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We study the universal nature of the product of the entropies of all horizons of charged rotating black

holes. We argue, by examining further explicit examples, that when the maximum number of rotations

and/or charges are turned on, the entropy product is expressed in terms of angular momentum and/or

charges only, which are quantized. (In the case of gauged supergravities, the entropy product depends on

the gauge-coupling constant also.) In two-derivative gravities, the notion of the ‘‘maximum number’’ of

charges can be defined as being sufficiently many nonzero charges that the Reissner-Nordström black hole

arises under an appropriate specialization of the charges. (The definition can be relaxed somewhat in

charged anti-de Sitter black holes in D � 6.) In higher-derivative gravity, we use the charged rotating

black hole in Weyl-Maxwell gravity as an example for which the entropy product is still quantized, but it

is expressed in terms of the angular momentum only, with no dependence on the charge. This suggests that

the notion of maximum charges in higher-derivative gravities requires further understanding.

DOI: 10.1103/PhysRevD.88.044046 PACS numbers: 04.50.�h

I. INTRODUCTION

Understanding black-hole entropy at the microscopic
level has been a major focus of research in string theory
and M theory in the past years. While the microscopics
of asymptotically flat Bogomol’ni-Prasad-Sommerfield
(BPS) black holes in four and five dimensions is by now
well understood [1] (for a review, see, for example, [2] and
references therein), the internal properties of general non-
extremal black holes are less clear. However, it has been
known for a long time that general asymptotically flat
multicharged rotating black holes of supergravities in
four [3] and five [4] dimensions1 have a tantalizing entropy
formula [3], and a first law of thermodynamics [7–9]
associated with both the inner and the outer black-hole
horizons, which are highly suggestive of a possible micro-
scopic interpretation in terms of a two-dimensional con-
formal field theory (CFT). Specifically, the entropies S� of
the outer and inner horizons are of the form [3,8,9]: S� ¼
2�ð ffiffiffiffiffiffiffi

NL

p � ffiffiffiffiffiffiffi
NR

p Þ, where the quantities NL and NR may be
viewed as the excitation numbers of the left and right

moving modes of a weakly coupled two-dimensional con-
formal field theory. The product SþS� ¼ 4�2ðNL � NRÞ
should therefore by quantized in integer multiples of 4�2

[7–9] (and reemphasized in [10]). Indeed, one finds

SþS� ¼ 4�2

�
J2 þY4

i¼1

Qi

�
; (1.1)

SþS� ¼ 4�2

�
J1J2 þ

Y3
i¼1

Qi

�
; (1.2)

for four- and five-dimensional black holes, respectively.
(These results were implicit in [8,9], although not explic-
itly evaluated.) These expressions are modulus indepen-
dent, and are expressed solely in terms of the quantized
duality-invariant quartic (cubic) charge form and the quan-
tized angular momenta.
In parallel developments Ansorg and collaborators

(see, for example, [11,12] and references therein) studied
axisymmetric solutions of Einstein-Maxwell gravity, with
sources external to the outer horizon. They obtained strik-
ing universal formulas expressing the entropy products of
the outer and inner Killing horizons in terms of the total
angular momentum J and total chargeQ. For the Reissner-
Nordström black hole [11], these products reduce to (1.1)
with all Qi ¼ Q. The quantized nature of the entropy-
product formulas for other asymptotically flat solutions,
such as general ring and string solutions, was recently
verified in [13], and for static black holes and rings of
N ¼ 2 supergravity in four and five dimensions in [14] and
[15,16], respectively.

1These black holes can be used as generating solutions for the
maximally supersymmetric N ¼ 4 (N ¼ 8) supergravities
obtained by toroidally compactifying the heterotic string (or
type IIA string or M theory). In addition to the mass M, these
solutions are specified in four dimensions by four charges Qi

(i ¼ 1, 2, 3, 4) and one angular momentum J. In five dimensions
they are specified by the mass and three charges,Qi (i ¼ 1, 2, 3),
and two angular momenta, J1 and J2. It turns out that in four
dimensions the complete generating solution is specified by an
additional fifth charge, which has been obtained only in the BPS
[5] and static [6] cases.
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Another approach that has brought considerable insights
into the internal structure of general black holes is the
study of absorption coefficients or greybody factors for
fields in the black-hole background. This involves solving
the wave equations for external fields in the black-hole
geometry. A remarkable feature of many black-hole met-
rics is that the wave equations, such as the Klein-Gordon
equation for a minimally coupled massless scalar field, are
typically separable, and this greatly simplifies the study of
the scattering problem. The core of the calculation is
reduced to the investigation of the solutions of the radial
equation, whose complexity is governed by the nature of
its singular points. As well as having singular points at the
origin and at infinity, additional singularities occur at all of
the zeros of the metric functions that determine the num-
ber, and the locations, of the horizons. Thus it can be that
important features of the scattering process are governed
not only by the properties of the metric outside and on the
outer horizon, but also by its properties at interior horizons
and at other singular points of the metric radial functions.

Specifically, the radial part of the Klein-Gordon equation
for massless probe scalars in the background of general
asymptotically flat black holes in four and five dimensions
exhibits an approximate SLð2;RÞ � SLð2;RÞ conformal
symmetry, associated with the poles at the inner and outer
black-hole horizons [8,9,17]. The terms that break this
symmetry are associated with features of the asymptotic
geometry and can be neglected in an appropriate low-energy
regime for the probe scalars. This raises the expectation [17]
that at least the low-energy dynamics of general black holes
could be described by a two-dimensional CFT.2

Recently, this proposal was developed further in [20,21],
by identifying an explicit part of the general multicharged
rotating black-hole geometry that exhibits a manifest
SLð2;RÞ � SLð2;RÞ conformal symmetry of the wave
equation. The metrics of these conformal backgrounds
differ from the original black-hole metrics by the removal
of certain terms in the warp factor only, and they were
accordingly dubbed the ‘‘subtracted geometries.’’3 The key
global structure and the thermodynamic properties of
these subtracted geometries, such as the areas of the two
horizons and the angular periodicities, remain the same,
and so the subtracted geometry is expected to preserve the
information about the internal structure of the black hole.

The subtracted geometry is, however, asymptotically
conical [21,22], rather than asymptotically flat. A physical
interpretation of the subtraction is the removal of the
ambient asymptotically Minkowski spacetime in a way
that extracts the ‘‘intrinsic’’ SLð2;RÞ � SLð2;RÞ symme-
try of the black hole. A lift of the subtracted metric on a
circle gives rise toAdS3 � Sphere geometries, and thus the
microscopic interpretation of the general black-hole en-
tropy can be deduced via an AdS3=CFT2 correspondence
[20,21]. Further studies of the properties of the dual
CFT operators that parametrize deformations from the
subtracted geometry were carried out in [24,29].
The intriguing internal properties of general asymptoti-

cally flat black holes in four and five dimensions, and their
potential dual two-dimensional CFT descriptions, are inti-
mately related to geometrical properties of the two horizons.
On the other hand, black holes in asymptotically anti-de
Sitter (AdS) spacetime, and rotating black holes in dimen-
sions larger than five, have the property that the radial metric
function has more than two zeros.4 The wave equations in
these backgrounds will have dominant contributions asso-
ciated with poles at each of these zeros. One can therefore
again expect that the thermodynamics associated with each
pole will play a role in governing the properties of the black
hole at the microscopic level. This could potentially be
suggestive of a microscopic behavior of such black holes
in terms of a dual field theory in more than two dimensions.
One specific (mesoscopic) test of these ideas is the calcu-
lation of the product of all the horizon entropies [30]. It turns
out that these entropy products are also universal; they
depend only on quantized charges, quantized angular mo-
menta and the cosmological (or gauge-coupling) constant,
which is also quantized in the context of compactifications
of string theory.
Most of the black-hole examples that have been inves-

tigated arise as solutions of conventional gravity or super-
gravities with second-order equations of motion, for which
the horizon area and entropy are related by the Bekenstein-
Hawking formula S ¼ 1

4A. In these cases the quantization

of the product of entropies is therefore synonymous with
the quantization of the product of horizon areas. In higher-
derivative gravities, by contrast, the entropy is no longer, in
general, proportional to the area of the horizon but is
instead given by the Wald formula which involves the
variation of the action with respect to the Riemann tensor.

2These terms can also be neglected for special black-hole back-
grounds, including the near-supersymmetric limit (the AdS/CFT
correspondence) [8,9,18] and the near-extreme rotating limit (the
Kerr/CFT correspondence) [10,19].

3The sources for the subtracted geometry were obtained in
[22] as a certain scaling limit of another black hole. The full
solution for the subtracted geometry can also be obtained by
acting on the original black-hole solution with specific Harrison
transformations [22–25] within the STU model, which is a
consistent truncation of maximally supersymmetric supergravity
to N ¼ 2 supergravity coupled to three vector multiplets. For
related works, see [26–28].

4To be more precise, the singular points we are referring to
correspond to all the (real or complex) values ri of the radial
coordinate r at which the norm of some Killing vector vanishes.
The metric on the surface at the fixed radius ri may have
signature ð0;þ;þ;þ; � � � ;þÞ, in which case it is an ordinary
horizon; or signature ð0;�;þ;þ; � � � ;þÞ, in which case the
surface is a timelike ‘‘pseudo-horizon’’ with imaginary area;
or ri may be complex (such roots arise in conjugate pairs). For
the sake of brevity, in this paper we shall refer to all of the
surfaces defined by the roots of the relevant metric radial
function as ‘‘horizons.’’
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Entropy-product formulas in higher-derivative gravities
were studied recently in [31]. A question arises as to
whether in higher-derivative theories it is the product of
the entropies or the product of the areas (or neither) that is
quantized. Subtleties can arise when trying to answer
this question. In particular, the definition of entropy can
be ambiguous in any even spacetime dimension, since
one can always add a purely topological Euler integrand
to the action which, while not affecting the equations of
motion, does change the Wald entropy by a purely numeri-
cal additive constant. For example, in four dimensions one
can add a Gauss-Bonnet term to the standard Einstein-
Hilbert plus matter Lagrangian, such that the original
entropy Si0 at the ith horizon is modified to

Si ¼ Si0 þ �: (1.3)

It is clear that if the original entropy product
Q

iS
i
0 were

quantized and expressible purely in terms of the charges and
angular momenta, then the modified entropy product

Q
iS

i

would not be. As we shall discuss in detail later, there is in
fact a natural way to remove the ambiguity in the definition
of the entropy, by requiring that the black hole should have
zero entropy in the case where its mass is sent to zero.

In Sec. II we study the entropy-product formulas for
some further examples of charged rotating black holes in
four and five dimensions that had not previously been
examined. These include the four-dimensional dyonic ro-
tating black-hole solutions of the Einstein-Maxwell-
dilaton theory obtained by Kaluza-Klein (KK) reduction
of pure five-dimensional gravity [32,33], and also the
recently constructed general three-charged rotating black
holes of five-dimensional gauged supergravity [34]. We
also consider the charged rotating black holes of
four-dimensional fðRÞ-Maxwell theory [35]. Although
fðRÞ gravity is ostensibly a higher-derivative theory, the
known black-hole solutions have constant Ricci scalar R,
and hence the equations of motion are effectively reduced
to second-order ones.

Turning now to black holes in theories involving higher-
derivative gravity in a more nontrivial way, exact solutions
are rather hard to come by. For higher-derivative theories
whose Lagrangians are built from polynomial curvature
invariants, if each Riemann tensor is contracted with at
least two Ricci tensors, then Einstein metrics continue to
be solutions. The Wald formula then implies that the
entropy is proportional to the area of the horizon, and the
previous entropy-product formulas still hold for any such
black holes that are Einstein metrics. Exact solutions for
static charged black holes have also been found in
Lovelock-Maxwell theory, and for these it was argued
that the entropy-product rule seemingly breaks down
[31]. However, we argue that this may just be an artefact
of considering the rather degenerate special case of non-
rotating black holes. The relevant point here, as we shall
discuss in detail later, is that the total number of horizons
for a black hole with generic nonvanishing charges and

angular momenta can be greater than the number of
horizons in special cases where charges and/or angular
momenta vanish. It is in the generic case with the maximal
number of horizons that one can expect the product of
horizon areas to be quantized.
A simple illustrative example is provided by the

Reissner-Nordström solution, which has two horizons
located at the roots r� of r2 � 2MrþQ2 ¼ 0. The prod-
uct of the horizon areas is AþA� ¼ ð4�r2�Þð4�r2þÞ ¼
16�2Q4, which is indeed quantized and independent of
the massM. Taking the limit whenQ goes to zero gives the
area product AþA� ¼ 0, which, although trivial because
of the factor A� ¼ 0, is still quantized. If, however, we
were to consider the Schwarzschild solution in isolation,
we would say it has just one horizon, at rþ ¼ 2M, and the
‘‘area product’’ would simply be Aþ ¼ 4�r2þ ¼ 16�M2,
which is not quantized and does depend on M. Thus one
sees that the Schwarzschild black hole itself, having
only one rather than two horizons, is not a sufficiently
generic solution to reveal the underlying nature of
the quantized area-product formula for the Reissner-
Nordström family.
Returning to the black-hole solutions of Lovelock-

Maxwell theory examined in [31], it is quite plausible that
the failure of the area-product rule for the static black holes
is again a consequence of not considering the most generic
situation, in this case with rotation included. Unfortunately
the more general rotating solutions in the Lovelock-
Maxwell theory are not presently known, and so it is not
possible at this time to settle the question definitively.
In Sec. III we consider an example that is rather analo-

gous, and where we are able to explicitly illustrate a similar
phenomenon, namely for charged rotating black holes in
the conformally invariant Weyl-Maxwell theory in four
dimensions. We demonstrate that in this example the
entropy-product rule holds for rotating black-hole solu-
tions but that it would fail if one considered just the static
nonrotating solutions in isolation.
In Sec. IV we comment on a general phenomenon for

rotating black holes, namely that if the metric is written as
a timelike bundle over a Euclidean-signature base space,
with warp factors multiplying the base and the fiber
metrics, then the expression for the area of any horizon is
independent of the warp factor. However, if one takes the
static limit, the area becomes dependent on the warp factor.
This observation could have further implications for the
study of the microscopic properties of general rotating
black holes in gravity theories in diverse dimensions, along
the lines of the ‘‘subtracted geometry.’’
We conclude our paper in Sec. V.

II. FURTHER AREA-PRODUCT EXAMPLES
IN D ¼ 4 AND D ¼ 5

In this section we consider three further examples of
black-hole solutions in four and five dimensions for which
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area-product relations had not previously been studied.
The first is the four-dimensional rotating dyonic black-
hole solution of the Einstein-Maxwell-dilaton theory that
can be obtained as the dimensional reduction of five-
dimensional pure gravity [32,33]. Next, we look at the
general solution for a three-charge rotating black hole
in five-dimensional gauged supergravity [34]. The third
example is the charged rotating black-hole solution
of Maxwell theory coupled to fðRÞ gravity in four
dimensions [35].

A. Entropy-product formula for the dyonic
KK black hole

The solution for the dyonic rotating Kaluza-Klein black
hole carrying electric and magnetic charges can be em-
bedded in the four-dimensional N ¼ 2 supergravity STU
theory. The electric and magnetic charges are both carried
by just one of the four gauge fields in the theory. It should
be noted that although there exists a discrete duality sym-
metry in the KK reduction of five-dimensional gravity,
under which the electric and magnetic charges are
exchanged, there is no continuous duality symmetry, and
so this dyonic black hole cannot be rotated into a purely
electric or purely magnetic one. Using the notation and
conventions of [36], the solution can be written as

dŝ24 ¼ �e’4ðdt�!d�Þ2 þ e�’4ds23; (2.1)

where

ds23 ¼ ð�2 � 2mrÞ
�
dr2

�
þ d�2

�
þ�sin 2�d�2;

� ¼ r2 þ a2 � 2mr; �2 ¼ r2 þ a2cos 2�:
(2.2)

The functions ’4 and ! are given by

! ¼ 2amc4½ðr�mÞ�þmc5�sin 2�

�2 � 2mr
;

e2’4 ¼ ð�2 � 2mrÞ2�
ðf1�þ 2mc24U�Þðf2 þ 2m�UþÞ

;

(2.3)

where we have defined

U� ¼ ðr�mÞc5 � as4s5 cos�;

f1 ¼ �2 � 2mrþ 2m2c24;

f2 ¼ �2 � 2mrþ 2m2�2;

ci ¼ cosh�i;

si ¼ sinh�i;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c24s

2
5

q
:

(2.4)

The other nonvanishing fields in the four-dimensional
supergravity theory are

e2’1 ¼ e2’2 ¼ e2’3 ¼ f1�þ 2mc24U�
�ðf2 þ 2m�UþÞ ;

Â ¼ �d�þ �4ðdt�!d�Þ; (2.5)

where

�¼ 2ms4c4�cos�þ2amc4s5½c24c5ðr�mÞþm��sin2�

�ð�2�2mrÞ ;

�4 ¼ 2m2c24s5c5þ2m�½ðr�mÞs5þas4c5 cos��
f2þ2m�Uþ

:

(2.6)

There are two horizons, which are located at the two
roots r� of � ¼ 0. The entropies are given by

S� ¼ 2�mc4jr���mð�� c5Þj: (2.7)

[The absolute value must be used here because r���
mð�� c5Þ can be negative under appropriate conditions;
see Sec. 4.] The angular momentum J and the electric and
magnetic charges Q and P are given by

J ¼ amc4�; Q ¼ 2ms5�; P ¼ 2ms4c4
�

; (2.8)

from which it follows that

SþS� ¼ 4�2m2c24ja2�2 �m2s24s
2
5j; (2.9)

and hence, as can be seen from (2.8),

SþS� ¼ 4�2

��������J2 � 1

16
P2Q2

��������: (2.10)

It might, at first sight, seem surprising that with only
one field strength active, the charges contribute to the
entropy-product formula. However, bearing in mind that
the charge contribution in a general black hole must
be invariant under SLð2; RÞ3, and that for the usual
‘‘four-charge’’ black hole the charge contribution is of
the form P1Q2P3Q4, this is in fact correct. See, for
example, Eq. (6.22) in [37]5:

5In [37] the notation where a ‘‘standard’’ four-charge black
hole has one electric charge q0 and three magnetic charges
ðp1; p2; p3Þ is used. By contrast, in the notation of [36] the
standard four-charge black hole has magnetic charges p1 and
p3, and electric charges q2 and q4. Our presentation of the
Rasheed black hole has electric and magnetic charges q4 and
p4. In the notation of [37] a simple choice for the Rasheed black
hole would be to take q0 and p

0 to be nonzero, in which case the
last term in (2.11) gives�ðq0Þ2ðp0Þ2, in contrast toþ4q0p

1p2p3

for the standard four-charge black hole [3]. See also [5], Eq. (69),
where the manifestly (S- and T-) duality invariant quartic charge
form was first derived, as it appeared in the entropy formula of
the most general BPS black hole of four-dimensional N ¼ 4
ungauged supergravity. For related U-duality invariant charge
forms in four and five dimensions, see, e.g., [38].
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Dðp; qÞ ¼ 4½ðp1q1Þðp2q2Þ þ ðp1q1Þðp3q3Þ þ ðp2q2Þðp3q3Þ
� p0q1q2q3 þ q0p

1p2p3� � ðp	q	Þ2: (2.11)

For comparison, we may consider the standard four-
charge black hole. In the notation of [36] this has magnetic
charges P1 and P3, and electric charges Q2 and Q4.
Evaluating the entropy-product formula, we find

SþS� ¼ 4�2

�
J2 þ 1

4
P1Q2P3Q4

�
: (2.12)

This is indeed consistent with (2.10) and, after making the
exchange p2 $ q2, (2.11).

B. The three-charge solution in D ¼ 5
gauged supergravity

Area-product formulas for a variety of rotating black
holes in gauged supergravities were studied in [30].
However, only more recently has the general three-charge
rotating black hole in five-dimensional gauged supergrav-
ity been constructed [34], and so we are now in a position
to check the area-product relation for this example. It has
horizons determined by the roots of a sixth-order polyno-
mial in the radial coordinate r. Since only even powers of
r occur, we can define x ¼ r2 and reduce the problem to
one with three horizons, at the roots x ¼ x1, x ¼ x2 and
x ¼ x3. The radial function is then given by [34]

� ¼ ðxþ a2Þðxþ b2Þð1þ g2xÞ � 2mxþ 2mg2fðs21 þ s22 þ s23Þx2 � ðs21s22 þ s21s
2
3 þ s22s

2
3Þ½ða2 þ b2 � 2mÞx

þ a2b2ð2þ g2xÞ� þ s21s
2
2s

2
3ð½ðaþ bÞ2 � 2mÞ�½ða� bÞ2 � 2m� � 2g2a2b2ð2xþ 2mþ a2 þ b2Þ þ g4a4b4Þ

þ 2mg2a2b2½s41s42 þ s41s
4
3 þ s42s

4
3 � 2s21s

2
2s

2
3ðs21 þ s22 þ s23Þ�g: (2.13)

The entropy, angular momenta and charges are also given in [34]. After transforming to the variable x ¼ r2, the entropy at
the ith horizon is given by

Si ¼ �2

2
a
b

ffiffiffiffiffiffi
Wi

xi

s
; (2.14)

where

Wi ¼ ½ðxi þ a2Þðxi þ b2Þ þ 2mxiðs21 þ s22 þ s23Þ�fðxi þ a2Þðxi þ b2Þ þ 2mg2½ðaþ bÞ2 � g2a2b2�½ða� bÞ2

� g2a2b2�s21s22s23 � 4mg2a2b2ðs21s22 þ s21s
2
3 þ s22s

2
3Þg þ 8m2xic1c2c3s1s2s3ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1a�2a�3a�1b�2b�3b

q
þ 4m2xi½xi þ g2a2b2ðs21 þ s22 þ s23Þ�ðs21s22 þ s21s

2
3 þ s22s

2
3Þ � 4m2fða2 þ b2Þð1þ g2a2Þð1þ g2b2Þxi

þ g2½ða4 þ b4Þxi þ g2a4b4ð2þ g2xiÞ�ðs21 þ s22 þ s23Þ þ g2a2b2ða2 þ b2 þ g2a2b2Þ
� ½2þ g2xiðs21s22 þ s21s

2
3 þ s22s

2
3Þ�gs21s22s23 þ 4m2g4a4b4ðs41s42 þ s41s

4
3 þ s42s

4
3Þ � 8m2xig

6a4b4s41s
4
2s

4
3

þ 8m3ðxi þ g2a2b2Þs21s22s23; (2.15)

and


a ¼ 1� g2a2; 
b ¼ 1� g2b2;

�ia ¼ 1þ g2a2s2i ; �ib ¼ 1þ g2b2s2i :
(2.16)

The angular momenta and electric charges are given by [34]

Ja ¼ �m

2
2
a
b

�
ac1c2c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1a�2a�3a

q
� b
2

as1s2s3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1b�2b�3b

q �
; (2.17)

Jb ¼ �m

2
a

2
b

�
bc1c2c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1b�2b�3b

q
� a
2

bs1s2s3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1a�2a�3a

q �
;

Qi ¼ �m

2
a
b

�
cisi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1a�2a�3a�1b�2b�3b

p
sqrt�ia�ib

� g2ab
c1c2c3s1s2s3

cisi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ia�ib

q �
: (2.18)

From these it is a straightforward matter to compute the product of the entropies and express it in terms of the conserved
charges. We find that it can be written as
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Y3
i¼1

Si ¼ � 2i�3

g3
ð�JaJb þ 4Q1Q2Q3Þ: (2.19)

This result reduces to the special cases presented previ-
ously in [30] if two or more charges are set equal. [The �
sign on the right-hand side reflects the fact that there is a
sign ambiguity in taking the square roots in (2.14). This
would not be seen if we took the product over all six
horizons in the language of the original radial variable r,
in which case the right-hand side would be squared.]

C. Charged rotating black hole in fðRÞ theory
Although fðRÞ gravities involve, in general, higher

derivatives in their equations of motion, their solutions
include those for which the Ricci scalar is constant. In
this case, the effective equations of motion are then re-
duced to second order. In four dimensions, it happens that
the trace of the Maxwell energy-momentum tensor
vanishes, and so one can still construct analytic charged
solutions in this case for which R is constant.

The four-dimensional Lagrangian for fðRÞ gravity
coupled to a Maxwell field is given by

L4 ¼ ffiffiffiffiffiffiffi�g
p �

fðRÞ � 1

4
F2

�
: (2.20)

The Einstein equations of motion are then

f0ðRÞR	� � 1

2
g	�fðRÞ þ ðr	r� � g	�hÞf0ðRÞ

¼ 1

2

�
F2
	� � 1

4
g	�F

2

�
; (2.21)

where f0ðRÞ means @fðRÞ=@R. The trace of the Einstein
equation is independent of the Maxwell field,

f0ðRÞR� 2fðRÞ � 3hf0ðRÞ ¼ 0; (2.22)

and so it admits solutions where the Ricci scalar is con-
stant, R ¼ R0, where

f0ðR0ÞR0 ¼ 2fðR0Þ: (2.23)

For solutions with R ¼ R0, the Einstein equations (2.21)
then reduce to

R	� � 1

2
g	�ðR� 2�Þ ¼ 1

2

�
~F2
	� � 1

4
g	�

~F2

�
; (2.24)

where � ¼ 1
4R0 is the effective cosmological constant and

~F	� ¼ F	�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðR0Þ

p
. This is precisely the same equation

as in Einstein-Maxwell theory, which admits the well-
known Reissner-Nordström and Kerr-Newman solutions,

except that now the charge is scaled by the 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðR0Þ

p
factor. This gives rise to the static [39] and rotating [35]
charged black holes in four-dimensional fðRÞ gravity
coupled to the Maxwell field. Note that the entropy is
also given by one-quarter the area of the horizon, scaled
by the f0ðR0Þ factor. Thus the entropy-product formula for

the charged rotating black hole in fðRÞ gravity is similar to
that for the Kerr-Newman solution in Einstein-Maxwell
theory, but for an overall scaling by an f0ðR0Þ-dependent
factor. The entropy-product formula for the static case was
discussed in [31].

III. ENTROPY-PRODUCT FORMULA FOR
MAXWELL-WEYL THEORY

In four dimensions, owing to the fact that the Gauss-
Bonnet term is a total derivative, the most general
quadratic-curvature Lagrangian can be parametrized as

L2 ¼ �R	�R	� þ �R2: (3.1)

Any Einstein metric with cosmological constant �, which
is a solution for the theory described by the Lagrangian
L0 ¼ R� 2�, will continue to be a solution of the theory
described by L ¼ L0 þL2. For any such black-hole
solution, the Wald formula implies that the entropy will
just be a constant multiple of the area of the horizon, and
hence entropy-product results for the Kerr-AdS metric in
Einstein gravity will continue to hold in the extended
theory. If black-hole solutions over and above those that
are Einstein metrics existed, then their entropy products
would need to be investigated in their own right.
In fact, here no explicit black-hole solutions, beyond

Kerr-AdS, are known for the general case of cosmological
Einstein gravity augmented by the quadratic-curvature
Lagrangian (3.1). The situation becomes simpler, however,
if we consider pure conformal gravity, where the
Lagrangian is simply a multiple of the square of the
Weyl tensor, and additional non-Einstein black-hole solu-
tions can be found. In fact, nontrivial solutions can also be
found in the conformally invariant Weyl-Maxwell theory,
described by the Lagrangian

L ¼ ffiffiffiffiffiffiffi�g
p �

1

2
�C	���C	��� þ 1

3
�F2

�

¼ ffiffiffiffiffiffiffi�g
p �

�R	�R	� � 1

3
�R2 þ 1

3
�F2

�
þ �LGB: (3.2)

(Here LGB denotes the Gauss-Bonnet Lagrangian.)

A. Charged rotating black holes

Charged rotating black holes in the four-dimensional
conformally invariant Einstein-Weyl theory,

L ¼ ffiffiffiffiffiffiffi�g
p �

1

2
�C	���C	��� þ 1

3
�F	�F	�

�
; (3.3)

were studied in [40]. The solution for a dyonic black hole
can be written as [40]
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ds24 ¼�2

�
dr2

�r

þd�2

��

�
þ��sin

2�

�2

�
adt�ðr2þa2Þd�

�

�
2

��r

�2

�
dt�asin2�

d�

�

�
2
;

A¼ qr

�2

�
dt�asin2�

d�

�

�
þpcos�

�2

�
adt�ðr2þa2Þd�

�

�
;

(3.4)

where

�2 ¼ r2 þ a2cos 2�; �� ¼ 1� g2a2cos 2�;

� ¼ 1� g2a2;

�r ¼ ðr2 þ a2Þð1þ g2r2Þ � 2mrþ ðp2 þ q2Þr3
6m

:

(3.5)

The horizons occur at the roots of �r ¼ 0. In what follows
we shall set p ¼ 0 so that there is only an electric charge,
since the inclusion of a magnetic charge adds no further
features of relevance to the discussion.

The conserved energy, charge and angular momentum
are given by [40]

E ¼ 2�g2

�2

�
mþ a2q2

12m

�
; Q ¼ �q

3�
;

J ¼ 2a�g2

�2

�
mþ q2

12mg2

�
;

(3.6)

and the Wald entropy at a root ri is given by

Si ¼ 2��

�

�
1þ g2r2i þ

q2ri
6m

� c�

�
: (3.7)

The constant c is purely numerical (i.e. parameter inde-
pendent) and corresponds to adding a constant multiple of
the Gauss-Bonnet invariant to the action. If we choose
c ¼ 1, the resulting Lagrangian involves only the Ricci
tensor and Ricci scalar, and we have

Si ¼ 2��

�

�
g2

4�
Ai þ q2ri

6m

�
; (3.8)

where Ai ¼ 4�ðr2i þ a2Þ is the area of the ith ‘‘horizon.’’
This is a more natural definition for the entropy of the
system since the entropy vanishes when the solution be-
comes the vacuum. Calculating the product of the entropies
at the four horizons, keeping the constant c arbitrary for
now, and then expressing the result in terms of the con-
served charges, we find

Y4
i¼1

Si ¼ ð2�Þ4�2½cJ2 þ ð1� cÞE2g�2 þ 3cð1� cÞQ2

þ c2ð1� cÞ2�2�: (3.9)

Making the natural choice c ¼ 1 discussed above yields
the result

Y4
i¼1

Si ¼ ð2�Þ4�2J2; (3.10)

which is indeed quantized. This is a highly nontrivial result
since now the entropy is no longer simply one-quarter of
the area of the horizon, in which case the quantization
of the entropy product implies the geometric quantization
of the product of all horizon areas.

B. Charged static black holes

In the previous subsection, we saw that with the natural
choice c ¼ 1 the product of entropies depended only on the
angular momentum, but was independent of the charges. If
we send the angular momentum to zero, the entropy of one
of the horizons also goes to zero. More precisely, in the
static case, the four null surfaces are reduced to only three.
There are in fact more general static solutions than the
obvious one resulting from setting a ¼ 0. The most gen-
eral static solution is given by [41]

ds2 ¼�fdt2þdr2

f
þ r2d�2

2; A¼�q

r
dt;

f¼�1

3
�r2þc1rþc0þd

r
; 3c1dþ1þq2 ¼ c20;

(3.11)

and the entropies are given by

Si ¼ � 2��ð3dþ ðc0 þ 2ÞriÞ
3ri

: (3.12)

Thus we have

Y3
i¼1

Si ¼ � 8

27
�3�3ð2� 3c0 þ c30 � 26d2g2Þ

þ 128

9
�ðc0 þ 2Þ�3Q2

e; (3.13)

where Qe ¼ 1
4�q is the electric charge. It is thus clear that

the product of entropies is no longer expressed purely in
terms of quantized charges in this static case.
An important lesson one learns from the Weyl-Maxwell

theory is that in higher-derivative gravities, the failure of
the entropy-product formula in the static case does not
necessarily imply the failure of the formula in the more
general rotating solutions with angular momenta as well.
After all, for Schwarzschild black holes with or without

a cosmological constant, the entropy or the product of
entropies depends on the mass, rather than on any quan-
tized quantities. However, as we discussed for the
Schwarzschild black hole in the Introduction, the static
solution is a special case of the more general solutions
with angular momenta or charges, which have a larger
number of null surfaces. The static solution corresponds
to the degenerate limit where the area of one or more of the
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null surfaces of the more general class of solutions goes
to zero.

In all the examples examined so far, as long as maxi-
mally rotating solutions exist in two-derivative or higher-
derivative gravities, the entropy-product formulas do work,
in the sense of depending only on the products of angular
momenta with (or without) charges. However, in many
cases, such as in Lovelock gravities, the exact solutions
for rotating black holes are unknown. We expect that the
entropy-product formulas will work in these cases, even if
they fail for the known, but rather degenerate, charged
static solutions.

IV. WARP-FACTOR INDEPENDENCE
AND THE STATIC LIMIT

Most of the charged black-hole metrics in ungauged
supergravities were constructed by using solution-
generating techniques, starting from an uncharged black
hole as a ‘‘seed’’ solution. One of the most universal
solution-generating techniques involves performing a di-
mensional reduction of the seed metric to three dimen-
sions, and then acting with global symmetries of the
associated nonlinear sigma model coupled to gravity in
three dimensions. For example, in the case of constructing
charged rotating solutions in four dimensions, one per-
forms a timelike reduction using the Kaluza-Klein ansatz
given in (2.1). The reduced three-dimensional metric ds23 is
invariant under the global symmetry transformations and
thus remains the same as in the original reduction of the
seed Kerr solution, as in (2.2). The specific forms of the
warp factor e’4 and the function ! in (2.1) will depend on
the details of the theory under consideration, and the nature
of the charges that are turned on, but the general structure,
and the universality of the 3-metric ds23, will be common to

all examples.
The horizons of the charged metric will be located at the

same radii ri as those of the original seed metric, namely at
the zeros of the function�. It is then evident from (2.1) and
(2.2) that the area of the horizon at r ¼ ri will be given by

Ai ¼ 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mr� �2Þ!2

q
jr¼ri ; (4.1)

and so, in particular, it is independent of the warp
factor e’4 .

The above discussion assumes that the metric is sta-
tionary, but not static. In the static case, a ¼ 0 and the
function ! vanishes, and so evidently for the metric to be
nondegenerate at the horizons it must be that the warp
factor acquires a factor of � that can cancel the overall
factor of � in the 3-metric ds23. The area of the horizon at

r ¼ ri is now given by

Ai ¼ 4�½e�’4��r¼ri ; (4.2)

which, unlike in the rotating case, does depend upon the
warp factor e’4 .

The independence of the horizon area on the warp factor
for stationary black-hole metrics has been noted in earlier
works, and indeed it has formed the basis for the notion of
subtracted geometries that was considered in [20,21]. In
those papers, the proposal was to subtract certain terms in
the warp factors of the black-hole metrics, in such a way
that the massless scalar wave equation for the subtracted
geometry attains a manifest SLð2;RÞ � SLð2;RÞ confor-
mal symmetry. It was noted in [20,21] that the areas of the
two horizons and the periodicity of the azimuthal angles
for the rotating solutions are unchanged in the subtracted
geometries. It could, however, be troubling if the phenome-
non we have noted above, in which the warp factor does
enter in the area formula in the static case, were to signal a
discontinuity if one approached the static situation as an
a ! 0 limit of the rotating solution. It is of interest, there-
fore, to investigate this limit in detail in explicit examples.
We saw in Sec. II A that the entropy-product formula

(2.10) for the rotating dyonic black hole required an
absolute value of the J2 � P2Q2=16 factor on the right-
hand side, to allow for the case where J2 <P2Q2=16.
Specifically, the origin of this nonanalytic dependence on
the conserved charges is that the metric function ! in (4.1)
changes sign and becomes negative at the inner horizon if
J2 becomes less than P2Q2=16. A direct calculation of the
entropy product for the static metric with a ¼ 0 confirms
that indeed

SþS� ¼ 1

4
�2P2Q2: (4.3)

Thus we see in this example that the direct evaluation in the
static metric is in agreement with the result obtained by
taking a J ! 0 limit.
It is noteworthy that it is possible to cast the metric in the

warped-product form (2.1) for any axisymmetric solution
in four dimensions. In five dimensions, all known rotating
black-hole solutions in gauged and ungauged supergravity
can be cast in the analogous form:

ds25 ¼ ���1=3ðdtþ!�d�þ!c dc Þ2 þ �2=3ds24; (4.4)

where the four-dimensional base metric ds24 is Kähler, and
the warp factor � depends only on the radial coordinate r
and the polar angle �. This is the case for all known
rotating black holes, including [42] the general rotating
three-charge AdS black hole that was obtained in [34].
We have checked, for many of these examples, that their
entropy is independent of the warp factor.

V. CONCLUSIONS

In this paper, we discussed the universal nature of the
product of the entropies associated with all the horizons of
a black hole and, in particular, that the product depends
only on the charges and angular momenta, which are
subject to quantization conditions. The entropy-product
formulas are valid as long as the maximum number of
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rotation parameters and/or the maximum number of
charges are turned on. The meaning of the former is clear,
namely that there is a nonvanishing rotation in each of the
½ðD� 1Þ=2� orthogonal spatial 2-planes. The notion of the
‘‘maximum number of charges’’ requires further explana-
tion. It is well known that Einstein-Maxwell gravity in four
or five dimensions, with or without a cosmological con-
stant, can be embedded in four- or five-dimensional super-
gravity. The Reissner-Nordström black-hole solution in the
associated supergravity theory can be viewed as a super-
position of some more basicUð1Þ-charged building blocks.
For example, four-dimensional Einstein-Maxwell gravity
can be embedded in the STU model, which is a consistent
truncation of maximally supersymmetric ungauged super-
gravity that has N ¼ 2 supersymmetry and four Uð1Þ
gauge fields. The quantized entropy-product formula is
valid provided that all four charges are turned on, with
the Reissner-Nordström black hole then corresponding to
the special case where the four charges are set equal.

This picture can be extended to higher-dimensional non-
supersymmetric theories, where the Reissner-Nordström
black hole again emerges as a superposition of more fun-
damental ingredients [43]. Thus for a theory that supports
multiply-charged black holes, if the solution specializes to
the Reissner-Nordström black hole when the charges are
equated, then the number of charges can be viewed as
‘‘maximal,’’ and the entropy-product formulas will hold.
In the dyonic black hole we discussed in Sec. II, although it
involves only two charges, namely the electric and mag-
netic charges carried by a single Uð1Þ gauge field in the
STU model, rather than the usual four charges carried by
all four gauge fields, it still can be viewed as having
the maximum number of charges since the solution can
be reduced to the Reissner-Nordström black hole if the
charges are equated.6 (As discussed in the Appendix, for
dilatonic AdS black holes in dimensions D � 6, the
entropy-product rule can work in cases where there are
fewer than the maximal number of charges.)

The situation changes in higher-derivative gravity. The
changes are twofold: First, in general higher-derivative
gravity, the entropy may no longer be proportional to the
area of the horizon, and thus the quantization of the product
of entropies may no longer be a purely geometric property.
Second, the concept of ‘‘maximal charges’’ has to be
refined. In the explicit example of the conformally invari-
ant Maxwell-Weyl gravity, we demonstrated that the

entropy-product formula still works, but the result is
expressed in terms of the angular momentum only, with
no dependence on the charge. This implies that the
Maxwell charge is no longer ‘‘maximal,’’ in the sense
discussed above. In order to obtain an entropy-product
formula that is quantized, one must therefore necessarily
turn on the angular momentum.
The example of charged static black holes in another

higher-derivative theory, Maxwell-Lovelock gravity, was
studied in [31], and it was found there that the product of
the entropies did not satisfy a quantization rule. This
suggests that the phenomenon we found in Maxwell-
Weyl gravity may be more widespread in higher-derivative
theories; one must have nonzero angular momentum in
order to obtain a quantized entropy-product formula.
Of course, the higher-derivative examples that we have

been discussing all have in common that the gravitational
action is a higher-derivative action, while the Maxwell
gauge field action is left unaltered. A natural conjecture,
therefore, is that in higher-derivative theories the Maxwell
field should have appropriate higher-derivative terms also,
in order to acquire the ‘‘maximal’’ status. In fact, such
terms are natural in higher-derivative extensions of super-
gravities. The success of the entropy product formulas for
the rotating black hole in Maxwell-Weyl gravity suggests
this possibility. In a spherical dimensional reduction, the
angular momentum can be viewed as the electric charge of
some Kaluza-Klein vector associated with an isometry of
the sphere. The reduction of such a higher-derivative the-
ory will clearly give rise to a Kaluza-Klein vector with
higher-derivative terms also.
To conclude, there appears to be a robust rule that the

product of entropies at all horizons of a black hole can be
expressed purely in terms of quantized quantities provided
that the maximum numbers of angular momenta and/or
charges are turned on. The key point in all cases is that the
maximal number of distinct ‘‘horizons’’ should be attained.
In two-derivative theories, the notion of maximum number
of charges can be restated as the condition that, by equating
them appropriately, the solutions can be reduced to the
Reissner-Nordström black hole. In higher-derivative
theories, the notion is not yet entirely clear and is worthy
of further investigation.
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APPENDIX: ON MAXIMAL CHARGES

Earlier in the paper we introduced the concept of a
‘‘maximal’’ number of charges in a charged black-hole
solution. The concept is, for the most part, simply dis-
cussed in the context of static solutions.

In general, charged black holes are constructed as super-
positions of multiple charges associated with different
vector gauge fields in the theory. If the solution reduces
to the Reissner-Nordström black hole under an appropriate
specialization of the charges, then we refer to such
multiply-charged black holes as having the maximum
number of charges. For these solutions, the entropy product
at all horizons is expressed in terms of charges only.
However, the converse is not necessarily true. For example,
gauged supergravities in seven or six dimensions cannot be
truncated to Einstein-Maxwell theory, and hence the
charged AdS black holes cannot be reduced to Reissner-
Nordström-AdS black holes by specializing the charges.
Nevertheless, for charged black holes in these theories,
built from two basic ingredients where one or the other
of two independent gauge fields is excited, the entropy-
product rule still holds. In this Appendix, we shall com-
ment further on these observations.

Let us consider the Lagrangian proposed in [43] as the
focus for our discussion, since the theory contains all the
essential properties of supergravities in terms of the struc-
ture of its relevant solutions. The Lagrangian is given by

e�1LD ¼ R� 1

2
ð@�Þ2 � 1

4
ea1�F2

1 �
1

4
ea2�F2

2 � Vð�Þ;
(A1)

Vð�Þ ¼ � g2N1

4
½2ðD� 3Þ2ðN1 � 1Þe�a1� þ 2a21ðD� 3Þ

� ðD� 2ÞN1e
�1

2ða1þa2Þ� � a21ðD� 2ÞððD� 3ÞN1

� ðD� 1ÞÞe�a2��; (A2)

where the constants ða1; a2Þ satisfy the constraint

a1a2 ¼ � 2ðD� 3Þ
D� 2

: (A3)

The theory admits charged AdS black holes [43], given by

ds2 ¼ �ðHN1

1 HN2

2 Þ�ðD�3Þ
D�2 fdt2

þ ðHN1

1 HN2

2 Þ 1
D�2ðf�1dr2 þ r2d�2

D�2Þ;

A1 ¼
ffiffiffiffiffiffi
N1

p
c1

s1
H�1

1 dt;

A2 ¼
ffiffiffiffiffiffi
N2

p
c2

s2
H�1

2 dt;

� ¼ 1

2
N1a1 logH1 þ 1

2
N2a2 logH2;

f ¼ 1� 	

rD�3
þ g2r2HN1

1 HN2

2 ;

H1 ¼ 1þ 	s21
rD�3

;

H2 ¼ 1þ 	s22
rD�3

;

(A4)

where si ¼ sinh�i, ci ¼ cosh�i, and ðN1; N2Þ are given by

N1 þ N2 ¼ 2ðD� 2Þ
D� 3

; a21 ¼
4

N1

� 2ðD� 3Þ
D� 2

: (A5)

The solution becomes the Reissner-Nordström-AdS black
hole if we set �1 ¼ �2.
The thermodynamic quantities are all calculated in [43].

For our purposes, we shall give only the charges and
entropy:

Qi ¼ ðD� 3Þ!D�2

16�
	Nicisi;

S ¼ 1

4
rD�2
0 H1ðr0ÞN1=2H2ðr0ÞN2=2�D�2:

(A6)

For the case when g ¼ 0, the general solution has two real

horizons; the outer horizon is located at r0 ¼ 	1=ðD�3Þ, and
the inner horizon is at r ¼ 0. The entropy-product formula,
ignoring inessential numerical constants, is given by [43]

SþS� �QN1

1 QN2

2 : (A7)

If we turn off one of the charges, then r ¼ 0 is no longer a
horizon, but a singularity with zero area. Thus this example
demonstrates the validity of our definition of ‘‘maximal’’
charges.
For nonvanishing g, the situation can be more subtle.

The horizons are located at all the roots of the metric
function f. For rational values of Ni, the number of roots
is finite. The general formula determining these roots is
rather involved. For the Reissner-Nordström-AdS black
holes, it can be shown that

Y
i

S2ðD�2Þ
i¼1 � ðg�1QÞ2ðD�2Þ: (A8)

It was conjectured in [43] that the general product formula,
for unequal charges, is
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Y2ðD�2Þ

i¼1

Si � ½ðg�1Q1ÞN1ðg�1Q2ÞN2�D�3: (A9)

The entropy-product formula appears to be suggesting that
it fails to work if we set one charge to zero, say Q2 ¼ 0.
This is clearly the case for g ¼ 0, as we have discussed.
However, if we let N1 ¼ 2 and Q2 ¼ 0, we find that for
D � 6, the entropy formula continues to work:

Y2ðD�3Þ

i¼1

Si � ðg�1Q1Þ2ðD�3Þ; for D � 6: (A10)

That is to say, the product of entropies depends only on the
charges and the gauge coupling constant g. Note that the
total number of horizons is reduced from 2ðD� 2Þ to
2ðD� 3Þ. On the other hand, the entropy-product formula
indeed fails to work when D ¼ 4 or 5 with this charge
specification. In the cases of D ¼ 4, 5, 6 or 7, the theory
can be embedded in gauged supergravity, and the results
were found already in [30].

It is somewhat surprising that when we have less than
the maximal number of charges, the entropy-product
formula still works. The most likely explanation can be
found in the superposition rule

N1 þ N2 ¼ 2ðD� 2Þ
D� 3

: (A11)

This shows that Ni can only take integer values in D ¼ 4
and 5. In dimensions higher than five, the largest integer
value that N1 can take is N1 ¼ 2, in which case N2 is
fractional and smaller than 1. In other words, N1 ¼ 2 is
the maximum integer ingredient, and that seems to be
sufficient for the entropy-product rule to work, even if
Q2 is turned off. Of course, it is worth emphasizing again
that for the ‘‘ungauged’’ supergravity theories with g ¼ 0,
the entropy-product formula requires that both charges Qi

are turned on.
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Phys. B717, 246 (2005).
[37] L. Borsten, D. Dahanayake, M. J. Duff, H. Ebrahim, and

W. Rubens, Phys. Rep. 471, 113 (2009).
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