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We give a simple discussion of ghosts, unitarity violation, negative norm states, and quantum vs

classical behavior in the simplest model with a four-derivative action—the Pais-Uhlenbeck oscillator. We

also point out that the normalizable ‘‘vacuum state’’ (in the sense defined below) of this model can be

understood as a spontaneous breaking of the emergent conformal symmetry. We provide an example of an

interacting system that couples the ‘‘particle’’ and ‘‘ghost’’ degrees of freedom and nevertheless remains

unitary on both the classical and quantum levels.
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I. INTRODUCTION

The physics of systems with ghosts has recently
attracted renewed attention [1]. The most interest in
these systems is in connection with the theories of
gravity. In particular, the so-called W2 gravity—the
theory with local conformal symmetry—is known to
have ghost modes [2]. This is usually considered to be
a hindrance for a physical theory. Indeed, an absence of
a stable vacuum (lowest-energy) state is disconcerting
and is likely to lead to an instability, whereby the
evolution extracts energy from the negative-energy
modes and pumps it into the positive-energy modes,
producing a runaway instability.

On the other hand, conformal gravity possesses much
improved UV properties compared to Einstein gravity,
which renders it renormalizable by power counting. The
gravitational force in the theory of conformal gravity at
large distances differs from the Newtonian gravitational
force, and this modification is capable of explaining data
on galactic rotational curves with one fitting parameter
without introducing the dark matter hypothesis [3]. It has
also been suggested that conformal gravity may be able to
solve the cosmological constant problem [4].

These attractive features of the theory prompted
attempts to solve the ghost problem. One approach
attempts to separate the ghost modes from the positive
norm gravitons and ban their propagation ‘‘by hand’’ [1].
Another approach is to quantize the theory using a
nonstandard definition of a quantum-mechanical norm
[5,6], following a more general program of quantizing
PT-invariant but non-Hermitian Hamiltonians [7]. In a
free limit this is essentially equivalent to treating the
ghost modes as purely imaginary, which flips the sign of
the ghost part of the Hamiltonian. It is not as yet clear
whether any of these approaches can work in the full
interacting theory.

On the other hand, the instability in question may not
necessarily be a fatal flaw. This is especially so in a theory
of gravity, which governs the evolution of the universe and
thus never actually relaxes to its ground state. Thus the

nonexistence of a ground state in gravity may be just a fact
of life. In particular, it has been suggested that a negative
pressure due to ghosts may be a cause of the cosmological
acceleration [8]. It has been argued that the time scale in
which instability develops is way too short in theories
which contain ghosts in the matter sector [9]. We are
unaware, however, of a similar analysis of gravitational
ghosts themselves, that is, the ghost partners of the grav-
itons that arise in conformal gravity: the rapid decay of the
vacuum discussed in Ref. [9] may be preventable if the
ghost coupling to gravitons is nonlocal [10]. Therefore it is
not obvious whether the last word on the viability of
theories with ghosts has been uttered yet.
The purpose of this paper is rather modest and pedagog-

ical. The potential interest notwithstanding, theories with
ghosts are still considered somewhat esoteric and are not
frequently discussed in particle physics literature. We aim
to discuss pedagogically the simplest example of a theory
with ghosts—the Pais-Uhlenbeck oscillator [11]. Our goal
is to explicitly demonstrate in this simple framework the
meaning of some rather paradoxical notions that are some-
times used in the context of theories with ghosts, like
negative norm states and the violation of unitarity in theo-
ries with an ostensibly perfectly Hermitian Hamiltonian.
We also demonstrate explicitly how the soft UV behavior
arises in a dynamical context in this theory by solving the
time-dependent evolution.
We stress that the Pais-Uhlenbeck oscillator is in fact a

unitary theory even though it possesses a ghost mode, and
also give an example of a theory of interacting ‘‘particle’’
and ‘‘ghost’’ modes which is nevertheless unitary on the
quantum level. All the above statements apply to quantum-
mechanical systems with the standard Dirac norm, as
we do not recourse to a nonstandard quantization approach,
à la Ref. [6].
The Pais-Uhlenbeck oscillator was the subject of several

papers in recent years, and its solution is well known
[5,12,13]. Nevertheless, we feel that our simple and
straightforward approach to the problem is illuminating
and is worth recording.
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II. THE PAIS-UHLENBECK OSCILLATOR

The Pais-Uhlenbeck system is the theory of a single
degree of freedom which satisfies a fourth-order equation
of motion. It is defined by the Lagrangian

L ¼
�
d2

dt2
zþ!2

1z

��
d2

dt2
zþ!2

2z

�
: (2.1)

For definiteness we assume !1 >!2. Our aim is to study
the Hamiltonian dynamics from the point of view of a
quantum-mechanical system, since a discussion of the
evolution of a wave function is most convenient in the
Hamiltonian formalism.

Although there exists a general formalism for calculat-
ing a Hamiltonian of four-derivative systems, developed by
Ostragradsky [14], we find it more straightforward in the
context of this particular model to introduce a pair of
variables,

X ¼ d2

dt2
zþ!2

1z; Y ¼ d2

dt2
zþ!2

2z; (2.2)

and consider them as independent coordinates. The ration-
ale of this choice is that the fourth-order equation for the
variable z, �

d2

dt2
þ!2

1

��
d2

dt2
þ!2

2

�
z ¼ 0; (2.3)

can be written as a pair of second-order equations for X
and Y,

d2

dt2
X þ!2

2X ¼ 0;
d2

dt2
Y þ!2

1Y ¼ 0: (2.4)

To find the Hamiltonian we introduce the Lagrange multi-
pliers for the constraints (2.2),

L ¼ XY þ �

�
d2

dt2
zþ!1z� X

�
þ �

�
d2

dt2
zþ!2z� Y

�
:

(2.5)

Canonical momenta are calculated in the standard fashion,
pi ¼ @L=@ _xi. This definition leads to the following con-
straints:

PX ¼ PY ¼ 0; p� ¼ p� ¼ � _z; pz ¼ � _�� _�:

(2.6)

The Hamiltonian, calculated in the standard way as the
Legendre transform of the Lagrangian, is

H ¼ � 1

2
ðp� þ p�Þpz � XY � �ð!2

1z� XÞ
� �ð!2

2z� YÞ: (2.7)

Commuting (calculating the Poisson bracket of) H
with the primary constraints (2.6), we obtain secondary
constraints,

½H;PX� ¼ �� Y ¼ 0; ½H;PY� ¼ �� X ¼ 0;

½H;p� � p�� ¼ ð!2
1 �!2

2Þz� ðX � YÞ ¼ 0: (2.8)

These can be used to express �, �, and z in terms of
X and Y,

� ¼ Y; � ¼ X; z ¼ X � Y

!2
1 �!2

2

: (2.9)

The Dirac procedure for constraint systems requires that
we use the Dirac brackets instead of the Poisson brackets to
derive equations of motion. The net result of switching to
the Dirac brackets is clear without a detailed calculation.
The new ‘‘commutation relations’’ are such that the
dynamical variables ‘‘commute’’ with all the constraints.
Also, the modification is present only for those variables
whose Poisson bracket with the original constraints does
not vanish. Without any calculation the result in the present
case is obvious,

p� ¼ �Y; p� ¼ �X;

pz ¼ 1

2
ð!2

1 �!2
2Þð�X � �YÞ;

(2.10)

with the Dirac brackets

½�i; Xj�D ¼ ��ij: (2.11)

The Hamiltonian then becomes

H ¼ 1

2
��½�2

Y � �2
X� þ

!2
1

2��
Y2 � !2

2

2��
X2; (2.12)

where we have defined � ¼ !1þ!2

2 , � ¼ !1 �!2.

Finally, rescaling the variables �x ¼ ð��Þ1=2�X, x ¼
ð��Þ�1=2X, and similarly for y, we obtain

H ¼ 1

2
�2

y þ 1

2
!2

1y
2 � 1

2
�2

x � 1

2
!2

2x
2: (2.13)

In terms of the new variables, the original coordinate z is
expressed as

z ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4��

p ðx� yÞ: (2.14)

This is a very simple Hamiltonian. It is not bounded
from either below or above, but nevertheless it generates a
perfectly acceptable evolution. The two degrees of free-
dom x and y are decoupled, and classically each one
simply satisfies a harmonic oscillator equation of motion.
Classically there are no runaway solutions for these equa-
tions of motion for an arbitrary initial condition.
Before turning to the quantum problem, we wish to

stress again that we are not going to discuss nonstandard
quantization in the spirit of the one proposed in Ref. [5].
Our view is that the quantum problem is not defined solely
by the abstract axioms of quantummechanics, and thus any
quantization that preserves the basic mathematical struc-
ture is allowed. On the contrary, we take the view that the
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correspondence principle is no less important than the
abstract axioms. In other words, given that the classical
problem is defined by the Lagrangian (2.1) and classically
one is interested in the real time evolution of the real
degree of freedom z, the quantum problem must have the
same classical limit. This requires the quantum variable z
and all its time derivatives, as well as the variables x and y
defined above, to be Hermitian operators. The standard
Dirac norm, where the matrix elements are calculated by
integration over the real values of x and y, is eminently
appropriate, and we will use it throughout this paper. The
quantum norm used in the approach of Ref. [5], on the
other hand, requires the time derivative of z to be anti-
Hermitian, as explained for example in Ref. [15], and is not
appropriate for our purposes. Thus our aim in this paper is
not to explore alternative options for the quantization of
this theory, but rather to explain the issues related to ghosts
and unitarity in the theory with a standard Dirac norm.

As we will see below, quantum mechanically the Pais-
Uhlenbeck system possesses finite positive (Dirac) norm
states which evolve unitarily with time. Nevertheless it is
commonly said that this quantum theory has negative norm
states. In the next subsection we will clarify what this
statement technically means, and stress that it is not a
hindrance for the peaceful existence of a unitary evolution
in this model.

A. The negative face of a divergent integral

The Hamiltonian of the Pais-Uhlenbeck system is not
bounded from below. This is unusual and somewhat dis-
turbing, since we normally expect that any open system
will interact with some external degrees of freedom and
generally relax to its ground state by loosing any excess
energy to those degrees of freedom. However, if the system
is closed, no such loss of energy is possible and the
unboundedness of energy from below does not have to be
a problem. In particular, in the present case the two har-
monic oscillators do not interact with each other, no energy
transfer from one to another occurs, and the evolution is
perfectly unitary, provided that at the initial moment in
time we start with a state which is localized at finite values
of x and y.

On the other hand, for states with large negative energy
(which at finite volume are close to the lowest-energy
state) the evolution becomes nonunitary. This is simply
due to the fact that these states are localized at very large
values of x, close to the spatial boundary at a finite IR
regulator. The probability stored in a state like this simply
‘‘leaks’’ through the spatial boundary during the evolu-
tion. In the infinite-volume limit these states are non-
normalizable, which is the manifestation of the fact that
they are localized at unphysically large values of the
coordinates.

To see this explicitly, let us define creation and annihi-
lation operators in the standard way,

a ¼
ffiffiffiffi
!

2

r
xþ i

ffiffiffiffiffiffiffi
1

2!

s
�x: (2.15)

The Fock vacuum of a is the normalized Gaussian state

aj0i ¼ 0; hxj0i ¼ Ne�!
2x

2
: (2.16)

This is the state with the highest energy in the x sector.
One can also formally define a state which corresponds

to the lowest-energy eigenvalue as the vacuum of ay [12],

ayj�i ¼ 0; hxj�i ¼ N�e
!
2x

2
: (2.17)

This state is non-normalizable and not physical, since
a particle in this state is localized exclusively at infinity.
The probability to find the particle at a finite value of
the coordinate vanishes, since in the infinite-volume
limit the normalization constant N� vanishes faster than
exponentially.
Nevertheless, in a certain formal way it corresponds

to the lowest-energy state. To see this, we write the
Hamiltonian for the x mode in the standard form,

Hx ¼ �!aay þ E0: (2.18)

We consider a tower of states above j�i generated by the
action of operator a.

Hj�i ¼ E0j�i;
Hj1i � Haj�i ¼ E0aj�i �!aayaj�i

¼ ðE0 þ!Þj1i; . . . (2.19)

Thus applying operator a increases the energy of the state
by !, and the spectrum seems to be bounded from below.
Another formal argument suggests that at least some of
these states have a negative norm. Let us calculate the
norm of the ‘‘one-particle state,’’

h1j1i¼h�jayaj�i¼ h�jaay�1j�i¼�h�j�i: (2.20)

Taken literally, this argument suggests that either the
‘‘one-particle’’ state or the ‘‘vacuum’’ state has a negative
norm. This is the origin of the usual statement that the
theory has negative norm states.
In fact, of course the norm of both of these states is

positive once we regulate the system by putting it into a
finite volume [16]. The ‘‘vacuum’’ state is just a Gaussian
which grows at large values of x. Its norm is positive in a
finite volume, and diverges (while remaining positive) as
the infrared cutoff is removed. The one-particle wave
function can be found explicitly,

aj�i ¼
0
@ ffiffiffiffi

!

2

r
xþ

ffiffiffiffiffiffiffi
1

2!

s
d

dx

1
Ae!

2x
2 ¼ ffiffiffiffiffiffiffi

2!
p

xe
!
2x

2
: (2.21)

Obviously the norm of this state is also positive, and is even
more divergent than that of the vacuum in a large volume.
None of the norms are negative. The flaw in the formal
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Eq. (2.21) is of course precisely the fact that the states in
question are not normalizable. To interpret the expectation
value of aya as the norm of a one-particle state one needs
to act with ay on the bra, which amounts to an integration
by parts of the derivative in ay. The integration by parts,
however, is not allowed, since the wave function grows at
infinity. In particular,

h1j1i � jaj�ij2; (2.22)

as one can easily verify by an explicit calculation. In fact
the difference between the two sides of the inequality is
infinite. Thus the statement that a state has a ‘‘negative
norm’’ in the present context should simply be interpreted
as the fact that neither the norm nor the matrix element of
any reasonable operator like xn or pn is defined in the states
of the form (2.19) due to the strong infrared divergence.

Sometimes the procedure described above is referred to
as a ‘‘quantization scheme,’’ in the sense that the states of
the tower (2.19) do not belong to the Hilbert space of
normalizable states. The unitarity in this quantization
scheme is broken exactly for the reason explained
above. All the wave functions with a finite number of
‘‘excitations’’ above the ‘‘vacuum’’ j�i live on the edge
of space. Once an infrared regulator (which makes the
norm finite) is removed the wave functions vanish every-
where in the bulk. Such states run a great risk of disappear-
ing through the boundary under time evolution.

On the other hand, it is clear that states which are created
by the action of ay on j0i are normalizable and their
evolution is perfectly unitary. One is normally interested
in the situation when a particle can be detected in the bulk
with finite probability. This physical condition makes the
non-normalizable states physically irrelevant and devoid of
interest.

III. THE DEGENERATE CASE � ¼ 0

A special case of the Pais-Uhlenbeck system is when the
two oscillators have the same frequency, � ¼ 0. In terms
of analogy with W2 gravity, this case is the most interest-
ing. In this section we discuss some interesting features of
the equal-frequency limit.

A. The fate of the normalized wave functions

The limit � ¼ 0 of the previous expressions is a little
tricky, since the transformation between the original vari-
able z and x, y becomes singular. It is therefore not
straightforward to take the limit directly on the level of
the Hamiltonian. One cannot simply drop the terms in the
Hamiltonian which naively vanish in the limit � ! 0,
since the operators that multiply � may have divergent
matrix elements. To illustrate this, let us first rewrite the
Hamiltonian in terms of the variables X and z, avoiding any
singular redefinition of variables (here the variable X is as

originally defined, X ¼ d2

dt2
zþ!2z),

H ¼ � 1

2
�X�z þ X2 � 2

�
�þ 1

2
�

�
2
zX

þ 2��

�
�þ 1

2
�

�
2
z2 � 1

2
���2

X: (3.1)

Suppose we naively drop the last two terms in Eq. (3.1),
which formally vanish in the limit � ! 0,

H0 ¼ � 1

2
�X�z þ X2 � 2

�
�þ 1

2
�

�
2
zX: (3.2)

Let us now look for Gaussian eigenstates of the resulting
Hamiltonian. Recall that at nonzero � we had four
Gaussian eigenstates,

exp�
�
!2

2��
X2 � !1

2��
Y2

�

¼ exp�
�

1

!1 �!2

X2 � 2!1��z2 � 2!1Xz

�
: (3.3)

Three of these were non-normalizable and only onewas the
well-behaved normalizable state peaked at x, z ¼ 0. The
normalizable state is

� ¼ exp�
�
1

�
X2 þ 2!1��z2 � 2!1Xz

�
: (3.4)

However, if we seek all Gaussian eigenstates of the trun-
cated Hamiltonian (3.2), we find only two states,

exp�
�
� 1

2�
ðX � 2�2zÞ2 þ 2�3z2

�
: (3.5)

Evidently, neither of these two states is normalizable.
These two Gaussian states are indeed obtained in the limit
� ! 0 from two of the states in Eq. (3.3). Thus we seem to
find no normalizable Gaussian eigenstates of the quadratic
Hamiltonian (3.2), even though for any finite � a normal-
izable Gaussian eigenstate exists. This means that the
Hamiltonian (3.2) is not diagonalizable, which indeed
can be formally proven [6,12].
This conclusion is however a little hasty, as it is based on

neglecting the last two terms in Eq. (3.1). However, even
though these terms are multiplied by �, in order to be able
to neglect them we need to be sure that they have vanishing
matrix elements in the limit � ! 0. It is easy to see that
this is not the case here. Indeed, in the normalizable state
(3.4) we have

hz2i � h�2
Xi �

1

�
; (3.6)

so that in fact the last two terms in Eq. (3.1) are finite in the
limit � ! 0 and therefore cannot be simply discarded.
The normalizable state (3.4) does not disappear without

a trace in the degenerate limit, but rather tends to a delta
function of X,

�2ðXÞ ! �ðXÞ: (3.7)

The action of the Hamiltonian (3.2) on this state is ambig-
uous due to the first term in the Hamiltonian. One does
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obtain this state unambiguously, however, as the equal-
frequency limit of Eq. (3.4).

Thus on the normalizable states the auxiliary variable X
is frozen at zero, while the original variable z fluctuates
freely with infinite amplitude.

Interestingly, this suggests that in a sense the oscillator
looses half of its degrees of freedom and also becomes
‘‘classical.’’ Recall that the variable X is essentially the
classical equation of motion for half the original modes of

z, since X ¼ d2

dt2
zþ!2z. In the limit � ! 0, this quantity

is fixed at zero without fluctuations. On the other hand the
coordinate z itself fluctuates without restriction. Thus the
quantum system essentially becomes a classical oscillator
which can oscillate with arbitrary amplitude.

B. Dynamical conformal symmetry

As an interesting aside, we note that at � ¼ 0 the theory
dynamically develops a conformal symmetry, which is
spontaneously broken by normalizable states. For the pur-
pose of this discussion, it is convenient to revert to a
normalization in which the Hamiltonian is simplest in the
limit � ! 0, Eq. (2.13). In the equal-frequency limit
the Hamiltonian (2.13) is invariant under the following
transformation:

x! xcoshtþysinht; y! ycoshtþxsinht; z! e�tz:

(3.8)

It is natural to refer to this symmetry as conformal. This
symmetry is obviously not present in the Lagrangian (2.1).
In fact, the Lagrangian is multiplied by a constant under
the transformation (3.8). However, as we have seen in the
previous subsection, in the equal-frequency limit the dy-
namics of z is such that on normalizable states it is pinned

to satisfy X ¼ d2

dt2
zþ!2z ¼ 0. As a result the Lagrangian

vanishes for all physically interesting configurations.
Therefore, a scaling of the Lagrangian by a finite factor
is indeed a ‘‘dynamical’’ symmetry in this limit.

Interestingly, this symmetry is spontaneously broken in
the sense that the normalizable ‘‘vacuum,’’ or in fact any
of the normalizable physical states, is not invariant under
it. The wave function of the ‘‘lowest energy’’—the non-
normalizable eigenstate of the operator ay—is indeed
invariant under the conformal transformation

exp

�
� 1

2�
½x2 � y2�

�
: (3.9)

However, for the normalizable Gaussian,

exp

�
� 1

2�
½x2 þ y2�

�

! exp

�
� 1

2�
½cosh ð2tÞ½x2 þ y2� þ 2 sinh ð2tÞxy�

�
;

(3.10)

It is clear that any state whose wave function is localized at
finite values of x and y is necessarily not invariant under the
transformation (3.8). Thus the conformal symmetry is
‘‘spontaneously broken’’ on normalizable states. Since
the representations of the conformal group (3.8) are
infinite-dimensional, the finite-energy spectrum is infi-
nitely degenerate. This is of course well known and
obvious since adding any number of excitations of the x
oscillator and the same number of excitations of the y
oscillator does not change the energy in the degenerate
limit [12,13]. It is nevertheless amusing that this degener-
acy can be understood as a spontaneous breaking of
conformal symmetry.
Here we wish to add a comment regarding the nature of

the spectrum at � ¼ 0. Naively taking � ¼ 0 we have two
degenerate harmonic oscillators. Taking the nth excited
state of the y oscillator, c nðyÞ, and mth state of the x
oscillator, c mðxÞ, we conclude that the energy eigenvalue
is En�m ¼ �ðn�mÞ and the degeneracy of every level is
infinite, corresponding to arbitray n and fixed n�m.
There is however a subtlety in this argument [13,17]. To
find the spectrum at� ! 0we need to calculate the density
of states at small but finite� and then take the limit� ! 0.
Keeping � � � and counting the number of states in an
arbitrarily small interval E to Eþ �, we find that it is
infinite. To regulate the calculation we need to cut off in
some way the spectrum of each harmonic oscillator, n,
m � �. For finite � we find NðE � �k; �Þ / ��. We
now have to take the limit � ! 0 and � ! 1. If one takes
� ! 0 at finite � first, the density of states for E � �k
vanishes and one recovers the infinitely degenerate but
discrete spectrum. On the other hand, if one takes � to
scale as � ¼ L

� with L ! 1 last, the spectrum becomes

continuous and infinitely degenerate for any E [11,18].
What is important to realize, however, is that all the

states with E � �k are of the form �nðxÞ�mðyÞ with m,
n / 1

� . Thus in the limit � ! 0, only infinitely high

excitations of both harmonic oscillators contribute to the
continuous part of the spectrum. These states are localized
at ‘‘infinite’’ values of the variables x and y: hx2i � hy2i �
1
� . Thus any state initially localized in a finite volume has

zero overlap with these states and will not feel their pres-
ence during the evolution. The situation is even more
extreme for the original variable z, since hz2i � 1

� hx2i �
1
�2 . We therefore conclude that for the evolution of

physically interesting states, the existence of eigenstates
with E � �k is not important. In this sense only the
discrete (but infinitely degenerate) part of the spectrum is
physical.

IV. DYNAMICS: CLASSICALVS QUANTUM

The dynamics of the classical Pais-Uhlenbeck oscillator
is identical to that of two decoupled harmonic oscillators.
The variables x and y satisfy the harmonic oscillator
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equations of motion, and the fact that the energy of the x
oscillator is negative is irrelevant, since the energies of
each oscillator are separately conserved.

Quantum mechanically, however, the situation is very
different. Here the overall sign of the energy is reflected in
the sign of the phase of the wave function. For the evolu-
tion of states which are initially product wave functions
�1ðxÞ�2ðyÞ this is again unimportant; however, it strongly
affects the time evolution of ‘‘entangled’’ states. The sim-
plest calculation where the quantum-mechanical impor-
tance of the sign flip for the x oscillator manifests itself
is the propagator of the z. It is of course well known that the
UV behavior of the propagator in four-derivative theories
is much softer than in theories with an ordinary kinetic
term. The Pais-Uhlenbeck oscillator is the simplest
example of this kind. Although this is a trivial calculation,
we present it here for completeness.

A. The propagator

To calculate the propagator of z we need to calculate the
propagator of x and y separately. For y this is the usual
harmonic oscillator calculation.

1. The y propagator

The Hamiltonian for the y mode is

H ¼ 1

2
p2 þ 1

2
!1y

2: (4.1)

The annihilation operator a

a ¼
ffiffiffiffiffiffi
!1

2

r �
yþ ip

!1

�
(4.2)

evolves in time according to

aðtÞ ¼ að0Þe�i!1t: (4.3)

For the Feynman propagator

GyðtÞ ¼ hTfyðtÞyð0Þgi
¼ 1

2!1

h�ðtÞ½aðtÞayð0Þ þ ayðtÞað0Þ�
þ�ð�tÞ½ayð0ÞaðtÞ þ að0ÞayðtÞ�i; (4.4)

we have

GyðtÞ ¼ 1

2!1

½�ðtÞe�i!1t þ�ð�tÞei!1t�: (4.5)

To perform the Fourier transform, as usual we introduce
the regulator which makes the integral convergent for large
times,

GyðpÞ ¼ 1

2!1

Z
dteipt½�ðtÞe�i!1te��t þ�ð�tÞei!1te�t�

¼ i

p2 �!2
1 þ i�

: (4.6)

This is the standard result, which upon integration over the
frequency p gives the equal-time expectation value in the
vacuum,

hy2i ¼
Z dp

2�
GyðpÞ ¼ 1

2!1

: (4.7)

2. The x propagator

The propagator of x is equally easy to calculate in the
physically relevant ‘‘vacuum’’—the highest-energy state.
The Hamiltonian now is

H ¼ � 1

2
p2 � 1

2
!2x

2; (4.8)

and

a ¼
ffiffiffiffiffiffi
!2

2

r �
xþ ip

!2

�
; aðtÞ ¼ að0Þei!2t: (4.9)

The same calculation as before now gives

GxðtÞ � h0jTfxðtÞxð0Þgj0i
¼ 1

2!2

½�ðtÞei!2t þ�ð�tÞe�i!2t�; (4.10)

and

GxðpÞ ¼ �i

p2 �!2
2 � i�

: (4.11)

This differs from Eq. (4.6) by the overall sign and also by
the sign of the regulator �. As is easily seen, these two sign
changes cancel each other in the calculation of equal-time
quantities. For example,

h0jx2j0i ¼
Z dp

2�
GxðpÞ ¼ 1

2!2

; (4.12)

which is the correct result for the normalizable Gaussian
eigenstate of the x oscillator.

3. The z propagator

Finally, combining the results for x and y and noting that
due to the symmetries of the system the mixed propagator
vanishes, hxðtÞyð0Þi ¼ 0, we obtain

GzðpÞ ¼ 1

4��
½GyðpÞ þGxðpÞ�

¼ i

2ðp2 �!2
1Þðp2 �!2

2Þ þ i�
: (4.13)

Again, this is the standard result, showing a softened UV
behavior, since the propagator of z vanishes much faster for
high frequencies than that of a harmonic oscillator. This
indicates of course that the time evolution of z is very
smooth and has a very small high-frequency component.
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4. The ‘‘propagator’’ in the unbounded state

What happens if we try to calculate the propagator of the
x oscillator in the unbounded Gaussian state? Of course, as
explained above, this calculation is purely formal since
the integrals over this wave function are divergent. Still,
formally proceeding as before, we can define

G�
x ðtÞ ¼ h�jTfxðtÞxð0Þgj�i: (4.14)

We still use Eq. (4.9), but this time it is ay that annihilates
the state �. We then formally obtain

G�
x ðtÞ ¼ � 1

2!2

½�ðtÞe�i!2t þ�ð�tÞei!2t�; (4.15)

and

G�
x ðpÞ ¼ �i

p2 �!2 þ i�
: (4.16)

The sign of the regulator � is now the same as for the
positive-energy harmonic oscillator, which is simply the
reflection of the fact that the state j�i is formally
the lowest-energy state of the system. However, this propa-
gator leads to the same paradox of negative norm states
discussed in the previous section. Calculating the equal-
time expectation value, which should by definition be
positive, we find

h�jx2j�i ¼ � 1

2!2

: (4.17)

This again underscores the point that non-normalizable
states, if manipulated formally, can be mistaken to have a
negative norm.

B. Time evolution: the wave function

It is instructive to see explicitly how the wave function
of the system evolves in time. In particular, we would like
to see the origin of the smooth UV behavior of the Pais-
Uhlenbeck system in terms of the time evolution of wave
functions.

We are mostly interested in the degenerate case � ! 0,
and will therefore study time evolution generated by the
Hamiltonian

H ¼ � 1

2

@2

@y2
þ 1

2

@2

@x2
þ 1

2
�2y2 � 1

2
�2x2: (4.18)

We want to follow the time dependence of simple quantum
averages, like hz2ðtÞi and hðXðtÞ þ YðtÞÞ2i. The first observ-
able is the obvious choice, since it is the fluctuation of the
coordinate of the original oscillator, while the second one
is the fluctuation of the second-order equation of motion.
We will choose an initial state such that both these opera-
tors have sensible (finite) averages.

We are not interested in states which are simple product
states of the form c 1ðxÞc 2ðyÞ. As far as the expectation
values of all Hermitian operators go, the evolution of such

a product state is identical to that of a state c 1ðxÞc 	
2ðyÞ

evolved with the positive-energy harmonic oscillator. We
will thus be interested in states which are not trivial prod-
uct states in the variables x and y. A simple initial wave
function that satisfies these requirements is

c ð0Þ ¼ N exp

�
� 1

2

�
��

�2
ðxþ yÞ2 þ 1

4��2�
ðx� yÞ2

��

¼ N exp

�
� 1

2

��
��

�2
þ 1

4��2�

�
x2

þ
�
��

�2
þ 1

4��2�

�
y2 þ 2

�
��

�2
� 1

4��2�

�
xy

��
:

(4.19)

Note that we have scaled out the dependence on the
frequency difference � explicitly. Strictly speaking, for
nonvanishing � we also have to keep the frequencies of
the two oscillators in the Hamiltonian different. However
the Hamiltonian itself is smooth in the degenerate limit,
and it is only the relation between x, y, and z that involves
divergent coefficients. Thus with the appropriate choice of
the wave function we can also make z finite at � ! 0.
Specifically, for the state (4.20) we have

hz2i ¼ �2; hðXþ YÞ2i ¼ �2: (4.20)

Since the evolution is free, a Gaussian wave function
preserves its Gaussian shape at any later time. Thus at
any time t we have

c ðtÞ¼NðtÞexp
�
�1

2
AðtÞx2�1

2
BðtÞy2�CðtÞxy

�
: (4.21)

Acting on this wave function with the Hamiltonian, we
obtain the evolution of the coefficients,

_A ¼ i½A2 � C2 ��2�;
_B ¼ i½C2 � B2 ��2�;
_C ¼ iC½A� B�:

(4.22)

After some algebra this leads to

_C ¼ C
_Aþ _B

Aþ B
; (4.23)

which is solved by

CðtÞ ¼ �½AðtÞ þ BðtÞ�; (4.24)

with

� ¼ Cð0Þ
Að0Þ þ Bð0Þ : (4.25)

Using this result for CðtÞ in Eq. (4.22) and defining AðtÞ þ
BðtÞ � uðtÞ, AðtÞ � BðtÞ ¼ vðtÞ, we have

_u ¼ iuv; (4.26)
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_v ¼ i

��
1

2
� 2�2

�
u2 þ 1

2
v2 � 2�2

�
; (4.27)

with the initial conditions

uð0Þ ¼ 2

�
��

�2
þ 1

4��2�

�
; vð0Þ ¼ 0: (4.28)

It is easy to see that the solution has the form

uðtÞ ¼ 1

fþ þ f� cos 2�t
; vðtÞ ¼ �i2f��sin 2�t

fþ þ f� cos 2�t
;

(4.29)

where f� are constants determined by the equations of
motion and the initial conditions. After some algebra, for
the initial conditions (4.28) we obtain

f� ¼ �

�
ð�1þ�2�2�2Þ 1

�2 þ 4�2�2�2
; (4.30)

and

AðtÞ ¼ �

2�

ð�2 þ 4�2�2�2Þ � i2�ð1��2�2�2Þ sin 2�t

ð1� cos 2�tÞ þ�2�2�2ð1þ cos 2�tÞ ;

BðtÞ ¼ �

2�

ð�2 þ 4�2�2�2Þ þ i2�ð1��2�2�2Þ sin 2�t

ð1� cos 2�tÞ þ�2�2�2ð1þ cos 2�tÞ ;

CðtÞ ¼ � �

2�

�2 � 4�2�2�2

ð1� cos 2�tÞ þ�2�2�2ð1þ cos 2�tÞ :
(4.31)

The time-dependent probability density can be written as

c yc ¼ N2 exp

�
� �

2�
ðxþ yÞ2 4�2�2�2

ð1� cos 2�tÞ þ�2�2�2ð1þ cos 2�tÞ
� �

2�
ðx� yÞ2 �2

ð1� cos 2�tÞ þ�2�2�2ð1þ cos 2�tÞ
�
: (4.32)

Thus we find

hz2ðtÞi ¼ 1

2

�
1

�2�2
ð1� cos 2�tÞ þ �2ð1þ cos 2�tÞ

�
;

hðXðtÞ þ YðtÞÞ2i ¼ 1

2

�
1

�2�2
ð1� cos 2�tÞ þ �2ð1þ cos 2�tÞ

�
:

(4.33)

These expressions are notable for their absence of fea-
tures. Normally one expects that if the initial state is very
far from the vacuum, the evolution should delocalize it in
a short time, so that the amplitude of the fluctuation of the
coordinates should become very large. This is exactly
what happens in the standard positive Hamiltonian har-

monic oscillator, as we will demonstrate in the next
subsection. However, Eq. (4.33) shows that in the Pais-
Uhlenbeck system both interesting averages evolve
smoothly in time on the scale determined by the initial-
state averages. Clearly, if both � and � are finite, the
averages stay finite throughout the evolution. This is
despite the fact that the ‘‘vacuum’’ of the system is
such that �2 / 1=� ! 1, �2 / � ! 0, as discussed in
the previous section. If we start the system ‘‘close’’ to its
vacuum state, that is, with �2 / 1=�2 / �, it is still true
that at all times parametrically the averages are the same,
fluctuating with an amplitude proportional to the initial
average. Thus it does not matter if the system starts off far
from the vacuum or close to it: the evolution is smooth
and the averages at all times are proportional to those in
the initial state.

To underscore that this is very different from the stan-
dard harmonic oscillator, we perform the same exercise as
above for the two decoupled oscillator systems.

C. The baseline: oscillators with positive energy

We now consider time evolution generated by

H ¼ � 1

2

@2

@y2
� 1

2

@2

@x2
þ 1

2
�2y2 þ 1

2
�2x2: (4.34)

For a Gaussian wave function (4.21) the evolution of the
parameters AðtÞ, BðtÞ, and CðtÞ is given by

_A ¼ i½�C2 � A2 þ�2�;
_B ¼ i½�C2 � B2 þ�2�;
_C ¼ �iCðAþ BÞ:

(4.35)

This is simplified for our initial state where AðtÞ and BðtÞ
stay equal for all times,

_A ¼ i½�C2 � A2 þ�2�; _C ¼ �2iAC; (4.36)

with initial conditions given as in Eq. (4.20). This is
solved by

C ¼ 1

fþ g cos ð2�tþ	Þ ;

A ¼ ig�sin ð2�tþ	Þ
fþ g cos ð2�tþ	Þ ;

(4.37)

provided
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f2 � g2 ¼ 1

�2
: (4.38)

Imposing the initial conditions

Að0Þ ¼ ��

�2
þ 1

4��2�
¼ ig�sin	

2ðfþ g cos	Þ ;

Cð0Þ ¼ ��

�2
� 1

4��2�
¼ 1

fþ g cos	
;

(4.39)

we find

f ¼ 2�

�

�2�2�2 � 1

4�2�2�2 � �2
;

g sinh� ¼ � 1

�

4�2�2�2 þ �2

4�2�2�2 � �2
;

g cosh� ¼ 2�
�2�2�2 þ 1

4�2�2�2 � �2
;

(4.40)

where � ¼ i	. Finally, the solution for our initial
conditions is

AðtÞ ¼ BðtÞ ¼ �

2�

ð4�2�2�2 þ �2Þ cos 2�tþ i2�ð�2�2�2 þ 1Þ sin 2�t

�2�2�2ð1þ cos 2�tÞ � ð1� cos 2�tÞ þ i
�
2�2��2 þ �2

2�

	
sin 2�t

;

CðtÞ ¼ �

2�

4�2�2�2 � �2

�2�2�2ð1þ cos 2�tÞ � ð1� cos 2�tÞ þ i
�
2�2��2 þ �2

2�

	
sin 2�t

:
(4.41)

For small � we expand these expressions to second nontrivial order,

AðtÞ ¼ BðtÞ ¼ i�tan 2�tþ 2��

�2

ð�2�2�2 � 1Þ cos 2�tþ ð�2�2�2 þ 1Þ cos 4�t

sin 22�t
;

CðtÞ ¼ �i
�

sin 2�t
� 2��

�2

�2�2�2ð1þ cos 2�tÞ � ð1� cos 2�tÞ
sin 22�t

:
(4.42)

Generically, at arbitrary time we have

Re½Aþ C� / Re½A� C� / �

sin 22�t
; (4.43)

and thus

hðx� yÞ2i / hðxþ yÞ2i / sin 22�t

�
: (4.44)

This is precisely what one normally expects. Our initial
state is very far away from the ground state. It was chosen
in such a way that the center-of-mass coordinate xþ y had
large fluctuations,Oð1=�Þ, whereas the relative coordinate
x� y had small fluctuationsOð�Þ. One expects a state like
this to expand very quickly and become delocalized in all
coordinates. Indeed, Eq. (4.44) displays precisely this fea-
ture: the relative coordinate fluctuates with an amplitude of
order 1=� almost all the time, except for a very short time
interval �t / � within every period of evolution.

Thus we indeed see that the time evolution of the Pais-
Uhlenbeck oscillator is smoother than that of a system of
decoupled harmonic oscillators, in the sense that the aver-
ages in the Pais-Uhlenbeck case fluctuate on the scale
given by the initial state and do not develop additional
large variations throughout the evolution.

V. A SIMPLE UNITARY INTERACTION

We have seen that the quantum evolution of the Pais-
Uhlenbeck oscillator is unitary. This is not very surprising,

nor very exciting since the two second-order degrees of
freedom in this case are decoupled, and each one follows a
Harmonic oscillator evolution. In fact the system has two
conserved quantum numbers; not only is the total energy
conserved, but the energy of each individual oscillator as
well. For this reason the classical motion in the X, Y plane
is bounded and the quantum evolution is unitary.
A more interesting and general question is whether

interacting systems with ghosts can be unitary. The worry
is clear. We have a Hamiltonian which is unbounded from
neither above nor from below, and once the two modes x
and y are allowed to interact there is a real and present
danger that the system can develop an instability, where
both x and y run away to infinity even though the total
energy stays conserved.
In the quantum-mechanical context one can pose the

following question: does a system of coupled ‘‘particle’’
and ‘‘ghost’’ degrees of freedom possess normalizable
eigenstates? If the answer is affirmative, such a system
enjoys unitary quantum evolution, since the probability to
find the system in a finite volume does not decrease with
time [19]. If this is not the case, such systems would not
allow for unitary quantum-mechanical evolution and
probability would leak out completely through the bounda-
ries in a finite amount of time.
The aim of this section is to present a simple example of a

model that remains unitary even though it contains interact-
ing particle and ghost degrees of freedom [20]. Let us add to
our Hamiltonian a quartic interaction of the form
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H ¼ 1

2
�2

y þ 1

2
!2

1y
2 þ 
1y

4 � 1

2
�2

x � 1

2
!2

2x
2

� 
2x
4 þ�x2y2: (5.1)

For definiteness we choose �> 0. At � ¼ 0 the theory is
clearly unitary, as the particle and ghost degrees of freedom
are decoupled, and the separate evolution of each one is
unitary in exactly the same sense as for the Pais-Uhlenbeck
oscillator.

The question about stability can already be asked on the
classical level. It was noted in Ref. [22] and also in Ref. [13]
that some systems of this kind allow for classically stable
solutions, namely oscillatory solutions for which the ampli-
tude does not grow without bound as a function of time.
Specifically, Ref. [22] studied numerically the evolution of
Eq. (5.1) for 
1;2 ¼ 0 and found that the classical behavior

of the system is stable as long as the initial energy stored in
the oscillators is not too large. Denoting the initial displace-
ment of the oscillators from equilibrium by M, Ref. [22]
found that forM2 <M2

c ¼ 1
�!

2
2 the behavior is oscillatory,

while for M2 >M2
c the amplitude of oscillations grows

without bound. The addition of the quartic self-interaction

1;2 further stabilizes the system. We have repeated the

numerical exercise of Ref. [22] for the system (5.1), and
have found a similar behavior in a wider range of parame-
ters. In fact, as long as the coupling � remains small, � 


1;2 we did not see classical instability for any initial

conditions that we have tried. Examples of evolution for
several initial conditions are given in Fig. 1. This suggests
that when the interaction is weak enough, the classical
system is absolutely stable, although it is not possible to
prove such a statement by numerical methods.
Reference [13] performed a similar classical study of a

relative of the Hamiltonian (5.1) for which the interaction
potential is antisymmetric under x ! y. All classical tra-
jectories explored in this paper also did not exhibit any
instability. Thus, at least classically, it is certainly possible
to find systems with ghosts which are stable.
Note that in order for the quantum system to be unitary,

its classical counterpart has to have stable evolution for
arbitrary initial conditions. Otherwise quantum tunneling
will connect stable and unstable regions of the phase space
and will inevitably lead to a violation of unitarity. This is
the situation, for example, in the upside down Mexican hat
potential UðxÞ ¼ �
ðx2 � x20Þ2. Classical solutions with

total energy �
x40 <E< 0 and initial displacement

jxj< x0 are regular. However, quantum mechanically the
system is nonunitary due to a finite probability of tunneling
into the unbounded region jxj> x0.
In the present case, one can give an argument that the

theory remains stable, at least in a limited range of
parameters. Let us consider the limit !1 
 !2. In this
case one can use the classical Born-Oppenheimer approxi-
mation. Since y oscillates much faster than x, one can

FIG. 1 (color online). Typical time evolution of x (red) and y (blue) for different initial conditions. The parameters are chosen as
!1 ¼ 3, 
1 ¼ 10, !2 ¼ 5, 
2 ¼ 7, � ¼ 3. The evolution is plotted over two time intervals to show the detailed structure of the time
dependence and to demonstrate the absence of instability over very long times.
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consider the motion of y in the background of fixed x. Thus
for a given x the dynamics of y is given simply by an
anharmonic oscillator with the frequency, which for large x
behaves as !2 ¼ �x2. This is clearly a well-defined
bounded motion. The dynamics of x is affected by the
average value of y2 for a given trajectory. Given the initial
energy E stored in the mode y, we have (for large x, which
is the interesting and potentially dangerous regime) �y2 /
E=�x2. The dynamics of x then is governed by the
effective potential

1

2
!2

2x
2 þ 
2x

4 �� �y2x2 ¼ 1

2
!2

2x
2 þ 
2x

4 � E: (5.2)

Thus the dynamics of x in this approximation is unaffected
by y and is bounded and stable. A similar argument can be
given for the opposite case !1 � !2. Thus at least when
the two frequencies are very different there is no instability
for arbitrary initial conditions. In this case one expects that
the quantum theory is well defined and unitary in the sense
explained above [23].

In the next subsection we present another line of reason-
ing supporting the same conclusion for small �.

A. Asymptotics of eigenfunctions for small �

One way to establish that a quantum theory has a nor-
malizable eigenstate is to find asymptotics of eigenfunc-
tions for large values of the coordinates x and y.

As usual, we introduce an eikonal S via

� ¼ Ne�Sðx;yÞ: (5.3)

If the eikonal is positive and divergent for large values of
the coordinates, the wave function is normalizable. For
large values of S, jxj, and jyj it satisfies the following
‘‘semiclassical’’ equation,

�1

2

�
@S

@y

�
2þ1

2

�
@S

@x

�
2þ
1y

4�
2x
4þ�x2y2¼0: (5.4)

Wewill not attempt to solve this equation in full generality,
but rather explore the behavior of S for small values of �.
For � ¼ 0 the solution is simply a sum of the solutions for
two decoupled degrees of freedom,

S0ðx; yÞ ¼
ffiffiffiffiffiffiffiffi
2
1

p
3

jyj3 þ
ffiffiffiffiffiffiffiffi
2
2

p
3

jxj3: (5.5)

The crucial point is that the structure of the potential is
such that for � 
 
i the perturbation is smaller than the
leading-order potential for generic large values of x and y.
This is of course very different from the standard pertur-
bation theory around a harmonic oscillator potential, where
a perturbation is usually bigger than the unperturbed
potential for large values of the coordinate. Thus although
the standard perturbation theory around a Harmonic
potential is asymptotic, we expect the perturbation theory
in � to have a finite radius of convergence.

Let us therefore solve Eq. (5.3) perturbatively. Let
S ¼ S0 þ S1, where S1 / �. We first solve the equation
for x; y > 0. To first order in � we have

� ffiffiffiffiffiffiffiffi
2
1

p
y2

@S1
@y

þ ffiffiffiffiffiffiffiffi
2
2

p
x2

@S1
@x

þ�x2y2 ¼ 0: (5.6)

By changing variables, �x ¼ 1ffiffiffiffiffiffi
2
2

p
x
, �y ¼ 1ffiffiffiffiffiffi

2
1

p
y
, and

defining x� ¼ �x� �y, the equations becomes simple,

@S1
@x�

¼ 4�


1
2

1

ðxþ2 � x�2Þ2 : (5.7)

A well-behaved solution to this equation is

S1ðxþ; x�Þ ¼ 4�


1
2

1

2xþ3

�
� xþx�

x�2 � xþ2
þ arctanh

�
x�

xþ

��
:

(5.8)

In terms of the original variables, the solution can be
written as

S1ðx>0;y>0Þ

¼ ffiffiffi
2

p
�x2y2

ffiffiffiffiffiffi

1

p
y� ffiffiffiffiffiffi


2

p
x

ð ffiffiffiffiffiffi

1

p
yþ ffiffiffiffiffiffi


2

p
xÞ2

þ2
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffi

1
2

p x3y3

ð ffiffiffiffiffiffi

1

p
yþ ffiffiffiffiffiffi


2

p
xÞ3 log

0
@ ffiffiffiffiffiffi


1


2

s
y

x

1
A: (5.9)

Extending the solution to other regions of the plane, we
find

S1ðx;yÞ¼
ffiffiffi
2

p
�x2y2

ffiffiffiffiffiffi

1

p jyj� ffiffiffiffiffiffi

2

p jxj
ð ffiffiffiffiffiffi


1

p jyjþ ffiffiffiffiffiffi

2

p jxjÞ2

þ2
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffi

1
2

p jxj3jyj3
ð ffiffiffiffiffiffi


1

p jyjþ ffiffiffiffiffiffi

2

p jxjÞ3 log
0
@ ffiffiffiffiffiffi


1


2

s
jyj
jxj

1
A:

(5.10)

As expected, the correction S1 is smaller than S0 at large
values of the arguments, and thus the asymptotics of the
wave function is determined by S0. Thus we find that for
small � our model quantum mechanically has normaliz-
able eigenstates, and therefore unitary evolution.

VI. CONCLUDING COMMENTS

Although Pais-Uhlenbeck quantum mechanics is just a
toy model, the existence of unitary ghost theories could
potentially have very interesting implications, especially if
the mechanism of stabilization by self-interaction can be
extended to the realm of field theory. In particular, one can
ask whether the perturbative divergence of the rate of
decay discussed in Ref. [9] is always an indication of
instability. In principle it is possible that this perturbative
result only means that the perturbative state gets modified
at all momenta, including the ultraviolet; however, modi-
fication does not necessarily mean instability. In the
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quantum-mechanical example discussed in this paper, per-
turbation theory would certainly give a finite decay rate of
the ‘‘perturbative vacuum’’ (the Gaussian eigenstate of the
noninteracting system). However, since the theory is in fact
stable, it still has a normalizable eigenstate which evolves
into the perturbative vacuum when all couplings vanish. It
is conceivable that the fate of the vacuum in the model
discussed in Refs. [8,9] is similar; the perturbative vacuum
is not unstable, but simply evolves into another normal-
izable state. Since the theory has Lorentz invariance, the
new state presumably will also be Lorentz invariant, and
will have a relativistic excitation spectrum, which could be
identified with physical particles.

This mechanism would require a strong enough self-
intraction of all the modes, including the deep ultraviolet

ones, and it may not be possible to achieve this with the
standard model interactions (in the particle and ghost

sectors), or indeed in any renormalizable matter theory.

There is however an interesting possibility that, if the
gravitational sector is described by conformal gravity—

which is much softer in the ultraviolet than general
relativity—the ‘‘decay rate’’ does not diverge and the

stability of the ‘‘vacuum’’ can be achieved with a renor-

malizable self-interaction. Such a scenario would of course
necessitate the stability of the conformal gravity itself.
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