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We obtain a new solution of rotating black string coupled to a nonlinear electromagnetic field in the

background of anti-de Sitter spaces. We consider two types of nonlinear electromagnetic Lagrangians,

namely, logarithmic and exponential forms. We investigate the geometric effects of nonlinearity parameter

and find that for large r, these solutions recover the rotating black string solutions of Einstein-Maxwell

theory. We calculate the conserved and thermodynamic quantities of the rotating black string. We also

analyze thermodynamics of the spacetime and verify the validity of the first law of thermodynamics for

the obtained solutions.
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I. INTRODUCTION

The theory of nonlinear electrodynamics was first
introduced in 1934 by Born and Infeld for the purpose of
solving various problems of divergence appearing in the
Maxwell theory [1]. In recent years, the study of nonlinear
electrodynamics has got a new impetus. Strong motivation
comes from developments in string/M-theory, which is a
promising approach to quantum gravity [2]. It has been
shown that the Born-Infeld (BI) theory naturally arises in
the low energy limit of the open string theory [3,4].
Another motivation originates from the fact that most
physical systems in the nature, including the field
equations of the gravitational systems, are intrinsically
nonlinear. The nonlinear BI electromagnetic theory was
designed to regulate the self-energy of a pointlike charge
[1]. Various aspects of black hole solutions coupled to
nonlinear BI gauge field has been studied. Exact solutions
of the Einstein BI theory with or without cosmological
constant have been constructed in [5–9]. In the scalar-
tensor theories of gravity, black object solutions coupled
to a Born-Infeld nonlinear electrodynamics have also been
studied widely in the literature [10,11].

However, BI theory is not the only nonlinear electro-
dynamics theory which can remove the divergence of the
electric field at r ¼ 0. In particular, in recent years, other
types of nonlinear electrodynamics in the context of gravi-
tational field have been introduced. In [12] exact solution
for a static spherically symmetric field outside a charged
point particle is found in a nonlinear Uð1Þ gauge theory
with a logarithmic Lagrangian. While this particular theory
appears to have no direct relation to superstring theory, it
serves as a toy model illustrating that certain nonlinear
field theories can produce particlelike solutions which can
realize the limiting curvature hypothesis also for gauge
fields [12]. In addition to BI and logarithmic types for

nonlinear gauge fields, very recently one of the present
authors proposed an exponential form of nonlinear elec-
tromagnetic Lagrangian [13]. Although a logarithmic form
of the electrodynamic Lagrangian, like BI electrodynam-
ics, removes divergences in the electric field, the exponen-
tial form of nonlinear electromagnetic Lagrangian does
not cancel the divergency of the electric field at r ¼ 0,
however, its singularity is much weaker than in the
Einstein-Maxwell theory. Other studies on the gravita-
tional systems coupled to nonlinear electrodynamics gauge
fields have been carried out in [14–16].
The extension of the Maxwell field to the nonlinear

electromagnetic gauge field provides powerful tools for
investigation of black object solutions. In the present
work, we would like to turn the investigations on the non-
linear electrodynamics to the rotating black string solutions
with one rotation parameter in the anti-de Sitter (AdS)
background. We will consider the 4-dimensional action
of Einstein gravity with 2 kinds of BI-type nonlinear
electromagnetic gauge fields.
The structure of this paper is as follows. In the next

section we present the basic field equations as well as the
Lagrangian of 2 types of nonlinear electrodynamic fields.
We will also solve the equations for the rotating black
string spacetime and study the physical properties of the
solutions. In Sec. III, we calculate the conserved and
thermodynamic quantities of the black string solutions
and verify the first law of thermodynamics. We finish our
paper with closing remarks in the last section.

II. BASIC EQUATIONS AND SOLUTIONS

We consider a model of a gravitating electromagnetic
field in the presence of cosmological constant. The
Lagrangian for this system is chosen as

L ¼ R� 2�þ LðF Þ; (1)

where R is the Ricci scalar, � refers to the cosmological
constant, andLðF Þ is a general Lagrangian of electromagnetic
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field in which F ¼ F��F
�� is Maxwell invariant, F�� ¼

@�A� � @�A� and A� is the gauge potential. Here, we

assume a kind of rotating metric whose t ¼ constant and
r ¼ constant boundary has the topology R� S1 [17]

ds2 ¼ �fðrÞð�dt� ad�Þ2 þ r2

l4
ðadt��l2d�Þ2

þ dr2

fðrÞ þ
r2

l2
dz2; (2)

where the functions fðrÞ should be determined from gravi-

tational field,� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2=l2

p
, a is the rotation parameter,

0 � �< 2� and �1< z <1.
In order to investigate the properties of the electromag-

netic field, one may consider a suitable LðF Þ and solve the
Maxwell-like field equation. In this paper, we consider two
new classes of nonlinear electromagnetic fields, namely
exponential form of nonlinear electromagnetic (ENE)
Lagrangian and logarithmic form of nonlinear electromag-
netic (LNE) Lagrangian, whose Lagrangians are

LðF Þ ¼
8><
>:
�2

�
exp

�
� F

�2

�
� 1

�
ENE

�8�2 ln
�
1þ F

8�2

�
LNE;

(3)

where � is called the nonlinearity parameter. In the limit
� ! 1, the mentioned LðF Þs reduce to the Lagrangian of
the standard Maxwell field

LðF Þjlarge� ¼ �F þOðF 2Þ: (4)

Considering a strong electromagnetic field in regions
near to point-like charges, Dirac suggested that one may
have to use generalized nonlinear Maxwell theory in those
regions [18]. Similar behavior may have occurred in the
vicinity of neutron stars and black objects and so it is
expected to consider nonlinear electromagnetic fields
with an astrophysical motive [19]. In addition, within the
framework of quantum electrodynamics, it was shown
that quantum corrections lead to nonlinear properties of
vacuum which affect the photon propagation [20–23].

Although in the context of nonlinear electrodynamics,
BI theory is a specific model, the recent interest in the
nonlinear electrodynamics theories is mainly due to their
emergence in the context of the low-energy limit of heter-
otic string theory, where a quartic correction of Maxwell
field strength appear [24]. In other words, it was shown that
all order-loop corrections to gravity may be added up
as a Born-Infeld-type Lagrangian [2,3,25]. Any nonlinear
electrodynamics that satisfies the weak field limit (4) is
said to be of the Born-Infeld type [26].

For completeness, we should note that working in the
context of AdS/CFT correspondence, it is worth investigat-
ing the effects of nonlinear electrodynamic fields on the
dynamics of the strongly coupled dual theory [27].

Motivated by the recent results mentioned above,
we consider the mentioned Born-Infeld-type theory and
investigate their properties.
The equation of motion for the gauge field can be

written as

@�ð ffiffiffiffiffiffiffi�g
p

LFF
��Þ ¼ 0; (5)

where LF ¼ dLðF Þ
dF . Considering Eq. (2) with Eq. (5), we

find that the consistent gauge potential is

A� ¼ hðrÞð��0
� � a��

�Þ; (6)

in which the radial function hðrÞ can be written as

hðrÞ ¼

8>>><
>>>:

��r
ffiffiffiffiffi
LW

p
2

h
1þ LW

5 F
�
½1�;

h
9
4

i
; LW

4

�i
ENE

�2q
3r

h
2F

�h
1
4 ;

1
2

i
;
h
5
4

i
; 1� �2

�
� 1

ð1þ�Þ
i

LNE;

(7)

where q is an integration constant which is related to the

electric charge of the black string, LW ¼ LambertWð 4q2
�2r4

Þ,
which satisfies LambertWðxÞ exp ½LambertWðxÞ� ¼ x,

F ð½a�; ½b�; zÞ is hypergeometric function and � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

r4�2

q
(for more details, see [28]).

Using Eq. (6), we find that the only nonzero components
of the electromagnetic field tensor are Ftr and F�r,

F�r¼� a

�
Ftr; Ftr ¼�q

r2
�
8<
:e�

LW
2 ; ENE

2
�þ1 ; LNE

: (8)

Expanding Ftr for large value of r, we arrive at

Ftr ¼ �q

r2
þ� ��q3

4�2r6
þO

�
1

r10

�
; (9)

where � ¼ 1, 8 for LNE and ENE branches, respectively. It
is shown that for large distances, the first term in Eq. (9)
dominates and the electric field of Maxwell theory is
recovered. We have plotted Ftr as a function of r in
Fig. 1. From this figure it can be seen that for large values
of r the electric fields vanish as one expected. Besides, as
r ! 1, both ENE and LNE behave like the linear Maxwell
field. This implies that the nonlinearity of these fields make
sense only near the origin. It is worth mentioning that, in
contrast to the standard Maxwell and ENE fields, the
electric field of LNE is finite at the origin. We should
note that the divergency of the electric field of ENE is
much slower than the divergency of the standard Maxwell
field at r ¼ 0.
Now, we are in a position to discuss the geometric view

of spacetime. To do this, we should first obtain the metric
function fðrÞ. Gravitational field equation of Einstein–�–
nonlinear electromagnetic theory may be written as [13]
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R���1

2
g��ðR�2�Þ¼ 1

2
g��LðF Þ�2LFF��F

�
�: (10)

In order to obtain fðrÞ, we should consider the field
Eq. (10) with Eqs. (2), (3), and (8). It is easy to show
that the rr component of Eq. (10) can be written in the
following form:

rf0ðrÞ þ fðrÞ þ�r2 þ �2r2gðrÞ ¼ 0; (11)

where

gðrÞ ¼
8<
:

exp ð8�Þ
2 ½1� ð1� 16�Þ� ENE

4 ln ð1��Þ þ 8�
1�� LNE;

(12)

and� ¼ ð Ftr

2��
Þ2. After some cumbersome calculations, the

solutions of Eq. (11) can be obtained as

fðrÞ ¼ 2m

r
��r2

3
þ �WðrÞ; (13)

with

WðrÞ ¼

8>>><
>>>:

q

3
ffiffiffiffiffi
LW

p
h
1þ LW þ 4

5L
2
WF

�
½1�;

h
9
4

i
; LW

4

�i
ENE

8q2F ð½12;14�;½54�;1��2Þ
3�r2

� 4�r2
�
��ln

h
ð�2�1Þ
2e�7=3

i�
3 � 4�

R
r2 ln ð��1Þdr

r LNE;

where m is the integration constant which is the total mass of spacetime, F ð½a�; ½b�; zÞ is hypergeometric function and the
last term of LNE can be calculated as

Z
r2 ln ð�� 1Þdr ¼ � q3=2ð�� 1Þ1=4

23=4�3=2

�
14

3
F

��
1

4
;
1

4
;
11

4

�
;

�
5

4
;
5

4

�
;
1� �

2

�
� 14

25
ð�� 1ÞF

��
5

4
;
5

4
;
11

4

�
;

�
9

4
;
9

4

�
;
1� �

2

�

� ½4þ 3 ln ð�� 1Þ�
9ð�� 1Þ F

���3

4
;
7

4

�
;

�
1

4

�
;
1� �

2

�
þ ½�4þ ln ð�� 1Þ�F

��
1

4
;
7

4

�
;

�
5

4

�
;
1� �

2

��
: (14)

We should note that obtained solutions given by Eq. (13)
satisfy all the components of the field equation (10).

A. Properties of the solutions

Here we are going to study the physical properties of the
solutions as well as the asymptotic behavior of the space-
time. Expanding the metric functions for large r, we have

fðrÞ ¼ 2m

r
��r2

3
þ q2

r2
� �q4

40r6�2
þO

�
1

r10

�
; (15)

where for� ! 1, one can recover the rotating black string
solutions in Einstein-Maxwell gravity [17]. Next, we cal-
culate the curvature scalars of this spacetime. It is easy to
show that the Ricci scalar and the Kretschmann invariant of
the spacetime are

R ¼ �f00ðrÞ � 4f0ðrÞ
r

� 2fðrÞ
r2

; (16)

R��	
R
��	
 ¼ f002ðrÞ þ

�
2f0ðrÞ
r

�
2 þ

�
2fðrÞ
r2

�
2
; (17)

where the prime denotes derivative with respect to r.
Since other curvature invariants of the spacetime such as
the Ricci square are only the functions of f00, f0=r, and
f=r2, thus we only consider the Ricci scalar and the
Kretschmann invariant. Substituting the metric functions
(13) in (16) and (17), we find

lim
r!0þ

R ¼ 1; (18)

lim
r!0þ

R��	
R
��	
 ¼ 1: (19)

This indicates that we have an essential singularity
located at r ¼ 0. On the other side, we can expand
Eqs. (16) and (17) for large r and keep the first-order
nonlinear correction term

0

2

4

6

8

10

12

14

Ftr

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
r

FIG. 1. The behavior of Ftr versus r for q ¼ 1, � ¼ 4 and
� ¼ 1:2. ENE (Bold line), LNE (solid line), and linear Maxwell
field (dotted line).
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lim
r!1R ¼ 4�þ �Q4

2�2r8
þO

�
1

r12

�
; (20)

lim
r!1R��	
R

��	
 ¼ 8

3
�2 þ 48m2

r6
� 96mQ2

r7
þ 56Q4

r8

� 2�Q4

�2l2r8
þO

�
1

r11

�
; (21)

where we conclude that the spacetime is asymptotically
anti-de Sitter.

Furthermore, such as black string with linear Maxwell
source, one expects to obtain a black string with an outer
and an inner horizon, an extreme black string, or a naked
singularity. We should note that for the obtained black
string with nonlinear source, a new interesting situation
appears. This new situation appears for small values of the
nonlinearity parameter in which the black string has one
nonextreme horizon as it happens for Schwarzschild solu-
tion (uncharged solution). In other words, we find that
there is a critical nonlinearity parameter �c in which for
�< �c the metric function may be negative near the
origin. This means that the singularity is timelike for �>
�c, but for �<�c it is spacelike (see Fig. 2 for more
details). Although we cannot obtain �c analytically, we
find that it is a function of other parameters. We obtain �c,
numerically, from the following conditions:

lim
r!0þ

fðrÞ !
�þ1; � > �c

�1; � < �c

:

For more clarifications, we give a numerical method for
obtaining�c. At first we should fix metric parametersm, q,
and �, and we check that for large � the metric function is
positive near the origin. Then, we reduce� until the sign of

the metric function switch to negative. One can use this
method to obtain �c with ideal accuracy. Numerical cal-
culations show that �c change when we alter at least one of
the metric parameters m, q, and � (see Table I for more
details).

III. CONSERVED QUANTITIES AND THE
FIRST LAW OF THERMODYNAMICS

At the first step, we use the definition of quasilocal
energy [29–31] to compute the conserved charges of our
solutions. Following the counterterm method, the
divergence-free boundary stress-tensor can be written as

Tab ¼ �ab � ð�þ 2
lÞ�ab

8�
; (22)

where the last term comes from counterterm procedure.
Considering a Killing vector field � on the boundary B, it
is known that its quasilocal conserved quantity may be
obtain from the following relation:

Qð�Þ ¼
Z
B
d2x

ffiffiffiffi



p
Tabn

a�b; (23)

where 
 is the determinant of the Arnowitt-Deser-Misner
form of boundary metric 
ij and na is the unit normal

vector on the boundaryB. It is easy to find that boundaryB

FIG. 2. fðrÞ versus r for � ¼ �1, q ¼ 1, m ¼ 1, and �>�c (solid line) and �<�c (dashed line) in ENE branch (left figure) and
LNE branch (right figure).

TABLE I. fðrÞ for m ¼ 1, q ¼ 1, � ¼ �1, r 			! 0þ and
�c � 0:171 and 0.092 for ENE and LNE branches, respectively.

fENEðrÞ ! �1 þ1
� ¼ 0.171167 0.171168

fLNEðrÞ ! �1 þ1
� ¼ 0.092042 0.092043
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has 2 killing vector fields. They are timelike (@=@t) and
rotational (@=@’) Killing vector fields, in which their
corresponding conserved charges are the quasilocal mass
and angular momentum. One can find that the mass and
angular momentum per unit length of the string when the
boundary B goes to infinity can be calculated as

M ¼ 1

16�l
ð3�2 � 1Þm; (24)

J ¼ 3

16�l
�ma: (25)

As one can find the angular momentum per unit length
vanishes for a ¼ 0 (� ¼ 1) and, therefore, a is the
rotational parameter, correctly.

The second step is devoted to calculation of the thermo-
dynamic quantities. It was known that the universal area
law of the entropy can apply to all types of black objects in
Einstein gravity [32,33]. Therefore, the entropy per unit
length of the black string is

S ¼ �r2þ
4l

: (26)

In order to obtain angular velocity � and Hawking
temperature of the black string at the event horizon, we
use the method of analytic continuation of the metric. One
can obtain the Euclidean section of the metric by use of a
transformation (t ! i� and a ! ia) and regularity at
r ¼ rþ requires that � and � should, respectively, identify
with �þ �þ and �þ i��þ, where �þ is the inverse of
the Hawking temperature. So, it is easy to find that

� ¼ a

�l2
; (27)

and

Tþ ¼��rþ
4�

þ

8>>><
>>>:

�qð1�LWþÞ
4�rþ

ffiffiffiffiffiffiffiffi
LWþ

p � �2rþ
8� ENE

� q2ð�þ�2Þ
�r3þ�þð�þ�1Þþ

�2rþ

�
ln

�
�2þ�1

2

�
� 2

�þ

�
� LNE;

(28)

where �þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

r4þ�
2

r
and LWþ ¼ LambertWð 4q2

�2r4þ
Þ.

In order to examine the first law of thermodynamics, we
should calculate the electric charge and potential of the
black string. We should use the Gauss’ law and calculate
the flux of the electromagnetic field at infinity to obtain the
electric charge per unit length of black string

Q ¼ �q

4�l
: (29)

In addition, the electric potential U, measured at infinity
with respect to the event horizon rþ, is defined by [34]

U ¼ A�
�jr!1 � A�

�jr¼rþ ; (30)

where  ¼ @t þ�@� is the null generator of the event

horizon. It is easy to show that

U¼ 1

�
�

8>>><
>>>:

�r
ffiffiffiffiffi
LW

p
2

h
1þ LWþ

5 F
�
½1�;

h
9
4

i
;
LWþ
4

�i
ENE

2q
3rþ

h
2F

�h
1
4 ;

1
2

i
;
h
5
4

i
;1��2þ

�
� 1

ð1þ�þÞ
i

LNE:

(31)

Now, we are in a position to check the first law of
black string thermodynamics. Using the Smarr-type for-
mula, it is straightforward to calculate the temperature,
angular velocity, and electric potential in the following
manner:

T¼
�
@M

@S

�
J;Q

; �¼
�
@M

@J

�
S;Q

; U¼
�
@M

@Q

�
S;J
: (32)

One can find that the quantities calculated by Eq. (32)
coincide with Eqs. (28), (27), and (31). Hence, we con-
clude that the first law of thermodynamics is satisfied in the
following form:

dM ¼ TdSþ�dJ þUdQ: (33)

Since the asymptotic behavior of the solutions is the same
as linear Einstein-Maxwell black string, it is expected that
the nonlinearity does not affect the electrical charge, mass
and angular momentum. Moreover, we find that the non-
linearity of the electromagnetic fields affects the other
quantities at the horizon. Although the nonlinear electro-
magnetic field changes some of the conserved and thermo-
dynamic quantities, as we expected [35] these quantities
satisfy the first law of black hole mechanics.

IV. CLOSING REMARKS

Many physical systems in the nature have nonlinear
behavior. Einstein field equations of general relativity is
also a system of nonlinear gravitational field equations
which can be applied for describing various gravitational
objects. In order to solve the gravitational field equations in
the presence of a matter field, one can consider either the
linear gauge field such as the Maxwell electrodynamics or
the nonlinear matter field such as the BI electrodynamics.
Static and stationary black object solutions of these theo-
ries have been established and their thermodynamics have
been studied during the past decades (see [5–9,36] and
references therein). The advantages of the nonlinear elec-
trodynamics in comparison to the Maxwell field is that it
avoids the divergences at the origin and leads to a finite
electric field on the point particles.
In this paper, as a new step, we considered 2 types of

nonlinear electrodynamic Lagrangians as source. The first
one is called the logarithmic form and the second one
named the exponential form. Then, we constructed new
4-dimensional charged rotating black string solutions
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with horizon topology R� S1 coupled to the nonlinear
electrodynamic field. These solutions are asymptotically
anti-de Sitter. If one expand the nonlinear electromagnetic
fields for large r, one finds that the asymptotic behavior of
them is similar to the linear Maxwell field. We also calcu-
lated the curvature invariants of the spacetime and showed
that there is indeed a curvature singularity located at r ¼ 0.
Furthermore, we found that, unlike Einstein-Maxwell
black string solutions, for small values of the nonlinearity
parameter, one can obtain a black string with a nonextreme
horizon. We also calculated the conserved quantities of the
rotating black string, such as the mass and the angular
momentum as well as the thermodynamic quantities,
such as the temperature and entropy associated with the

horizon and checked that the obtained conserved and ther-
modynamic quantities satisfy the first law of black hole
thermodynamics.
Finally, it is worthwhile to study the dynamic as well as

thermodynamic stability of the solutions, and investigate
the effects of nonlinearity parameter, �, on the stability of
the presented solutions. We leave these problems for the
future studies.
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