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Over the past few years much attention has been given to the study of modified gravity theories in order

to find a more natural explanation for the late time acceleration of the Universe. Nevertheless, a

comparison of the matter power spectrum predictions made by these theories with available data has

not yet been subjected to a detailed analysis. In the context of fðRÞ theories of gravity we study the

predicted power spectra using both a dynamical systems approach for the background and solving for the

matter perturbations without using the quasistatic approximation, comparing the theoretical results with

several Sloan Digital Sky Survey data. The importance of studying the first order perturbed equations by

assuming the correct background evolution and the relevance of the initial conditions are also stressed. We

determine the statistical significance in relation to the observational data and demonstrate their conflict

with existing observations.
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I. INTRODUCTION

Despite more than a century of careful scrutiny, general
relativity (GR) remains the best fundamental theory of
physics for describing gravitational interactions. When
applied to cosmology, assuming that the large-scale
geometry of the Universe is given by the Friedmann-
Laı̂matre-Robertson-Walker (FLRW) metric and adopting
a fluid description for the matter content consisting of
baryons, cold dark matter (CDM) and radiation, GR gives
rise to a set of field equations that can be solved exactly to
give the simplest expanding Universe model—the so-
called Friedmann model, governing the dynamics of the
cosmological scale factor aðtÞ. This model has been re-
markably successful, giving for example the correct abun-
dances of the lightest elements and explaining the origin of
the cosmic microwave background radiation (CMBR). In
the past two decades, however, advances in observational
cosmology appear to suggest that if one wishes to retain the
FLRW metric, the Universe must have undergone two
periods of accelerated expansion. The first period is needed
to explain the flatness problem and the near-scale invariant
spectrum of temperature fluctuations observed in the
CMBR, while the second period explains the dimming of
distant type Ia supernovae relative to the Einstein–de Sitter
Universe model. To explain these periods of acceleration,
the strong energy condition (�þ 3p � 0) needs to be
violated. In the case of inflation, this is achieved by in-
troducing a dynamical scalar field, while the present-day
acceleration is most easily explained with the introduction
of a positive cosmological constant. The resulting descrip-
tion of the Universe has become known as the �CDM or
concordance model [1]. Although this beautifully simple
phenomenological model appears to fit all currently

available observations (supernovae Ia [2], CMBR anisot-
ropies [3], large scale structure formation [4], baryon
acoustic oscillations [5] and weak lensing [6]), it is affected
by significant fine-tuning problems related to the vacuum
energy scale, and this has led in recent years to efforts to
explore alternatives to this description of the Universe.
The leading alternative to the �CDM model is based on

modifications of the standard Einstein-Hilbert action. This
is due to the fact that these changes naturally admit a phase
of late time accelerated expansion (an early universe
inflationary phase is also possible [7]). In this way dark
energy can be thought of as having a geometrical origin,
rather than being due to the vacuum energy or additional
scalar fields that are added by hand to the energy momen-
tum tensor (see [8] and references therein for an extensive
presentation of the state of the art of this program of
investigation).
One of the simplest extensions of GR is based on

gravitational actions that are nonlinear in the Ricci curvature
R and/or contain terms involving combinations of deriva-
tives of R [8–14]. An important feature of these theories is
that the field equations can be written in a way that makes it
easy to compare with GR. This is done by moving all the
higher-order corrections to the curvature onto the right-hand
side of the field equations and defining an ‘‘effective’’ source
term, known as the curvature fluid. Once this has been done
the strong energy condition can easily be violated, and this
gives rise to a curvature fluid-driven period of late-time
acceleration. Unfortunately this comes at the cost of having
to study a considerably more complex set of field equations,
making it difficult to obtain both exact and numerical solu-
tions that can be compared with observations. Many studies
of the expansion history of fðRÞ gravity and other modified
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gravity theories have been performed using a range of
strategies for numerically integrating the cosmological
equations, and these studies have highlighted, among other
things, how sensitive the results are to initial conditions, the
presence of rip singularities and oscillations in the decelera-
tion and snap parameters, the existence and stability of
Einstein Static models and bounce solutions [15].

These difficulties can be reduced somewhat by using the
theory of dynamical systems [16], which, with careful
choice of dynamical variables, provides a relatively simple
method for obtaining exact solutions (via the equilibrium
points of the system) and a description of the global
dynamics of these models for a given fðRÞ theory [17].

Another useful (but more limited) approach is to assume
that the expansion history of the Universe is known exactly,
and to invert the field equations to deduce what class of
fðRÞ theories gives rise to this particular cosmological
evolution [18]. This has been done recently for exact
power-law solutions for the scale factor, corresponding to
phases of cosmic evolution when the energy density is
dominated by a perfect fluid. It was found that such
expansion histories exist only for modifications of the
type Rn [19]. It was also shown in [20] that the only fðRÞ
theory of gravity that admits an exact �CDM expansion
history is standard general relativity with a positive cos-
mological constant, and if onewants to obtain this behavior
of the scale factor for more general functions of R, addi-
tional degrees of freedom need to be added to the matter
sector. A more extensive analysis of reconstruction meth-
ods has been carried out in [21] to obtain theories that give
an approximate description of deceleration-acceleration
transitions in cosmology and also in [22] where the recon-
struction method was based on standard cosmic parameters
instead of specifying the time evolution of the scale factor.

Because it is possible to find background expansion
histories that are consistent with the standard �CDM
model, it is necessary to investigate the growth of structure
in order to break this degeneracy. This requires extending
the standard theory of cosmological perturbations for GR
to fðRÞ gravity. This has been done using both the metric
based approach [23–26] originally developed for GR
by Bardeen [27] and the 1þ 3 covariant approach first
introduced by Ellis and Bruni [28]. For example, in [29],
evolution equations were obtained for scalar and tensor
perturbations for fðRÞ gravity and applied to the spatially
flat, matter dominated solution of Rn gravity given by

aðtÞ ¼ a0t
2n

3ð1þwÞ (which is the saddle point G of the corre-
sponding dynamical system for these theories).

The results obtained demonstrate that the evolution of
scalar perturbations is determined by a fourth order differ-
ential equation, so that the evolution of density fluctuations
contains, in general, four modes rather than the standard
two obtained in GR. This results in more complex pertur-
bation dynamics than what is found in GR. It was also
found that the perturbations depend on the scale for any

value of the equation of state parameter for standard matter
(while in GR the evolution of the dust perturbations is not
scale dependent) and that there is a scale-dependent feature
in the matter power spectrum [30]. Furthermore, the
growth of large density fluctuations can occur also in back-
grounds that have a negative deceleration parameter. These
surprising results are very different from what one finds in
GR and could be used to constrain some fðRÞ theories
using the integrated Sachs-Wolfe (ISW) effect [31] and the
matter power spectrum [32].
These features can be interpreted by comparing the system

of fourth order equations, which produced them, with the
corresponding equations for two interacting fluids in GR
[33], because they have the same structure, i.e., there are
friction and source terms due to the interaction of the two
effective fluids. On very large and on very small scales, the
system of equations become independent of k, so that the
evolution of the perturbations does not change as a function
of scale and the power spectrum is consequently scale in-
variant. On intermediate scales, the curvature fluid acts as a
relativistic component, whose pressure is responsible for the
oscillations and the dissipation of the small scale perturba-
tions in the same way photons operate in a baryon-photon
system. This suggests that the variables describing the fluc-
tuations in the curvature fluid can be interpreted as represent-
ing the modes associated with the additional scalar degree of
freedom typical of fðRÞ gravity. In this way, the spectrum
can be explained physically as a consequence of the interac-
tion between the additional scalar modes and those resulting
from standard matter. This leads to a large drop of power
when the parameter n is varied by a small amount.
The results described above were obtained assuming

the simple background model G and can therefore only
provide hints about what features to expect in the matter
power spectrum when realistic expansion histories are
considered. To test the robustness of the results presented
in [29], the complete expansion history of the background
FLRW universe for Rn gravity, which resembles the
�CDM model, needs to be found. This is achieved by
integrating the dynamical systems equations so that an
orbit representing a cosmic history passes close to the
matter dominated point G and eventually tends toward
the late-time attractorC. In [17] it was shown that if 1:36<
n< 1:5, G and C, respectively, represent a decelerated
matter dominated solution and late-time power-law accel-
eration. The equations for�m andR can then be solved for
this background to obtain a matter power spectrum that can
be directly compared with the one found for �CDM.
Other attempts have tried to encapsulate the effects of

the extra fðRÞ terms in the involved equations by parame-
trizing some relevant functions. Inspired by the behavior
fðRÞ models in the quasistatic limit, Bertschinger and
Zukin [34] originally parametrized the two gravitational
potentials in terms of a time and scale-dependent Newton’s
constant and the so-called gravitational slip. Under these
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assumptions numerical codes that compute the growth of
cosmological perturbations have been implemented. For
instance several parametrizations using MGCAMB [35] and
more recently CLASSgal [36] are available.

This paper is organized as follows: In Sec. II we give the
basic equations governing the background evolution of
FLRWmodels and briefly present the key variables needed
to study cosmological perturbations in fðRÞ gravity using
the covariant approach. In Sec. III we discuss the cosmol-
ogy of Rn gravity and describe their main features by
recasting the cosmological equations as an autonomous
system of first order equations. We then integrate these
equations for different values of the parameter n using
initial conditions in the radiation dominated epoch that
have Hubble and deceleration parameters equal to their
�CDM values. For such initial conditions, we compare the
cosmological background evolution with baryon acoustic
oscillations (BAO) data in Sec. IV. We find that it is
impossible to have cosmic histories that simultaneously
provide Hubble and deceleration parameters close to the
�CDM values today. We also find that the BAO analysis
corroborates the inviability of these models at the cosmo-
logical evolution level. In Sec. V we determine the matter
power spectra for the expansion histories given in III and
compare them with what is obtained by integrating the
perturbation equations for the matter dominated solution
G. We find that although the broad large and small scale
features of the power spectrum are largely the same as in
[30], the scale-dependent features are no longer present
when the complete background expansion history is con-
sidered. We then use the observed matter power spectrum
based on both luminous red galaxies (LRG) [37] and the
DR9 CMASS galaxy sample observed by the Sloan Digital
Sky Survey (SDSS)-III [38] to directly constrain this class
of fðRÞ theories of gravity. We find that the models con-
sidered give power spectra in the SDSS-III wave-number
interval, which are in good agreement with the available
data for the recent DR9 CMASS sample.

Finally in Sec. VI we discuss the results and give an
outline of future work to be done.

Unless otherwise specified, natural units (ℏ ¼ c ¼ kB ¼
8�G ¼ 1) will be used throughout this paper, and Latin
indices run from 0 to 3. The symbol r represents the usual
covariant derivative, we use the �;þ;þ;þ signature and
the Riemann tensor is defined by

Ra
bcd¼Wa

bd;c�Wa
bc;dþWe

bdW
a
ce�Wf

bcW
a
df; (1)

where the Wa
bd are the Christoffel symbols (i.e., symmet-

ric in the lower indices), defined by

Wa
bd ¼ 1

2
gaeðgbe;d þ ged;b � gbd;eÞ: (2)

The Ricci tensor is obtained by contracting the first and the
third indices

Rab ¼ gcdRcadb: (3)

Finally the action for fðRÞ gravity can be written in these
units as

A ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
fðRÞ þLm

�
; (4)

where R is the Ricci scalar, f is the general differentiable
(at least C2) function of the Ricci scalar and Lm corre-
sponds to the matter Lagrangian.

II. THE COSMOLOGICAL EQUATIONS
FOR fðRÞ GRAVITY

A. The background FLRW equations

In a FLRW universe, the nontrivial field equations lead
to the following equations governing the expansion history
of the Universe:

3 _H þ 3H2 ¼ � 1

2f0
½�m þ 3pm þ f� f0R

þ 3Hf00 _Rþ 3f000 _R2 þ 3f00 €R�; (5)

3H2 ¼ 1

f0

�
�m þ Rf0 � f

2
� 3Hf00 _R

�
; (6)

i.e., the Raychaudhuri and Friedmann equations [39]. Here
H is the Hubble parameter, which defines the scale factor
aðtÞ via the standard relation H ¼ _a=a, the Ricci scalar is

R ¼ 6 _H þ 12H2; (7)

and f0, f00 and f000 abbreviate @nf=ð@RÞn for n ¼ 1 . . . 3,
respectively. The energy conservation equation for stan-
dard matter

_�m ¼ �3H�mð1þ wÞ (8)

closes the system, where w is the barotropic equation of
state.
Note that the Raychaudhuri equation can be obtained

from the Friedmann equation, the energy conservation
equation and the definition of the Ricci scalar. Hence,
any solution of the Friedmann equation automatically
solves the Raychaudhuri equation.

B. Density perturbations in fðRÞ gravity
Density (scalar) perturbations may be extracted from

any first order tensor Aab orthogonal to the 4-velocity ua

by using a local decomposition [28], so that repeated
application of the operator Da � hbarb on Aab extracts
the scalar part of the perturbation variables. In this way we
can define the following scalar quantities:

�m ¼ a2

�m

D2�m; Z ¼ 3a2D2H; C ¼ S4D2 ~R;

R ¼ a2D2R; < ¼ a2D2 _R; (9)
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where hab is the projection tensor into the rest spaces
orthogonal to ua. �m

a and Z, respectively, represent
the fluctuations in the matter energy density �m and
expansion �, and R and < determine the fluctuations in
the Ricci scalar R and its momentum _R. This set of
variables completely characterizes the evolution of den-
sity perturbations. Then, using eigenfunctions of the
spatial Laplace-Beltrami operator defined in [28],

D2Q ¼ � k2

a2
Q, where k ¼ 2�a=� is the wave number

and _Q ¼ 0, we can expand every first order quantity in

the above equations, so for example in the case of �m

we have

�mðt;xÞ ¼
X

�ðkÞ
m ðtÞQðkÞðxÞ; (10)

where
P

stands for either a summation over a discrete
index or an integration over a continuous one. In this
way, it is straightforward, although lengthy, to derive a
pair of second order equations describing the kth mode
for density perturbations in fðRÞ gravity. They are

€�k
m �

�
ð3w� 2ÞHþ _Rf00

f0

�
_�k
m þ

�
w
k2

a2
þ ðw� 1Þ�m

f0
� w

f

f0

�
�k

m

¼ 1þ w

2

�
�1� 2k2

a2
f00

f0
þ ðf� 2�m þ 6 _RHf00Þ f

00

f02
� 6 _RH

f000

f0

�
R� 3ð1þ wÞ

f0
Hf00 _Rk;

€Rk þ
�
2 _R

f000

f00
þ 3H

�
_Rk þ

�
k2

a2
þ €R

f000

f00
þ _R2 f

ðivÞ

f00
þ 3H _R

f000

f00
þ f0

3f00
� R

3

�
Rk

¼ �
�
1

3
ð3w� 1Þ�m

f00
þ w

1þ w

�
2 €Rþ 2 _R2 f

000

f00
þ 6 _RH

��
�k

m þ 1� w

1þ w
_R _�k

m: (11)

Already on super-Hubble scales, k=aH � 1, a number of
important features can be found that allow one to differ-
entiate from what is obtained in GR [29]. First, it is clear
that the evolution of density perturbations is determined by
a fourth order differential equation rather than a second
order one. This implies that the evolution of the density
fluctuations contains, in general, four modes rather than
two and can give rise to a more complex evolution than the
one of GR. Second, the perturbations are found to depend
on the scale for any equation of state for standard matter
(while in GR the evolution of the CDM perturbations are
scale invariant). This means that even for dust, the evolu-
tion of superhorizon and subhorizon perturbations are dif-
ferent. Third, it is found that the growth of large density
fluctuations can occur also in backgrounds in which the
expansion rate is increasing in time. This is in striking
contrast with what one finds in GR and would lead to
a time-varying gravitational potential, putting tight
constraints on the ISW for these models.

Let us now turn to the case of a general wave mode k.
One of the most instructive ways of understanding the
details of the evolution of density perturbations for a
general k is to compute the matter transfer function
TðkÞ, defined by the relation [40] h�mðk1Þ�mðk2Þi ¼
Tðk1Þ�ðk1 þ k2Þ, where ki are two wave vectors charac-
terizing two Fourier components of the solutions of (11)
and Tðk1Þ ¼ Tðk1Þ because of isotropy in the distribution
of the perturbations. This quantity tells us how the fluctua-
tions of matter depend on the wave number at a specific
time and carries information about the amplitude of the
perturbations (but not on their spatial structure). In GR, the
transfer function on large scales is constant, while on small
scales it is suppressed in comparison with the large scales

(i.e., modes that entered the horizon during the radiation
era) [41]. In the case of pure dust in GR the transfer
function is scale invariant. Substituting the details of the
background, the values of the parameter n, the barotropic
factor w and the wave number k into (11), one is able to
obtain TðkÞ numerically.
One can easily see from expressions (11) that the

matter power spectrum in fðRÞ gravity theories is further
processed after equality and would differ from the stan-
dard �CDM power spectrum P�CDM

k when evaluated

today. The latter is widely assumed to represent accu-
rately the evolution of perturbations till radiation-matter
equality, since before that the effects of any modification
to the usual concordance model needs to be negligible in
order to preserve the cosmological standard model pre-
dictions in the radiations-dominated epoch such as the
primordial light elements abundances during big bang
nucleosynthesis.
Therefore, these two power spectra, when evaluated

today, would be related linearly by a transfer function
TðkÞ given by

PfðRÞ
k ¼ TðkÞP�CDM

k jeq; (12)

where TðkÞ / j�k
mj2today and�k

m is obtained from the system

of equations (11).

On linear scales, PfðRÞ
k will in general depend on both the

fðRÞ model and the scale k, therefore differing from the
�CDM model, where it is scale invariant.
In the GR limit, fðRÞ ¼ R, (11) reduces to the standard

equations for the evolution density perturbations in GR,
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€�k
m � ð3w� 2ÞH _�k

m

þ
�
w
k2

a2
þ

��1þ 2w� 3w2

2

�
�m

�
�k

m ¼ 0; (13)

Rk ¼ ð1� 3wÞ�m�
k
m; (14)

and one can easily see that the linear evolution of CDM
density perturbations for sub-Hubble (k � aH) scales in
�CDM is given by the well-known result

�00k
m þH�0k

m � 1

2
a2�m�

k
m ¼ 0; (15)

where H ¼ a0=a and the prime (only for this equation)
denotes the derivative with respect to conformal time.

Notice that according to (15) the evolution of the Fourier
modes does not depend upon k. This means that for�CDM
models on sub-Hubble scales, once the density contrast
starts to grow after matter-radiation equality, evolution
only changes the overall normalization of the matter power
spectrum PðkÞ, but not its shape.

III. DETERMINING THE EXPANSION
HISTORY FOR Rn GRAVITY

To proceed, we need to fix our theory of gravity. The
simplest and most widely studied form of fðRÞ gravita-
tional theories is fðRÞ ¼ �H2

0ðR=H2
0Þn, where � ¼ �ðnÞ is

a nondimensional coupling constant and H0 is the �CDM
value of the Hubble parameter today. For this class of
models the cosmological equations associated with a
FLRW universe are particularly easy to analyze.

However, the aim of this investigation is to show that
studies of different fðRÞ-gravity models that share a similar
background expansion history with the �CDM model can
in principle provide useful constraints on the viability of
these models via the power spectra of matter density
perturbations they produce and with the help of BAOs as
standard rulers of known geometrical information.

The first step in the implementation of the dynamical
systems (DS) approach for determining the expansion
history for Rn gravity is the definition of the key DS
variables. Following [17], we introduce the dimensionless
variables

x ¼ _Rðn� 1Þ
HR

; y ¼ Rð1� nÞ
6nH2

;

�d ¼ �d

3n�H2Rn�1
; �r ¼ �r

3n�H2Rn�1
:

(16)

In terms of these variables, the Friedmann equation (6)
takes the form

1þ xþ y��d ��r ¼ 0: (17)

An autonomous system of ordinary differential equations,
which are equivalent to cosmological equations (5)–(8) can
be obtained by differentiating (16) with respect to redshift

z. Here we give the equations for dust (w ¼ 0), while
those for a general barotropic equation of state w are
presented in [17]:

�ðzþ 1Þ dx
dz

¼ �x� x2 þ ð4� 2nþ nxÞy
n� 1

þ�d;

�ðzþ 1Þ dy
dz

¼ 4yþ ðxþ 2nyÞy
n� 1

;

�ðzþ 1Þ d�d

dz
¼

�
1� xþ 2ny

n� 1

�
�d;

�ðzþ 1Þ d�r

dz
¼

�
�xþ 2ny

n� 1

�
�r:

(18)

The dimensionality of the resultant system (18) can be
reduced further using the Friedmann constraint (17). The
evolution of the Hubble parameter can then be determined
by writing (7) in terms of the DS variables:

ð1þ zÞ dh
dz

¼ hð2þ nyÞ
n� 1

; (19)

where h ¼ H=H0. Furthermore the deceleration parameter
can be determined directly from y:

q ¼ ny

ðn� 1Þ þ 1: (20)

In [17] it was shown that these equations admit a number
of fixed points of which two are particularly interesting.
The points, labeled G and C in [17], correspond to two
cosmologically interesting exact solutions: G represents a
matter dominated saddle point, which in the case of dust

has a ¼ a0t
2n=3, and C is the late-time attractor with a ¼

a0t
ð1�nÞð2n�1Þ

n�2 . In [17] it was also shown that C and G, re-
spectively, represent decelerated and accelerated phases of
the Universe with positive energy density if n lies in the
range 1:36< n< 1:5.
With this in mind let us integrate (18) by fixing the initial

conditions for the DS variables (16) to be identical to their
�CDM values in the radiation dominated era (at a redshift
z ¼ 6000) and determine the expansion history for Rn

models with eight different values for the exponent n > 1

TABLE I. Present-day values of the Hubble h0 � HðtodayÞ=
H0 and deceleration (q0) parameters for the Rn models under
consideration. H0 corresponds to the �CDM Hubble parameter
value today. Only n ¼ 1:4 provides acceleration at the present
time, whereas n ¼ 1:29 gives the closest value for h0 to �CDM.
With regard to the �2 analysis for BAO to be studied in Sec. IV
n ¼ 1:29 provided the best value (�2

BAO ¼ 16:11) but well above
the one provided by �CDM (�2

BAO ¼ 4:51). The remaining

values of exponent n give �2
BAO values showing incorrect fits

to BAO data.

n 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4

h0 0.65 0.75 0.94 0.99 1.44 2.43 7.34 159.67

q0 0.39 0.20 0.10 0.25 0.36 0.35 0.22 �0:17
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between n ¼ 1:1 and 1.4 in order to allow the possibility of
late-time acceleration. In this way we can determine for
which values of n we obtain present-day values for qðzÞ
andHðzÞ consistent with the�CDMmodel. It is clear from
the results in Table I that it is not possible for Rn gravity to
admit FLRW cosmic histories that simultaneously have
present-day values of the Hubble and deceleration parame-
ters close to their �CDM values today if initial conditions
are chosen in order that the expansion history is close to the
�CDM model at early times.

IV. BAO CONSTRAINTS

As standard rulers, BAO constraints provide an ideal
arena in the analysis of cosmic expansion history. This is
mainly because these oscillations correspond to a preferred
length scale in the early universe that can be predicted from
CMB measurements [42]. Some relevant quantities for
these analyses are the comoving distance from an observer
to some redshift z, which is given by

rðzÞ ¼ 1

H0

Z z

0

dz

hðzÞ ; (21)

the scaled distance to recombination, the comoving sound
horizon at recombination and the dilation scale, respec-
tively, are given by [43]

R ¼ H0

ffiffiffiffiffiffiffiffiffi
�0d

p
rðzCMBÞ; (22)

rsðzCMBÞ ¼ 1

H0

Z zCMB

1
csðzÞ
hðzÞ dz; (23)

DVðzBAOÞ ¼
��Z zBAO

0

dz

HðzÞ
�
2 zBAO
HðzBAOÞ

�
1=3

; (24)

where csðzÞ ¼ ½3ð1þ �Rb

1þzÞ��1=2 is the sound speed of the

photon-baryon relativistic plasma with photon-baryon den-
sity ratio

�R b ¼ 3

4

�b
~h2

��
~h2

¼ 3:15� 104 �b
~h2
�
TCMB

2:7 K

��4
: (25)

Here ~h is the Hubble uncertainty parameter defined by

H0 ¼ 100~h, and we have used the Planck result of ~h ¼
0:6711 [44] for this analysis, as well as zCMB ¼ 1021:44.
Following the methods presented in [43] we study, for

the different n values considered, the BAO data likelihood
corresponding to recent measurements [45] of the 6dF
Galaxy Survey at z ¼ 0:1 [46], the SDSS DR7 at z ¼
0:2, 0.35 [47,48], and the WiggleZ at z ¼ 0:44, 0.60, 0.73
[42]. Thus we define

XBAO ¼

rsðzCMBÞ
DV ð0:106Þ � 0:336

rsðzCMBÞ
DV ð0:2Þ � 0:1905

rsðzCMBÞ
DV ð0:35Þ � 0:1097

rsðzCMBÞ
DV ð0:44Þ � 0:0916

rsðzCMBÞ
DV ð0:6Þ � 0:0726

rsðzCMBÞ
DV ð0:73Þ � 0:0592

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

(26)

to calculate the �2 from the BAO as

�2
BAO ¼ XBAO

TCBAO
�1XBAO: (27)

where CBAO
�1 corresponds to the inverse covariance

matrix as given in [42]. The results found for the models
under study showed that the �2

BAO analysis proves that the

cosmological evolution as provided by the models under
study cannot achieve the goodness of �CDM (�2

BAO ¼
4:51) and that only for n ¼ 1:29 (�2

BAO ¼ 16:11) the fit

to BAO data can be considered of the same order of
magnitude, though much bigger, than �CDM. In fact, for
the model interval n ¼ ½1:1; 1:4� the �2

BAO minimum lies at

n ¼ 1:29 being the �2
BAO value strongly dependent on the

exponent n so that for other values of n the obtained �2’s
rapidly departed from this minimum.

V. THE MATTER POWER SPECTRUM
AND SDSS CONSTRAINTS

Let us now turn to the matter power spectrum. Taking
the dominant component to be dust, the system (11) can be
written in terms of the dynamical variables:

ð�1þ nÞ2ð1þ zÞ
2ny

R̂k0 � 3h2½ð�1þ nÞð1þ ð�2þ nÞ�dÞ þ ð�2þ nÞy� þ k̂2ð�1þ nÞ2ð1þ zÞ2
6h2ny

R̂k

þ h2ð1þ zÞ2�k00
m þ h2

½ð�1þ nÞ�d þ y�ð1þ zÞ
n� 1

�k0
m � 3h2�d�

k
m ¼ 0;

R̂k00 � ½4� 4�d þ 4yþ nð�2þ 2�d � 3yÞ�
ð�1þ nÞð1þ zÞ R̂k0 þ

�
k̂2

h2
þ ð�2þ nÞ½��2

d � ð�1þ yÞ2 þ�dð1þ nþ 2yÞ�
ð�1þ nÞ2ð1þ zÞ2

�
R̂k

þ 6h2nyð1��d þ yÞ
ð�1þ nÞ2ð1þ zÞ �k0

m þ 6h2n�dy

ð�1þ nÞ2ð1þ zÞ2 �
k
m ¼ 0; (28)

where prime denotes derivative with respect to redshift and the dimensionless quantities R̂k ¼ Rk=H2
0 and k̂ ¼ k=H0

have been introduced. Note that Eqs. (28) are valid only for n � 1.
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FIG. 1 (color online). The left panels show the transfer function TðkÞ ¼ j�k=�
�CDM
k ðz ¼ 2000Þj2 evaluated today (z ¼ 0)

for wave number k (in hMpc�1 units) in the range 0.005 to 0.3 for the initial condition sets I, II and III as described in the
bulk of this investigation. The transfer functions TðkÞ on the left panels have been normalized in such a way that the curves
coincide on large scales. On the central and right panels we present the corresponding linear matter power spectra PðkÞ
for �CDM and Rn models for n ¼ 1:1, 1.2, 1.27, 1.29, 1.3, 1.31, 1.33 and 1.4. Data correspond to SDSS 2006 [37] (central panel)
and SDSS-III data [38] (right panel), respectively. All the power spectra were assumed to have an arbitrary overall normalization
at the scale k ¼ 0:01 hMpc�1 (central panel) and k ¼ 0:02 hMpc�1 (right panel) in order to find the best fit to the data.
Conditions I and II lead to power spectra in complete disagreement with the observed data. Conditions III, due to the almost
flatness of the spectra in the range covered by data, present a good fit to the data. On the bottom panels (central and right) we
show in a window the relative discrepancy between the �CDM and the Rn fits power spectra for every studied exponent. For
SDSS 2006 data, the smallest discrepancy in scales k > 3� 10�2 hMpc�1 happens for n ¼ 1:1, whereas for smaller scales, all the
remaining values of n provide a similar relative error around 5� 10�2. For DR9 SDSS-III data, the smallest discrepancy (order
10�5) happens for n ¼ 1:3 in the whole scale range despite some punctual values of k where other exponents may present smaller
relative errors with respect to �CDM, whereas for smaller scales, all the remaining values of n provide a similar relative error
around 5� 10�2.
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SDSS correlation data either from LRG or from DR9
have been used to test the predictions from the �CDM
power spectrum obtained from linear perturbation theory
to high accuracy. For instance, �2 � 11:2, degrees of free-
dom (d:o:f: ¼ 14) for LRG [37] and �2 ¼ 61:1, (d:o:f: ¼
59) for DR9 [49]. In what follows, we will do the same for
this class of fðRÞ theories of gravity.

To do this we first determine the cosmological back-
ground evolution as described in the previous section and
then use these results to solve the system of equations (28)
in order to obtain the density contrast today. Then, by
applying expression (12) to these results, one can obtain

the fully processed power spectra PfðRÞ
k for the above

models, which can be compared to the �CDM predictions
for LRG and DR9 data.

Before proceeding, let us mention that three sets of
different initial conditions were considered for the system
(28) in order to determine how sensitive the final processed
power spectrum is to changes in these values:

(i) I: �k
mjin ¼ R̂kjin ¼ 10�5, �k0

mjin ¼ R̂k0 jin ¼ 10�5,

(ii) II: �k
mjin ¼ R̂kjin ¼ 10�5, �k0

mjin ¼ R̂k0 jin ¼ 10�8,

(iii) III: �k
mjin ¼ R̂kjin ¼ 10�5, �k0

mjin ¼ R̂k0 jin ¼ 0,
where the subscript ‘‘in’’ refers to the initial redshift zin ¼
2000. The choice of sets I and II as initial conditions for the

system (11) can be understood as providing scale-invariant

initial conditions for the variables �k
m and R̂k

, and their

first derivatives are all taken to be small (but nonzero) at

the initial redshift. On the other hand, in set III we set the

first derivatives of �k
m and R̂k

to zero at z ¼ z0. This
choice has important consequences for the obtained

spectra.
For each value of n, we present in Fig. 1 both the transfer

functions and the processed power spectra for all the initial

conditions sets just mentioned. We can see that for these

models the transfer functions have a nearly flat plateau on

large scales [30] regardless of the set of initial conditions.

On intermediate scales, however, the density contrast be-

havior and its amplitudes today depend both upon the value

of n and the initial conditions. The left panels in Fig. 1

clearly illustrate this fact.
Then, by using expression (12) for the transfer function,

one can obtain the processed power spectra and compare
these theoretical results with the LRG data. We find that
initial conditions I and II are not able to provide a good fit
to the data catalogs due to the fact that for the required
scales the spectra are not flat but significantly change with
the wave number k (see the left panels in Fig. 1). On the
other hand, initial conditions III give power spectra that are

TABLE III. Fits to the SDSS CMASS DR9 data for Rn cosmology by using the set of initial
conditions III: eight different values of exponent n were investigated from n ¼ 1:1 to 1.4. Values
for �2 and the confidence region � are presented in the second and third rows, respectively.
The data to be fitted by the theoretical spectra are taken from [38]. The fit provided by �CDM
(�2 ¼ 61:1=59 � 1:03559) is slightly improved by the n ¼ 1:3 parameter value. The final row
gives the suppression in the overall initial amplitude required to get the best fits. For all the
values, this suppression turns out to be smaller than 15% and is therefore in the experimental
uncertainty interval for this quantity. For the best fit n ¼ 1:3 the corresponding suppression is
10�3%, and very good fits are also obtained for n ¼ 1:27, 1.29, 1.33 and 1.4 with similar
suppressions.

n exponent 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4

�2 4.5463 1.0507 1.0366 1.0357 1.0355 1.0458 1.0360 1.0357

� exclusion 1.874 0.123 0.0316 0.012 0.002 0.101 0.020 0.001

% suppression 13 1.5 0.1 0.01 0.001 1 0.04 0.009

TABLE II. Fits to the SDSS 2006 data for Rn cosmology by using the set of initial conditions
III: eight different values of exponent n were investigated from n ¼ 1:1 to 1.4. Values for �2 and
the confidence region � are presented in the second and third rows, respectively. The data to be
fitted by the theoretical spectra are taken from [37]. The fit provided by �CDM (�2 ¼ 11:1996)
is not improved by any of these parameter values. The final row gives the suppression in the
overall initial amplitude required to get the best fits. For all the values, this suppression turns out
to be smaller than 30% and is therefore in the experimental uncertainty interval for this quantity.
One can see that the best fit corresponds to the value n ¼ 1:29 with a suppression of 4.45% and
good fits are also obtained for n ¼ 1:3, 1.31 and 1.33 with similar suppressions.

n exponent 1.1 1.2 1.27 1.29 1.3 1.31 1.33 1.4

�2 15.1394 13.1839 13.0184 13.0093 13.0104 13.0098 13.0102 13.0128

� exclusion 1.9849 1.4086 1.3486 1.3452 1.3457 1.3454 1.3456 1.3465

% suppression 29.5 7.94 4.75 4.45 4.37 4.33 4.35 4.47
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in good agreement with the data. This is due to the almost-
flat transfer function in the data range. Note, however, that
the initial amplitude was assumed to be a free parameter
that was determined to achieve the best fit.

For this set of initial conditions, Tables II and III show
the �2 analyses for the eight studied Rn models when their
respective spectra evolutions are fitted to the SDSS data.
SDSS 2006 data are assumed to be noncorrelated, whereas
correlations for DR9 data are given in [38]. We also include
the value for the confidence regions � with respect to
�CDM as well as the overall amplitude suppression in
the initial scales to get the best fits after a least square
method analysis. For the SDSS 2006 data, it is clear that
none of the Rn models under consideration acquire the
same goodness of fit as the �CDM model as seen in
Table II in the � exclusion regions. However, for the
DR9 SDSS-III data, one can see that some Rn models,
such as n ¼ 1:3 and also n ¼ 1:27, 1.29, 1.33 and 1.4
provide competitive fits to the �CDM model as seen in
Table III in the � exclusion regions.

For completeness and in order to emphasize the impor-
tance of using the complete expansion history for the
background, we have also given j�k

mj2 for models whose
background evolution is given by the exact saddle point
solution G in the case of dust (w ¼ 0). We do this for the
same parameter values n and initial conditions I, II and III
as shown in Fig. 2. These results agree with previous
investigations [30] that showed how when this background
scale factor is assumed, the spectrum is composed of three
parts corresponding to three different evolution regimes for
the perturbations. In this scenario, on intermediate scales
the interaction between the two fluids (dust and curvature)
is maximized and the curvature fluid acts as a relativistic

component whose pressure is responsible for the oscilla-
tions and the dissipation of the small scale perturbations in
the same way in which the photons operate in a baryon-
photon system [30]. If we compare these results to the left
panel in Fig. 1, we conclude that the scale-dependent
features in Fig. 2 are washed out when the complete
background expansion history is considered; however, the
main large and small scale features of the power spectrum
found in [30] are retained.

VI. DISCUSSION AND FUTURE WORK

In this paper we presented a complete analysis of the
background and matter perturbations for one of the most
widely studied modified gravity theories: Rn gravity with
n * 1. Both the cosmological background evolution
and linear perturbation equations were solved by combin-
ing the dynamical systems approach for the background
and using the 1þ 3 covariant approach to evolve the
matter perturbations, without assuming any intermediate
(quasistatic) approximation.
We solved the background equations for different values

of the parameter n using initial conditions in the radiation
dominated epoch, with Hubble and deceleration para-
meters equal to their �CDM values. For such initial
conditions, we performed a baryon acoustic oscillations
analysis. By using this tool we found that it is impossible to
obtain fits as good as �CDM. We also proved the impos-
sibility of having cosmic histories that simultaneously have
present-day values of these cosmological parameters close
to their �CDM values today. In fact, of the ten models
considered, only n ¼ 1:4 provided a negative deceleration
parameter today, but gave a Hubble parameter completely
incompatible with its observed value, while values around
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FIG. 2 (color online). Saddle-point analysis: scale dependence of the transfer function TðkÞ ¼ j�k=�
�CDM
k ðz ¼ 2000Þj2 evaluated

today (z ¼ 0) for wave number k (in hMpc�1 units) in the range 0.0001 to 0.1 for the initial same conditions I, II and III used in the rest
of this investigation. The transfer functions have been normalized in such a way that the curves coincide on large scales. Both on very
large and on very small scales, the� becomes k independent, so that the evolution of the perturbations does not change as a function of
scale and the transfer function is consequently scale invariant. On intermediate scales the curvature fluid causes the oscillations. The
result is a considerable loss of power for a relatively small variation of the parameter n. As before the shape and amplitudes (i.e., the
increasing or decreasing behavior with k) of the transfer functions depend on the initial conditions I (left), II (center) and III (right). For
example, when n ¼ 1:27 we have decreasing behavior for I and II but increasing behavior for III.

LARGE SCALE STRUCTURE CONSTRAINTS FOR A CLASS . . . PHYSICAL REVIEW D 88, 044050 (2013)

044050-9



n ¼ 1:29 gave the closest value for the present-day Hubble
parameter to�CDM but exhibits no late time acceleration.
The value n ¼ 1:29 provided the best �2 when its cosmo-
logical evolution is compared with BAO data but well
above the �CDM one.

We then used the observed matter power spectrum based
on both luminous red galaxies (2006) and the DR9 CMASS
galaxy sample (2012) in the Sloan Digital Sky Survey to
further constrain these models. For the studied exponents,
we found that all the models gave rise to almost-flat trans-
fer functions in the Sloan wave-number interval provided
very special initial conditions are chosen. In this case the
best fit to the data for 2006 data was found for the value
n ¼ 1:29 with a suppression of 4.45%, and good fits were
also obtained for n ¼ 1:3, 1.31 and 1.33. The exponent
n ¼ 1:4 (the only one providing acceleration today) re-
quired a suppression slightly bigger (4.47%). With regard
to DR9 2012 data and partially thanks to the accuracy in
this catalog, most of the studied Rn models provided good
fits to the data being n ¼ 1:3 with a suppression of 10�3%
the best fit slightly improved by �CDM. Other exponents
(1.27, 1.29, 1.33 and 1.4) also provided good fits with
slightly bigger suppressions.

Regardless of the large structure constraints none of the
studied exponents were, however, able to fit the baryon
acoustic oscillations data as well as the �CDM model,
and the obtained �2 were much bigger than the best-
fit model as provided by �CDM. It is clear from this
analysis that Rn gravity does not successfully meet any
of the cosmology requirements for it to be considered

as a viable alternative to the standard model. It is actually
a well-known result [50] that these models are tightly
constrained by solar system tests. This work does, how-
ever, illustrate in depth the utility of our approach, and it
should be possible to use these techniques with the most
updated available data to constrain which fðRÞ theories
remain consistent with current data even if they are
indistinguishable from the �CDM model at the level of
either the FLRW background or cosmological
perturbations.
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