and dE=dt is the energy loss. The energy is given by

E ¼ 1

2

Z �
��ua�u�a þ

�
�p

�
þ ��

�
���

�
d3x; (10)

where � is the rest-mass density, and ��, �p, �ua, �� are
the perturbations of the rest-mass density, the pressure, the
spatial part of the fluid velocity, and the gravitational
potential, respectively. Also, within the Cowling approxi-
mation we neglect the term proportional to ��.

The energy loss due to gravitational radiation can be
computed using

dE

dt
¼ �!ið!i þm�ÞX

l�2

Nl!
2l
i ðj�Dm

l j2 þ j�Jml j2Þ; (11)

where !i is the frequency of the mode in the inertial
frame. We will later also use the corresponding frequency
!c in a comoving frame, and both of them are related via
the standard relation

!c ¼ !i þm�: (12)

The quantities �Dlm and �Jlm are the mass and the current
multipole moments of the perturbation given by

�Dlm ¼
Z

��rlYm�
l d3x; (13)

�Jlm ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
l

lþ 1

s Z
rlð��ua þ ��uaÞYa;B�

lm ; (14)

where Ym
l are the standard spherical harmonics and Ya;B

lm

are the magnetic-type vector spherical harmonics [34,37].
For the pressure modes (p-modes), in general, and the

f-mode, in particular, the current multipole moments can
be neglected, as the mass multipoles represent the domi-
nant contribution to the gravitational wave damping. For
the r-modes, on the other hand, it is the opposite case—the
current multipoles account for the main contribution there.
In our sign convention, the nonaxisymmetric modes

with m< 0 are prograde, and their frequencies in the
inertial frame increase when increasing the rotation rate,
as can be seen from Eq. (12). Oscillations with an azimu-
thal index m> 0, on the other hand, are retrograde, and
their inertial frame frequencies decrease while increasing
the stellar rotation. For fast rotating stars these frequencies
can reach negative values, effectively turning them into
prograde modes with respect to an observer in the inertial
frame, and this turning point marks the onset of the CFS
instability [9,10]. The basic essence of this instability is
that retrograde modes in the comoving frame are dragged
forward by rotation, thereby becoming prograde in the
inertial frame and getting secularly unstable due to the
emission of gravitational waves. This can also be seen in
Eq. (11)—for negative!i and positive!c the energy of the
mode increases with time. In the limiting case of !i ¼ 0,
i.e., at the onset of the instability, a neutral oscillation
appears that exhibits a stationary mode pattern in the
inertial frame and does not emit gravitational radiation at
all. As relation (12) shows, modes with higher azimuthal
indexm can potentially reach negative mode frequencies at
smaller rotation rates, therefore favoring the CFS instabil-
ity. That is the reason why in this study we will focus on
nonaxisymmetric oscillations with the largest allowed
value of m for a given l, i.e., when jmj ¼ l.4The 1D code is supposed to be more stable.

DONEVA et al. PHYSICAL REVIEW D 88, 044052 (2013)

044052-4



As one can see from Eqs. (11) and (12), if one only
takes into account the emission of gravitational waves, for
every rotation rate of the star one can choose modes with
corresponding large values of m, so that !i < 0 and they
instantly become unstable. However, several dissipative
effects acting on different time scales counteract the
exponential growth of the CFS instability and might lead
to a saturation of the f-mode [39] or eventually suppress
it completely. In practice, it turns out that for the vast
majority of realistic EoS it is relevant to consider only
modes with m< 5.

If we assume that neutron star matter is a mixture of
protons, neutrons and electrons, the dissipation is mainly
due to the familiar shear and bulk viscosities. Taking into
account these additional effects, the total damping time �
of a mode can be estimated by

1

�
¼ 1

�	
þ 1

�

þ 1

�GW
; (15)

where �GW denotes the gravitational wave damping time,
�	 is the bulk viscosity damping time and �
 represents

the shear viscosity damping time. If � is negative then the
mode is exponentially growing on this time scale; i.e., it is
unstable.5

We already provided relations for the gravitational wave
damping time, i.e., Eqs. (9)–(11). Shear and bulk viscosity
time scales are computed by standard relations derived in
Newtonian theory [37,38] and are given by

1

�	
¼ � 1

2E

Z
	�����d3x; (16)

1

�

¼ � 1

E

Z

��ab��

abd
3x; (17)

where 	 and 
 are the bulk and shear viscosity coefficients,
respectively. The shear ��ab and the expansion �� of the
perturbations are given by

�� ¼ rc�u
c;

��ab ¼ 1

2

�
ra�ub þrb�ua � 2

3
gabrc�u

c

�
;

(18)

and we use the following values for the coefficients 	
and 
:

	 ¼ 6� 1025
�

1 Hz

!þm�

�
2
�

�

1015 g cm�3

�
2

�
�

T

109 K

�
6
g cm�1 s�1; (19)


¼2�1018
�

�

1015 gcm�3

�
9=4

�
109 K

T

�
2
gcm�1 s�1; (20)

derived for a mixture of neutrons, protons and electrons in
a normal state, i.e., without superfluid or superconducting
components [40,41]. These formulas are strictly valid only
in the linear regime. If the amplitude of the modes grows
considerably, nonlinear effects will be present [39,42]
which also lead to additional damping mechanisms. In
our study, though, we only consider linear perturbations,
and the relations given above are fully applicable in this
case.

IV. ASTEROSEISMOLOGY

A. The background models

In our simulations we utilize the rns code developed
by Stergioulas [43,44] to construct background models
of rotating relativistic stars. It is particularly suitable
for our goals since the code can deal with neutron stars
rotating at arbitrarily high rotational frequencies (up to the
mass-shedding limit), and it is also able to handle realistic
equations of state.
In order to derive empirical relations for gravitational

wave asteroseismology, we choose to study the oscillation
spectrum for equilibrium configurations with fixed central
energy density and different rotation rates ranging from
zero up to the mass-shedding limit, i.e., the Kepler limit. It
should be pointed out that during the evolution of a young
neutron star, it is actually the baryon mass that remains
fixed and not the central energy density. Therefore, our
sequences do not correspond to the evolution (spin down)
of a single star. But since our goal is to obtain empirical
relations, the actual sequence of models is not important.
All we need in this case is just a big pool of configurations
with different masses, rotational frequencies and equations
of state. The reason for adopting constant central energy
density sequences is just for simplicity. Later in this work
when the f-mode instability window is studied, the correct
sequences for this case, i.e., models with constant baryon
mass, are computed because at this point the evolution of a
single neutron star has to be tracked.
We will consider five equations of state, which are listed

in Table I. The corresponding mass-radius relations for
these EoS are depicted in Fig. 1 (solid lines). Two of these
EoS (WFF2 and AkmalPR) reach the two solar mass
barrier and are in agreement with the current observational
constraints [53–56], but we use a larger set of equations of
state in order to show the robustness of our asteroseismol-
ogy approximations and to better explore the parameter
space.
For most of the EoS, two rotational sequences with

different central energy densities are computed—the first
sequence starts with a mass of M ¼ 1:4M� in the
nonrotating limit, while the second one is placed close to
the maximum allowed mass for the corresponding EoS;
Table II summarizes the characteristic neutron star parame-
ters for both sequences. Additionally, the mass-radius re-
lationships for the rotating configurations with constant

5We should note that only �GW is negative for CFS unstable
modes, while both �	 and �
 are always positive.
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central density are also depicted in Fig. 1 (dotted lines).
They start from the corresponding nonrotating models and
reach up to the mass-shedding limit. In this figure, a well-
known fact can also be observed—if the central energy
density is kept fixed, the mass and the radius of the neutron
star increase with rotation due to the presence of the cen-
trifugal force which supports pressure to sustain gravity.

B. Results

In this section, the results for oscillation frequencies and
damping times of rotating neutron stars with realistic EoS
for the l ¼ jmj ¼ 2, 3, 4 case are presented. We will
restrict our studies to the fundamental f-modes, as they
are one of the most promising candidates to develop a CFS

unstable phase and thus to emit considerable amounts of
gravitational radiation. Similar asteroseismology relations
were already obtained by Gaertig and Kokkotas in [8] for
neutron stars with polytropic EoS in the l ¼ jmj ¼ 2 case.

1. Asteroseismology relations for oscillation frequencies

The characteristic mode splitting of nonaxisymmetric
modes in rotating neutron stars can be observed in Fig. 2,
where the frequencies of the l ¼ jmj ¼ 2 and l ¼ jmj ¼ 4
f-modes are depicted for the sequences in Table II. Each
branch corresponds to a particular model with constant
central energy density and ranges from � ¼ 0 to � ¼
�K, where�K is the Kepler frequency. The upper (stable)
branches correspond to the corotating modes with m ¼
�l < 0, while the lower (potentially unstable) ones show
the counterrotating modes with m ¼ l > 0. The figure
shows the well-known fact that in the quadrupolar case
some of the lower branches actually never reach the CFS
unstable regime. Also, given a fixed EoS the oscillation
modes of more compact models are able to reach negative
frequencies at lower rotation rates. For higher values of the
spherical index l ¼ m> 2, all lower branches become
unstable after a certain critical rotation rate �c.
In order to do proper gravitational wave asteroseismol-

ogy, one has to derive empirical relations that connect
the observed oscillation frequencies to the neutron star
properties in an EoS-independent way. When deriving
such relations we will mainly stick to the approach taken
in [8] in order to show differences and similarities between
polytropic and realistic equations of state and, furthermore,
to consistently generalize the relations given there for the
l ¼ jmj ¼ 3, 4 case.
In the nonrotating case, the frequencies are roughly

proportional to the square root of the mean density [5,6].
When rotation is added there is another parameter that has
to be determined—the angular velocity of the star. It turns
out that it is convenient to use two independent relations in
this case [8,15]. The first one provides the normalized
oscillation frequency as a function of the normalized rota-
tion rate, where the relations are normalized by the fre-
quency in the nonrotating limit and the Kepler frequency,

FIG. 1 (color online). The mass-radius relations for the back-
ground models listed in Table II. The sequences branch off their
nonrotating counterparts at the corresponding equilibrium curve
(solid lines) and increase in masses and radii as the rotation rate
is increased (dotted lines).

TABLE II. The characteristic nonrotating neutron star parame-
ters for the sequences used in this study.

EoS �c [g=cm3] M0 [M�] R0 [km]

FPS 1:30� 1015 1.4 10.85

FPS 2:02� 1015 1.7 10.21

WFF2 1:04� 1015 1.4 11.13

WFF2 1:64� 1015 2.0 10.71

WFF3 1:21� 1015 1.4 10.92

WFF3 1:75� 1015 1.7 10.49

A 1:85� 1015 1.4 9.57

AkmalPR 1:01� 1015 1.4 11.34

AkmalPR 1:60� 1015 2.0 10.88

TABLE I. The equations of state utilized in this study.

EoS Description

FPS Equation of state by Lorenz, Ravenhall, and Pethick

[45]. A modern version of the equation of state by

Friedman and Pandharipande [46]

WFF2 Equation of state by Wiringa, Fiks, and Fabrocini

[47], denoted ‘‘UV14þ UVII’’ in their paper.

Matched to Negele and Vautherin [48]

at low densities.

WFF3 Equation of state by Wiringa, Fiks, and Fabrocini [47],

denoted ‘‘UV14þ TNI’’ in their paper. Matched to

the FPS equation of state at low densities.

A Equation of state by Arnett and Bowers [49,50],

denoted ‘‘EOS A’’ in their paper.

AkmalPR Equation of state by Akmal, Pandharipande, and

Ravenhall [51]. Matched with a SLY4 crust [52].
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respectively. Naturally, the second one correlates the
frequencies in the nonrotating limit with the mean density
of the star, similar to the relations obtained in [5,6].

We will follow [8] and use the oscillation frequencies in
the comoving frame. As it turns out, in this frame the
spread of the frequencies for different EoS is considerably
smaller than in the inertial frame [15], therefore providing
a natural frame for this model-independent fitting. Another
nice feature of the comoving frame is that, in contrast to the
inertial frame, mode frequencies of both branches never
become negative.

The normalized frequencies in the comoving frame
!c=!0 (!0 is the frequency in the nonrotating limit) as a
function of �=�K for all the EoS considered in this work

are shown in Fig. 3. It should be noted here that in the
comoving frame the order of the two branches is reversed;
i.e., the potentially unstable branches attain larger frequen-
cies than the stable ones, in contrast to the depiction in the
inertial frame.
The relations for different values of l, shown in Fig. 3,

can be fitted very accurately with a polynomial of second
order. We thus obtain the following relations for the
frequencies of the potentially unstable branches !u

c ,
for l ¼ m ¼ 2,

!u
c l¼2

!0

¼ 1þ 0:402

�
�

�K

�
� 0:406

�
�

�K

�
2
; (21)

for l ¼ m ¼ 3,

!u
c l¼3

!0

¼ 1þ 0:373

�
�

�K

�
� 0:485

�
�

�K

�
2
; (22)

and for l ¼ m ¼ 4,

!u
c l¼4

!0

¼ 1þ 0:360

�
�

�K

�
� 0:543

�
�

�K

�
2
: (23)

As one can see from Fig. 3, the frequencies for the stable
branches !s

c can be fitted very well by a single quadratic
polynomial for all values of l, and we obtain

!s
c

!0

¼ 1� 0:235

�
�

�K

�
� 0:358

�
�

�K

�
2
: (24)

As discussed previously, the relations (21)–(24) have to
be supplemented with additional information on how the
mode frequencies in the nonrotating limit !0 depend on
the neutron star mass and radius. It has been shown [5,6]
that the average density is a good measure to parametrize
this dependency, and Fig. 4 shows the results with our pool
of configurations.

FIG. 2 (color online). f-mode frequencies in the inertial frame corresponding to l ¼ jmj ¼ 2 and l ¼ jmj ¼ 4 as a function of the
rotation rate for both corotating and counterrotating branches. The dashed lines correspond to the less compact configurations in
Table II.

FIG. 3 (color online). The normalized oscillation frequencies
as a function of the normalized rotation rate in the comoving
frame. The results for l ¼ jmj ¼ 2, 3, 4 and for all of the
configurations in Table II are depicted.
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By making a linear approximation similar to [5,6,8], the
following relations are obtained: For l ¼ 2,

1

2�
!0 l¼2 ½kHz� ¼ 1:562þ 1:151

� �M0

�R3
0

�
1=2

; (25)

for l ¼ 3,

1

2�
!0 l¼3 ½kHz� ¼ 1:764þ 1:577

� �M0

�R3
0

�
1=2

; (26)

and for l ¼ 4,

1

2�
!0 l¼4 ½kHz� ¼ 1:958þ 1:898

� �M0

�R3
0

�
1=2

: (27)

Here we have introduced the dimensionless variables

�M ¼ M

1:4M�
and �R ¼ R

10 km
; (28)

and the subscript ð� � �Þ0 indicates that these are the masses
and radii of the nonrotating configurations.

In relations (21)–(24), the Kepler frequency �K shows
up as an additional free parameter. But �K is roughly
proportional to the average density as well, as it was shown
in [3,57–59]. Instead of using the relation given in these
papers, we derive our own version obtained from fitting the
data for the realistic EoS used here, which is more accurate
for the considered range of masses, radii and EoS. We then
obtain

1

2�
�K ½kHz� ¼ 1:716

ffiffiffiffiffiffiffi
�M0

�R3
0

s
� 0:189: (29)

This relation can be refined further by assuming that the
coefficients are not constant but depend on the compact-
ness M=R [3,59]. We prefer to use the relation in its
current form because it will prove to be useful later for
the asteroseismology examples, and additionally it also

estimates the Kepler frequency with a very good
accuracy—for the models studied here the error is only
up to approximately 2%.
The last thing we have to specify in order to be able to

use the above relations for gravitational wave asteroseis-
mology is the following. Equations (25)–(27) and (29) are
derived using nonrotating neutron star models. Therefore,
the masses and radii that enter in these equations are the
masses and radii of the configurations in the nonrotating
limit. As our goal is to be able to determine the parameters
of the emitting rotating neutron stars, we should know how
masses and radii scale with rotation. We found out that it is
convenient to derive an approximate relation for the nor-
malized masses and radii as a function of �=�K, and the
results are plotted in Fig. 5. The data can be fitted well with
an exponential function of the form y ¼ Aþ B exp ðCxÞ.
Because of the normalization we have that yðxÞjx¼0 ¼ 1,
which sets a constraint on the parameters of the fit, i.e.,
A ¼ 1� B. Thus, we obtain the following relations for the
normalized masses and radii:

M

M0

¼ 0:991þ 9:36� 10�3 exp

�
3:28

�

�K

�
; (30)

R

R0

¼ 0:997þ 2:77� 10�3 exp

�
4:74

�

�K

�
: (31)

Using these relations we can obtain the mass and the radius
of a rotating neutron star once we have determined the
parameters in the nonrotating limit, M0 and R0, from
Eqs. (25)–(27) and (29).
Let us draw a comparison with the polytropic case at this

point. The thick black dash-dotted line in Fig. 3 represents
the analytic relations found in [8] for polytropic EoS and
quadrupolar modes (l ¼ 2). As one can see, the polynomial
approximations of the stable branches in the case of poly-
tropes and realistic EoS are quite similar. The corresponding

FIG. 4 (color online). Mode frequencies for l ¼ 2, 4 as a function of the average density in the nonrotating limit.
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fittings for the unstable branches are very similar as well,
and one can see a certain divergence only for fast rotation
rates. In Fig. 3 we also plot the available results for mode
frequencies in full general relativity, i.e., when the Cowling
approximation is dropped, obtained with a nonlinear code
by Zink et al. [11].6 They use polytropic EoS, and their
model S has a polytropic index of � ¼ 2, while for their
model C it is � ¼ 2:5. As we can see the deviations from the
Cowling data for the stable branches can be large for high
rotation rates, but the data for the potentially unstable
branches fit very well with our relations. This is a strong
justification for the use of the Cowling approximation.

The differences between polytropes and realistic
equations of state are more pronounced when we look at
the relations for mode frequencies in the nonrotating limit.
In Fig. 4 we plotted the linear fit obtained for polytropes in
the Cowling approximation as provided in [8] (dotted line),
and the corresponding relation obtained in [5], where both
full GR and realistic EoS are considered (dash-dotted
line).7 The fit for polytropes clearly shows a different slope
compared to most of the realistic EoS; similar differences
between realistic and polytropic EoS were also observed in
the full GR case [5,62].

In conclusion we can say that the relations (21)–(24)
presented here are quite robust and do not depend signifi-
cantly on the actual equation of state used. This behavior
can be attributed to the fact that the relations for the mode

frequencies are normalized by their corresponding value in
the nonrotating case, which seems to properly mask the
EoS-specific influence up to a large extent. We also expect
that these relations will approximately remain valid even if
the Cowling approximation is dropped, as it is indicated by
the full GR results depicted in Fig. 3.

2. Asteroseismology relations for damping times

As discussed in detail above, it is not possible to
directly obtain gravitational wave damping times from
simulations performed in the Cowling approximation.
Instead, Eqs. (9)–(14) are employed, which are based on
the multipole formulas.
Evaluating these relations numerically turns out to be a

bit intricate when using realistic EoS. First, as already
mentioned above, realistic EoS typically exhibit sharp
drops in the speed of sound close to the neutron drip
density, leading to numerical instabilities in the time in-
tegration of the perturbation equations. This can be atte-
nuated by using a higher resolution of the computational
domain compared to polytropes, but still it is more difficult
to obtain smooth eigenfunctions, especially below the
neutron drip density. Second, we are not directly evolving
the fluid perturbation variables but some combinations of
them—the Qi variables [see Eqs. (5)]. In order to recon-
struct the primitive fluid perturbations, one typically has to
divide by (�þ p) at some point. Both the pressure and the
energy density of neutron stars are negligibly small in the
region of the outer crust compared to the corresponding
values in the core, for all of the studied realistic EoS, and
this introduces large errors in the derived fluid perturbation
variables. Thus, the combination of these issues leads to
large errors, especially in the perturbations of the fluid
four-velocity in neutron star regions below the neutron
drip point. Since for compact objects with realistic EoS

FIG. 5. The normalized mass (left panel) and radius (right panel) as a function of the normalized rotational frequency, whereM0 and
R0 are the mass and the radius in the nonrotating limit.

6The zero-frequency (neutral) quasinormal f-modes of fully
relativistic and rapidly rotating neutron stars were also com-
puted in [60,61].

7Our relations (25)–(27) (solid lines) always lead to larger
frequencies when compared to full GR [5], which is due to the
fact that the Cowling approximation is overestimating the
f-mode frequencies.
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the outer crust contains only a small portion of the stellar
mass, because of the comparatively low density there,
neglecting this region would not have a significant impact
on evaluating the damping time relations (9)–(14). We
therefore neglect this region when computing the integrals
and choose a cutoff density of �1012 g=cm3. The results
show that the damping time does not change more than
10% when this cutoff density is increased or decreased by
approximately 1 order or magnitude.

As already mentioned, in the Cowling approximation
mode frequencies can be overestimated by up to 30%. As
one can see from Eqs. (10)–(14), the energy loss due to
gravitational radiation is proportional to !2lþ2, while the
energy of the mode scales proportional to !2. Therefore,
the damping time8 should be proportional to !�2l. This
means that rather small deviations in the frequencies can
lead to large deviations in the corresponding damping
times. Our results show that, typically, the damping times
in the Cowling approximation are underestimated by up to
a factor of 3.

Similar to the empirical relations for mode frequencies
found in Sec. IVB1, here we will derive two sets of
relations for damping times, which can be used for aster-
oseismology—one set determines the functional behavior
of the normalized damping times with increasing rotation
rate, and the second set relates the normalization factor,
i.e., the damping time in the nonrotating limit, to the mass
and radius of the star.

In Fig. 6 normalized damping times of the potentially
unstable branches as a function of normalized mode fre-
quencies in the inertial frame are depicted for l ¼ 2, 3, 4
and for all EoS used in this study. The quantities are
normalized to their corresponding values in the nonrotating

limit. On the ordinate we plot ð�0=�Þ1=2l because ��!�2l

as discussed above. It is convenient to use inertial frame
mode frequencies on the abscissa because there is a one-to-
one mapping between rotation rates and mode frequencies
in this case.

In order to fit the data, a third order polynomial is used,
similarly to the approach in [8]. If we assume that this
polynomial is of the form yðxÞ ¼ Aþ Bxþ Cx2 þDx3

and since normalized quantities are used, we require that
yðxÞjx¼1 ¼ 1. Also, since ��!�2l, we can conclude that
the combination �0=� vanishes when a neutral mode
appears in the inertial frame. This means that a second
constraint can be imposed on the fitting polynomial, namely
yðxÞjx¼0 ¼ 0. In order to fulfill these constraints, one can
therefore choose A ¼ 0 and B ¼ 1� C�D, by which we
are left with only two independently adjustable parameters
of the fit, i.e., the coefficients C andD. As one can see from
Fig. 6, the data for all values of l considered here can be
approximated very well with a single polynomial, and we

obtain the following relation for the damping times of the
potentially CFS unstable modes,

�0
�
¼ sgnð!u

i Þ
�
0:900

�
!u

i

!0

�

� 0:057

�
!u

i

!0

�
2 þ 0:157

�
!u

i

!0

�
3
�
2l
; (32)

where sgn is the sign function.
As we pointed out, for the unstable branch we have

1=� ! 0 when !i ! 0. This constraint determines one of
the free coefficients in the polynomial fit and facilitates the
approximation of the damping times for all values of the
spherical index l with a single fit. This approach is no
longer applicable for the stable branch where both !i

and !c are always nonzero and only the normalization
condition yðxÞjx¼1 ¼ 1 can be imposed. For the fitting of
the stable branch we will use mode frequencies in the
comoving frame which are a monotonic function of the
stellar rotation rate, in contrast to the corresponding
frequencies in the inertial frame. We also plot �=�0 for
the stable branch on the ordinate because � decreases while
increasing the rotation rate in this case.
In Fig. 7, normalized damping times of the stable

branches as a function of normalized mode frequencies
in the comoving frame are depicted for l ¼ 2, 3, 4 and for
all EoS used in this study. Instead of the combination
�=�0 � ð!c=!0Þ which was used in [8], here we use
�=�0 � ð!c=!0Þ2l; this turns out to be a more robust
choice for the case l > 2.
This time, the normalization constraint yðxÞjx¼1 ¼ 1

leads to the relation A ¼ 1� B� C�D, leaving three
adjustable parameters of the fit. The results show that the
spread in the data points for different EoS and different
values of l is larger than for the potentially unstable branch.

FIG. 6 (color online). Normalized damping times ð�0=�Þ1=2l as
a function of normalized mode frequencies in the inertial frame
!i=!0 for potentially unstable branches and l ¼ m ¼ 2, 3, 4.

8These relations are given in the case when � ¼ 0, i.e., when
!c ¼ !i ¼ !, for simplicity.
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Therefore, we choose to provide separate empirical
relations for every spherical index l ¼ 2, 3, 4.

After performing the polynomial fit, we obtain the
following:

For l ¼ 2,

�
�l¼2

�0

�
1=4 ¼ �0:127þ 3:264

�
!c

!0

�
� 5:486

�
!c

!0

�
2

þ 3:349

�
!c

!0

�
3
; (33)

for l ¼ 3,

�
�l¼3

�0

�
1=6 ¼ �0:672þ 5:270

�
!c

!0

�
� 9:234

�
!c

!0

�
2

þ 5:635

�
!c

!0

�
3
; (34)

and for l ¼ 4,�
�l¼4

�0

�
1=8 ¼ �1:227þ 7:520

�
!c

!0

�
� 13:500

�
!c

!0

�
2

þ 8:207

�
!c

!0

�
3
: (35)

Since in all the relations for damping times above only
normalized quantities are used, there is a reasonable ex-
pectation that, although the Cowling approximation is used
here, the functional form of the empirical relations will
remain valid even if this approximation is dropped.
Finally, the relations for damping times in the static

limit as a function of mass and radius are needed. One can
show that a rough estimate for the damping time, given by
the quadrupole formula, is �0 � RðR=MÞlþ1 [5,63], and
this relation can be used for the normalization of �0.
Thus, in Fig. 8 we plot damping times as a function of
the compactness M=R of the star, where the damping time
is normalized by RðR=MÞlþ1.
Performing a linear fit of the static neutron star damping

times, we obtain the following: For l ¼ 2,

1

�0½s� ¼ �M3
0

�R4
0

�
78:55� 46:71

� �M0

�R0

��
; (36)

for l ¼ 3,

1

�0½s� ¼ �M4
0

�R5
0

�
1:691� 1:027

� �M0

�R0

��
; (37)

and for l ¼ 4,

1

�0½s� ¼
�M5
0

�R6
0

�
0:0350� 0:0208

� �M0

�R0

��
: (38)

Similar to the corresponding relations for mode frequen-
cies, these fittings are most sensitive to the deviations
introduced by the Cowling approximation.

FIG. 8 (color online). Normalized damping times as a function of the compactness M=R of the star. The results for l ¼ 2, 4 are
depicted for all realistic EoS used in this study.

FIG. 7 (color online). Normalized damping times ð�=�0Þ1=2l as
a function of normalized mode frequencies in the comoving
frame !c=!0 for stable branches and l ¼ �m ¼ 2, 3, 4.
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Let us again draw a comparison with the polytropic EoS
at this point. The relation for the normalized damping
times of the potentially unstable branch (32) is quite simi-
lar in both cases, due to the fact that there are only two
independently adjustable parameters. The corresponding
relation for the stable branches changes though. First, it
was already pointed out that the relations used here,
(33)–(35), differ slightly from the ones in [8]—here we
plot �=�0 � ð!c=!0Þ2l instead of �=�0 � ð!c=!0Þ. In
order to compare our results for realistic EoS with the
polytropic ones, the dependence �=�0 � ð!c=!0Þ for
l ¼ �m ¼ 2 is depicted in Fig. 9. The analytic dependence
for polytropes found in [8] is shown there as well. As one
can see, the difference is quite big, but this is most likely
due to the fact that in [8] several very soft equations of state
are used, while most of the realistic EoS utilized here are
rather stiff. If one excludes the very soft EoS from [8], the
relations for both the polytropes and the realistic EoS will
be quite similar.

When comparing the damping times between polytropes
and realistic EoS in the nonrotating limit, we have to keep
in mind the following: Because of the errors in the damping
times related to the Cowling approximation, a correction
factor was introduced in [8] in order to compensate the
deviations from full GR. This factor was derived after a
systematic comparison with fully relativistic results in the
quadrupolar case [36]. Since we also present relations for
l > 2 here, the correction factor is unknown so we decided
to present the original results for the damping time.

In Fig. 10, we show the fits for damping times of quad-
rupolar modes in the nonrotating limit for both polytropes
and realistic EoS. In order to make a proper comparison,
we introduce the same correction factor used in [8]. As one
can see, the fit for realistic EoS generally leads to smaller

damping times compared to polytropes. This might be
due to the fact that the correction factor for our set of
EoS is different from the one used for polytropes.9

Another possible source of error might be our treatment
of the numerical instabilities near the neutron drip point;
see the discussion at the beginning of this section.

V. SOLVING THE INVERSE PROBLEM

After obtaining empirical relations for gravitational
wave asteroseismology, we need to address the inverse
problem—determining the mass, radius and rotation rate
of a neutron star when some observed frequencies and/or
damping times are provided. Since three characteristic
neutron star parameters need to be identified, one corre-
spondingly needs three observables. But not all of the
combinations of frequencies and damping times are suit-
able for solving the inverse problem. For example, in the
simplest case one could suggest using three frequencies of
different modes in order to determine neutron star parame-
ters. But the derived empirical relations for the frequencies
of fast rotating neutron stars can only be used to obtain the
rotation rate � and the average density M=R3 but not the
mass and radius independently. The reason for this is that
in relations (21)–(29) the independent variables are�,�K

andM=R3. Since�K can also be expressed as a function of
M=R3 up to leading order [see (29)],10 this cannot be used
to provide an additional constraint on the mass and radius.
We are led to the conclusion that by observing at least two
mode frequencies of a single rotating star, we will be able

FIG. 9 (color online). Normalized damping times �=�0 as a
function of normalized mode frequencies in the comoving frame
!c=!0. The analytic dependence for polytropes found in [8] is
depicted as a dashed line.

FIG. 10. Normalized damping times as a function of the
compactness M=R for nonrotating models. The correction factor
used in [8] is introduced in order to compare our data to the
polytropic case presented there.

9Strictly speaking this factor does not only depend on the EoS,
but most likely on the mass and radius of the stars as well.
10As mentioned above, the coefficients in the relation (29) also
depend on the compactnessM=R but this is a second-order effect
and cannot be used to accurately determine M and R.
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to determine its rotation rate and average density. Of
course, detecting even more frequencies will aid in setting
additional constraints on these parameters and providing
robust error estimates. For example, solving the inverse
problem sometimes can lead to more than just one physi-
cally feasible solution. Observing additional frequencies
can thus facilitate determining a unique solution for �
and M=R3.

In order to compute masses and radii independently
and not just a mere combination of them, one needs to
observe the damping time of at least one of the f-modes
where the relevant empirical relations are given by
(32)–(38). Of course, observing the damping times of
neutron star oscillations is supposed to be even more
difficult than detecting the oscillation frequencies since
the mode needs to be tracked for a substantial amount of
time in the noisy detector data. An alternative way to
determine the mass and radius is to detect frequencies of
other modes like w- or the p-modes, similar to the study
in the nonrotating case [5]. But these oscillations are
supposed to reach lower amplitudes, their frequency
band lies outside the maximum sensitivity range of cur-
rent detectors, and they are damped away faster. The
r-modes, on the other hand, are generically CFS unstable
[64,65] and might be observed more easily. On the other
hand, r-modes form a dense spectrum, distributing energy
very efficiently amongst them and most likely to other
p-modes as well; therefore, they quickly drop in ampli-
tude once they are excited. Their frequencies are, up to
leading order, proportional to the rotation rate of the star
[66], so they cannot be used to determine its mass and
radius. However, they might help constrain the exact
value of � even further. Since the main goal of this paper
is to thoroughly study gravitational wave asteroseismol-
ogy with f-modes, we will stick to these modes only.

We now proceed to give some typical asteroseismology
examples, which are divided into two classes. First, only
two oscillation frequencies are used to obtain the rotation
rate and average density of the star. As discussed above,
mode frequencies should be easier to detect with appro-
priate accuracy. In the second example, we use two oscil-
lation frequencies and a single damping time in order to

determine the mass and radius independently. Our results
for solving the inverse problem are given in Tables III and
IV. In the results presented here we also apply the formulas
(30) and (31) for the rotational correction of the mass and
the radius.
As representative examples, we choose the two mode

frequencies to belong to either l ¼ m ¼ 3, 4 oscillations
or a combination of one of the l ¼ m ¼ 3 or l ¼ m ¼ 4
oscillations and a l ¼ �m ¼ 2 oscillation. This choice is
motivated by the fact that the l ¼ m ¼ 3, 4 modes are
supposed to develop the secular CFS instabilitymuch earlier
than quadrupolar oscillations. The superscripts u and s for
the mode frequencies refer to potentially unstable (m> 0)
and stable (m< 0) modes, respectively. In these two tables,
a large range of masses, equations of state and rotation rates
is covered and the percent deviations from the exact values
are given in brackets. Still, for most of the models, the
rotation rate and the compactness can be recovered with a
good accuracy. Only the deviations for some of the more
massive models with very high rotational rates could be
large. This is due not only to the inaccuracy in the aster-
oseismology formulas (21)–(29), but also to the rotational
corrections (30) and (31) which may significantly overesti-
mate the mass and the radius of the star in some cases.
The second set of asteroseismology examples is given in

Tables V and VI. Here, the models from the previous
example were used, but a single damping time of an
unstable mode has been added as an additional input
parameter. In these tables the percent deviations from the
exact mass, radius and rotational frequency are also shown.
As one can see, the error in finding the mass and radius for
some of the models and input data can be large, but still
most of the examples provide quite good results. Actually
this accuracy can be improved even further by performing
the scheme presented here in an iterative way. As we have
seen, the first iteration already provided accurate estimates
about masses, radii and rotation rates. With this informa-
tion at hand, one can exclude certain EoS and repeat the
fitting procedure by also narrowing down the allowed
range of rotation rates that are consistent with the results
from the first iteration. This will lead to more accurate
empirical relations and also to a better convergence in the

TABLE III. Solutions of the inverse problem using two frequencies for EoS WFF2. Models with two different masses in the
nonrotating limit M0 ¼ 1:4M� (�K=2� ¼ 1:273 kHz) and M0 ¼ 2:0M� (�K=2� ¼ 1:687 kHz) are given, and for each mass we
provide two rotation rates—one rotating moderately fast and the other rotating close to the Kepler limit. The frequencies are measured
in kHz and the percent deviations from the exact values are given in brackets.

WFF2 WFF2 WFF2 WFF2

EoS: 1:4M� 1:4M� 2:0M� 2:0M�
Mass (nonrot.): �M= �R3 �=2� �M= �R3 �=2� �M= �R3 �=2� �M= �R3 �=2�

Exact 0.711 0.308 0.463 1.209 1.149 0.410 0.805 1.608

!u
l¼3 & !s

l¼2 0.653 (8) 0.305 (1) 0.470 (2) 1.187 (2) 0.956 (17) 0.418 (2) 0.605 (25) 1.635 (2)

!u
l¼4 & !s

l¼2 0.650 (9) 0.307 (0.3) 0.468 (1) 1.189 (2) 0.963 (16) 0.413 (1) 0.607 (25) 1.620 (1)

!u
l¼3 & !u

l¼4 0.720 (1) 0.329 (7) 0.565 (22) 1.230 (2) 0.780 (32) 0.363 (11) 0.267 (67) 1.286 (20)
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TABLE VI. Solutions of the full inverse problem using two frequencies and a single damping time for EoS FPS. Models with two
different masses in the nonrotating limit, M0 ¼ 1:4M� (�K=2� ¼ 1:315 kHz) and M0 ¼ 1:7M� (�K=2� ¼ 1:628 kHz), are given,
similar to Table IV. The percent deviations from the exact values are given in brackets.

FPS FPS

EoS: 1:4M� 1:4M�
Mass (nonrotating): M [M�] R [km] �=2� [kHz] M [M�] R [km] �=2� [kHz]

Exact 1.42 10.99 0.397 1.64 12.90 1.195

!s
l¼2 & !u

l¼3 & �ul¼3 1.37 (4) 10.86 (1) 0.390 (2) 0.99 (40) 10.65 (17) 1.164 (3)

!s
l¼2 & !u

l¼4 & �ul¼4 1.46 (3) 11.12 (1) 0.395 (1) 1.88 (15) 13.18 (2) 1.166 (2)

!u
l¼3 & !u

l¼4 & �ul¼4 1.55 (9) 10.51 (4) 0.448 (13) 1.92 (17) 12.65 (2) 1.201 (1)

FPS FPS

EoS: 1:7M� 1:7M�
Mass (nonrotating): M [M�] R [km] �=2� [kHz] M [M�] R [km] �=2� [kHz]

Exact 1.72 10.33 0.494 2.01 12.42 1.565

!s
l¼2 & !u

l¼3 & �ul¼3 2.39 (39) 11.51 (11) 0.496 (0.4) 1.87 (7) 12.46 (0.3) 1.562 (0.2)

!s
l¼2 & !u

l¼4 & �ul¼4 1.57 (9) 10.04 (3) 0.500 (1) 2.40 (19) 13.50 (9) 1.559 (0.4)

!u
l¼3 & !u

l¼4 & �ul¼4 1.78 (3) 9.90 (4) 0.546 (11) 2.11 (5) 14.05 (13) 1.501 (4)

TABLE IV. Solutions of the inverse problem using two frequencies for EoS FPS. Models with two different masses in the
nonrotating limit M0 ¼ 1:4M� (�K=2� ¼ 1:315 kHz) and M0 ¼ 1:7M� (�K=2� ¼ 1:628 kHz) are given, and for each mass we
provide two rotation rates—one rotating moderately fast and the other rotating close to the Kepler limit. The frequencies are measured
in kHz and the percent deviations from the exact values are given in brackets.

FPS FPS FPS FPS

EoS: 1:4M� 1:4M� 1:7M� 1:7M�
Mass (nonrot.): �M= �R3 �=2� �M= �R3 �=2� �M= �R3 �=2� �M= �R3 �=2�

Exact 0.764 0.397 0.546 1.195 1.115 0.494 0.749 1.565

!u
l¼3 & !s

l¼2 0.765 (0.1) 0.390 (2) 0.630 (15) 1.164 (3) 1.119 (0.4) 0.496 (0.4) 0.556 (26) 1.562 (0.2)

!u
l¼4 & !s

l¼2 0.761 (0.4) 0.395 (1) 0.629 (15) 1.166 (2) 1.112 (0.3) 0.500 (1) 0.560 (25) 1.559 (0.4)

!u
l¼3 & !u

l¼4 0.953 (25) 0.448 (13) 0.677 (24) 1.201 (1) 1.311 (18) 0.546 (11) 0.542 (28) 1.501 (4)

TABLE V. Solution of the full inverse problem using two frequencies and a single damping time for EoS WFF2. Models with two
different masses in the nonrotating limit, M0 ¼ 1:4M� (�K=2� ¼ 1:273 kHz) and M0 ¼ 2:0M� (�K=2� ¼ 1:687 kHz), are given,
similar to Table III. The percent deviations from the exact values are given in brackets.

WFF2 WFF2

EoS: 1:4M� 1:4M�
Mass (nonrotating): M [M�] R [km] �=2� [kHz] M [M�] R [km] �=2� [kHz]

Exact 1.41 11.23 0.308 1.72 13.84 1.209

!s
l¼2 & !u

l¼3 & �ul¼3 1.54 (9) 11.90 (6) 0.305 (1) 1.58 (8) 13.37 (3) 1.187 (2)

!s
l¼2 & !u

l¼4 & �ul¼4 1.59 (13) 12.05 (7) 0.307 (0.3) 2.51 (46) 15.64 (13) 1.189 (2)

!u
l¼3 & !u

l¼4 & �ul¼4 1.63 (16) 11.73 (4) 0.329 (7) 2.78 (62) 15.21 (10) 1.230 (2)

WFF2 WFF2

EoS: 2:0M� 2:0M�
Mass (nonrotating): M [M�] R [km] �=2� [kHz] M [M�] R [km] �=2� [kHz]

Exact 2.02 10.79 0.410 2.38 12.83 1.608

!s
l¼2 & !u

l¼3 & �ul¼3 1.98 (2) 11.20 (4) 0.418 (2) 2.41 (1) 14.34 (12) 1.635 (2)

!s
l¼2 & !u

l¼4 & �ul¼4 2.24 (11) 11.71 (9) 0.413 (1) 2.70 (13) 14.87 (16) 1.620 (1)

!u
l¼3 & !u

l¼4 & �ul¼4 2.04 (1) 12.33 (14) 0.363 (11) 2.23 (6) 18.16 (42) 1.286 (20)
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nonlinear root finder, therefore leading to better estimates
for the neutron star parameters. It is clear that this scheme
can be repeated as often as necessary.

As an example we present the results obtained by perform-
ing a second iteration for the model with WFF2 EoS, M ¼
1:72M� and �=2� ¼ 1:209 kHz. Our investigations show
that a good strategy is to rederive only the relations for the
normalized frequencies and damping times of rotating
neutron stars [Eqs. (21)–(24) and (32)] using data close to
the computed value of�=�K, and the relations for the non-
rotating frequencies and damping times should remain the
same. The reason is that sometimes the error in the average
density and the compactness obtained after the first iteration
could be large, and rederiving the fits around these values
could eventually make the results even more imprecise. In the
next iterations, though, the static relations could also be
refined because, as we can see below, the error in determining
M andR could be reduced significantly after the first iteration.

The results for the mass, the radius and the rotational
frequency obtained after the second iteration are shown in
Table VII. For most of the cases the second iteration leads
to smaller errors. The large deviations in M and R, ob-
served in Table V for some of the input data, were also
reduced significantly. But we have to note that for very few
cases it could happen that the second iteration does not
improve the results, and it can even increase the deviation a
little bit. This happens especially for the high mass models
with frequencies close to the Kepler limit, where the errors
in the fitting formulas are generally larger.

VI. INSTABILITY WINDOW

The last problem we are going to address here is the
f-mode instability window for realistic equations of state
(the case of a polytropic equation of state was studied in
[19,20]). The instability window is the limiting curve in a
T �� representation where the exponential growth due to
a CFS unstable mode overcomes the dissipative effects,
i.e., where the total damping time given by Eq. (15) stays
negative. As the neutron star evolves (cools down) it will
generally move towards lower temperatures and rotational
rates. When constructing the instability window one can no

longer consider a sequence of models with fixed central
energy density and increasing rotational rate—we have to
consider a sequence of models with constant baryon mass
instead because this is the quantity that remains constant
during the evolution of a single neutron star.
As explained above, we are working in the linear

perturbation regime, and we will take into account the
following two viscous dissipation mechanisms—bulk
viscosity, which operates at high temperatures, and neutron
shear viscosity, which damps out the oscillations at low
temperatures. The relevant relations and coefficients are
given in Sec. III.
We computed the l ¼ m ¼ 2, 3, 4 f-mode instability

window for two sequences of constant baryon mass—a
sequence with the AkmalPR equation of state and a mass
of M ¼ 2:0M� in the nonrotating limit, and a sequence
with the WFF2 equation of state and the same mass M ¼
2:0M� in the static case. We choose these particular con-
figurations because both the AkmalPR and the WFF2 EoS
support maximum masses above two solar masses, which
is required from current neutron star observations [53–55].
Also, massive models are more compact as well and be-
come CFS unstable at lower rotation rates.
The f-mode instability window for the two EoS is

depicted in Fig. 11 for l ¼ m ¼ 2, 3, 4.11 It is evident
that, similar to the polytropic case, the quadrupolar modes
are only marginally unstable—the instability window
reaches down to only about 96% of the Kepler limit.
More suitable candidates for detectable CFS unstable
modes are the cases with l ¼ 3, 4; there, the instability
window reaches down to 80%–85% of the Kepler limit. In
this case a newborn and rapidly rotating neutron star may
stay long enough in the instability windows during its
evolution so that gravitational wave signals from the os-
cillations can be observed. It is important to note that for
both equations of state the instability window is substan-
tially deeper compared to all the polytropic models pre-
sented in [19,20], which means that realistic equations of
state might be more favorable to the CFS instability.
As it is well known, the r-modes are generically CFS

unstable [64,65]; i.e., they are unstable for any rotation rate
of the star if additional dissipation mechanisms are ne-
glected. Therefore the r-mode instability window will
generally reach lower values of �=�K, and it also covers
a wider range of temperatures than the corresponding
f-mode window. This can be seen in Fig. 12, where the
instability window for both the f- and r-modes is plotted
for the AkmalPR equation of state and l ¼ m ¼ 2, 3, 4.
One should keep in mind that, for computing the r-mode

TABLE VII. Results from the second iteration of solving the
inverse problem for EoS WFF2, M ¼ 1:4M� in the nonrotating
limit and �=2� ¼ 1:209 (�K=2� ¼ 1:273 kHz). The results
from the first iteration are presented in Table V. The percent
deviations from the exact values are given in brackets.

WFF2

EoS: 1:4M�
Mass (nonrotating): M [M�] R [km] �=2� [kHz]

Exact 1.72 13.84 1.209

!s
l¼2 & !u

l¼3 & �ul¼3 1.89 (10) 14.36 (4) 1.202 (1)

!s
l¼2 & !u

l¼4 & �ul¼4 1.91 (11) 14.41 (4) 1.204 (0.4)

!u
l¼3 & !u

l¼4 & �ul¼4 1.98 (15) 13.07 (6) 1.270 (5)

11When constructing the instability window, we introduced a
correction factor in the gravitational wave damping time similar
to [8,20]. This correction is required due to the Cowling ap-
proximation, which underestimates damping times, but as it
turns out the window does not change significantly even if the
original results for the damping times are used.
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damping times, the current multipoles (17) are the domi-
nant contributions to the energy loss. The frequencies and
damping times computed with our time evolution code also
match well with the analytic relations in [66].

As one can see, the instability window for the r-mode is
much larger than for the f-mode for all of the considered
values of the spherical index l, and as the neutron stars cool
down, the r-mode will become unstable first. Thus the star
will lose angular momentum quickly and may never reach
the region of the f-mode instability. In practice, though,
this scenario depends crucially on the r-mode saturation
amplitude—if it is small enough then the star would lose
angular momentum more slowly and it may eventually
reach the f-mode instability window [20]. The results for
nonlinear mode couplings of the r-modes suggest indeed
that the saturation amplitude may be limited to small values

[67,68]. Thus, if the saturation amplitude of the f-mode is
large enough, the f-mode instability could develop in
young neutron stars. Unfortunately, its saturation ampli-
tude is still uncertain, and further studies in this direction
are needed to answer the question of whether CFS unstable
f-modes of fast rotating neutron stars can be observed.

VII. CONCLUSIONS

In this paper we extended the results for nonaxisymmet-
ric oscillations of fast rotating neutron stars in the Cowling
approximation [8,15,16] by introducing realistic equations
of state. We obtained the f-mode oscillation frequencies
and damping times for a large set of equilibrium configu-
rations with different EoS and central energy densities and
then derived empirical relations that can be used for gravi-
tational wave asteroseismology. We then studied the in-
verse problem, and at the end, we considered the f-mode
instability window for some models that are the most
promising to develop the CFS instability. Another impor-
tant aspect of our work is that the empirical relations
obtained here are not only derived for the quadrupolar
case but also for l ¼ jmj ¼ 3, 4 as these modes get CFS
unstable at lower rotation rates. This required some gen-
eralizations of the relations in [8] in order to be applicable
for arbitrary values of l.
The results and the derived asteroseismology relations

are compared with the polytropic ones presented in [8], and
the following conclusions can be made. As we explained in
detail in the previous section, the asteroseismology relations
we derive can be divided into two groups—relations for the
normalized frequencies and damping times as a function of
the rotational frequency and relations for the frequencies
and damping times in the nonrotating limit. The first group
of relations does not differ considerably from the polytropic
case because we use normalized quantities. Moreover, by
comparing with the few available full GR results [11] we

FIG. 12 (color online). Instability window for both r- and
f-modes for the AkmalPR EoS. The gravitational mass in the
nonrotating limit is M ¼ 2:0M�.

FIG. 11 (color online). Instability window for the AkmalPR and WFF2 EoS. The gravitational mass in the nonrotating limit is
M ¼ 2:0M�.
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show that these relations will probably be very similar even
if we drop the Cowling approximation. The biggest differ-
ence between polytropes and realistic EoS is in the second
group of relations for the frequencies and the damping times
in the nonrotating limit. More specifically, the slope of the
linear fit is different in the two cases, which was also
observed in the nonrotating full GR case [5,62].

Using the derived asteroseismology relations we exten-
sively studied the inverse problem—what observational
data are required in order to determine the mass, the radius
and the rotational frequency of the star, and how accurately
we can determine these parameters. We should note that
our study is the first one to also consider the modes with
l > 2. It turns out that in order to solve the inverse problem
we should be able to observe at least two frequencies and
one damping time, and the presented examples show that
this information leads to good estimates for the neutron star
parameters. For example, we can observe the frequencies
of l ¼ m ¼ 3 and l ¼ m ¼ 4 CFS unstable f-modes and
one of the damping times of these modes, which is a
realistic scenario. The error in the parameter estimation
can be reduced by performing at least one more iteration of
solving the inverse problem; that is, after having a first
estimate of M, R and � we can derive new asteroseismol-
ogy relations valid for a smaller range of parameters when
compared to the first estimate. Applying the refined rela-
tions once again to the input data generally results in a
better accuracy for M, R and �.

If we are able to observe more than two modes, this
could also help us set additional constraints on the mass
and radius and also help us determine the error bars. For
example, solving the inverse problem sometimes leads to
more than one solution with physically reasonable values
for the mass, radius and rotational frequencies, and the
additional observational information could help us
distinguish between these solutions.

We should keep in mind that all of the asteroseismology
relations are derived within the Cowling approximation,
which introduced deviations in the f-mode oscillation fre-
quencies and damping times. That is why it is important to
drop this approximation and to consider the perturbations of
the metric as well in the future. But the results in the present
paper are valuable on their own because they show us the
potential differences between the oscillations of neutron
stars with polytropic and realistic EoS and how to consis-
tently perform gravitational wave asteroseismology of fast

rotating neutron stars for modes with higher values of l > 2.
Moreover, the comparison with the few available full GR
data [11] suggests that the normalized dependences for the
fast rotating neutron stars will remain similar even if we
drop the Cowling approximation.
The last problem we addressed is the f-mode insta-

bility window for the AkmalPR and WFF2 equations of
state and for rotational sequences with mass M ¼ 2:0M�
in the nonrotating limit. Because of their high compact-
ness, the chosen models are particularly good candidates
to develop the CFS instability. As it is expected from the
polytropic case [19,20], the l ¼ m ¼ 3 and l ¼ m ¼ 4
modes can develop this instability for a much larger
range of parameters compared to the l ¼ m ¼ 2 modes.
An important result is that the instability windows for
these realistic EoS reach lower bounds on the critical
rotational frequency, where the CFS instability over-
comes dissipative effects, than all the polytropic models
presented in previous studies [19,20]. But there is some-
thing else we have to take into account—the r-mode
instability window is, in general, much bigger because
the r-modes are CFS unstable for any rotational rate of
the star. This is why we also calculate the r-mode
instability window for one of the models in order to
compare it to the corresponding f-mode window. The
evolution of a newborn neutron star through the insta-
bility windows also depends heavily on the r- and
f-mode saturation amplitudes [20], and further investi-
gations in this direction are needed in order to answer
the question of whether an f-mode CFS instability can
develop in rapidly rotating neutron stars.
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and I. Wasserman, Phys. Rev. D 65, 024001 (2001).

DONEVA et al. PHYSICAL REVIEW D 88, 044052 (2013)

044052-18

http://dx.doi.org/10.1046/j.1365-8711.2001.03945.x
http://dx.doi.org/10.1046/j.1365-8711.2001.03945.x
http://dx.doi.org/10.1103/PhysRevD.70.124015
http://dx.doi.org/10.1103/PhysRevD.70.124015
http://dx.doi.org/10.1103/PhysRevD.83.064031
http://dx.doi.org/10.1103/PhysRevD.83.064031
http://dx.doi.org/10.1103/PhysRevLett.24.611
http://dx.doi.org/10.1086/156143
http://dx.doi.org/10.1086/156143
http://dx.doi.org/10.1103/PhysRevD.81.084055
http://dx.doi.org/10.1086/173073
http://dx.doi.org/10.1142/S0218271801001062
http://dx.doi.org/10.1142/S0218271801001062
http://dx.doi.org/10.1046/j.1365-8711.2001.04909.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04909.x
http://dx.doi.org/10.1103/PhysRevD.78.064063
http://dx.doi.org/10.1103/PhysRevD.78.064063
http://dx.doi.org/10.1103/PhysRevD.80.064026
http://dx.doi.org/10.1103/PhysRevD.80.064026
http://dx.doi.org/10.1103/PhysRevD.81.084019
http://dx.doi.org/10.1103/PhysRevD.81.084019
http://dx.doi.org/10.1103/PhysRevLett.107.101102
http://dx.doi.org/10.1103/PhysRevD.87.084010
http://dx.doi.org/10.1103/PhysRevD.86.104055
http://dx.doi.org/10.1103/PhysRevD.85.124023
http://dx.doi.org/10.1103/PhysRevD.85.124023
http://dx.doi.org/10.1088/1475-7516/2012/03/037
http://dx.doi.org/10.1088/1475-7516/2012/03/037
http://dx.doi.org/10.1103/PhysRevD.70.084026
http://dx.doi.org/10.1103/PhysRevD.70.084026
http://dx.doi.org/10.1103/PhysRevD.79.064033
http://dx.doi.org/10.1088/1742-6596/8/1/009
http://dx.doi.org/10.1088/1742-6596/8/1/009
http://dx.doi.org/10.1086/161006
http://dx.doi.org/10.1086/168227
http://dx.doi.org/10.1086/168227
http://dx.doi.org/10.1093/mnras/289.1.117
http://dx.doi.org/10.1093/mnras/289.1.117
http://dx.doi.org/10.1103/RevModPhys.52.299
http://dx.doi.org/10.1086/307580
http://dx.doi.org/10.1086/307580
http://dx.doi.org/10.1086/170039
http://dx.doi.org/10.1103/PhysRevD.82.104036
http://dx.doi.org/10.1103/PhysRevD.82.104036
http://dx.doi.org/10.1103/PhysRevD.39.3804
http://dx.doi.org/10.1086/165052
http://dx.doi.org/10.1103/PhysRevD.85.044051
http://dx.doi.org/10.1103/PhysRevD.85.044051
http://dx.doi.org/10.1086/175605
http://dx.doi.org/10.1086/175605
http://dx.doi.org/10.1051/aas:1998304
http://dx.doi.org/10.1103/PhysRevLett.70.379
http://dx.doi.org/10.1103/PhysRevLett.70.379
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1103/PhysRevC.38.1010
http://dx.doi.org/10.1103/PhysRevC.38.1010
http://dx.doi.org/10.1016/0375-9474(73)90349-7
http://dx.doi.org/10.1016/0375-9474(73)90349-7
http://dx.doi.org/10.1016/0375-9474(71)90413-1
http://dx.doi.org/10.1086/190434
http://dx.doi.org/10.1086/190434
http://dx.doi.org/10.1103/PhysRevC.58.1804
http://dx.doi.org/10.1051/0004-6361:20011402
http://dx.doi.org/10.1051/0004-6361:20011402
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1051/0004-6361/201219717
http://dx.doi.org/10.1051/0004-6361/201219717
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1146/annurev-nucl-102711-095018
http://dx.doi.org/10.1103/PhysRevLett.62.3015
http://dx.doi.org/10.1103/PhysRevLett.62.3015
http://dx.doi.org/10.1038/340617a0
http://dx.doi.org/10.1038/340617a0
http://dx.doi.org/10.1086/176650
http://dx.doi.org/10.1086/305030
http://dx.doi.org/10.1086/305030
http://dx.doi.org/10.1086/306630
http://dx.doi.org/10.1046/j.1365-8711.1998.01541.x
http://dx.doi.org/10.1046/j.1365-8711.1998.01541.x
http://dx.doi.org/10.1086/153504
http://dx.doi.org/10.1086/305919
http://dx.doi.org/10.1086/305920
http://dx.doi.org/10.1086/305920
http://dx.doi.org/10.1103/PhysRevD.76.064019
http://dx.doi.org/10.1103/PhysRevD.76.064019
http://dx.doi.org/10.1103/PhysRevD.65.024001

