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We investigate the cosmological solutions of fðR; TÞ modified theories of gravity for a perfect fluid in a

spatially Friedmann-Lemaı̂tre-Robertson-Walker metric through the phase-space analysis, where R is the

Ricci scalar and T denotes the trace of the energy-momentum tensor of the matter content. We explore and

analyze the three general theories with the Lagrangians of minimal gðRÞ þ hðTÞ, pure nonminimal

gðRÞhðTÞ, and nonminimal gðRÞð1þ hðTÞÞ couplings through the dynamical systems approach. We

introduce a few variables and dimensionless parameters to simplify the equations to more concise forms.

The conservation of the energy-momentum tensor leads to a constraint equation that, in the minimal

gravity, confines the functionality of hðTÞ to a particular form, and hence relates the dynamical variables.

In this case, acceptable cosmological solutions that contain a long enough matter-dominated era followed

by a late-time accelerated expansion are found. To support the theoretical results, we also obtain

numerical solutions for a few functions of gðRÞ, and the results of the corresponding models confirm

the predictions. We separate the solutions into six classes which demonstrate more acceptable solutions

and there is more freedom to have the matter-dominated era than in fðRÞ gravity. In particular, there is a

new fixed point which can represent the late-time acceleration. We draw different diagrams of the matter

densities (consistent with the present values), the related scale factors, and the effective equation of state.

The corresponding diagrams of the parameters illustrate that there is a saddle acceleration era which is a

middle era before the final stable-acceleration de Sitter era for some models. All presented diagrams

determine radiation, matter, and late-time acceleration eras very well. The pure nonminimal theory suffers

from the absence of a standard matter era, though we illustrate that the nonminimal theory can have

acceptable cosmological solutions.

DOI: 10.1103/PhysRevD.88.044048 PACS numbers: 04.50.Kd, 95.36.+x, 98.80.�k, 98.80.Jk

I. INTRODUCTION

Since the birth of general relativity (GR) in 1915, the
theory has faced the appearance of new ideas seeking to
change or even replace it in favor of an alternative one1

which could solve different aspects or at least some parts of
its incompleteness and shortcomings. These novel ideas
mainly consist of some modifications or generalizations
which would challenge GR in a geometrical background.
Some of these theories introduce extra dimensions, e.g., the
Kaluza–Klein theories [3] and braneworld scenarios [4].
Other alternatives are scalar-tensor theories, e.g., the
Brans–Dicke theory [5] and higher-order/modified grav-
ities [2,6–12]. Another possibility is to introduce some new
cosmic fluids, e.g., dark matter [13–17], which should give
rise to clustered structures, and dark energy [18–22], which
is responsible for the observed accelerated expansion of the
Universe. In particular, the fundamental incompatibility
with quantum theory and the observational inability to
explain the flatness of galaxy rotation curves [23,24] can
be regarded as insufficiencies of GR. Also, the existing
problems of the isotropic and homogeneous cosmological
solution of GR (the standard big bang cosmology), such as

the horizon and the flatness problems [25], and the
absence of solutions including the well-accepted states
of cosmological evolution in the past and future, namely,
an accelerating-phase solution prior to the radiation-
dominated era, e.g., inflation [26–30], and an acceleration
phase needed to explain the present accelerated expansion
observed by, e.g., type Ia supernovae (SNIa) observations
[31–35], large-scale structure [36,37], baryon acoustic
oscillations [38–40], the cosmic microwave background
radiation (CMBR) [41–43], and weak lensing [44]. Of
course, in spite of the above deficiencies, GR has had
many successes, such as matching the experimental results
for the precession of Mercury’s orbit [45–47], the Lense–
Thirring gravitomagnetic precession [48], the gravitational
deflection of light by the sun [45–47], and the gravitational
redshift2 [45–47]. On the whole, the results of Einstein’s
theory when considering the development of a general
phenomenological framework, i.e., the parametrized
post-Newtonian formalism, determine that it is the best
known metric theory of gravity [46].
Among the extended theories of gravity, there are at

least two main motivations3 for employing the higher-
order gravities, i.e., those in which the Einstein-Hilbert
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1For example, see Refs. [1,2] and references therein.

2However, any relativistic theory of gravitation consistent with
the principle of equivalence will predict a redshift.

3See, e.g., Ref. [6].
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action is modified by higher-order curvature invariants
with respect to the Ricci scalar. The first motivation has
a theoretical background and is related to the nonrenor-
malizability of GR [49,50] and to the fact that GR
cannot be quantized conventionally. Regarding this is-
sue, some authors have shown that the inclusion of
higher-order terms can solve this problem [51,52]. The
other motivation is related to the recently achieved data
in astrophysics and cosmology. Two contemporary
pieces of evidence, which are referred to as dark matter
and dark energy, have challenged our knowledge about
the Universe and have accounted for the first signals of a
breakdown of GR. It is also worth mentioning that the
concordance or �CDM model [53]—the simplest model
which adequately fits the present observations and is
supported by an inflation scenario4—can account for
an accelerating phase in the very early and late
Universe. However, the �CDM model suffers from the
well-known cosmological problem originating from the
cosmological constant pertaining to the vacuum energy
[54–56]. That is, the cosmological constant is tremen-
dously small with respect to the vacuum energy that is
defined in particle physics. With regard to this, a mecha-
nism is needed to get such a small value to match the
present observations, and dynamical dark energy models
contain such mechanisms [57,58].

fðRÞ gravities, as the simplest family of the higher-order
gravities, are obtained by replacing the Ricci scalar with a
function fðRÞ in the Einstein-Hilbert action. Generally,
every new gravity theory introduced as an alternative to
GR should be tested in two realms; that is, the weak-field
tests, i.e., those that can elaborate whether the theory leads
to the known Solar System observations, and the cosmo-
logical tests which inspect the theory to find at least a
solution that matches the present accelerated expansion
observations. fðRÞ gravity theories are not excepted from
these examinations. With regard to these issues, a few
authors have claimed that the Solar System tests rule out
most fðRÞmodels [59–61], though others do not agree with
these results [8]. However, these issues do not seem to be
settled completely; see, e.g., Refs. [9,12]. Despite the
results of local gravity tests, one can still look at these
theories for cosmological solutions as an independent cri-
terion [62]. In this sense, these theories can be considered
as fðRÞ dark energy models, implying that they can play
the role of dark energy without using a cosmological
constant, i.e., they can encompass these problems in a
self-consistent scheme. Nevertheless, in addition to fðRÞ
gravities, there are numerous alternative gravity theories
that claim to cure the problems of dark energy and infla-
tion, in which—up to now—most of the physical content

of these theories has been widely explored; see, e.g.,
Refs. [2,22].
In this work, we purpose to study the cosmology of the

so-called fðR; TÞ gravity, first introduced in Ref. [63] and
studied in Refs. [64–71]. The theory of fðR; TÞ gravity
generalizes fðRÞ theories of gravity by the incorporation
of the trace of the energy-momentum tensor in addition to
the Ricci scalar. The justification for the dependence on
T comes from inductions arising from some exotic fluid
and/or quantum effects (conformal anomaly5). Actually,
this induction point of view adopts or links with the known
proposals, such as geometrical curvature inducing matter, a
geometrical description of physical forces, and a geomet-
rical origin for the matter content of the Universe.6 In
Ref. [63], the field equations of some particular models
were presented, and in particular scalar field models
fðR; T�Þ were analyzed in detail with a brief consideration
of their cosmological implications. Also, the equation of
motion of the test particle and the Newtonian limit of this
equation were further analyzed in Ref. [63]. Up to now, the
issues which have been investigated along with this modi-
fied theory are the energy conditions [65], thermodynamics
[66–68], anisotropic cosmology [69], the cosmology in
which the representation employs an auxiliary scalar field
[64], the reconstruction of some cosmological models [70],
and scalar perturbations [71]. Also, a further generalization
of this theory has been proposed recently in Refs. [73,74].
Incidentally, in the literature authors have worked on
a theory of gravity called ‘‘the fðTÞ gravity’’ (see, e.g.,
Ref. [75] and references therein), where T in this theory is
the torsion scalar arising from the torsion tensor in a
similar way as the curvature scalar arises from the curva-
ture tensor, and which is completely different from fðR; TÞ
gravity.
On the other hand, fðR; TÞ gravity may be considered as

a correction or generalization of fðRÞ gravities as long as
cosmological considerations are addressed. In this regard,
we employ fðR; TÞ gravity in an extended version of (and
with terminology similar to) fðRÞ gravity employed in
Ref. [76]. Hence, in the forthcoming sections, we theoreti-
cally investigate the cosmological solutions of fðR; TÞ
models and compare the results with the corresponding
fðRÞ cosmological models of Ref. [76]. To support the
theoretical results, we also obtain numerical solutions. In
Sec. II, we derive the equations of motion (EOM) for
fðR; TÞ gravity and show that in this case the conservation
of the energy-momentum tensor leads to a constraint equa-
tion that must be satisfied by any function of fðR; TÞ. For
example, a minimal coupling of the form fðR; TÞ ¼
gðRÞ þ hðTÞ restricts the form of the function hðTÞ.
Then, we introduce a number of variables to simplify the
equations for later applications. In Sec. III, we analyze the

4Such a scenario is needed because the accelerated phase in
the very early Universe should end to connect to a radiation-
dominated phase; however, a cosmological constant cannot ful-
fill this requirement [25].

5See, e.g., Refs. [49,72].
6See, e.g., Refs. [1,72] and references therein.
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cosmological solution through the dynamical systems ap-
proach. We also consider the minimal combination, and
obtain the corresponding solutions and the conditions for
the existence of acceptable solutions. In Sec. IV, we inves-
tigate the numerical results for several functions of fðR; TÞ
in order to support the theoretical outcomes. In Secs. Vand
VI, we extend the discussion to the nonminimal combina-
tions, and finally, we summarize the obtained results in the
last section.

II. FIELD EQUATIONS OF THE THEORY

In this section, we obtain the field equations of fðR; TÞ
gravity and then introduce some dimensionless variables to
simplify the corresponding equations. The action can be
written in the form

S ¼
Z ffiffiffiffiffiffiffi�g

p
d4x

�
1

16�G
fðR; TðmÞÞ þ LðmÞ þ LðradÞ

�
; (2.1)

where R is the Ricci scalar, TðmÞ � g��TðmÞ
�� is the trace of

the energy-momentum tensor, the superscript m stands for

the dust matter, fðR; TðmÞÞ is an arbitrary function of the

Ricci scalar and TðmÞ, LðmÞ and LðradÞ are the Lagrangians of
the dust matter and radiation, g is the determinant of the

metric, and we set c ¼ 1. As TðradÞ ¼ 0, the trace of the
radiation energy-momentum tensor does not play any role

in the function of fðR; TðmÞÞ and henceforth we drop the

superscriptm from the trace TðmÞ unless it is necessary. The
energy-momentum tensor is usually defined as the Euler-
Lagrange expression of the matter Lagrangian, i.e.,

T�� � � 2ffiffiffiffiffiffiffi�g
p �½ ffiffiffiffiffiffiffi�g

p ðLðmÞ þ LðradÞÞ�
�g�� ; (2.2)

and if one assumes that both the Lagrangians depend only
on the metric and not on its derivatives, one will get

T�� ¼ g��½LðmÞ þ LðradÞ� � 2
@½LðmÞ þ LðradÞ�

@g�� : (2.3)

By the metric variation of the action (2.1), the field
equations are7

FðR; TÞR�� � 1

2
fðR; TÞg�� þ ðg��h�5�5�ÞFðR; TÞ

¼ ð8�GþF ðR; TÞÞTðmÞ
�� þ 8�GTðradÞ

�� ; (2.4)

where it is helpful to define the derivatives with respect to
the trace T and the Ricci scalar R as

F ðR; TÞ � @fðR; TÞ
@T

and FðR; TÞ � @fðR; TÞ
@R

; (2.5)

and we have used

g��
�TðmÞ

��

�g�� ¼ �2TðmÞ
�� : (2.6)

Also, by contracting Eq. (2.4), we have

FðR; TÞRþ 3hFðR; TÞ � 2fðR; TÞ ¼ ð8�GþF ðR; TÞÞT:
(2.7)

Now, in this model, we assume a perfect fluid and
a spatially flat Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) metric,

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (2.8)

where aðtÞ is the scale factor. Let us rewrite Eq. (2.4) in a
standard form similar to GR, i.e.,

G�� ¼ 8�G

FðR; TÞ ðT
ðmÞ
�� þ TðradÞ

�� þ TðeffÞ
�� Þ; (2.9)

where

TðeffÞ
�� � 1

8�G

�
1

2
ðfðR; TÞ � FðR; TÞRÞg��

þ ð5� 5� �g��hÞFðR; TÞ þF ðR; TÞTðmÞ
��

�
:

(2.10)

Regarding the Bianchi identity,8 obviously in fðR; TÞ
gravity the above effective energy-momentum tensor is
not conserved. Thus, by applying the conservation of the
energy-momentum tensor of all matter and knowing that

r�TðmÞ
�� ¼ 0 ¼ r�TðradÞ

�� , the following constraint must
hold:

3

2
HðtÞF ðR; TÞ ¼ _F ðR; TÞ; (2.11)

where a dot denotes the derivative with respect to the
cosmic time t and HðtÞ ¼ _aðtÞ=aðtÞ is the Hubble parame-
ter. Obviously this relation leads to some restrictions on
the functionality of fðR; TÞ, as we shall see in the next
section. Equations (2.4) and (2.7), by assuming the metric
(2.8), give

3H2FðR; TÞ þ 1

2
ðfðR; TÞ � FðR; TÞRÞ þ 3 _FðR; TÞH

¼ ð8�GþF ðR; TÞÞ�ðmÞ þ 8�G�ðradÞ (2.12)

7By the variational (functional) derivative procedure (see, e.g.,
Refs. [1,77]) and employing the Palatini equation (identity), one
can usually derive field equations; nevertheless, one can consult
the detailed derivation of these field equations in Ref. [63].

8It is well known that the use of the action principle and the
principle of general invariance allows one to make immediate
connections between symmetry principles and conservation
laws, which can be established as inner identities. That is, the
metric variation of each Lagrangian density (as a scalar density)
of weight one—which is a function of the metric and its
derivatives—makes the covariant divergence of the Euler-
Lagrange expression of the Lagrangian density identically van-
ish, e.g., r�T�� � 0; see any text on gravitation, e.g., Ref. [78].
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as the Friedmann-like equation, and

2FðR; TÞ _H þ €FðR; TÞ � _FðR; TÞH

¼ �ð8�GþF ðR; TÞÞ�ðmÞ � 32

3
�G�ðradÞ (2.13)

as the Raychaudhuri-like equation.
In the following, we assume that these functions of

fðR; TÞ can be explicitly written as combinations of a
function gðRÞ and a function hðTÞ, e.g., fðR; TÞ ¼
gðRÞhðTÞ; however, due to the constraint equation (2.11),
their forms will be restricted. Now, it is convenient to
introduce a few dimensionless independent variables to
simplify the obtained equations in the phase space used
in the following sections. These variables are defined as

x1 � � _g0ðRÞ
Hg0ðRÞ ; (2.14)

x2 � � gðRÞ
6H2g0ðRÞ ; (2.15)

x3 � R

6H2
¼ _H

H2
þ 2; (2.16)

x4 � � hðTÞ
3H2g0ðRÞ ; (2.17)

x5 � 8�G�ðradÞ

3H2g0ðRÞ ; (2.18)

x6 � � Th0ðTÞ
3H2g0ðRÞ ; (2.19)

where the prime denotes a derivative with respect to the
argument and we have used R ¼ 6ð _H þ 2H2Þ for the
metric (2.8). However, it will be shown in Sec. III that
these six variables of the phase space reduce to five inde-
pendent variables once the constraint equation (2.11) is
applied. One may also define some other dimensionless
parameters that can play the role of a parametrization in the
determination of the function fðR; TÞ, namely,

m � Rg00ðRÞ
g0ðRÞ ; (2.20)

r � �Rg0ðRÞ
gðRÞ ¼ x3

x2
; (2.21)

n � Th00ðTÞ
h0ðTÞ ; (2.22)

s � Th0ðTÞ
hðTÞ ¼ x6

x4
; (2.23)

where gðRÞ � constant and hðTÞ � constant. Note that,
generally, we have9 m ¼ mðrÞ and n ¼ nðsÞ.
From the Friedmann equations in GR with the FLRW

metric, one finds the relation w ¼ p=� ¼ �1� 2 _H=3H2

for the equation of state. Analogously, if one correspond-
ingly defines an effective equation of state (for an effective

pressure and an effective energy density) as wðeffÞ ¼
pðeffÞ=�ðeffÞ � �1� 2 _H=3H2, then one will obtain the
effective equation of state as follows. First, to facilitate
matching with SNIa observations, let us redefine
Eqs. (2.12) and (2.13) as

3AH2 ¼ 8�Gð�ðmÞ þ �ðradÞ þ �ðDEÞÞ (2.24)

and

�2A _H ¼ 8�Gð�ðmÞ þ ð4=3Þ�ðradÞ þ �ðDEÞ þ pðDEÞÞ;
(2.25)

where A is a constant and �ðDEÞ and pðDEÞ denote the
density and the pressure of the dark energy, respectively,
defined as

8�G�ðDEÞ � F�ðmÞ � 3 _FðR; TÞH
� 1

2
ðfðR; TÞ � FðR; TÞRÞ þ 3H2ðA� FÞ

(2.26)

and

8�GpðDEÞ� €FðR;TÞþ2 _FðR;TÞH
þ1

2
ðfðR;TÞ�FðR;TÞRÞ�ð2 _Hþ3H2ÞðA�FÞ:

(2.27)

Thus, the equation of state parameter for the dark energy is

given as wðDEÞ � pðDEÞ=�ðDEÞ.
The definitions (2.26) and (2.27) lead to the continuity

equation for the dark energy component, namely,

_�ðDEÞ þ 3Hð�ðDEÞ þ pðDEÞÞ ¼ 0: (2.28)

Now, we can rewrite the effective equation of state in the
following form:

wðeffÞ ¼ F

A

�
�ðDEÞwðDEÞ þ�ðradÞ

3

�
; (2.29)

where we have defined

�ðradÞ � 8�G�ðradÞ

3H2F
and �ðDEÞ � 8�G�ðDEÞ

3H2F
; (2.30)

which lead to the usual density parameters for GR. Using

the definition (2.16), in a suitable form wðeffÞ reads

9Actually, in principle one can derive R and T from Eqs. (2.21)
and (2.23) in terms of r and s, respectively. Hence, one gets m ¼
mðrÞ and n ¼ nðsÞ.
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wðeffÞ ¼ 1

3
ð1� 2x3Þ: (2.31)

Also, for general matter, the cosmological solutions for a
constant value of x3 are [using Eq. (2.16)]

aðtÞ ¼ a0

�
t� ti
t0 � ti

� 1
2�x3 ; (2.32)

and for the conservation of the energy-momentum tensor
one has

_�ðtÞ þ 2ð2� x3ÞHðtÞ�ðtÞ ¼ 0; (2.33)

where a0 and t0 are the integral constants that can be fixed
by the present values, and for ti we set aðtiÞ ¼ 0.
Equations (2.32) and (2.33) hold for all values of x3 except
for x3 ¼ 2. In this special case we have _H ¼ 0, which leads
to either a de Sitter solution or a static one.

In the next section, we consider a particular form of the
function fðR; TÞ and show that the acceptable solution
trajectories tend to transit from the radiation era with
x3 ¼ 0 to the dust-like matter era with x3 ¼ 1=2, where,
for these two values, the conservation equation (2.33)
gives,10 respectively,

_�ðradÞ þ 4H�ðradÞ ¼ 0 (2.34)

and

_�ðmÞ þ 3H�ðmÞ ¼ 0: (2.35)

III. DYNAMICAL SYSTEMS APPROACH OF THE
MINIMAL CASE fðR;TÞ ¼ gðRÞ þ hðTÞ

In this section, we investigate the model by employing
the dynamical systems approach. First we consider the case
when the geometrical sector and the matter sector in the
function fðR; TÞ are minimally coupled.11 The case of
nonminimal coupling is considered in later sections. In
the minimal case, we assume that the form of function
fðR; TÞ is

fðR; TÞ ¼ gðRÞ þ hðTÞ; (3.1)

where hðTÞ and gðRÞ are arbitrary functions and hereafter
we show the functions gðRÞ, hðTÞ and their derivatives
without indicating their arguments for the sake of
convenience.

The dynamical systems approach12 introduces a rela-
tively simple technique to investigate the whole space of
solutions in the form of some extremum points (the fixed
points), by which the evolution of the system can be
pictured qualitatively near these points. A qualitative study

is possible via checking the phase-space trajectories,
whose behaviors are sensitive to initial conditions. In this
way, one can obtain different descriptions dependent on
different initial conditions and which therefore indicate the
initial conditions that lead to a desired physical result. In
cosmological applications, one is capable of determining
the early- and late-time behaviors of models with this
technique (in addition to possible matter or radiation solu-
tions). That is, one can achieve a global picture of all
solutions and behaviors of the system near these solutions.
As a result, through the dynamical systems approach, the
inconsistent models can be ruled out, and those models
which deserve further investigation could be selected. For a
recent application of the dynamical systems approach to
some modified theories of gravity see, e.g., Refs. [80–82].
Now, rewriting Eqs. (2.12) and (2.13) with (3.1) gives

1þ g

6H2g0
þ h

6H2g0
� R

6H2
þ _g0

Hg0

¼ 8�G�ðmÞ

3H2g0
þ h0�ðmÞ

3H2g0
þ 8�G�ðradÞ

3H2g0
(3.2)

and

2
_H

H2
þ €g0

H2g0
� _g0

Hg0
¼ �8�G�ðmÞ

H2g0
� h0�ðmÞ

H2g0
� 32�G�ðradÞ

3H2g0
:

(3.3)

In the dynamical systems approach, the original EOM
[e.g., Eqs. (3.2) and (3.3) in this work] can be cast in the
form of some new evolutionary EOM in terms of new
variables (which are constructed from the original ones)
and their first derivatives. Then, the solutions of these new
EOM are indicated as some fixed points of the system
which are obtained through an extremization, where if
the new EOM do not explicitly contain time then the
system will be called an autonomous one. We employ
this approach to extract and analyze the solutions of
Eqs. (3.2) and (3.3) by employing the introduced variables
(2.14)–(2.23).
First of all, the constraint (2.11) for the minimal case

with h � constant gives

Th00 ¼ � 1

2
h0; (3.4)

i.e., by Eq. (2.22), n ¼ �1=2, and by integrating with
respect to the trace T, this reads

Th0 � 1

2
hþ C ¼ 0; (3.5)

where C is an integration constant. This constant must be
zero to be consistent with condition (3.16), as wewill show.
Thus, Eq. (3.5) with C ¼ 0 leads to s ¼ 1=2, and hence the
relation x6 ¼ x4=2. Therefore, with these unique constants
n and s the phase-space variables of the model are reduced

10Analogously, the radiation and dust-like types of matter are
dictated from the appearance of the corresponding equations.
11We apply the conventional terminology used in the literature
for adding and crossing two terms in the Lagrangian as the
minimal and the nonminimal couplings, respectively.
12See Ref. [79] and references therein.
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from six to five. As we will see, this reduction makes the
problem more tractable.

Obviously, all cases with x4 ¼ 0 [for a nonsingular
denominator in Eq. (2.17)] in the minimal case get returned
to fðRÞ gravity; however, the cases with a nonzero x4 give
more general solutions than fðRÞ gravity. Also, all cases
with h ¼ constant can be considered in an fðRÞ gravity
background and act as if they have a cosmological con-
stant. Here, by applying Eq. (3.4), the only form that
respects the conservation law in the minimal case is

fðR; TÞ ¼ gðRÞ þ c1
ffiffiffiffiffiffiffiffi�T

p þ c2; (3.6)

where c1 and c2 are some constants with respect to T;
however, in general they can be functions of the Ricci
scalar R. Those cases in which c1 is a function of R will
be considered as nonminimal in the subsequent section.
Now, let us obtain the possible ‘‘good’’ cosmological
solutions, i.e., those solutions that describe a dust-like
matter-dominated era followed by an accelerated era for
the general case (3.6).

Equation (3.2) gives a constraint for the defined
variables (2.14)–(2.18),

�ðmÞ � 8�G�ðmÞ

3H2g0
¼ 1� x1 � x2 � x3 � x4 � x5: (3.7)

Hence, the autonomous EOM for the five independent
variables (2.14)–(2.18) can be achieved via

dx1
dN

¼ �1þ x1ðx1 � x3Þ � 3x2 � x3 � 3

2
x4 þ x5; (3.8)

dx2
dN

¼ x1x3
m

þ x2ð4þ x1 � 2x3Þ; (3.9)

dx3
dN

¼ � x1x3
m

þ 2x3ð2� x3Þ; (3.10)

dx4
dN

¼ x4

�
5

2
þ x1 � 2x3

�
; (3.11)

dx5
dN

¼ x5ðx1 � 2x3Þ; (3.12)

where N represents a derivative with respect to ln a and
Eq. (3.7) has been used. The solutions for the system of
equations (3.8)–(3.12) for arbitrary mðrÞ, nðsÞ ¼ �1=2,
and s ¼ 1=2 are listed in Table I. These solutions include
ten fixed points P1–P10 at which the variables x1–x5
(and any arbitrary function of them) take their critical
values, i.e., these are solutions to the system of equations
dxi=dN ¼ 0, i ¼ 1; . . . ; 5. Thus, in general the parameters
r ¼ rðx2; x3Þ and s ¼ sðx4; x6Þ must take their critical
values too. That is,

dr

dN
¼ @rðx2; x3Þ

@x2

dx2
dN

þ @rðx2; x3Þ
@x3

dx3
dN

¼ 0 (3.13)

and

ds

dN
¼ @sðx4; x6Þ

@x4

dx4
dN

þ @sðx4; x6Þ
@x6

dx6
dN

¼ 0; (3.14)

which, using definitions (2.15)–(2.17), (2.19)–(2.21), and
(2.23), give

0 ¼ dr

dN
¼ �r

�
1þ rþmðrÞ

mðrÞ
�
x1 � �rMðrÞx1 (3.15)

and

0 ¼ ds

dN
¼ 3sðs� nðsÞ � 1Þ; (3.16)

where we have defined

MðrÞ � 1þ rþmðrÞ
mðrÞ ; (3.17)

TABLE I. The fixed-point solutions of the dynamical systems approach of fðR; TÞ ¼ gðRÞ þ hðTÞ.
Fixed point Coordinates ðx1; x2; x3; x4; x5Þ Scale factor �ðmÞ �ðradÞ wðeffÞ

P1

�
3m

2ð1þmÞ , � 5þ8m
4ð1þmÞ2 ,

5þ8m
4ð1þmÞ ,

4�mð3þ10mÞ
4ð1þmÞ2 ; 0

�
aðtÞ ¼ a0ð t�ti

t0�ti
Þ4ð1þmÞ

3 0 0 � 1þ2m
2ð1þmÞ

P2

�
2ð1�mÞ
1þ2m , 1�4m

mð1þ2mÞ , � ð1�4mÞð1þmÞ
mð1þ2mÞ ; 0; 0

�
aðtÞ ¼ a0ð t�ti

t0�ti
Þmð1þ2mÞ

1�m 0 0 2�5m�6m2

3mð1þ2mÞ
P3

�
3m
1þm , � 1þ4m

2ð1þmÞ2 ,
1þ4m
2ð1þmÞ; 0; 0

�
aðtÞ ¼ a0ð t�ti

t0�ti
Þ2ð1þmÞ

3
2�mð3þ8mÞ
2ð1þmÞ2 0 � m

1þm

P4 (� 4, 5, 0, 0, 0) aðtÞ ¼ a0ð t�ti
t0�ti

Þ12 0 0 1
3

P5 (� 5
2 , 0, 0,

7
2 , 0) aðtÞ ¼ a0ð t�ti

t0�ti
Þ12 0 0 1

3

P6 (� 1, 0, 0, 0, 0) aðtÞ ¼ a0ð t�ti
t0�ti

Þ12 2 0 1
3

P7 (1, 0, 0, 0, 0) aðtÞ ¼ a0ð t�ti
t0�ti

Þ12 0 0 1
3

P8
a (0, —1, 2, 0, 0) aðtÞ ¼ a0 expH0t 0 0 �1

P9 (0, 0, 0, 0, 1) aðtÞ ¼ a0ð t�ti
t0�ti

Þ12 0 1 1
3

P10

�
4m

1þ4m , � 2m
ð1þmÞ2 ,

2m
1þm , 0,

1�mð2þ5mÞ
ð1þmÞ2

�
aðtÞ ¼ a0ð t�ti

t0�ti
Þ1þm

2 0 1�mð2þ5mÞ
ð1þmÞ2

1�3m
3ð1þmÞ

aThis solution has _H ¼ 0.
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which is well defined for mðrÞ � 0.13 As a result, the
condition ds=dN ¼ 0 for s � 0,14 with n ¼ �1=2, leads
to s ¼ 1=2, which in turn gives a zero value for the
constant C in Eq. (3.5). The acceptable solutions are
those that respect these two conditions, dr=dN ¼ 0
and ds=dN ¼ 0. Now, restoring constraint (2.11), from
Eqs. (3.15) and (3.16) it turns out that all acceptable
solutions must lie in one of the following three categories:

8>>><
>>>:
1Þ r ¼ 0; s ¼ 1

2 ¼ �n;

2Þ MðrÞ ¼ 0; s ¼ 1
2 ¼ �n;

3Þ x1 ¼ 0; s ¼ 1
2 ¼ �n:

(3.18)

A glance at Table I shows that the points P1, P2, P3, and
P10 satisfy the condition mðrÞ ¼ �r� 1, the parameter r
vanishes for the point P4, and for the points P8 and P9 we
have x1 ¼ 0. These are the only obvious points that respect
Eq. (3.18). The other points have both x2 ¼ 0 and x3 ¼ 0,
which clearly implies that there is an ambiguity in deter-
mining r. Nevertheless, these points actually do satisfy
Eqs. (3.15) and (3.16), and hence r can be determined by
a straightforward calculation using definition (2.21). In this
respect, we assume that the condition mðrÞ ¼ �r� 1
should be valid for all of the points, and use it wherever
it is necessary.

In the following discussions, the stability analysis of the
fixed points are performed via inspecting their correspond-
ing eigenvalues. Imprecisely speaking, the trajectories of
the phase space advance to a fixed point if all eigenvalues
have negative values, and recede from a fixed point if all
eigenvalues have positive values. In this respect, the fixed
points occurring in the former and the latter sets are called
the stable and unstable points, respectively. The fixed
points with both positive and negative eigenvalues are
called saddle points, and those trajectories which advance
to a saddle fixed point along some eigenvectors may recede
from it along some other eigenvectors.

In Sec. III A, we investigate the properties of each
of the fixed points of Table I in the absence of the radiation.
Since the calculations in a system with five degrees of free-
dom can be verymessy and time-consuming, we consider the
effects of the radiation in Sec. III B. Also, in Sec. IIIC, we
illustrate ‘‘good’’ cosmological solutions, i.e., those solutions
that determine the trajectories which connect the dust-
matter-dominated points to the accelerated-expansion-
dominated points. Incidentally, the considerations have
been assisted by numerical manipulations wherever the
exact computations have not been possible.

A. Properties of fixed points in the absence of radiation

In the absence of radiation, there are only the first eight
fixed points P1–P8. While presenting the properties of
these points, we compare the results with the correspond-
ing results of fðRÞ gravity in Ref. [76] (whenever it is
necessary), and briefly indicate the obtained results in
Table II.
(i) P1

This is a new fixed point which corresponds to a
curvature-dominated point.15 This point can play the
role of an accelerated-expansion point provided that

wðeffÞ <�1=3 for m>�1=4 and m<�1. In the
former range, we have a nonphantom accelerated
universe, and the latter one lies in a phantom domain.
The eigenvalues of this point are obtained as

� 3

2
; � 3mð1þmÞð3þ 2mÞ þ aðmÞ

8mð1þmÞ2 ;

�3mð1þmÞð3þ 2mÞ þ aðmÞ
8mð1þmÞ2 ;

3

2
ð1þm0Þ;

(3.19)

where

aðmÞ � fmð1þmÞ2
� ½�160þmð�55þ 700mþ 676m2Þ�g1=2;

(3.20)

and m0 � dm=dr. The above eigenvalues show that
with m0 >�1, we have a saddle point. However, for
m0 <�1, the point P1 is a stable point when
�4=5<m<�5=8 or 0:43<m< 1=2 with real-
valued eigenvalues, a spiral stable point when
0<m � 0:43, and a saddle point otherwise.
Nevertheless, within these ranges the first one does

not lead to the condition wðeffÞ <�1=3, and hence
we discard it. As a result, the point P1 introduces two
new ranges that can accelerate the universe in the
nonphantom domain, which collectively are

m0 <�1; 0<m<
1

2
; � 2

3
<wðeffÞ <� 1

2
:

(3.21)

In the limit j m j! 0, the eigenvalues are

�3

2
; �9

8
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
� 5

2m

s
; �9

8
�

ffiffiffiffiffiffiffiffiffiffiffiffi
� 5

2m

s
;

3

2
ð1þm0Þ:

(3.22)13Note that all solutions that satisfy mðrÞ ¼ �r� 1 must
satisfy MðrÞ ¼ 0 as a more strong constraint; this fact affects
the analysis involved in Sec. IV.
14Note that the corresponding solutions with s ¼ 0 have been
discarded, for they contradict the former result n ¼ �1=2.

15We refer to a point with both properties �ðmÞ ¼ 0 ¼ �ðradÞ as
a curvature-dominated point.
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This means that, for m ! 0þ, this point is a spiral
stable point when m0 <�1 and a saddle point other-
wise. When j m j! 1, the point tends to a de Sitter
point with coordinates (3=2, 0, 2,� 5=2), which is
not a stable point. Indeed, from Eq. (3.19) it is
obvious that P1 is a permanent saddle point in both
of the limits m0 ¼ 0 and j m j! 1.

(ii) P2

The point P2 also has �ðmÞ ¼ 0 ¼ �ðradÞ, and like
P1 is a curvature-dominated point whose effective
equation of state depends on the parameter m. An
accelerated-expansion behavior can be achieved

when m< ð�1� ffiffiffi
3

p Þ=2 or ð�1þ ffiffiffi
3

p Þ=2<m< 1
in the nonphantom domain, and when�1=2<m<0
or m> 1 in the phantom domain. The eigenvalues
are obtained as

� 4þ 1

m
;

�8m2 � 3mþ 2

mð1þ 2mÞ ;

2ð1�m2Þð1þm0Þ
mð1þ 2mÞ ;

�10m2 � 3mþ 4

2mð1þ 2mÞ :
(3.23)

In the limit j m j! 1, it asymptotically reaches the
point P2;dS ¼ ð�1; 0; 2; 0Þ—at which the universe

expands as a de Sitter accelerated one—and is a
stable point for m0 >�1. In the opposite limit,
when j m j! 0, the eigenvalues are

1

m
;

2

m
;

2

m
ð1þm0Þ; 2

m
:

Thus, in order to have a stable acceleration era one
must have m ! 0� and m0 >�1 simultaneously.
An investigation of the eigenvalues gives ranges of
m in which one can expect a stable accelerated-
expansion behavior. For the nonphantom domain,
we have

AÞm0>�1; m<�1

2
ð1þ ffiffiffi

3
p Þ; �1<wðeffÞ<�1

3
;

(3.24)

BÞ m0 <�1;
1

2
<m< 1; �1<wðeffÞ <�2

3
;

(3.25)

and for the phantom domain we have

CÞ m0 >�1; m > 1; �1:07<wðeffÞ <�1;

(3.26)

DÞ m0 >�1; �1

2
<m< 0; wðeffÞ <�7:60:

(3.27)

TABLE II. The stability of the fixed points in both fðR; TÞ and fðRÞ gravities without radiation.
Fixed point Stability in fðR; TÞ gravity Stability in fðRÞ gravity
P1

8<
:
aÞ 8 m;m0 >�1; saddle
bÞ 0<m< 1=2; m0 <�1; stable
cÞ m ! �1;8 m0; saddle

Does not appear

P2
8>>>>>><
>>>>>>:

dÞ 0<m< 1=4; m0 >�1; unstable
eÞ m<�1=2ð1þ ffiffiffi

3
p Þ; m0 >�1; stable

fÞ � 1=2<m< 0; m0 >�1; stable
gÞ m> 1; m0 >�1; stable
hÞ 1=2<m< 1; m0 <�1; stable
iÞ m ! �1; m0 >�1; stable

�
The same properties except for

hÞ ð1=2Þð�1þ ffiffiffi
3

p Þ<m< 1; m0 <�1; stable

P3 Always a saddle point
�
jÞ 0<m< 0:327; m0 >�1; saddle
kÞ 8 m;m0 ¼ 0; saddle

P4
�
lÞ � 1<m< 0; stable; otherwise saddle

mÞ P4 ¼ P2jm¼�1

The same properties

P5

�
nÞ 8 m;m0 ¼ 0; saddle; otherwise saddle or stable

oÞ m ! 0�; m0 < 0; stable; otherwise saddle

Does not appear

P6 Always a saddle point pÞ 8 m;m0 ¼ 0, saddle; otherwise saddle or stable

P7

8>>><
>>>:
qÞ 8 m;m0 � 0; saddle or unstable

rÞ 0<m< 1=4; m0 ¼ 0; saddle; otherwise stable

sÞ m ! 0�; m0 < 0; unstable; otherwisesaddle
tÞ P7 ¼ P2jm¼1=4

The same properties

P8
8<
:
uÞ 0<m< 16=25; r ¼ �2; spiral stable
vÞ 16=25 � m< 1; r ¼ �2; stable
wÞ Otherwise saddle

The same properties
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However, P2 is an unstable point in the range
0<m< 1=4 provided that m0 >�1. The proper-
ties of this point do not change in this model com-
pared to fðRÞ gravity, except in the case B, where
the range m becomes more restricted, i.e., the cor-

responding range is ð ffiffiffi
3

p � 1Þ=2<m< 1 in the
case B in fðRÞ gravity.

(iii) P3

The point through which we can search for a matter
era is P3, which also appears in fðRÞ gravity. For
m ¼ 0, we have wðeffÞ ¼ 0 and �ðmÞ ¼ 1. The
eigenvalues are

3

2
;

�3mþbðmÞ
4mð1þmÞ ;

�3m�bðmÞ
4mð1þmÞ ; 3ð1þm0Þ;

(3.28)

where

bðmÞ � ½mð256m3 þ 160m2 � 31m� 16Þ�1=2:
(3.29)

The existence of the positive constant eigenvalue
3=2means that the point P3 is not stable; instead, it
is always a saddle point. It is an interesting result
that does not occur in fðRÞ gravity. For infinitesi-
mal values of the parameterm, we can approximate
the eigenvalues as

3

2
; �3

4
þ

ffiffiffiffiffiffiffiffiffi
� 1

m

s
; �3

4
�

ffiffiffiffiffiffiffiffiffi
� 1

m

s
; 3ð1þm0Þ:

(3.30)

In the limitm ! 0þ, we have an acceptable saddle-
point matter era. However, the point P3 in the limit
m ! 0� is not generally acceptable, for the second
eigenvalue takes a large positive real value.
Therefore, the matter era becomes very short, so
that the observational data cannot be matched. The
point P3 contains some ranges in which the uni-
verse can be accelerated but not in a usual way, for
the accelerating conditions are

EÞm>
1

2
; �1<wðeffÞ<�1

3
; �4<�ðmÞ<�1

3
;

(3.31)

F Þ m<�1; wðeffÞ <�1; �ðmÞ <�4:

(3.32)

That is, the accelerated expansion can occur with a
negative value for the matter-density parameter,

which is not physically interesting. Considering
the definition used in Eq. (3.7), the solutions denot-

ing �ðmÞ < 0 are ruled out in the background of
viable fðRÞ models with the condition16 g0ðRÞ> 0,
which we have also adopted here.

(iv) P4, P5, and P7

There are three points in fðR; TÞ gravity with

�ðmÞ ¼ 0 and �ðradÞ ¼ 0 whose equations of state
mimic the one for radiation. As these points do not
correspond to any known matter, they are not physi-
cally interesting. Hence, we discard these solutions
in Sec. III C as nonphysical ones.
The point P4 is a special case of P2 if m is set to be
m ¼ �1, and its eigenvalues are found to be

� 5; �3; 4

�
1þ 1

m

�
; � 3

2
: (3.33)

When �1<m< 0, the point P4 is a stable point,
and is a saddle point otherwise. This property has
the same features in fðRÞ gravity.
The point P5 is a new solution, which does not
appear in fðRÞ gravity. The eigenvalues are

�7

2
; �3

2
;

mð5þ11mÞ�5rð1þrÞm0�5cðm;m0Þ
4m2

;

mð5þ11mÞ�5rð1þrÞm0þ5cðm;m0Þ
4m2

; (3.34)

where

cðm;m0Þ � fm2ð1þmÞ2 þ rm0½�2mð1þmÞ
þ 2ð�1þmÞmrþ rð1þ rÞ2m0�g1=2:

(3.35)

As it is obvious the point P5 never becomes
unstable. When m is a nonzero constant, we have
the eigenvalues

� 7

2
; � 3

2
;

3

2
; 4þ 5

2m
; (3.36)

i.e., P5 is a saddle point for constant m. When
m ! 0, the eigenvalues become

� 7

2
; � 3

2
; � 5m0

2m
;

5

2m
: (3.37)

Therefore, when m ! 0� with m0 < 0, this point is
stable, and otherwise it is a saddle point.
The last point in this category is P7, which is
regarded as a special case of the point P2 for
m ¼ 1=4. This point has eigenvalues

16This condition guaranties that the gravity force is an attractive
one. Hence, as fðRÞ theories are special cases with hðTÞ ¼ 0 in
the minimal coupling case, this condition should hold.
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7

2
; 2;

mð�1þ 9mÞþ rð1þ rÞm0 � cðm;m0Þ
2m2

;

mð�1þ 9mÞþ rð1þ rÞm0 þ cðm;m0Þ
2m2

: (3.38)

Thus P7 cannot be a stable point. When m is a
nonzero constant, the eigenvalues (3.38) read

7

2
; 2; 4� 1

m
; 5; (3.39)

i.e., for 0<m< 1=4 the point P7 is a saddle point,
and otherwise it behaves as an unstable point. In the
limit m ! 0, the eigenvalues behave as

7

2
; 2; � 1

m
;

m0

m
; (3.40)

where for m ! 0� and m0 < 0 this point is
unstable, and otherwise it is a saddle point.

(v) P6

This is a point with an unusual feature. The value of

the density parameter �ðmÞ does not match the
equation of state in a meaningful manner, for we

have wðeffÞ ¼ 1=3 and �ðmÞ ¼ 2. However, in this
model it may occur that the universe approaches this
point. Hence, like the points P4, P5, and P7, the
stability of this point should be considered. The
eigenvalues are given by

� 2;
3

2
;

mð1þ 7mÞ � rð1þ rÞm0 � cðm;m0Þ
2m2

;

mð1þ 7mÞ � rð1þ rÞm0 þ cðm;m0Þ
2m2

: (3.41)

The first two eigenvalues, �2 and 3=2, show that
this point is always a saddle point for all values ofm
and m0.

(vi) P8

The point P8 is the only de Sitter fixed point of the
minimally coupled form of fðR; TÞ gravity. The
corresponding eigenvalues are represented as

� 3; � 3

2
;

1

2

0
@�3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16

m

s 1
A;

1

2

0
@�3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16

m

s 1
A: (3.42)

This point is a stable one in the range 0<m< 1,
and otherwise it is a saddle point.

B. Effects of radiation

In this subsection, we take into account the effects of
radiation for the fixed points, and in particular we check

any possible change in the stability of the fixed points17 P1,
P2, P3, and P8.
The existence of radiation adds two new fixed points P9

and P10, as shown in Table I. The point P9 is a standard
radiation point with the eigenvalues (4, 4, 5=2, �1, 1),
which denotes that this point is always a saddle point, the
same as in fðRÞ gravity.
The eigenvalues of P10 are given as

5

2
; 1;

m� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81m2 þ 30m� 15

p

2ðmþ 1Þ ;

m� 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81m2 þ 30m� 15

p

2ðmþ 1Þ ; 4ð1þm0Þ:
(3.43)

It is interesting that the point P10 is always a saddle point
irrespective of the values ofm andm0, for, numerically, it is
impossible for the third and forth eigenvalues to simulta-
neously take positive values. Furthermore, P10, in the limit
m ! 0, gives another radiation fixed point in which the
eigenvalues are nonsingular, i.e., they are given as

5

2
; 1;

�1þ i
ffiffiffiffiffiffi
15

p
2

;
�1� i

ffiffiffiffiffiffi
15

p
2

; 4ð1þm0Þ;
(3.44)

where m0 must be evaluated at r ! �1.
The inclusion of radiation does not change the stability

properties of the eigenvalues of the other fixed points.
In fact, the addition of radiation to the action leads to
the appearance of the values �5=2, ð2� 4m� 10m2Þ=
½mð1þ 2mÞ�, �1, and �4 as the fifth eigenvalues of P1,
P2,P3, andP8, respectively. Thus, it is obvious that none of
the stability properties of the accelerated fixed points and
the matter point P3 change. This means that all the cos-
mological solutions which have a true sequence P3 !
P1;2;8 can include a saddle radiation era for m ! 0þ.

C. Cosmological solutions

‘‘Good’’ cosmological solutions are those that pass a
long enough matter-dominated era followed by an accel-
erated expansion; hence, any matter point contained in the
model must be a saddle point in the phase space. However,
the eras that show an accelerated expansion should be
attractors (stable points) in the phase space. In this study,
the only point that involves a matter point is P3 for j m j
! 0þ, andP1, P2, P3, andP8 can be the accelerated points.
Hereafter, we indicate the matter point P3 with the condi-

tion mðr � �1Þ ! 0 as Pð0Þ
3 . It is worth mentioning that

any well-defined curvemðrÞ of each model must satisfy the
relations mðriÞ ¼ �ri � 1 and MðriÞ ¼ 0 for some root
ri; the second condition is equal to the first one for cases

17As discussed before, the points P4–P7 do not have a physical
meaning and hence we do not consider them in this subsection.
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containing mðriÞ � 0. The equation mðriÞ ¼ �ri � 1
gives some roots that belong to the points P1, P2, or P3

which we generally indicate as P1ða;b;...Þ, P2ða;b;...Þ, or

P3ða;b;...Þ.
The accelerating roots of P3 labeled by a; b; . . . corre-

spond to some negative matter-density parameters—such
as those shown in Sec. III A—which cannot be physical,
and hence we discard them. Consequently, we should con-

sider the cosmological transitions of Pð0Þ
3 to either P1, P2,

or P8. Another assumption that we apply in the rest of this
work is to discard solutions with m ! 0�, for from
Eq. (3.30) it is obvious that one of the eigenvalues gets a
large positive value for a small negative value of m and
hence it diverges for infinitesimal negative values. This
means that the trajectories leave the matter era very fast
and hence the matter era becomes very short, which causes
difficulties in matching the model with observations. Thus,
in general, the models with m ! 0� are unacceptable. We
indicate in the following classification that, as P3 is a
saddle point irrespective of the values of m and m0, there
are more cosmological solutions than in fðRÞ gravity. We
study these transitions in turn, and we suppose that there
are some roots in all important regions for the generality of
the discussion. Also, we assume that the conditionmðriÞ ¼
�ri � 1 holds with mðriÞ � 0.

(i) P3ðm0
3 >�1; m > 0Þ and P3ðm0

3 <�1; m > 0Þ to

P1ðm0
1 <�1; m > 0Þ.18

The point P1 is a stable one in the range 0<m<
1=2 provided that m0

1 <�1, whilst P3 is always a

saddle point. The curvemðrÞmust intersect19 the line
m ¼ �r� 1with a derivativem0

3 >�1 orm0
3 <�1

for leaving the matter epoch, and with m0
1 <�1 for

entering the accelerated epoch. Theoretically, the
transition P3ðm0

3>�1;m>0Þ to P1ðm0
1<�1;m>0Þ

is possible, as is shown in Fig. 1 (labeled Class I
solutions). However, the transition from P3ðm0

3 <
�1; m > 0Þ to P1ðm0

1 <�1; m > 0Þ is not possible;
these solutions are labeled as Class VIIa in Fig. 2.
Nevertheless, there is a special case, namely, when
P3 and P1 are solutions of the model with the same
root r, in which one has m0

1;3 <�1. Hence, this

demonstrates an acceptable cosmological solution,
and we indicate this type of solution as Class II
(Fig. 1).

(ii) P3ðm0
3 >�1; m > 0Þ to P2ðm0

2 >�1Þ in Regions

A, D, C and to P2ðm0
2 <�1Þ in Region B.

This class includes two classes of solutions. In the

first class, there is no connection between Pð0Þ
3 and

P2 in the regionsA,D, and C, which we call Class
VIIb in Fig. 2. All solutions with either an improper

transition (transition from unallowable regions) or

without a connection with the matter point Pð0Þ
3 fall

into this class. In the second class, it is possible to

connect Pð0Þ
3 with m0

3 >�1 to P2 with m0
2 <�1 in

the region B; an example of these solutions is
labeled as Class III in Fig. 1. Note that these classes
of solutions also appear in fðRÞ gravity.

(iii) P3ðm0
3 <�1; m > 0Þ to P2ðm0

2 >�1Þ in Regions

A, D, C and to P2ðm0
2 <�1Þ in Region B.

Since P3 is a saddle point irrespective of the value
of m0, it can be connected to the point P2 in the
regions A, D, and C, the solutions of which are
labelled as Class IV in Fig. 1. On the other hand,
because we have m0

2;3 <�1 in the region B, there

is no possibility to connect Pð0Þ
3 to P2 in this region;

these solutions are classified as Class VIIc in Fig. 2.
(iv) P3ðm0

3 >�1; m > 0Þ and P3ðm0
3 <�1; m > 0Þ to

P8ð0<mðr ¼ �2Þ< 1Þ.
In this last class, there are two situations that can
lead to a stable accelerated epoch. In the first one,
after leaving the matter point, the trajectories go to
the final attractor at the point P8, which we refer to
as Class V (Fig. 1). However, in the latter situation,
before reaching the final attractor there is a ‘‘false’’
accelerating era in which the curve mðrÞ meets the
line m ¼ �r� 1 in an unallowable region of the
point P1, in which there is no stable accelerated
expansion. These solutions are labeled as Class VI
(Fig. 1).

IV. CASE STUDIES

In this section, without loss of generality, we examine
the discussed classification scheme by considering some
well-defined specific theories for simplicity, and then
investigate the possible cosmological solutions. First of
all, by ‘‘well-defined’’ we mean the corresponding models
whose mðrÞ curves can be derived explicitly with respect
to r. We do not go into the details unless there would be
some new cosmological solutions with respect to fðRÞ
gravity, though to complete the discussion we may mention
the other solutions wherever it is necessary. As the related
models are determined by the behavior of their curves
mðrÞ, our task is to find the cosmological solutions by
exploring the properties of these curves. The following

discussed theories are of the form fðR; TÞ ¼ gðRÞ þffiffiffiffiffiffiffiffi�T
p

, where the functionality of
ffiffiffiffiffiffiffiffi�T

p
is enforced by the

conservation law, Eq. (3.6). As mentioned in Refs. [83,84],
some fðRÞ gravity models cannot pass the necessary crite-
ria in order to have an acceptable cosmological history,
e.g., a lack of a deceleration expansion period to admit a
standard structure formation [85], or a quick transition
from the radiation era to the late-time acceleration or the
lack of a connection between the matter era and the late-
time acceleration era. In this respect, the authors of

18We define m0
i � m0jPi

.
19Since the assumption g0ðRÞ> 0 leads to a monotonic function
rðRÞ and hence a single valued mðrÞ, we do not consider a
multivalued mðrÞ.
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Refs. [76,83,84] have shown that theories of the form
fðRÞ ¼ �Rn and fðRÞ ¼ Rp exp ðq=RÞ do not lead to a
connection between the standard matter era and the accel-
erated attractors. In addition to these difficulties, the au-
thors of Ref. [76] have numerically shown that the models
of type fðRÞ ¼ Rp½log ð�RÞ�q and Rp exp ðq=RÞ suffer
from a nonstandard matter era for some initial values. In
the former one, the matter era is not effectively dominant,
and in the latter one the standard matter era is replaced by
the � matter-dominated epoch (�MDE) epoch.20 Hence,

we reconsider the following plausible models in the
background of fðR; TÞ gravity in order to find out whether
these issues can be cured. Incidentally, if m is a constant
parameter, the definition (2.20) will give gðRÞ / Rmþ1, i.e.,
a power-law function. Finally, at the end of this section,
we briefly furnish the comparison of the properties of
solutions for the investigated models in both fðR; TÞ and
fðRÞ gravities in Table III.

A. fðR; TÞ ¼ aR�� þ ffiffiffiffiffiffiffiffi�T
p

, a > 0, � � 0

This theory gives mðrÞ ¼ ��� 1, which intersects the
line m ¼ �r� 1 at r ¼ �. As mðrÞ ¼ 0 is valid only for
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FIG. 1 (color online). Acceptable cosmological solutions of fðR; TÞ ¼ gðRÞ þ hðTÞ gravity. The classification of the fðR; TÞ model in
the ðr;mÞ plane. The line m ¼ �r� 1 and different curves of mðrÞ for the six classes of acceptable cosmological solutions are plotted.

The transitions are depicted from the matter epoch Pð0Þ
3 to the accelerated point P1 in Classes I and II, to the accelerated point P2 in

Classes III and IV, and to the de Sitter point P8 in Classes V and VI. The matter-acceleration epoch transition occurs in Class II for the
same value of r, and in Class VI before reaching to the de Sitter point P8, with a nonstable acceleration middle stage. The solutions are
permitted only in the black solid regions on the line m ¼ �r� 1 provided that m0

1 <�1, and m0
2;A;D;C >�1. For P3, we can have

either m0
3 <�1 or m0

3 >�1 depending on the corresponding class. In Classes I, II and V we have m0
3 >�1, whilst in the rest we have

m0
3 <�1. Unallowable slopes for the curve mðrÞ are indicated by the light gray triangles for Pð0Þ

3 (actually, there is no unallowable slope

for Pð0Þ
3 ; however, the light gray triangles are indicated for the sake of classification) and by the gray ones for P1 and P2. The dashed

curves show hypothetical curves which intersect the line m ¼ �r� 1 at the critical points P1, P3, and P2 in the regions A, D, and C.
All of the classes of solutions are new ones in fðR; TÞ gravity except for Classes III and V, which also appear in fðRÞ gravity.

20The �MDE has been introduced in Ref. [86].
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� ¼ �1, the condition MðrÞ ¼ 0 must be satisfied for all
values of � except for � ¼ �1. In this case, because we
have x3 ¼ �x2, the system reduces to a system with three
degrees of freedom in which the eigenvalues of the points
P1 and P3 are given by the first three values in Eqs. (3.19)
and (3.28), respectively. To be more exact, P1 is acceler-
ated in�1:50<�<�1:43 and�1:43<�<�1, where
in the first range we have a stable accelerated epoch and in
the second we have a spiral stable accelerated epoch. On
the other hand, for �1:43<�<�1, this theory has a
saddle matter era with a damped oscillation when m !
0þ, and for the same root P1 is a spiral stable accelerated
point, which means the corresponding models belong to
Class II for categorization purposes. Therefore, in the
background of fðR; TÞ gravity, this theory has a cosmo-
logical solution with a standard matter-acceleration epoch
sequence, unlike fðRÞ gravity. We illustrate three examples
of this theory in Fig. 3 with the same initial values except
x3. In this case, r has a constant value with respect
to time. The diagrams show some disturbances originat-
ing from the deviation of the magnitude of � from one,
i.e., as j�j deviates from one more disturbances occur.
The reason is that the increase of the magnitude of �
leads to the growth of the deviation of m from zero,
and this in turns causes an increase in the error of matter
and radiation solutions of the system of equations (3.8)–
(3.11). The curves become smoother by decreasing the
deviation, showing an appropriate succession of the

radiation-matter-accelerated expansion eras. These ex-
amples have the point P1 as an attractor solution with

�0:65<wðeffÞ <�0:5. The diagrams have the present

values �ðmÞ
0 � 0:3 and �ðradÞ

0 � 10�4.

B. fðR;TÞ ¼ Rp exp ðqRÞ þ ffiffiffiffiffiffiffiffi�T
p

, q � 0

In this theory, for r � 0 we get mðrÞ ¼ �rþ p=r,
MðrÞ ¼ ðpþ rÞ=ðp� r2Þ, and m0ðrÞ ¼ �1� p=r2,
which are independent of q. For r ¼ �p, the correspond-
ing models do not satisfy the conditionMðrÞ ¼ 0 for p ¼
0 and p ¼ 1; however, for the other values of p the two
conditions hold. On the other hand, for p � 0 we have
mðrÞ � �r, and hence the condition for the existence of a
matter solution mðr � �1Þ � 0þ is not met; therefore, the
pure exponential models do not have any cosmological
solution. Nevertheless, in addition to MðrÞ � 0, in order
to have m ! 0þ the condition21 r � �p for p ! 1þ must
hold. Actually, for this theory we have r ¼ �1� qR, and
hence we get r ! �1 from the left-hand side only when
R ! 0þ with q > 0. Since m0

3ðp ! 1þÞ<�1 and

m0
1ð�3=2< r <�1Þ<�1, it is impossible to connect

Pð0Þ
3 to P1 for two different roots of mðriÞ ¼ �ri � 1.

One exception occurs when P1 is the attractor solution
for the same root; in such a case there is a cosmological
solution which belongs to Class II. In Fig. 9, we draw a plot
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FIG. 2 (color online). Unacceptable cosmological solutions of fðR; TÞ ¼ gðRÞ þ hðTÞ gravity. Some classes of solutions that suffer
from either the absence of a matter-dominated epoch or a stable accelerated era, or unallowed transitions from the matter to the
acceleration phase, are presented. There may be some other classes related to these solutions, but all of them can be classified as
subclasses of those already mentioned. Again, as in Fig. 1, the dashed curves show hypothetical curves which intersect the line
m ¼ �r� 1.

21More precisely, r ! �1�.
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for the mðrÞ curve for this theory in the plane ðr; mÞ
with p ¼ 1:001. Also, to illustrate the idea, we numerically
depict interesting cosmological quantities predicted by
this theory in Fig. 4 for p ¼ 1:001 and the initial value

ri ¼ �1:002 in order to have the present values �ðmÞ
0 �

0:3 and �ðradÞ
0 � 10�4.

C. fðR;TÞ ¼ R þ �R�n þ ffiffiffiffiffiffiffiffi�T
p

, n � 0

For this theory, we obtain mðrÞ ¼ �nð1þ rÞ=r and
MðrÞ ¼ 1� r=n,22 which show that the condition
MðrÞ ¼ 0 is satisfied only for r ¼ n, which in turn gives
m � 0. On the other hand, the corresponding models

contain the matter point Pð0Þ
3 when r ¼ �1, which means

that only models with n ¼ �1 can be accepted. However,
we describe the properties of solutions for values of n
approaching �1 in the following models [where in these
cases we have Mðr ¼ �1Þ � 0].
(i) Models with n ! �1�.

In these cases, the equation mðriÞ ¼ �ri � 1 has
two roots, i.e., r1;2 ¼ �1, n. Generally, we have
m0ðrÞ ¼ n=r2, and as a result, for the initial values

ri <
ffiffiffiffiffiffijnjp

, we have m0
3 <�1 and m0

1 >�1, which
make P1 a saddle point. Thus, since mðr ¼ �2Þ ¼
�n=2, these solutions accept the de Sitter point P8 as
the final attractor after a transition from the saddle
point P1. These models belong to Class VI. On the

other hand, for � ffiffiffiffiffiffijnjp
< ri <�1, the point P1 is a

stable point. These solutions belong to Class II. In
Fig. 5, we plot the related diagrams of the Rþ �R1:1
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FIG. 3 (color online). Cosmological solutions of fðR; TÞ ¼ aR�� þ ffiffiffiffiffiffiffiffi�T
p

gravity. The numerical solutions with a > 0 for three
values of � are presented. The density parameters for various ingredients are plotted in the first row, the effective equation of state
parameter in the second row, and the evolution of the scale factor in the last row. The diagrams are plotted for the initial values
x1 ¼ 10�4, x2 ¼ �10�4, x3 ¼ ��� 10�4, x4 ¼ 10�13, and x5 ¼ 0:999, corresponding to z � 2:42� 107. The diagrams are made to

be consistent with �ðmÞ
0 � 0:3 and �ðradÞ

0 � 10�4 at the present epoch; however, they give �0:65<wðeffÞ <�0:5 instead of wðeffÞ !
�1. The peak of�ðmÞ decreases with a change in �, i.e., as � increases the diagrams get tangled up. Such disorderings are indicated in
the diagrams of wðeffÞ and in the deviations of the behavior of the scale factor in the matter epoch from its standard form a / t2=3. The
best solutions are achieved for � ! �1.

22In obtaining the equation MðrÞ ¼ 1� r=n, we assume r �
�1; however, after removing the ambiguity at r ¼ �1, it gives
Mðr ¼ �1Þ ¼ 1þ 1=n.
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model. In this example, the initial value ri ¼
�1:0008 is applied in such a way that it chooses
P1 as the final attractor and also gives the present
values for the�’s. In Fig. 9, we also present themðrÞ
curve for this example.

(ii) Models with n ! �1þ.
For models with n ! �1þ, the initial conditions

ri >� ffiffiffiffiffiffijnjp
are not allowed, for these conditions

lead to m � 0�, which is physically ruled out.
However, the initial values ri <�1 are allowed
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FIG. 5 (color online). Cosmological solutions of fðR; TÞ ¼ Rþ �R�n þ ffiffiffiffiffiffiffiffi�T
p

gravity. The diagrams are for n ¼ �1:1 and the
initial values x1 ¼ 10�4, x2 ¼ �10�5, x3 ¼ 1:0008� 10�5, x4 ¼ 10�13, and x5 ¼ 0:999, corresponding to z � 7:65� 106. The

model matches with the present observational data�ðmÞ
0 � 0:3 and�ðradÞ

0 � 10�4; however, its wðeffÞ converges to�0:5 instead of�1.
There is a desirable succession of radiation-matter-acceleration phases. The scale-factor evolution curve has the asymptotic form of
a / t1=2 at high redshifts and behaves as a / t2=3 when the matter becomes dominant. The model with n ¼ �0:9 is plotted for the
same initial values except for x2 ¼ �10�4 and x3 ¼ 1:00002� 10�4. This model shows a transition from a temporal acceleration
epoch to the final attractor in the vicinity of P8, and hence it belongs to Class VI.
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FIG. 4 (color online). Cosmological solutions of fðR; TÞ ¼ Rp exp ðqRÞ þ ffiffiffiffiffiffiffiffi�T
p

gravity. The plots are presented for p ¼ 1:001 and
the initial values x1 ¼ 10�4, x2 ¼ �10�4, x3 ¼ 1:002� 10�4, x4 ¼ 3:8� 10�13, and x5 ¼ 0:999, corresponding to z � 3:17� 106.
The diagram of wðeffÞ shows that the final attractor solution is P1. The present values of the density parameters are extrapolated as

�ðmÞ
0 � 0:3 and �ðradÞ

0 � 10�4.
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and give m0
1 >�1. Therefore, in these models

the universe, after passing a matter-dominated,
is trapped in a temporal accelerated expansion
state that is determined by P1 and then chooses
P8 as a final de Sitter attractor. These models
belong to Class VI. In the numerical considera-
tions we have chosen ri ¼ �1:00002, which
results in an acceleration in a transient period
by P1, then a permanent accelerated expansion
by P8 (see Fig. 5).

In the cases with n ! �1�, cosmological solutions exist
only for �> 0 in the limit R ! 0, whilst the
cases with n ! �1þ have solutions provided that
�< 0 and R ! 1 because m ¼ nðnþ 1Þ�R�n�1=
ð1� n�R�n�1Þ. In fðRÞ gravity these models can
have cosmological solutions only when�1< n< 0; how-
ever, in fðR; TÞ gravity, in addition to these solutions, there
are acceptable solutions for n ! �1� as well.

D. fðR;TÞ ¼ Rp½ log ð�RÞ�q þ ffiffiffiffiffiffiffiffi�T
p

, q � 0, � > 0

This theory has the following functions:

mðrÞ ¼ ðpþ rÞ2 � qrð1þ rÞ
qr

and

MðrÞ ¼ ðpþ rÞ2
ðpþ rÞ2 � qrð1þ rÞ ;

(4.1)

where r � 0. The condition MðrÞ ¼ 0 holds for r ¼ �p;
however, only for p¼1 do we havemðrÞ¼0 for r ¼ �1.23

Incidentally, for p ¼ 1 and mðr ¼ �2Þ ¼ 1� 1=2q the
point P8 is a stable accelerated attractor for q > 1=2.
Generally, in this theory there are three situations in which
the matter solution m ! 0þ can be obtained, namely,

iÞ q >
1þ r

r
; r ! �1� ) m0 >�1;

iiÞ q < 0; r ! �1� ) m0 <�1;

iiiÞ 1þ r

r
< q < 0; r ! �1þ ) m0 >�1:

The first situation shows that the corresponding models
for 0< q< 1=2 with m0

1;3 >�1 lie in Class VIIa. On the

other hand, P2 cannot be the final attractor because the
curve mðrÞ does not have any root in the regions A, B, C,
and D. However, for q > 1=2 the final attractor is P8. The
corresponding models in the second situation, in which
m0

1;3 <�1, lie in Class II for the same root r, as repre-

sented in Fig. 5, but the transition to P2B does not lead to a
good cosmological solution, which lies in Class VIIc.
In the last situation, the range of q gets narrowed as r
approaches �1, and hence it is of less importance for our
studies.

radm
DE

10 5 0 5 10 15
0.0
0.2
0.4
0.6
0.8
1.0

log z 1

RLog R

10 5 0 5 10 15
0.6
0.4
0.2
0.0
0.2
0.4

log z 1

w
ef

f

RLog R

m

w eff

r

80 60 40 20 0 20 40
2.0
1.5
1.0
0.5
0.0
0.5
1.0

log z 1

r,
m

,w
ef

f

RLog R

radmDE

5 0 5 10 15
0.0
0.2
0.4
0.6
0.8
1.0

log z 1

R Log R

5 0 5 10 15
0.6
0.4
0.2
0.0
0.2
0.4

log z 1

w
ef

f

R Log R

m

w eff

r

80 60 40 20 0 20 40
2.0
1.5
1.0
0.5
0.0
0.5
1.0

log z 1

r,
m

,w
ef

f

R Log R

FIG. 6 (color online). Cosmological solutions of fðR; TÞ ¼ Rðlog�RÞq þ ffiffiffiffiffiffiffiffi�T
p

gravity. The diagrams for the density parameter and
the effective equation of state parameter are plotted for two values, q ¼ 1 and q ¼ �1. The diagrams form, r, and wðeffÞ are drawn in a
wide range of redshift. The �’s show admissible behaviors in both cases. In the right panel, the first-row diagrams shows a transition
from a saddle accelerated epoch with wðeffÞ � �0:5 to a stable one with wðeffÞ � �1 for q ¼ 1. All three diagrams support this result.
Unlike R log�R, the theory R= log�R does not show these transitions. We draw themðrÞ curve for the model R log�R in Fig. 9, which
indicates that this theory belongs to Class VI. ThemðrÞ curves of the theory first intersect the linem ¼ �r� 1 in an unallowed region,
then the line r ¼ �2 as a final attractor. The diagrams are plotted for the initial values x1 ¼ 10�10, x2 ¼ �10�7, x3 ¼ 1:0058� 10�7,

x4 ¼ 4� 10�13, and x5 ¼ 0:999, corresponding to z � 3:17� 106 for both theories. The diagrams represent the values of�ðmÞ
0 � 0:3

and �ðradÞ
0 � 10�4 at the present epoch.

23Note that the existence of the matter point for all types of this
case is independent of q.
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In Figs. 6 and 7, we plot two examples of such cases for
q ¼ �1. Both examples show an acceptable succession of
the radiation-matter-accelerated expansion eras. The the-
ory R log�R belongs to Class VI, which has P8 as the final
attractor. In addition to the curves of the density parameters
for the radiation, matter, and acceleration eras, the curves
of r � �Rg0=g, m � Rg00=g0 and the effective equation of
state are depicted. These curves show a transition from the
saddle accelerated point P1 to a stable de Sitter accelera-
tion expansion phase after a long time. Figure 6 shows that
the curve mðrÞ first intersects the line m ¼ �r� 1 in
regions r ! �1�, in which P1 is a saddle point, and then
intersects the line r ¼ �2 where P8 is a stable point.

Therefore, these solutions belong to Class VI. Also, wðeffÞ
makes a transition from a nonphantom accelerating era

with the value wðeffÞ � �1=2 to a de Sitter epoch with

wðeffÞ � �1. Unlike this theory, the other theory, i.e.,

R= log ð�RÞ, has P1 as the only attractor, as seen from
Fig. 6. The latter theory belongs to Class II.
We conclude that the corresponding models of gðRÞ ¼

Rp½log ð�RÞ�q are cosmologically acceptable for p ¼ 1
with q < 0 and q > 1=2 in the background of fðR; TÞ
gravity, whereas in fðRÞ gravity the solutions exist only
in the range q > 0.

E. fðR;TÞ ¼ Rp exp ðq=RÞ þ ffiffiffiffiffiffiffiffi�T
p

This theory has the relations

mðrÞ ¼ �pþ rð2þ rÞ
r

and MðrÞ ¼ pþ r

pþ rð2þ rÞ ;
(4.2)

where r � 0. The condition MðrÞ ¼ 0 is satisfied when
r ¼ �p and for all values of p except p ¼ 0, 1. On the
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FIG. 7 (color online). The scale-factor evolution curves for the two theories with gðRÞ ¼ R log�R and gðRÞ ¼ R= log�R are depicted.
The asymptotic lines show the behaviors of the scale factor at the high-redshift regime, in the matter-dominated epoch and at late times.
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FIG. 8 (color online). Cosmological solutions of fðR; TÞ ¼ Rp exp ðq=RÞ þ ffiffiffiffiffiffiffiffi�T
p

gravity. The plots are provided for p ¼ 1:00001
and the initial values x1 ¼ 10�5, x2 ¼ �10�25, x3 ¼ 1:00001� 10�25, x4 ¼ 10�15, and x5 ¼ 0:9999, corresponding to z � 3:53�
107. In this case, one always has m0

1 >�1, which means that P8 is the final attractor.
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other hand, the matter era only exists in r ¼ �p ¼ �1,
and hence we consider the theory in r ¼ �p when p !
1þ. In this situation we have m0

1 >�1, and therefore the
point P1 cannot be stable, while P2 can be a stable accel-
erated point in the region C. Since m00ðrÞ ¼ �2p=r3 the
point (r � �1, m � 0) is a minimum with a positive
concavity. Note that for r <�1 we have mðrÞ<�r� 1,
which has an asymptotic behavior in r ! �1 as mðrÞ !
�r. Since r ¼ ðq=RÞ � 1 in this theory, the latter behavior
occurs for q < 0 and R ! 0þ, which means that P2C can be
the final attractor. However, the trajectories have already
been trapped by P8 in a finite r. In this theory—like the
corresponding models of R log ð�RÞ—before reaching the
final attractor in P8 there is a short time interval in which
the trajectories pass by P1 (which is a saddle point). Thus
its corresponding models belong to Class VI.

As a result, the corresponding models, in general, have
cosmological solutions provided that q < 0 for R ! 1. In
Fig. 8, we depict a numerical calculated example for these
models provided we have the present observed values for
the density parameters. This example belongs to Class VI,
as is obvious by comparing it with the solutions of
Class VI (Fig. 1) with the corresponding curve mðrÞ in
Fig. 9.

V. PURE NONMINIMAL CASE fðR; TÞ ¼ gðRÞhðTÞ
Since we propose to investigate a pure nonminimal case

in this section, one should be more careful about the
functionality of hðTÞ. Indeed, in the vacuum state we do
not want to have a null Lagrangian. Stated loosely, there
should be a solution for the vacuum state (contrary to the

strong version of the Mach idea). Therefore, in this non-
minimal case the following assumption is necessary:

lim
T!0

hðTÞ � 0: (5.1)

Furthermore, for simplicity in this and the following sec-
tions, we only consider dust-like matter. Using the defini-
tions presented in Sec. II [Eqs. (2.12) and (2.13)], we get

1þ 1

6

g

H2g0
� 1

6

R

H2
þ _g0

Hg0
þ

_h

Hh
¼ 8�G�ðmÞ

3H2g0h
þ gh0�ðmÞ

3H2g0h
(5.2)

and

2
_H

H2
þ €g0

H2g0
þ 2

_g0

Hg0
_h

Hh
þ

€h

H2h
� _g0

Hg0
�

_h

Hh

¼ � 8�G�ðmÞ

H2g0h
� gh0�ðmÞ

H2g0h
: (5.3)

Rewriting the first equation with respect to the defined
variables and parameters (2.14)–(2.16) and (2.23) gives

�ðmÞ
p:n: ¼ 1� x1 � x2 � x3 � sð3þ 2x2Þ; (5.4)

where we have defined the corresponding pure nonminimal
matter-density parameter as

�ðmÞ
p:n: � 8�G�ðmÞ

3H2g0h
: (5.5)

In the above definition for �ðmÞ
p:n:, the existence of the

function hðTÞ warns us about the sign of �ðmÞ
p:n:. That is,
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FIG. 9 (color online). Theoretical curves for mðrÞ for some models in fðR; TÞ gravity. The mðrÞ curves are illustrated for some
models corresponding to the represented classifications. Contrary to fðRÞ gravity, the existence of the new point P1 and the new

stability condition for P3 (Pð0Þ
3 is a saddle point for both m0 <�1 and m0 >�1) bring about the appearance of new acceptable

solutions. The models for which P8 is the final attractor (indicated by the two opposite triangles sets) belong to Class V, and those for
which P1 is the final attractor (indicated by the two fitted triangles sets) belong to Class I.
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as we have only assumed that g0ðRÞ> 0, the density

parameter �ðmÞ
p:n: may obtain negative values due to the

appearance and functionality of hðTÞ. On the other hand,

if one physically demands that �ðmÞ
p:n: must be positive,

then the functionality of hðTÞ will be restrictive, e.g., an
exponential function.

We have three dynamical equations for x1, x2, and
x3; the equations for x2 and x3 are the same as Eqs. (3.9)
and (3.10), respectively. However, the equation for x1
changes as

dx1
dN

¼ �1þ x1ðx1 � x3Þ � 3x2 � x3 þ 3sð2x1 � x3 þ 3sÞ:
(5.6)

In addition to the EOM constructed by Eqs. (3.9), (3.10),
and (5.6) we have a constraint due to the energy-
momentum conservation law. It is easy to check that the
constraint (2.11) leads to the following relations between
the parameters n and s with the other variables:

n ¼ x1x3
3mx2

� 1

2
(5.7)

and

s ¼ x1x3
3mx2

þ 1

2
; (5.8)

which in turn specify the functionality of hðTÞ and create a
complicated relation between gðRÞ and hðTÞ. Indeed, fur-
ther investigations indicate that hðTÞ is a complicated

exponential function of T, which guaranties that �ðmÞ
p:n: is

positive. However, we have a dynamical system with three
variables and two constraints, this system of equations
accepts four fixed points, which are summarized in
Table IV.

The most important point that can be observed is that the
matter-density parameters of all the fixed points are zero.
There is no solution to describe a standard matter-dominated
era. Thus, we do not consider the general properties of their
fixed points and (henceforth) their stabilities. However, the
properties of each point can be briefly summarized. The
point P1 is a nonstandard matter era, as the condition

wðeffÞ ¼ 0 is satisfied in m ¼ �2 but we have �ðmÞ
p:n: ¼ 0.

P1 is a de Sitter point when m ¼ 0:6. For this point, the
nonphantom accelerating expansion occurs when 0:48<
m< 0:60, and the phantom accelerating expansion occurs
when m> 0:6. The point P2 can expand the universe in the
range 0:48<m< 1:40 in the nonphantom domain and in
the rangem<�1 in the phantom domain. The point P3 is a
special case of the point P1 when m ¼ 0:6, which is a de
Sitter point. And—contrary to our initial assumption for
the investigation of this theory—the point P4 resembles a
radiation point, which is not physically justified.

VI. NONMINIMAL CASE fðR; TÞ ¼ gðRÞð1 þ hðTÞÞ
Since a general Lagrangian L ¼ g1ðRÞ þ g2ðRÞhðTÞ

makes the calculations and the stability considerations
more complicated, we will just study the nonminimal
case fðR; TÞ ¼ gðRÞð1þ hðTÞÞ.
The following field equations are obtained:

1þ 1

6

g

H2g0
� 1

6

R

H2
þ _g0

Hg0
þ 2 _h

Hð1þ 2hÞ

¼ 8�G�ðmÞ

3H2g0ð1þ 2hÞ þ
2gh0�ðmÞ

3H2g0ð1þ 2hÞ (6.1)

and

TABLE IV. The fixed-point solutions of fðR; TÞ ¼ gðRÞhðTÞ gravity without radiation.

Fixed point Coordinates ðx1; x2; x3Þ Parameter s �ðmÞ
p:n: wðeffÞ

P1
�
mð5�m�am
4ð1þmÞ , � 11þ17mþam

8ð1þmÞ2 , 11þ17mþam
8ð1þmÞ

�
a

1
12 ð1þmþ amÞ 0 � 7þ13mþam

12ð1þmÞ

P2

�
mð5�mþamÞ

4ð1þmÞ , � 11þ17m�am
8ð1þmÞ2 , 11þ17m�am

8ð1þmÞ
�

1
12 ð1þm� amÞ 0 � 7þ13m�am

12ð1þmÞ
P3 (0, � 5

4 , 2) 0 0 �1
P4 (� 4, � 7

4 , 0) 0 0 1
3

aWhere am �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�47þ 38mþ 121m2

p
.

TABLE III. Cosmological solutions of fðR; TÞ gravity compared with fðRÞ gravity.
Theory fðR; TÞ gravity fðRÞ gravity
gðRÞ Model Class II Class VI Class VIIa Class VIIb Class V Class VIIb

aR��, a > 0 �1:43<�<�1 �0:713<�<�1

Rp expqR p ! 1þ, q > 0 p � 0 p ¼ 0, p ¼ 1

Rþ �R�n na! �1� n ! �1þ, n ! �1� �1< n< 0, �< 0

Rpðlog�RÞq p ¼ 1, q < 0 p ¼ 1, q > 1=2 p ¼ 1, 0< q< 1=2 p ¼ 1, q > 0 p � 1
Rp expq=R p ! 1þ, q < 0 p ¼ 1 p � 1

aFor models with n ! �1�, we have �> 0 and for models with n ! �1þ, we have �< 0.
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2
_H

H2
þ €g0

H2g0
þ _g0

Hg0
4 _h

Hð1þ 2hÞ þ
2 €h

H2ð1þ 2hÞ �
_g0

Hg0

� 2 _h

Hð1þ 2hÞ ¼ � 8�G�ðmÞ

H2g0ð1þ 2hÞ �
2gh0�ðmÞ

H2g0ð1þ 2hÞ :

(6.2)

To get the dynamical equation from Eqs. (6.1) and (6.2), we
need to define a new variable,

y � h

1þ 2h
: (6.3)

Hence, the corresponding nonminimal matter-density
parameter satisfies

�ðmÞ
n: ¼ 1� x1 � x2 � x3 � 2sð3þ 2x2Þy; (6.4)

where

�ðmÞ
n: � 8�G�ðmÞ

3H2g0ð1þ hÞ : (6.5)

Owing to these variables, the dynamical equations for x1
and x4 are derived as

dx1
dN

¼�1þ x1ðx1� x3Þ� 3x2� x3þ 6sð2x1� x3þ 3sÞx4;
(6.6)

dx4
dN

¼ �3sx4ð1� 2x4Þ; (6.7)

where the corresponding equations for x2 and x3 remain
unchanged, i.e., Eqs. (3.9) and (3.10). In addition, the
parameters n and s are also the same as in Eqs. (5.7) and
(5.8), which constrain the variables x1, x2, and x3. The fixed
points of this system are represented in Table V.

In this theory, the point P1 contains a matter-dominated
era, and the other points give de Sitter points and the
accelerating expansion domains. Nevertheless, it remains
to be shown that the matter point is a saddle point and
that we have a stable accelerating point for the late-time
acceleration of universe. In what follows, we only consider

the properties of each fixed point in turn to check these
possibilities. More studies on the possible cosmological
solutions for some specific models can be carried out;
however, this is beyond the scope of this work.
(i) P1

This point has the following eigenvalues:

� 1

2
;

�3mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð256m3 þ 160m2 � 31m� 16Þp

4mð1þmÞ ;

�3m� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð256m3 þ 160m2 � 31m� 16Þp

4mð1þmÞ ;

3ð1þm0Þ: (6.8)

The point P1 is a stable point whenm
0 <�1 and 0<

m< 0:346, and otherwise it is a saddle point. If
m0 ¼ 0, it will be a saddle point for all values
of m. Also, when m ! 0þ it is a saddle point pro-
vided thatm0 >�1. This point has a similar property
as the corresponding one in fðRÞ gravity.

(ii) P2, P5, and P6

These three points can only play the role of attractor

solutions of the system, for we have�ðmÞ
P2;5;6

¼ 0. The

eigenvalues of P2 are given as

� 4þ 1

m
;

�8m2 � 3mþ 2

mð1þ 2mÞ ;

2ð1�m2Þð1þm0Þ
mð1þ 2mÞ ;

10m2 þ 3m� 4

6mð1þ 2mÞ :

(6.9)

Whenm< ð�1� ffiffiffi
3

p Þ=2 or ð�1þ ffiffiffi
3

p Þ=2<m< 1
the point P2 can accelerate the expansion of
universe in the nonphantom domain, and when
�1=2<m< 0 or m> 1 in the phantom domain.
There is no stable solution for the phantom accel-
erating expansion; however, the stable nonphantom
accelerating domains are determined by

m0 <�1; 0:347 & m< 1=2;

� 1=3<wðeffÞ <�0:260:
(6.10)

TABLE V. The fixed points of the theory fðR; TÞ ¼ gðRÞð1þ hðTÞÞ without radiation.
Fixed point Coordinates ðx1; x2; x3; x4Þ �ðmÞ

n: wðeffÞ

P1

�
3m
1þm , � 1þ4m

2ð1þmÞ2 ,
1þ4m
2ð1þmÞ; 0

�
2�mð3þ8mÞ
2ð1þmÞ2 � m

1þm

P2

�
2ð1�mÞ
1þ2m , 1�4m

mð1þ2mÞ , � ð1�4mÞð1þmÞ
mð1þ2mÞ ; 0

�
0 2�5m�6m2

3mð1þ2mÞ
P3 (� 4, 5, 0, 0) 0 1

3

P4 (0, �1, 2, 0) 0 �1
P5

�
mð5�m�amÞ

4ð1þmÞ , � 11þ17mþam
8ð1þmÞ2 , 11þ17mþam

8ð1þmÞ , 1
2

�
0 � 7þ13mþam

12ð1þmÞ
P6

�
mð5�mþamÞ

4ð1þmÞ , � 11þ17m�am
8ð1þmÞ2 , 11þ17m�am

8ð1þmÞ , 1
2

�
0 � 7þ13m�am

12ð1þmÞ
P7 (0, � 5

4 , 2,
1
2 ) 0 �1

P8 (-4, 7
4 , 0,

1
2 ) 0 1

3
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In the limit m ! 0, the eigenvalues approximately
read as

1

m
;

2

m
;

2

m
ð1þm0Þ; � 2

3m
; (6.11)

which means that for both m ! 0þ and m ! 0�
this point is a saddle point. Also, in the models
with m0 ¼ 0 the point P2 is a saddle point for all
values of m.
The point P5 can accelerate the expansion of the

universe in the nonphantom domain with �1<

wðeffÞ & �0:75 for 0:486 & m< 0:6, and in the

phantom domain with wðeffÞ <�1 for m> 0:6. P5

is stable in the first range provided that m0 <�1,
and in the second range when m0 >�1. Finally, P6

is always a saddle point in the nonphantom range
0:486 & m< 1:4 and in the phantom rangem<�1
for all values of m0.

(iii) P4 and P7

The eigenvalues of P4 are given by

� 3;
1

2
;

1

2

0
@�3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16

m

s 1
A;

1

2

0
@�3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 16

m

s 1
A: (6.12)

Clearly, P4 is a saddle de Sitter point. However, the
numerical calculations show that the point P7 is a
stable de Sitter solution for 0<m< 1=2.

We conclude this section with the assertion that the
nonminimal coupling Lagrangian fðR; TÞ ¼ gðRÞ�
ð1þ hðTÞÞ can have cosmological solutions in the form
of transitions of P1 to any of the points P2, P5, or P7. Note

that the fixed points P3 and P8 have wðeffÞ ¼ 1=3 which
means that they are not physically justified in the absence
of radiation.

VII. CONCLUDING REMARKS

In this work we considered the cosmological solutions of
the fðR; TÞ theory of gravity for a perfect fluid in a spatially
flat, homogeneous, and isotropic background FLRW met-
ric via the ðr; mÞ-plane analysis. We included the dust
matter and radiation in the action. We investigated some
families of this theory that can be written as a combination
of a pure function of the trace, e.g., hðTÞ, and a pure
function of the Ricci scalar, e.g., gðRÞ, by virtue of which
one is able to use fðR; TÞ gravity as a modification of the
fðRÞ dark energy models. In Ref. [76], by introducing two
dimensionless parameters r andm, the ðr; mÞ-plane method
has been employed to parametrize the fðRÞ function and
simplify the calculations. In this work, we extended their
idea to the function hðTÞ and introduced another two new
dimensionless parameters, namely, n and s. With these
definitions, we considered the cosmological solutions of

three general theories with the Lagrangians of minimal,
pure nonminimal, and nonminimal couplings via the
dynamical systems approach. The conservation of the
energy-momentum tensor leads to a constraint equation
that relates n to the other dynamical variables, and all
acceptable cosmological solutions must respect it.
In minimal gravity, this constraint confines the function

hðTÞ to a particular form, i.e., hðTÞ ¼ ffiffiffiffiffiffiffiffi�T
p þ constant.

This theory gets specific values for the two new parame-
ters, i.e., n ¼ �1=2 ¼ �s, and contains six classes of
acceptable cosmological solutions and three unacceptable
ones with the following remarks, particularly in compari-
son with the fðRÞ gravity studied in Ref. [76].
(i) In all of the solutions, the comparison of the value of

the slope of the mðrÞ curve to �1 is of great impor-
tance. This comparison determines the acceptability
of the solutions from the cosmological point of view,
i.e., there should exist a succession of a saddle
radiation era, a saddle matter era, and finally a stable
accelerated expansion era.

(ii) For all of the fixed points, one of the three condi-
tions (3.18) must be satisfied.

(iii) There is a matter era solution, i.e., P3, that is always
a saddle point, which exists for m ! 0þ with both
m0ðrÞ<�1 and m0ðrÞ>�1. In fðRÞ gravity this
fixed point is not allowed for m0ðrÞ<�1.

(iv) There is an important fixed point, i.e., P1, with the

property �ðmÞ ¼ 0 which acts as a stable acceler-
ated expansion point, in addition to the one that
already exists in fðRÞ gravity. This fixed point is the
final attractor in most models of the minimal
coupling theory. However, the relevant conditions
for this point are

m0ðrÞ<�1 and 0<m< 1=2:

(v) There is a saddle point that indicates a ‘‘false’’
matter era whose scale factor does not behave like
the one of the matter era (actually, its scale factor

behaves as t1=2 instead of t2=3). This point, which
also appears in fðRÞ gravity, can exist as the only
matter point for some models.

(vi) There is a stable de Sitter point that is the final
attractor of the theory. This point appears in fðRÞ
gravity too, and exists provided that

0<m< 1 at r ¼ �2:

The acceptable cosmological solutions must be a tran-
sition from a saddle radiation era to a saddle matter era
and be able to be connected with an accelerated point as
the final attractor, provided that the matter domination
takes long enough to form cosmic structures. In principle,
in this theory we have two matter points (one a ‘‘stan-
dard’’ and the other a ‘‘nonstandard’’ point), two accel-
erated points, and a de Sitter solution. Based on the
existence of cosmological solutions, we classified the

fðR; TÞ COSMOLOGICAL MODELS IN PHASE SPACE PHYSICAL REVIEW D 88, 044048 (2013)

044048-21



acceptable solutions into six classes. Two of them have
the fixed point P1 as the final attractor, two have tran-
sitions to some regions of P2, and for the last two P8 acts
as a de Sitter solution. All these classes of solutions are
new ones with respect to fðR; TÞ gravity, except when the
corresponding models have P8 as a final attractor.
However, in fðR; TÞ gravity P8 can be reached after
passing by P1 for some periods. We briefly compared
the properties of solutions in terms of acceptable transi-
tions for several specific models in both fðR; TÞ and fðRÞ
gravities in Table III. Numerically, we have shown
that theories with gðRÞ ¼ aR��, gðRÞ ¼ Rp exp ðqRÞ,
gðRÞ ¼ Rþ �R�n, gðRÞ ¼ Rp½log ð�RÞ�q, and gðRÞ ¼
Rp exp ðq=RÞ have proper sequences of the radiation-
matter-acceleration eras for some values of their space
parameters, which indicate that these theories deserve
further investigation. We have shown that for the corre-
sponding models, in which the cosmological trajectories
advance to P8, the trajectories pass by P1 before ap-
proaching P8. Also, we numerically checked that it is
always possible to control the duration in which the
trajectories stay around P1 and the duration of the matter
dominated era (the width of the matter-density parameter
in the related diagrams).

In fðR; TÞ gravity with the minimal coupling, our inves-
tigated models can present a standard cosmological his-
tory, including transient periods of radiation and matter
domination followed by a period of accelerated expansion
domination, which can also give the presently observed

[87] contribution of the density parameters�ðmÞ
0 ’ 0:3 and

�ðDEÞ
0 ’ 0:7. Some of the models can explain the acceler-

ated expansion via a dark energy with an effective equation
of state parameter of about �1. However, for some of the
other models, the trajectories are trapped in the point P1

and hence this effective parameter approaches the value
�1=2, which contradicts the recent Planck results [87].
Also, our models numerically suggest a power–law behav-
ior of the scale factors (near z ’ 0) of the form aðtÞ / tn for
1:025< n< 1:038, which gives an accelerated epoch and

leads to a Hubble parameter of the formHðzÞ / ð1þ zÞ1=n.
These results were obtained numerically; however, a non-
numeric analysis can be performed to reconstruct these
models with constant parameters that are consistent with

the present values of H0 and �ðmÞ
0 . Beyond these prelimi-

nary considerations, one can also further constraint the
models using the SNIa measurements, the distance to
the baryonic acoustic oscillations and/or the position of
the first peak in the spectrum of anisotropies of CMBR
observation. Indeed, one can theoretically obtain the
Hubble parameter HðzÞ for each model (which in addition

to H0 and �ðmÞ
0 , it may be a function of the other constant

parameters of the model) then, performs the related calcu-
lations (e.g., the distance modulus of a supernova at red-
shift z) using HðzÞ and hence, compares statistically the
results with the available data (e.g., the observed distance
modulus of a supernova) to find out the best values of the
parameters of the model. Also, by a further step one can
consider the model at the level of perturbation. That is, by
obtaining the effective gravitational constant (which, in
general, depends on the constant parameters of the model)
one can track the structure formation around the matter era
and thus constrain the parameters of the model (e.g., the
scalar perturbations have been considered for some models
in Ref. [71]). In a further study of fðR; TÞ gravity, and in an
independent work, it would be our task to present the
observational constraints for our models.
The pure nonminimal theory has a few problems, in

terms of both fundamental and cosmological aspects.
First of all, a Lagrangian with the property hðTÞ ¼ 0 at
T ¼ 0 does not lead to the vacuum solution, and actually
one gets a null Lagrangian. In addition, there is another
problem in the cosmological regime, namely, there is lack

of a matter point; that is, all the fixed points have�ðmÞ ¼ 0
(see Table IV for more details).
In the nonminimal theory, the corresponding fixed points

consist of the following.
(i) The same matter point as the minimal theory, but

with different eigenvalues. This point exists provided
that m ! 0þ and m0ðrÞ>�1, which is the same as
in fðRÞ gravity.

(ii) Three fixed points as stable accelerated expansion
solutions, which are

m0ðrÞ<�1; 0:347 & m< 1=2;

�1=3<wðeffÞ <�0:260; m0ðrÞ<�1;

0:486 & m< 0:60; �1<wðeffÞ & �0:75

in the nonphantom domain, and

m0ðrÞ>�1; m > 0:60; wðeffÞ <�1

in the phantom domain.
(iii) A stable de Sitter point which exists provided that

0<m< 1=2.
Further considerations of the possible transitions and stud-
ies of various models of this theory will be reported
elsewhere.
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