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Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to
generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability
of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic
equation of state (EOS) to analyze the measurability of EOS properties, via a parameter A that
characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy
of the simulations, the departure of the waveform from point-particle (or spinless double black-hole
binary) inspiral increases monotonically with A and changes in the EOS that did not change A are not
measurable. We estimate with two methods the minimal and expected measurability of A in second- and
third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows
that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second
estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and
estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors
arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such
effects would interfere with template-based searches.
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I. INTRODUCTION

Substantial uncertainty remains in the equation of
state (EOS) of cold matter above nuclear density. While
recent analyses of x-ray bursts and thermal emission from
quiescent low-mass x-ray binaries [1-7] constrain simul-
taneously the mass and radius of neutron stars in x-ray
binaries, placing limits on allowed EOS, such measure-
ments depend on burst and atmosphere models. In contrast,
observations of gravitational waves from binary inspiral
provide a model-independent way to simultaneously mea-
sure the mass and radius of neutron stars in double neutron-
star and black-hole neutron-star binaries.

The detection of a gravitational wave from an inspiraling
binary will determine mass parameters from the early
inspiral [8]. Strong signals may also constrain additional
parameters that characterize the EOS. For widely separated
neutron-star pairs, EOS effects will be minuscule; how-
ever, binary systems drawn together by the loss of orbital
angular momentum to gravitational radiation will exhibit
increasing tidal interactions through the late stage of binary
inspiral, up to tidal disruption or merger. The effects of
tidal interactions imprint an EOS signature on the gravita-
tional waveform of the merger of the neutron stars.
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The rate of binary neutron star mergers is uncertain, but
it is reasonable to expect that Advanced LIGO (aLIGO) [9]
will detect several events per year [10]. In fact, over several
years of operation, there appears to be a good chance that a
strong signal with signal-to-noise ratio (SNR) above 30
will be detected.

Neutron-star pairs in binary systems produce mutual
tidal stresses that deform the metric around the stars in a
manner prescribed by the EOS via a parameter we refer to
as the tidal deformability A defined in Eq. (1) below. This
parameter describes the degree to which a local metric
suffers quadrupolar deformations when in the tidal field
of a companion, and scales as the fifth power of the
neutron-star radius, R>. The tidal interaction between two
stars in a binary system alters both the binding energy of
the system and the gravitational-wave energy flux [11-13],
and in turn changes the phase evolution of the gravitational
waveform. When the stars are sufficiently far apart, the
phase evolution may be obtained from a detailed balance
of energy through a sequence of orbits. This approach
describes the secular evolution of the binary system orbit
under energy loss to gravitational radiation (and distortion
of the companions) and is valid while the evolution is slow
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and the motions are not too relativistic. Analysis using
analytic models suggests that tidal effects may be measur-
able using Advanced LIGO [11,14,15], but only if the
model can be extended to the late, high-frequency stages
of inspiral.

Large tidal effects on the merger of binary neutron star
systems have been observed in numerical simulations of
late inspiral [16-20]. Additional information is also
present in the frequencies of neutron-star normal modes
after the merger, should the EOS be stiff enough to support
a hypermassive neutron star [21-23]. In this paper, we
incorporate a wider range of EOS than in previous work,
with systematic parameter variation that allows us to ex-
plicitly estimate how EOS parameters will be constrained;
we show that, to within the accuracy of our simulations, the
parameter A can also be used to characterize the merger of
binary neutron stars.

While numerical-relativity efforts can simulate binary
coalescence during the highly dynamical phase at the end
point of binary inspiral, there are additional challenges in
determining the slow inspiral motion: Simulating the
length scales and time scales of widely separated binary
systems whose orbital decay occurs over many cycles is
computationally expensive, and the resolution must be
sufficiently high that the numerical scheme conserves
angular momentum and energy with enough accuracy that
the relatively small gravitational radiation dominates.
However, if high-quality numerical simulations extend
into the region in which a given post-Newtonian or other
analytic approximation is valid, joining the post-Newtonian
waveform to the numerical waveform at a point when both
waveforms are deemed accurate will yield a complete
hybrid waveform for the binary system, which includes
both inspiral tidal effects and other hydrodynamic effects
that occur during coalescence. Hybrid waveforms can be
used to better measure the EOS-dependent properties of a
neutron star. The measurement will be limited not only by
statistical errors arising from the fact that the gravitational-
wave signal must be extracted from detector noise, but also
by systematic errors arising from modeling errors in the
analytic inspiral, the numerical simulations, and ambigu-
ities in the process of joining them together.

We also explore an alternative scenario: If systematic
errors arising from hybrid waveforms are intractable, it is
possible to use only numerical simulations of the late
inspiral, which are robust, to estimate structural parameters
of the neutron star. The measurability of the tidal deform-
ability suffers in such an approach because the unknown
time and phase of the numerical waveform relative to the
time and phase of post-Newtonian models of the early
inspiral must be marginalized over. However, we show
that we are still able to constrain the tidal deformability
of neutron stars in binary neutron star systems using
current numerical simulations, even if hybrid waveforms
cannot be constructed.
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Our results are derived from data produced by two
independent numerical-relativity codes: SACRA [24] and
WHISKY [25-27]. This has the advantages of checking the
actual numerical differences due to different implementa-
tions of the equations (Einstein equations, relativistic-
hydrodynamics equations) and of understanding if and
how much such differences are relevant to gravitational-
wave detection and analysis.

We use a spacelike signature (—, +, +, +) and a system of
units in which ¢ = G = 1. Greek indices are taken to run
from O to 3, latin indices from 1 to 3, and we adopt the
standard convention for the summation over repeated indices.

II. GENERATION OF WAVEFORMS

A. EOS variation

We specify EOS candidates in the framework of [16,28]:
A fixed crust EOS is joined to a core EOS that we vary
using a piecewise-polytrope scheme. Currently we con-
sider a single core region, but we vary independently two
parameters: the adiabatic index I' of the core and the
overall pressure scale p. at a fiducial rest-mass density
0. = 10'*7 g/cm?. Following the notation of [16,29], we
categorize the EOS by the pressure scale: From high
pressure to low pressure we use 2H, H, HB, and B. The
adiabatic index variation is indicated by one or more
occurrences of a lower case s: B (no s) has I' = 3, Bs
has I' = 2.7, Bss has I' = 2.4. Eight EOSs (2H,H, HB, B,
Bs, Bss, HBs, HBss) were simulated using both the
WHISKY and SACRA codes at multiple resolutions and at
different initial stellar separations (see Sec. II B 1). EOS
parameters are summarized in Table 1.

For a given neutron-star mass, each EOS can be identi-
fied by two useful macroscopic characteristic quantities, R
and A: R is the stellar radius of an isolated nonrotating

neutron star and
2 RY\5
A=—-k|— 1
(i) 1)

TABLE I. EOS parameters and properties of individual neu-
tron stars for the reference mass 1.35M simulated in this work.
The parameter p.. is measured in dyn/ cm?, R is measured in km,
C is the compactness (Myg/R), and the tidal parameter A used in
previous work [14] has units of 103 g/cm?.

EOS logyp« I R C A A3 A
2H 349036 3.0 1523 0131 1097 4713 2325
H 345036 3.0 1228 0.162 2866 3.603 607.3
HB 344036 3.0 11.61 0.172 1992 3350 4220
B 343036 3.0 1096 0.182 1362 3.105 2887
Bs 343036 27 1074 0.186 1.075 2961 227.7
Bss 343036 24 1027 0.194 0.6695 2.694 141.9
HBs 344036 27 1158 0.172 1770 3275 3769
HBss 34.4036 24 1145 0.174 1421 3131 301.1
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FIG. 1 (color online). The radius R of the simulated EOS as a
function of mass. The dashed lines indicate the simulated mass
value of 1.35 M, and the 1.97 M, maximum mass required by
Antoniadis et al. [31].

is the dimensionless quadrupole tidal deformability (k, is
the quadrupole Love number). These parameters are tabled
for the current models in Table I, and the mass-radius
relationships determined by each EOS are presented in
Fig. 1. Recent analysis of neutron-star matter properties
compatible with modern nuclear theory [30] suggests that
the radius of the 2H model is unrealistically large, and the
largest neutron-star mass measurement of 2.01 = 0.04M g
[31] rules out the “‘s” EOSs. Current astrophysical con-
straints [1-6] further favor EOSs H and HB. However, we
consider this range useful for a parameter study.
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FIG. 2 (color online). Contours of constant R and A (labeled
by the value of A'/%) in the two-parameter EOS space.
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At leading order in the separation of the stars, A deter-
mines the (¢, m) = (2,0) departure of the asymptotic
metric from spherical symmetry and the departure of the
waveform phase evolution from its point-particle form.
Our results imply that A effectively determines the wave-
form’s departure from point-particle (or nonspinning
BH-BH) inspiral even for the late inspiral.

Figure 2 (provided by B. D. Lackey) shows contours of
constant R and A for 1.35M, stars in the EOS space. Our
simulations suggest that the contours in the EOS parameter
space of constant departure of the waveform from point-
particle inspiral coincide with similar accuracy with these
contours of constant A, but the range of high-resolution
runs is not yet large enough for a quantitative conclusion.

B. Numerical simulations

Here we give only a brief overview of the codes,
while we refer the reader to previous articles for more
details [24-26,32-34].

1. Initial data

The initial configurations for our simulations are pro-
duced using the numerical code of [35-37] based on the
multidomain spectral-method library, LORENE. LORENE
was originally written by the Meudon relativity group and
is publicly available [38]. We have added a new method to
treat the piecewise-polytropic EOS of Sec. II A, which
is used in [32] for detailed study of quasiequilibrium
sequences with such EOS.

The total Arnowitt-Deser-Misner (ADM) mass is fixed to
be M = M, = 2.7M, at infinite separation. We consider
equal-mass binaries. The initial data are prepared for two
different orbital angular velocities, M), = 0.0188 and
0.0221, where (), denotes the initial orbital angular velocity,
subsequently labeled by “I188” and “I221.” Nine models
are prepared for our simulations varying the EOS and orbital
angular velocity for fixed total mass. Some of the physical
quantities of the initial configurations are reported in Table II.

2. Overview of evolution codes

Both the SACRA and WHISKY codes evolve the Einstein
equations in the Baumgarte-Shapiro-Shibata-Nakamura for-
malism [39-42]. For the WHISKY simulations, the Einstein
equations are solved using the CCATIE code, a three-
dimensional finite-differencing code based on the CACTUS
COMPUTATIONAL TOOLKIT [43]. A detailed presentation of
the CCATIE code and of its convergence properties has been
presented in [33]. For tests and details on SACRA, see [24].

The gauges are specified in terms of the standard ADM
lapse function, @, and shift vector, 8’ [44]. We evolve the
lapse according to the “1 + log” slicing condition [45]:

d,a — Bd;a = —2ak. 2)

The shift is evolved using the hyperbolic I-driver
condition [46]
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TABLE II.  Properties of the initial data: proper separation between the centers of the stars d/M py; baryon mass M, of each star in
units of solar mass; total ADM mass M spy in units of solar mass, as measured on the finite-difference grid with the WHISKY code and
with the SACRA code; total ADM mass M spy in units of solar mass, as provided by the Meudon initial data; angular momentum J, as
measured on the finite-difference grid with the WHISKY code and with the SACRA code; angular momentum J, as provided by the
Meudon initial data; initial orbital angular velocity expressed as M spy€lo; mean coordinate equatorial radius of each star r, along the
line connecting the two stars; maximum rest-mass density of a star Q,,,,. Note that the values of My and J are computed through a
volume integral in WHISKY, while in SACRA they are computed through the extrapolation to r — oo of the ADM masses and angular
momenta calculated as surface integrals at finite radii r.

Mass (M) J(X10* gcm?/s) r, O mmax

EOS d/MADM Mb MXBYVIM MZADCI\S[A MADM WHISKY SACRA j MADMQO (km) (g/cm3)
2H 1188 134 1.455 2.671 2.682 2.678 6.772 6.781 6.772 0.0187 12.99 3.74 X 104
HB 1188 13.5 1.493 2.671 2.682 2.678 6.761 6.769 6.761 0.0186 9218 827X 10"
B 1221 15.4 1.502 2.668 2.680 2.675 6.492 6.499 6.491 0.0219 8.48 9.77 X 104
Bss 1221 11.9 1.501 2.669 2.680 2.675 6.493 6.501 6.493 0.0219 7.85 1.49 X 101
. R The system written in conservative form is solved with

3,8 — i, =B, G) .. yste . : :
4 high-resolution shock-capturing methods, in several vari-
ants for both codes. For the simulations of this work, both
9Bl — B/ 9, Bi = azfi — B ajfi — yBi, (4) codes employ third-order piecewise-parabolic method [51]

where B’ is an auxiliary variable and 7 is a parameter that
acts as a damping coefficient. We set n = 1.0 or = 0.5,
in units of My = 1, for WHISKY and SACRA, respectively.

Both codes adopt a flux-conservative formulation of the
hydrodynamics equations [47—-49], in which the set
of conservation equations for the stress-energy tensor
T*" = pohu*u” + pg"” and for the matter current density
J#* = pu* (where p is the pressure, Q0 is the rest-mass
density, € is the specific internal energy, h =1+ ¢ +
p/ @ is the specific enthalpy, u* is the four-velocity, and
g"” is the inverse metric), namely V,T#” =0 and
\Y uJ* =0, are written in a hyperbolic, first-order, flux-
conservative form of the type

3,9 + 9,£9(q) = s(q), (5)
where f)(q) and s(q) are the flux vectors and source terms,

respectively [50]. The EOS closes the system by relating
pressure, rest-mass density, and internal-energy density.

TABLE III.

reconstruction, but SACRA used Kurganov-Tadmor’s cen-
tral scheme [52] as the Riemann solver, while WHISKY [53]
used the Marquina flux formula. The details of the differ-
ences in the implementations of the Einstein and hydro-
dynamics equations in the two codes are described in [54],
which contains also convergence tests and the description
of the differences in the implementations of adaptive mesh
refinement [24,55].

For the highest-resolution runs with WHISKY, the spacing
of the finest of the six grid levels is hg,, = 0.096 M, =~
0.1418 km and the spacing in the wave zone (the coarsest
grid) i hgoare = 3.072M o =~ 4.536 km. The finest grid
always covers the whole stars. The outer boundary is
located at about 760 km.

For the runs with SACRA, the computational domain
comprises seven grid levels, with finest grid resolution
hgne = 0.1063Mg = 0.1570 km and with spacing in the
wave zone (the coarsest grid) /hgpae = 6.804M =
10.05 km for the highest-resolution runs. The finest grid
covers the stellar radius completely (the boundary of the

Properties of the initial grids. The model name has the following format: EOS name, code used for simulation, resolution

(R%, where % is the spacing of the finest grid in meters), and initial orbital angular velocity imposed for building the initial data
expressed as M app Qo * 10* (1%). n is the number of refinement levels (including the coarsest grid); m is the number of finer levels
that are moved to follow the stars; A, is the spacing of the finest level; Ly, is the length of the side of the finest level; Ay i the
spacing of the coarsest level; r is the outer-boundary location. All lengths are expressed in km.

Refinement Moving Finest grid (km) Coarsest grid (km)
Model levels n levels m Spacing hgpe Extent L. Spacing hcgare Outer boundary r
B wHISKY R141 1221 (HR) 6 2 0.1418 44.33 4.54 760
B wHIsKY R177 1221 (MR) 6 2 0.1773 44.33 5.67 760
B wHISKY R221 1221 (LR) 6 2 0.2216 44.33 7.09 760
B SACRA R157 1221 (HR) 7 4 0.1570 9.420 10.05 603
B SACRA R174 1221 (MR) 7 4 0.1744 9.420 11.16 603
B sACRA R202 1221 (LR) 7 4 0.2023 10.12 12.95 648

044042-4



MATTER EFFECTS ON BINARY NEUTRON STAR WAVEFORMS

finest grid is at = 115% of the stellar radius). The radius of
the outer boundary is about 603 km.

The properties of the grids adopted in the simulations
with the two codes are summarized in Table III. In general,
we use a naming convention to label results for a given
numerical simulation, e.g., “HB WHISKY R141 1221,”
which summarizes the EOS (HB), the code (WHISKY), the
resolution of the finest grid in meters (141), and the initial
orbital angular velocity imposed for building the initial
data expressed as M ypy 2o * 10* (221).

C. Waveform extraction

This work is concerned primarily with the gravitational
waveforms extracted from the simulations, rather than the
underlying density or pressure distributions, so we describe
in some detail the gravitational-wave extraction methods
employed.

Both codes compute the gravitational waveforms using
the Newman-Penrose formalism [56], which provides a
convenient representation for a number of radiation-related
quantities as spin-weighted scalars. In particular, the cur-
vature scalar

\P4 = —CaBy(;n"ﬁiﬁnynﬁﬁ (6)

is defined as a particular component of the Weyl curvature
tensor C, g, 5 projected onto a given null frame {I, n, m, m}
and can be identified with the gravitational radiation field
if a suitable frame is chosen at the extraction radius.
In practice, we define an orthonormal basis in the three-
space (7, 0, ) centered on the Cartesian origin and ori-
ented with poles along Z. The normal to the slice defines a
timelike vector £, from which we construct the null frame

1. IR
n—\/—z(t-f-r), m—\/z(O 1¢)
(7)

We then calculate W, via a reformulation of (6) in terms of
ADM variables on the slice [57]:

\I’4 = Clj}’l_’lll’l_’l], (8)
where
Cij = RU - KK’] + K[kKkj - iEikllejk, (9)

and €;; is the Levi-Civita symbol. The gravitational-wave
polarization amplitudes 4, and &y are then related to W,
by time integrals [58]:

where the double overdot stands for the second-order time
derivative. Care is needed when performing such time
integrals [18,59,60]. In SACRA, they are computed with
the fixed-frequency integration method [61].

PHYSICAL REVIEW D 88, 044042 (2013)

For the extraction of the gravitational-wave signal, each
code implements a second independent method that is
based on expressions involving the gauge-invariant metric
perturbations of a spherically symmetric background
spacetime [62]. The wave data obtained in this way give
results compatible with those obtained with the Newman-
Penrose formalism and are not reported here.

We use only the (€, m) = (2,2) mode in this work. For
the equal-mass cases considered, other modes are much
smaller. The waveform is analyzed as a function of
retarded time t = ty,, — r — 2MyIn(r/M,) where M, is
the ADM mass of the system at the initial time of the
simulation.

We will use the complex combination of the extracted
polarizations

h=h, —ihy = |hle'® (11)
in further analysis. Some relevant quantities of a detected
signal can be calculated for either polarization, and in this
paper we will always show the average result for both
polarizations.

An instantaneous frequency is extracted by taking the
time derivative of the phase ¢ of the complex waveform.
The total accumulated phase is reconstructed by integrat-
ing the instantaneous frequency in subsequent phase plots.

The physical system simulated is the same under trans-
lations by arbitrary parameters, 7y and ¢, which describe,
respectively, the time of the start of the simulation relative
to some reference time and the initial phase of the simula-
tion relative to some reference phase. When comparing
two waveforms, these free parameters amount to a relative
time shift and phase shift between the waveforms. For the
numerical waveforms with the same initial separation, one
can take the time and phase to be zero at the retarded time
corresponding to the start of the simulation. For simula-
tions of EOS B, detailed comparison results between
SACRA and WHISKY are presented in [54].

D. Common structure of waveforms

In order to compare simulations with different starting
points, or to remove artificial effects of initial data, an
alternate alignment procedure is required. In fully realistic
binary simulations, as in the binary black hole case, the
merger is the simplest reference point for waveform com-
parison. With finite resolution, numerical dissipation may
cause angular momentum to be artificially lost during the
evolution, increasing the rate of orbital decay during the
secular inspiral in a way that may mimic the tidal effects that
are being studied here. Evolutions with different resolutions
of the same initial data tend to diverge from one another
when they are aligned to start at the same time and with the
same phase. However, this direct comparison overempha-
sizes differences that are less relevant to our purposes, as
small differences in phase accumulation in the early, low-
frequency regime will induce a corresponding time shift
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which translates to a large phase difference in the later high-
frequency cycles. During the late stages of binary coales-
cence, which are driven by dynamical effects, the effects
of numerical dissipation are less significant. Comparable
resolution-dependent features of binary black hole simula-
tions motivated alignment of waveforms at merger in com-
parisons such as those described in Hannam et al. [63].

We will align multiple waveforms with the same EOS so
that all waveforms have the same time and phase when they
reach their maximum amplitude (Figs. 3 and 5), which also
allows the comparison of waveforms with different initial
separations. The numerical waveforms have residual oscil-
lations in their amplitude as they approach the peak, so we
smooth this by taking a moving average of the amplitude over
a range of 0.5 ms before finding the maximum amplitude.

Different simulations of the same physical system,
including those with differing initial data, agree well
through the last orbits when the waveforms are compared
this way, which we consider a strong indication that the
dynamical phase is being reliably simulated. We then
estimate numerical inaccuracies on the waveforms relative
to the peak amplitude time to determine how much of the
inspiral we will use in subsequent analysis.

Looking at a set of waveforms, we find a common
structure that is seen for each EOS in Fig. 3. As the neutron
stars spiral toward each other, at some point there is a
transition from an inspiral phase to a merger or coalescence
phase indicated by a maximum in the amplitude at the end
of the inspiral phase. The retarded time of the peak ampli-
tude corresponds roughly to the impact of the two stars,
after which shocks form and thermal and other effects are
expected to contribute to the waveform [64—68].

Somewhat surprisingly, we find that the parameter A
effectively characterizes properties at this peak amplitude.
Figure 4 shows the frequency at peak amplitude as a
function of both compactness, the dimensionless ratio
M /R for an individual star, and A for the individual stars.
We find that the frequency varies more smoothly with A
than with radius or compactness; a linear fit of log fgw as a
function of A!/5 is displayed. The maximum fractional
difference between frequency at peak amplitude for differ-
ent simulations of the same EOS is 1.9%, and the maxi-
mum fractional difference between the simulation and
fitted frequencies is 2.6%. This may be an analogous
relation to the “I-Love-Q” relations explored in [69,70].

The instantaneous frequency of the gravitational wave-
form continues to increase for a short time after the peak
amplitude is reached, as the stars coalesce. A minimum in
the gravitational-wave amplitude follows, around which
the instantaneous frequency is not well defined and may
spike upwards or downwards. We attribute this to a mini-
mum in the quadrupole moment of the merged object
shortly after the two stars collide.

After this point, the qualitative waveform behavior de-
pends strongly on the EOS: For EOSs with higher pressure
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FIG. 4 (color online). Instantaneous gravitational-wave fre-
quency at the point of peak amplitude, as a function of the tidal
parameter A'/5 (bottom panel) and as a function of individual
star compactness C (top). For each model, the highest-resolution
simulation for a given EOS is plotted in black, lower-resolution
simulations in grey. The x = (wMf)** = C relation used in [15]
to characterize merger frequency is shown in the compactness
plot. An empirical fit using A/ is shown in the bottom plot; the
frequency of merger is more tightly correlated with A than with
compactness/radius.

at the relevant densities, a differentially rotating hyper-
massive object may be supported, producing a quasiperi-
odic post-merger oscillation waveform [34,71]. This can
last for tens of milliseconds before the remnant collapses to
a black hole [72]. EOSs with lower pressure, conversely,
collapse quickly to black holes and have short post-
coalescence signals at roughly ringdown frequency. This
ringdown has lower amplitude than would be seen in a
binary black hole of the same mass. The exact frequency
and amplitude of this signal varies with the EOS.

The differences in phase evolution of different wave-
forms with the same EOS are shown relative to a well-
resolved reference waveform in Fig. 5. We note that the
difference in the finest resolution between simulations
explains much of the phase difference for all EOSs; differ-
ences between initial separation (and resulting differences
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FIG. 5 (color online).

t(s)

Accumulation of phase differences between numerical simulations at different resolutions and initial

frequencies, relative to a reference waveform for each EOS. We fix ¢t = 0 and ¢ = arg h = 0 for all waveforms at the peak amplitude
point (see text). Note that the convergence of the waveforms is poor after the peak amplitude (when the two stars begin to merge).

in eccentricity at merger) have relatively small effects at
these resolutions.

Furthermore, we note that the magnitude of the phase
differences stemming from a difference in resolution
depends on the EOS: More compact neutron stars require
higher resolution to give comparably small phase error. This
makes a quantitative comparison of resolution effects on
waveforms with different EOSs more challenging. For this
analysis, we use a simplified procedure: Examining the
merger-aligned waveforms, we estimate which of the given
waveforms are sufficiently resolved by current simulations
by comparison with the highest resolution available. We
will consider only waveforms which differ from the highest
resolution simulation by less than 0.5 rad over the last 15 ms
before the peak amplitude is reached. The systematic error
resulting from this level of phase error is calculated for the
various measurability estimates in subsequent sections.

1. Detectors considered and Fourier-amplitude spectra

For the merger of binary neutron stars, only detector
configurations with good high-frequency sensitivity

will give useful constraints; broadband configurations
have previously been shown to compare favorably to
narrow-band configurations tuned for high-frequency sen-
sitivity in distinguishing matter effects [28]. In this work,
we choose the zero-detuning high-power Advanced LIGO
configuration [73] and the ET-D Einstein telescope
configuration [74].

We use a reference effective distance of Dy =
100 Mpc to present results in this paper. The effective
distance D of a binary system is the same as the true
distance of the system if it is optimally oriented (face on)
and optimally located (directly above or below the detec-
tor) and is greater than the true distance otherwise. The
amplitude of a signal is inversely proportional to its effec-
tive distance.

The rate of signals with D = 100 Mpc or smaller can
be estimated by comparing this to the fiducial Advanced
LIGO horizon distance—the effective distance of a detect-
able signal—of 445 Mpc for neutron-star—neutron-star
inspirals [10]. Within this horizon, we expect roughly 40
(0.4-400) detectable inspirals per year. Since rate scales
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with Dgff for sufficiently large distances, we expect 1% of
the detected signals to be as strong or stronger than our
reference signal, making it a plausible ‘“loudest” signal
over a few years of observation with realistic event rates.
However, we will also consider how our results scale to
other values of D and the constraints that weaker signals
would place on the EOS in the sections to follow.

The estimates in this paper conservatively use only a
single Advanced LIGO detector. However, two detectors
are being upgraded in the United States [9], a third is
planned in India [75], and an upgrade of comparable
high-frequency sensitivity is under way for Virgo [76] in
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FIG. 6 (color online).
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Italy; finally, a Japanese detector KAGRA [77] is under
construction, although KAGRA’s sensitivity curve is
shifted slightly to lower frequency. A multiple-detector
network will provide additional discriminatory power,
reducing the statistical (though not the systematic) errors
from those estimated in this work.

In Fig. 6, we compare the amplitude of the simulated
waveforms as a function of frequency for each EOS to the
strain sensitivity of the detectors. Results of simulations
with different codes, resolutions, and initial separations are
overlaid for each physically distinct inspiral. The amplitude
of the Fourier transform is an incomplete representation of
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Fourier spectra of numerical waveforms in units that facilitate the comparison with gravitational-wave detector

noise curves. Example noise spectra are indicated by thick grey lines for the alLIGO high-power noise [73] and the Einstein Telescope
ET-D noise [74]. The starting frequency depends on the initial orbital separation. The premerger waveform gives a roughly
monotonically decreasing amplitude, while postmerger oscillations contribute spikes at high frequency (1500-7000 Hz). In each
plot, the black curve labeled “BBH” indicates the phenomenological BH-BH waveform model of Santamaria er al. [94] for the same
mass parameters, and the grey (red online) curve labeled “PN only” indicate the stationary phase approximation of a point-particle
post-Newtonian inspiral following [8], including amplitude terms up to 3.0 post-Newtonian order and phase terms up to 3.5 post-
Newtonian order. The frequency of peak amplitude is indicated by a dot on the upper axis.
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the waveform; similarities in amplitude do not necessarily
reflect similarities in phase evolution and can camouflage
slow secular phase contributions that decohere two wave-
forms. However, the amplitude has the advantage of being
independent of shifts in time and phase between two
waveforms.

The consistent change of the spectra as A (and radius)
increase shows the effect of the EOS on the waveform at
high frequency. While insufficient resolution (e.g., the
dotted curve for EOS B Whisky R221 1221) may result
in artificially low amplitudes at lower frequencies, varying
resolutions tend to agree in amplitude near the character-
istic frequency of the peak amplitude.

The spectra of more compact neutron stars (EOS B,
HBss, and Bss) follow black-hole inspiral to higher fre-
quencies but have significantly different merger/ringdown
amplitudes. The compact neutron stars collide at roughly
the peak amplitude frequency (marked on the upper axes in
Fig. 6), and we attribute the reduced gravitational-wave
amplitude after the collision to the “smearing” of matter
into a more symmetric form before the black-hole horizon
forms. The horizon that forms is therefore less deformed,
resulting in substantially reduced quasinormal mode am-
plitudes. In particular, because of approximate axisymme-
try about the BH spin axis of the part of the remnant that
collapses, the amplitude of the dominant 1 = m = 2 mode
is much smaller than in binary black hole coalescence.

The finite length of the numerical waveforms leads to a
dropoff in the amplitude at low frequencies. In the lower-
resolution runs, resolution-dependent dissipation in early
cycles also results in a decrease in the Fourier amplitude at
lower frequencies relative to higher-resolution waveforms
with the same initial separation.

E. Postmerger oscillations

Postmerger oscillations dominate the gravitational-wave
emission from hypermassive neutron-star remnants formed
after the merger. They are stronger, lower frequency, and
longer lasting than the ringdown of a black hole formed in
prompt collapse. The amplitudes of the postmerger oscil-
lation spectra are shown in Fig. 7. If strong enough, the
high-frequency signals could be independently detected by
a search triggered by the inspiral and could constrain a
combination of cold [78] and hot [22] EOSs. However,
the SNR p available in these postmerger oscillations is
significantly smaller than that of the numerically simulated
inspirals in the detectors considered, as summarized in
Table 1V; we present p X (D.y/100 Mpc) with entries
which equal p at Dy = 100 Mpc, and note that p scales
as 1 / Deff'

Results from this paper and others suggest that post-
merger oscillations will be more challenging to measure
than the EOS effects on late inspiral and merger. Although
a hot oscillating remnant may persist for tens or hundreds
of cycles, our simulations show nonlinear coupling giving

PHYSICAL REVIEW D 88, 044042 (2013)
500 700 1000 15002000 3000 5000 7000

T T T

3.0x10723

2.0x10723
1.5x10728
1.0x10728
7.0x1072
5.0x1072

T
N
A_AI

==

f e

T

T T

T

T

3.0x107%

2.0x1072
1.5x1072*

1.0x1072*

T

\ S, (f) and 2

T
e

1500
f (Hz)
500 700 1000 15002000 3000

5000 7000

3.0x10723

2.0x10723
1.5x10728
1.0x10728
7.0x1072
5.0x 10724

f 1hHI

30x10724} /)
2.0x107%* 1l

S, (f) and 2

1.0x10724 !

. . i . A\ .
500 700 1000 15002000 3000 5000 7000

f (Hz)

FIG. 7 (color online). Top panel: Postmerger waveforms for
the different EOSs, with lines as described in Fig. 3. Bottom
panel: Numerical inspiral-to-merger templates as described in
Sec. III A, which are smoothly turned on at 600 Hz and stop at
the minimum following the peak amplitude.

an effective damping time of less than ten cycles until a low
final amplitude is reached. The use of more realistic
density-pressure relations, thermal effects, and magnetic-
field amplifications may change significantly the longevity
(and thereby the spectral amplitude) of these signals. If we

TABLE IV. SNR of postmerger waveforms in advanced detec-
tors and approximate peak frequency f, of the oscillations.
Cases 2H, H, and HB show postmerger oscillations from a
hypermassive remnant, and the roughly exponential decay time
scale of the postmerger oscillations is shown. In other cases, the
neutron stars collapse to a black hole promptly after merger, with
suppressed ringdown. The spectra can be seen in Fig. 7.

p X (Deff/loo MPC) fp [decay
EOS aLLIGO broadband ET-D (kHz) (ms)
2H 0.75-0.91 6.4-7.8 1.8 3-6
H 0.54-0.57 4.5-4.7 3.0 4-5
HB 0.43-0.47 3.5-39 3.5 34
B 0.04-0.07 0.4-0.6 6.5-7
Bs 0.04-0.06 0.3-0.6 6.5-7
Bss 0.03-0.06 0.3-0.6 6.5-7
HBs 0.04-0.06 0.4-0.5 6.5-7
HBss 0.04-0.05 0.4-0.5 6.5-7
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model the postmerger as a damped oscillation of a single
frequency, the SNR will scale roughly as 7'/2 for longer-
lasting oscillations [79]. The postmerger oscillations in the
current simulations have multiple overtones as seen in [23],
which spread the SNR over a range of frequencies and
produce the oscillations in instantaneous frequency after
merger in Fig. 3 for EOSs H and HB. They display a
roughly exponential decay in amplitude A ~ exp(—¢/7)
over time scales 7 = 3-6 ms.

III. MEASURABILITY USING ONLY
NUMERICAL RESULTS

Ideally, a data analysis program would coherently com-
bine information from the numerical waveforms (valid at
high frequencies) with post-Newtonian waveforms incor-
porating tidal effects (valid at low frequencies). Joining
a numerical waveform to a theoretical post-Newtonian
waveform relies on extremely accurate numerical simula-
tions with very large initial orbital simulation, as well as an
inspiral model that captures all relevant effects up to and
including the matching region. While we will attempt this
hybridization procedure in Sec. IV, we begin with a simpler
approach.

If we assume that the low-frequency theoretical wave-
form correctly measures the mass parameters and effective
distance of the components, but cannot be coherently
combined with a numerically simulated waveform at
higher frequencies, we can still use the numerical simula-
tions to try to identify the EOS that best reproduces the
high-frequency evolution, without using the information
about 7 and ¢y measured from the low-frequency wave-
form. The numerical waveforms must all be allowed to
shift in time and phase individually to find the best match
to the observed gravitational-wave data: The parameters ¢,
and ¢, are marginalized over when measuring the tidal
effects.

A. EOS-based differences in numerical waveforms

We first consider whether differences between EOSs are
significant in this scenario. We restrict ourselves to con-
sidering only the inspiral part of the waveform, before the
stars merge, where the cold EOS is expected to be an
accurate description of relevant physics and the numerical
results are convergent. To cut off the postmerger portion of
the waveforms smoothly, the natural minimum in ampli-
tude (as shown in Fig. 3) is taken as the truncation point
after each inspiral.

Since our waveforms began with varying initial separa-
tion, and some residual effect of initial data can be
expected at early times, we drop the portion of the time-
domain waveforms before a fixed instantaneous frequency.
To do this consistently, the instantaneous frequency is first
averaged over segments of 1.5 ms to reduce residual
eccentricity effects, and then a one-sided Hann window
of width 4 ms centered on the time where the averaged

PHYSICAL REVIEW D 88, 044042 (2013)

frequency reaches 600 Hz is applied to the waveform
data. Similar windowing was used in [28]. Fourier-domain
amplitudes of the resulting numerical inspiral templates
are shown in the bottom panel of Fig. 7.

B. Distinguishability

We wish to estimate our ability to distinguish between
waveforms from different numerical simulations, given a
detected signal of the appropriate mass parameters.

To determine what model waveform best characterizes a
detected signal, we make use of the noise-weighted inner
product. This inner product of two waveforms 4, and #, for
a detector with noise spectrum S, (f) is defined by

(hy 11y = aRe ["HDED

In terms of this inner product, the characteristic SNR of a
given waveform & is p = (h | h)'/2.

Two waveforms h; and h, are said to be marginally
distinguishable if the quantity

df. (12)

18RIl = by = hyll = hy =y | hy — ) (13)

has a value [|84]| = 1 [28,80-82]. We will later show that
[|6h|l =1 corresponds to a 1-o error in parameter
estimation.

We wish to consider the minimum value of ||§A|| over all
possible relative shifts in time and phase between the
template waveforms, and it turns out to be most efficient
to calculate this via the overlap between two waveforms.
With the complex waveform £ constructed for this analy-
sis, and methods similar to Allen et al. [83] and Cho et al.
[84], we use the inverse Fourier transform appropriate to /1
to construct a complex overlap as a function of time shift 7
for each polarization:

df.
(14)

(his+(t +7) | hy(2)) = 4](‘:0% e2mifT

The absolute value of this quantity at a given 7 is
the maximum overlap possible with shifts in phase.
Maximizing its absolute value over 7 thus gives the maxi-
mum overlap for arbitrary shifts in both time and phase.

We use this maximum overlap to estimate the signal-to-
noise ratio of the difference between two templates

N6RI? = (hylhy) + (hylhy) — 2h [ hy) e, (15)

where (h;|h))max 1S maximized over shifts in time and
phase. Note that we do not normalize our templates: The
inspiral detection is expected to determine the relative
amplitude expected at merger, and EOSs which merge
earlier give real differences in the expected SNR which
will affect the maximum likelihood, as can be seen in
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TABLE V. The first row shows the expected SNR p X (D.¢/100 Mpc) of the numerical inspiral-to-merger waveforms described in
Sec. IIT A, for each EOS. Note that the signal’s presence, amplitude, and mass parameters are assumed to be established from an
inspiral detection. Subsequent rows show the expected SNR of differences between these waveforms and waveforms of the row-
labeling EOS minimized over shifts in time and phase. The SNRs are calculated for each possible pair of resolved waveforms, and the
mean and standard deviation of the resulting estimates for each pair of EOSs are tabled. The diagonal entries characterize the
systematic error stemming from simulation differences for the same EOS.

Advanced LIGO high-power detuned

EOS 2H H HB B Bss

P100 2.22 2.77 2.81 2.87 2.89

2H 0.10 = 0.08 1.85 = 0.02 1.93 = 0.04 2.02 = 0.03 2.03 = 0.02
H 0.06 = 0.06 0.66 = 0.06 1.03 = 0.06 1.13 = 0.03
HB 0.09 = 0.06 0.61 = 0.07 0.86 = 0.03
B (Symmetric) 0.11 £0.13 0.52 = 0.06
Bss 0.06 = 0.07

Einstein Telescope configuration D

EOS 2H H HB B Bss

p 223 274 27.8 28.2 284

2H 1.1 +0.9 17.4 = 0.3 182+ 0.4 189 = 0.3 18.9 = 0.2
H 0.6 = 0.6 6.0 +0.5 9.1 +£0.5 10.0 = 0.2
HB 0.9 = 0.6 5.5=*0.7 7.5*+03
B (Symmetric) 1.2+ 13 4.6 0.6
Bss 0.6 +0.7

Table V. Because the value of ||84|| depends on the dis-
tance to the signal, we record |[SA]| X (Dgg/100 Mpc).

The differences between waveforms are presented in
Table V for the numerical waveforms discussed in
Sec. III A. EOS 2H, with the largest difference from other
EOSs (relative to EOS H, AR = 2.95 kmand AA = 1717)
produces a |[Sh|| = 2. The more realistic EOSs give
smaller differences, but H and B, with AR = 1.3 km and
AA =319, are marginally distinguishable at D =
100 Mpc. For a given pair of waveforms, we can determine
the maximum effective distance to which they can be
distinguished, where ||8h|| = 1, since ||6h|| scales as
1/D.g. The result is plotted as function of AA in Fig. 8.

Using numerical simulations that extend to earlier
frequencies can increase the distinguishability of EOSs:
Numerical waveforms starting at orbital angular frequency
of 188 are available for EOSs 2H and HB and can be used
to construct templates starting at 500 Hz, which have SNRs
in Advanced LIGO of p,gy = 3.24 and pyg = 3.61 at the
reference D = 100 Mpc. The resulting ||8h|| = 2.14 =
0.05 is larger than the |[6A]] = 1.93 = 0.04 of templates
starting at 600 Hz. However, measures of systematic error
roughly double; templates starting at 500 Hz have more
than twice the duration of templates starting at 600 Hz. The
relative impact of differing EOSs also becomes smaller at
earlier times—I||8h||/p is decreasing—and required com-
putational time will increase rapidly. Simulations will also
be more challenging for compact neutron stars, which
require higher resolution for equivalent accuracy.

The importance of numerical effects can be estimated in
two ways: the value of ||8 ||gyst between two different wave-
forms for the same EOS, and the variance in || 8/|| between
two EOSs that arises from making different choices of the
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FIG. 8. For numerical merger templates, ||Shll = ||k, — hsl|

between two waveforms is plotted as a function of |A; — A,|
after being minimized over relative shifts in time and phase. The
distance D, at which two waveforms would be distinguishable
is labeled on the right axis. The result is not linear in AA. At the
reference D = 100 Mpc, the difference between waveforms
has ||84|] = 1 for AA =500 and ||Sk|| = 2 for AA = 2000. The
linear relationships producing these two reference ||8h| are
shown with dashed and dotted lines. This plot superimposes
A A for all pairs of simulations for Advanced LIGO high-power
zero detuning and optimally oriented systems at 100 Mpc; ET-D
gives a similar plot with ||| increased by a factor of 10.
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representative numerical waveform for each EOS. These
results are included in Table V and are visible in the spread
of points at |A; — A,| = 0 in Fig. 8. The ||64|| between
two EOSs changes by less than ~10% with different
waveform choices; however, while ||82]|y, (between nu-
merical waveforms of the same EOS) is typically 0.1 (or
10%) at D; = 100 Mpc, it reaches 0.4 in the worst case.

C. Parameter estimation

Given a parametrized family of waveforms, A(p;), where
p; includes an EOS-dependent parameter of interest, we
determine the value of the parameters p; that produce the
best match by comparing the detected signal to the mem-
bers of this family. If the detected signal is s, then the most
likely values for the parameters p; are those that best fit the
data by minimizing the distance to the signal with the
above-defined inner product, (s — h(p;)|s — h(p;)). For
normalized templates, the best-fit p; maximize the overlap
(s|h(p)) between signal and waveform family.

The best-fitting values of p; will differ from the true
values because of two effects: The first effect is that the
measured p; will be shifted away from their true value
because of the presence of random detector noise; we
describe this statistical error by the root-mean-squared
value of the parameter shift, 8p;,. The second effect
arises if there is a fundamental difference between the
true gravitational waveform and the nearest member of
the family of waveforms that are being used; such a system-
atic error is given by dp; g [85]. The statistical error
depends on the amplitude of the signal relative to the level
of detector noise, so it scales inversely with the signal’s
SNR. The systematic error is SNR independent.

For large SNR signals, the statistical error 0 pg,, can be
calculated using the Fisher matrix formalism. If a wave-
form is parametrized by a set of parameters {p,}, then the
Fisher matrix is given by

o= (20| ) a6
ap; apj

and the statistical error associated with the measurement of
a single parameter A; is

OPjstar = \/ (ril)jj) 17

where the matrix (I'"!); ;1s the inverse of the Fisher matrix
I [86].

For the subsequent analysis, we will consider variation
only in the single parameter A which best characterizes the
EOS. When restricting to cases where multiple well-
resolved waveforms are available, current simulations do
not cover a two-dimensional region of the EOS parameter
space, so we are restricted to single-parameter estimates.
For an example of generalization to multiparameter
descriptions of the EOS, see [87].
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The numerical simulations considered here are of equal-
mass systems with fixed total mass, so correlations with
mass parameters cannot yet be determined. We assume that
accurate measurements of the chirp mass M and dimen-
sionless mass ratio  can be made from the detected
inspiral preceding the merger, which is a reasonable as-
sumption for loud signals (p = 20). In the post-Newtonian
case, one can (at least to first order) recast the tidal effect of
generic-mass systems in terms of a single effective
A(M, n) of the system [11,14] which depends primarily
on M, and uncertainties in mass ratio do not overwhelm
tidal effects. This may not be so straightforward for the
coalescence, especially if amplified tidal disruption occurs
in unequal mass systems. The dependence of such a A on
the less easily measured mass ratio parameter may also
obfuscate the tidal dependence in more general systems.
While spin should also be considered in a full analysis,
especially as it may obscure mass ratio measurements, spin
uncertainty has a relatively weak impact on measurement
of tidal parameters in binary neutron star systems [15].
Results in the mixed binary case [88] suggest a factor of 3
increase in 6 A when phenomenological inspiral-to-merger
waveforms are used for a coherent analysis of both mass
and tidal parameters, compared to an analysis considering
tidal variation alone.

Given a single discretely sampled parameter, the Fisher
“matrix” can be estimated using a finite difference
approximation to the derivative as I' = ||8h|>/(AA)>.
This finite difference estimate of the random error in a
parameter is then given by [28]

|A1 - A2|
\/<h1 - h2|h1 - h2>

or 8A,,,q = AA/||SR]|, and we note that the SA,,q is
exactly the value of AA where two waveforms are distin-
guishable using the criteria above.

While Eq. (18) is an approximation to the Fisher matrix,
it is a more accurate characterization of the information
contained in a finite strength signal than the Fisher matrix
itself, as discussed in Cho et al. [84] and references therein.
The usefulness of the Fisher matrix breaks down in part
when overlap between two signals of A; and A, no longer
scales quadratically with A; — A,. We can directly calcu-
late the overlap between the two signals to determine how
well two parameter values can be distinguished. In the Fisher
matrix analysis, a first-order and linear relation ||8h|| o« AA
is assumed, as would be valid for small AA; in the discrete
approximation, nonlinear structure in || /|| as a function of
AA is revealed (Fig. 8). The estimate of § A ,,q Will thus
depend on the effective SNR scale. The effective 6A g
gives ||[8h|| =1 for marginally distinguishable signals.
The difference in A that is marginally distinguishable at a
given D is the expected 6 A g at that distance.

When A is used to parametrize the simulations, we find
that plotting ||8hll = llh, — Ryl versus AA = [A; — Ayl

(18)

rand
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for all available choices of A; and A, gives a well-defined
pattern: ||84]| is well described as a function of A A only, so
there is only weak dependence of 8 A4 on the value of A.
This is not true for other parameter choices, such as AL/S
or radius. For the D = 100 Mpc reference waveform
here, O0A ;g =300, but for a D, = 200 Mpc signal
O A ang = 2000.

If the true signal waveform g differs from all members
of the parametrized family of waveforms h({p;}) then there
will be a systematic error in the measurement of the
parameters {p,} [85]; the systematic error is given by

h
Spj,syst = Z(ril)i](h - & g > (19)

op;

To assess the systematic error associated with imperfections
in the numerical waveforms, we take g and & to be variant
waveforms that purport to represent the same system, e.g.,
numerical waveforms from two simulations of the same
EOS, and as before we replace the derivative with respect to
the parameter with a finite difference of waveforms with
different EOS parameters. With the subscript labeling the
choice of EOS, the resulting approximate formula for the
systematic error in measuring the parameter A is

(hy — g1l hi — hy)
(hy = hy | hy = hy)
If we apply a Cauchy-Schwarz inequality to the numerator
of the above equation, we find that

(hy =gl h — 81>)'/2
SAgel S A — A , (21
| systl | 1 2|<<h1 — h2 | hl — h2> ( )
which we can rewrite using the magnitude of the difference
between the two variant waveforms || 84/l s compared to
the magnitude of the difference of two waveforms of differ-
ent parameter values ||84|| defined in Eq. (13), as

18Al5yst
lShll

Both of the [|8k] scale with effective distance, giving a
constant ||8hly, for a given AA. In an effective error
calculation, where the estimate appropriate to a given D
is the value of AA where ||5h|| = 1, the relative systematic
error will simply be || 64y at that distance.

In Table V, the diagonal entries are the average |[8h||syq
at the reference distance. In plots such as Figs. 8 and 12,
these are visible as the scatter of points above |[A; — A,| =
0. These measures give average (maximum) systematic
errors of |8 Ayl = 10%(40%) for Dy = 100 Mpc and
|6 Ayl = 5%(20%) for Degr = 200 Mpc.

oA

syst (Al - A2) (20)

157yl = 1AA] (22)

IV. HYBRID CONSTRUCTION AND IMPROVED
MEASURABILITY

For low-mass binary systems, such as those which
include neutron stars, numerical waveforms start at
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frequencies that are high compared to the sensitive band.
Ideally, EOS effects will be measured using hybrid wave-
forms which combine post-Newtonian inspiral (including
tidal effects) with the numerical simulation results.
However this introduces additional sources of systematic
error, as discussed in [82,89]. If a numerical simulation is
begun at too high a frequency, the theoretical point-particle
post-Newtonian (or other analytical inspiral waveform)
will no longer be valid. If the resolution of the numerical
simulation is too low (so that there is too much numerical
dissipation through the high-frequency band in which the
tidal effects become strong) then reliable hybrid wave-
forms cannot be constructed.

In this work, we use results of highly accurate numerical
simulations [20,90] to justify extending our analytic model
to sufficiently high frequencies that the simulations con-
sidered in this work, which cover more EOS parameter
space with lower resolution, will have sufficient accuracy
to model the final orbits without systematic error over-
whelming our estimate.

A. Hybrid construction

We fix a baseline 3.5-order post-Newtonian Taylor-T4
model [91,92] for subsequent analysis. While the impact of
choosing a post-Newtonian expansion is large in the last
orbits, this choice accurately mimics equal-mass binary
black holes up to Mw = 0.01 [91], which is within
114M of peak amplitude for all binary neutron stars
simulated here: The hybrid waveforms do not use the
post-Newtonian inspiral waveform beyond the frequency
range where it approximates binary black holes.

We include post-Newtonian estimates of the tidal con-
tributions to the waveform phasing from [11,13], at leading
and next-to-leading order, which have been shown to give
potentially significant contributions to measurability for
the EOS considered if waveform models are extended to
high frequency [14,15].

Our inclusion of tidal effects is done by simply adding
additional contributions to the baseline model. In a full
parameter estimation, a calibrated phenomenological or
EOB description of the point-particle dynamics may be
required to accurately capture intermediate-order post-
Newtonian terms. However, [15] shows that the magnitude
of tidal phase contributions in EOB is accurately approxi-
mated by the addition of post-Newtonian tidal terms into
2.5 or higher post-Newtonian models, justifying their use
of Taylor-F2 waveforms for measurability estimates. Here
we add Newtonian and post-Newtonian tidal contributions
to the 3.5 post-Newtonian Taylor-T4 waveforms used to
model point-particle dynamics; the differences between
waveforms of different EOSs should likewise be accurately
captured by this scheme.

It has been conjectured [12,17] that additional higher-
order post-Newtonian tidal corrections would be required
to match the inspiral of numerical waveforms, but the
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calculated next-to-leading-order terms in [13] were smaller
than those previously obtained by fitting [18]. More
recently, [19,20] have each independently calculated the
expected waveforms of binary neutron star inspiral and
merger using high-resolution numerical simulations with
careful error analysis. The phase evolution of these high-
accuracy waveforms is compared to both post-Newtonian
and EOB waveforms, which each incorporate current
analytically calculated tidal terms. Within numerical
uncertainties, both groups find that the numerical wave-
forms and the various analytic inspiral models all agree
until roughly 300 to 500M before merger.

In this work, we do not have waveforms with the same
level of accuracy, but we restrict our analysis to use only
the last 15 ms, or 1128M, of the numerical waveforms,
over which the effect of the waveform resolution used in
this work is small for the “resolved” waveforms we have
been considering (Fig. 5). We use the high-accuracy wave-
form results to justify our use of Taylor-T4 inspiral models,
with leading-order and next-to-leading-order tidal terms,
for earlier times.

We note that, in addition to secular tidal effects, there
may be other effects that are not encompassed in the post-
Newtonian (or current EOB) expansion framework, for
example, f-mode resonances [23,93]. Our transition to a
numerical waveform in the final orbits will include the
high-frequency contributions of such effects, but they are
not incorporated in the analytic model.

To construct hybrids, we match the analytic and numeri-
cal waveforms over a time-domain matching region using
the maximum correlation method of [28]. If one defines the
complex correlation z in a restricted time domain {7y, Tg}
for two waveforms h;(r) and h,(f) with a relative time
shift 7 by

288y, hy) = [ T mone - nd,  (23)
Ty

then the correlation between the two waveforms with no
phase shift is Wz(7; iy, h,). Introducing a phase shift §¢ to
h, produces a correlation N exp (i ¢)z. For a given 7, the
maximum correlation between two waveforms for any
phase shift will be |z|, and the phase shift which produces
that correlation is 6¢ = — arg z (cf. [83]).

Previous waveform analyses have performed similar
matching via least squares difference over a segment
[63,94] or have matched time and phase at a single point
in the inspiral [95], either in the time or frequency domain.
Our procedure maximizes a cross term averaged between
polarizations which contributes negatively to the least
squares distance between waveforms. It is a time-domain
analogue of the procedure used above to maximize
Fourier-domain overlap in Sec. IIl B—for infinitely long
time domains, it is equivalent to an unweighted frequency-
domain match, similar to that used for detection.

We use only the final orbits and transition to merger
from the numerical waveforms, as captured in the final
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FIG. 9 (color online). Example hybrid construction for the four
resolved waveforms with EOS HB. The reference r = 0 is the
coalescence time of a point-particle inspiral. A post-Newtonian
inspiral with tidal corrections appropriate to EOS HB is shown
with a thick grey line. The numerical waveforms used to con-
struct hybrids over-laid with their maximum-correlation align-
ment between vertical lines indicate the start and end of the
numerical matching region, following the line indication scheme
of Fig. 3. The frequency dependence of the waves is also shown;
the post-Newtonian point-particle inspiral is shown with a
dashed black line, the post-Newtonian with tidal corrections
with a thick grey line, and the four numerical waveforms
following the line indication scheme of Fig. 3 (blue online).

10 ms, or 752M, before merger: Specifically, the match
region is set relative to the time of peak amplitude for each
numerical waveform, from (£ — 10ms) to (£peq —2ms).
The numerical waveform is aligned to post-Newtonian
inspiral by the maximum correlation above, and then a
hybrid waveform is constructed by windowing between
inspiral and numerical waveforms over the last half of
the match region. An example of this construction is
shown in Fig. 9 for the full set of variant HB waveforms.
The resulting hybrids are Fourier transformed, and the
amplitude of the difference between two waveforms
(hy — hylh, — hy) is calculated directly using the inner
product defined in Sec. III B.

B. Measurement using hybrid waveforms

To calculate the differences between hybrid EOSs, we
use a somewhat less conservative estimate than in the
previous sections; to save computational time, we do not
include the long low-frequency portion of the waveform in
our analysis and therefore cannot minimize differences
over shifts in time and phase. However, the time and phase
of a high-frequency waveform that is coherent with the
low-frequency inspiral are no longer free parameters.
Damour et al. [15] calculate the frequency range over
which each waveform parameter is determined: 90% of
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FIG. 10 (color online). Top panel: The phase departures from
point-particle Taylor T4 due to post-Newtonian tidal contribu-
tions. From highest to lowest, the lines indicate EOS 2H, H, HB,
B, and Bss. Bottom panel: The phase departures due to hybrid
waveforms, with lines as described in Fig. 3. Integration is begun
at 200 Hz, after the accumulation of the majority of the SNR [15]
is expected to have fixed the relative phase but before significant
tidal contributions arise.

the total p? from a binary neutron star inspiral is collected
from frequencies below 200 Hz. Mass parameters are
determined using the waveform at even lower frequencies,
and tidal effects on the inspiral are determined only by the
highest-frequency portion; the two regions decouple.

TABLE VL

PHYSICAL REVIEW D 88, 044042 (2013)

We assume that the waveform portion below 200 Hz,
which is virtually identical for models of different EOSs,
will fix the relative time and phase of template and signal
waveforms; if the overlap of very long post-Newtonian-
only waveforms with different tidal contributions is maxi-
mized over variations in time and phase, the relative time
of coalescence is approximately that of waveforms which
are exactly aligned at 200 Hz. We then consider only
differences that accumulate from 200 Hz and up when
comparing waveforms of different EOSs. The resulting
phase accumulation is shown in Fig. 10. With the contri-
butions from the inspiral, the differences |h(A;) — h(A,)|
between the hybrid waveforms become more significant.
The SNR of the differences between all pairs of waveforms
is shown in Table VI. Figure 11 illustrates the Fourier
transform of the difference between pairs of waveforms
in which one member has EOS H plotted as a signal against
the Advanced LIGO noise curve.

As before, we compile the set of differences for all
waveform pairs into a plot of ||, — h,|| versus |[A; — A,|
in Fig. 12. The result is again not linear in AA, so the
statistical error estimate will depend nonlinearly on the
loudness of the signal. At the reference D.; = 100 Mpc,
the difference between waveforms has ||dh|| =2 for
AA = 150, allowing each EOS to be distinguished from a
binary black hole. Marginally distinguishable parameter
differences are then 6 A = 150 at D = 200 and 6A =
350 at 300 Mpc (where binary neutron star inspirals are
detected with p =~ 16 and 11). This means that a combina-
tion of weaker signals can be used to give significant con-
straints on the EOS, as seen in [96].

C. Additional systematics with hybridization

The systematic error stemming from alternate methods
of generating the waveforms and alignment used to calcu-
late measurability can be estimated using Eq. (20) where
the two waveforms g and & may be taken to be different
hybrid waveforms. As hybrid waveforms incorporate
choices in the construction beyond simply choosing the
numerical waveform, additional systematic errors are
introduced.

The first row shows SNR X(D./100 Mpc) for the full hybrid waveforms. The remaining rows show |[8A]l X

(Detr/100 Mpc) between hybrid waveforms averaged over resolved waveforms for each EOS. The standard deviation of the set of
resulting estimates is also provided. The average difference between waveforms of the same EOS is a measure of systematic error from

numerical inaccuracies for the given hybridization procedure.

Advanced LIGO high-power detuned

EOS 2H H HB B Bss
P1oo 33.72 33.78 33.78 33.79 33.80

2H 0.08 =+ 0.06 6.70 =+ 0.01 7.05 = 0.01 7.28 + 0.01 7.5+ 0.01
H 0.08 =+ 0.10 2.18 + 0.02 3.06 + 0.03 3.82 +0.01
HB 0.13 +0.10 1.87 + 0.09 2.94 + 0.02
B (Symmetric) 0.35 + 0.31 2.01 + 0.09
Bss 0.07 + 0.08
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FIG. 11 (color online). The difference between H hybrid
waveforms and waveforms with other EOSs is plotted relative
to ET and Advanced LIGO noise curves showing the frequency
range which produces the measurable difference. EOS 2H has
the largest difference, seen in the spectrum labeled “H-2H”
followed by Bss (“H-Bss”), B (“H-B”’), and HB (“H-HB”).
Lines calculated with hybrids constructed from different simu-
lations lie roughly on top of each other, and the differences
between the two EOS H simulations (““H-H”) lie substantially
lower. The amplitude of the difference becomes larger than the
amplitude of the component hybrids when they are perfectly out
of phase, and the oscillations at high frequency show the two
waveforms moving in and out of phase.

Systematic errors are estimated using the set of “well-
resolved” waveforms using the criteria of Sec. II D, which
have phase differences of ~0.1 to ~0.4 rad over the last
1.5 ms (1100M) before merger. For a fixed hybrid con-
struction method and post-Newtonian model, the diagonal
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FIG. 12 (color online). For hybrid waveforms aligned at
200 Hz, the distinguishability is estimated using the inner
product of differences between waveforms. At the reference
D¢ = 100 Mpc, the difference between waveforms has ||| =
2 for AA = 150 and || k|| = 3 for AA = 350; the corresponding
linear relationships are shown by dashed and dotted lines. The
large circles indicate the same calculation made with time-
domain post-Newtonian inspiral waveforms that include
leading-order and next-to-leading-order tidal effects discussed
in Sec. IV D. These results are for Advanced LIGO high-power
zero detuning; ET-D gives a similar plot with an order of
magnitude increase in p (and decrease in distinguishable dis-
tance). Note that the distinguishability is improved by a factor of
3 to 4 compared to numerical-only estimates in Fig. 8.
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entries of Table VI give ||5h||sy5t =< 0.3 at Do = 100 Mpc,
for ||8hllsys /IS8Rl of roughly 5%-20% from variant
numerical simulations of these EOSs.

We explore the impact of changing hybridization
procedures by shifting the window used to match post-
Newtonian and numerical waveforms, within the assump-
tions outlined in Sec. IVA. The procedure of Sec. IVB is
repeated with a variant match window of (#,e,x — 12 ms) to
(fpeax — 4 ms). The results for || 64|, distinguishability, and
measurability of A do not change appreciably. However,
the systematic error from differences between numerical
simulations doubles as earlier inspiral portions of lower-
resolution numerical waveforms come into play.

We estimate the impact of uncertainty in the hybridiza-
tion procedure used to produce parameter-estimation tem-
plates by comparing waveforms constructed from the same
numerical simulation using different hybridization win-
dows. The results in Table VII show that the variant
hybridization gives ||8Alls = 0.9-1.6, which decreases
with increasing resolution. Even with the best resolution,
I6Allsys ranges from 20%-75% of [[8hll at 100 Mpc,
largest for compact neutron stars and small differences in
EOS. As in the binary black hole case [82], longer and
more accurate numerical simulations will be required to
reduce the systematic error associated with hybridization.

TABLE VII. Effect of shifting match window in hybrid con-
struction to earlier times with waveform resolutions used in this
analysis: ||8hl|y at 100 Mpc between two hybrids constructed
with the same numerical waveform or between a hybrid wave-
form and a post-Newtonian inspiral waveform. Systematic errors
decrease as waveform resolution increases; more compact
neutron stars require higher resolution. For EOS Bss, the
hybridization error is as large as that from neglecting hybridiza-
tion entirely; this can also be seen from the difference between
orange curves in Fig. 13.

Hybrid variation PN inspiral

EOS aLIGO ET-D aLIGO ET-D
2H SACRA R309 1188 1.60 14.86 2.34 22.08
2H SACRA R274 1188 1.48 13.73 234 2213
2H SACRA R247 1188 1.46 13.52 2.35 22.22
2H WHISKY R177 1188 1.16 10.63 234 22.09
2H WHISKY R142 1188 1.08 09.90 2.35 22.22
H SACRA R209 1221 097 08.57 1.75 15.71
H SACRA R188 1221 0.87 07.66 1.75 15.62
HB SACRA R194 1188 0.88 07.67 1.68 14.90
HB SACRA R175 1188 0.89 07.76 1.62 14.40
HB wHISKY R177 1188 1.09 09.53 1.65 14.63
HB wHISKY R177 1221 0.93 08.15 1.63 14.44
B SACRA R174 1221 0.90 07.79 1.58 13.87
B SACRA R156 1221 0.85 07.41 1.42 12.48
B wHIsKY R177 1221 1.32 11.53 1.62 14.26
Bss SACRA R127 1221 1.36 11.80 1.48 12.88
Bss WHISKY R142 1221 1.47 12.83 1.48 12.90
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We also note that while these variants seem to cover a
reasonable range given the assumptions outlined in
Sec. IVA, a more systematic analysis with accurate wave-
forms would be required to quantify the uncertainties for
parameter estimation.

The tidal contributions discussed in this paper include
the leading-order and next-to-leading-order tidal contribu-
tions from [97,98]. The significance of higher-order post-
Newtonian tidal terms can be estimated by dropping the
next-to-leading-order tidal contribution. This results in
systematic error of =~9%-15% of ||5h|| at 100 Mpc:
always smaller than systematic error from varying the
hybrid procedure but most important for large-radius stars.

We have throughout assumed that an underlying point-
particle inspiral model is accurate up to Mw =0.1. In
practice, for equal-mass systems, the time-domain Taylor-
T4 signal appears to satisfy this requirement, but calibrated
phenomenological or EOB models may be required to
accurately capture the underlying dynamics of more general
systems. We also assume, based on the agreement seen in
[19,20], that there are no EOS effects beyond tidal contri-
butions before the hybridization times used in this paper;
this neglects any contributions smaller than best current
numerical errors and low-frequency resonances [99].

D. Use of inspiral-only templates

We can also estimate the impact of neglecting numerical
simulation results entirely in a waveform model of binary
neutron star inspiral and merger. To do this, we calculate the
difference between the hybrid waveforms and our inspiral
model extended to coalescence. The total || 4|y is shown
in Table VII. For compact neutron stars (EOSs B, Bss), the
hybrid error is comparable to the error from neglecting the
numerical merger entirely. However, larger neutron stars
(EOSs 2H, H) have a reduction in systematic error from
using hybrids instead of inspiral-only waveforms.

One can estimate the extent to which inspiral-only wave-
forms can be trusted by considering an inner product
calculated only up to an upper cutoff frequency. The fre-
quency dependence of the difference between hybrid and
inspiral-only waveforms is shown in Fig. 13. If this cutoff
frequency is low, or the signal is weak, there is no mea-
surable impact from using inspiral-only waveforms. All
hybrids and analytic inspirals agree (to within numerical
error) below 700 Hz. However, strong signals or large
neutron stars produce significant differences from post-
Newtonian models. The EOS 2H model, which is an
extremely large (R = 15.2 km) neutron star, begins to
depart from post-Newtonian inspiral at approximately
700 Hz, even if the hybrid window includes higher fre-
quencies, and hybrids constructed for EOS 2H reach
[[8A] X (100 Mpc/Deg) = 2.0 (distinguishable at Do =
200 Mpc with total p = 16) at f =~ 1023 Hz. Hybrids for
more realistic EOSs (H and HB) are not distinguishable
from post-Newtonian inspiral until the total SNR p =22
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FIG. 13 (color online). The accumulation of |84l between
inspiral-only waveforms and the two variant cases of hybrid
waveforms as a function of upper cutoff frequency on the inner
product. The impact of hybridization is significantly larger for
compact EOSs (EOS Bss in orange has a radius of 10.2 km)—the
total accumulation is comparable to the difference between
hybrids, as seen in Table VII.

and upper frequency ~1400 to ~1600 Hz, although this is
sensitive to the choice of hybridization window.

Aside from the systematic error introduced by using
inspiral-only waveforms to measure EOS effects, one can
consider the usefulness of inspiral-only models to estimate
EOS measurability. In Fig. 12, we overlay the result of an
analogous estimation using only post-Newtonian inspirals,
including leading-order and next-to-leading-order tidal
effects, and extended to post-Newtonian coalescence. We
again align waveforms at 200 Hz and use only differences
above 200 Hz in the calculation, and also consider the same
finite parameter spacings. For small differences in EOS,
the post-Newtonian inspiral models accurately mimic the
measurability estimates of hybrid EOS. The nonlinear
behavior is also seen, but for large EOS differences there
is some overestimate from using inspiral-only models; this
overestimate might be reduced by using post-Newtonian
inspirals cut off at a representative merger frequency.

V. MULTIPLE SIGNALS

A combination of N identical signals, each with uncer-
tainty 8A would give an overall uncertainty §A/+/N if all
events occurred at the same effective distance D.;. When
O A scales linearly with D, we can use the results of [100]
to estimate how the uncertainty 6 A, at a reference D
translates to an expected combined error § A from signals
randomly distributed within a horizon distance Dyyz0n-
The combined uncertainty from the signals is given by

D, .
(BAT2)"1/2 = 5A0—I;"“Z°n (3N)~1/2, (24)
eff,0

where N is the total number of events.
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For the numerical-only estimates, linear scaling does not
apply. We take the maximum range where we have calcu-
lated distinguishability of signals, §A =~ 2000 at D =
200 Mpc, within which we expect to find N,, equaling 9%
of the total number of signals (again following [10]).
We conservatively take linear scaling from this limiting
distinguishability and find (8 A 2)1/2 = 6704/3/Nygp.

For hybrid estimates, we can use the dotted line in
Fig. 12, which gives §A =350 for D, = 300 Mpc, to
provide a roughly linear scaling within the horizon dis-
tance of 445 Mpc. Equation (24) then gives an estimate for

the expected measurement uncertainty of (§A72)71/2 ~

214/40/N.

We expect from studies with mixed binaries [88] that
correlations with mass parameters will increase 6 A by a
factor of ~3. A full Bayesian parameter estimation using
post-Newtonian waveforms including tidal terms suggests
that a combination of multiple signals can still be used to
distinguish between realistic EOSs [96]. However, the
statistical uncertainty would then be significantly smaller
than the systematic errors estimated in this work, which do
not decrease with the number of signals. Uncertainty in
waveform modeling would therefore limit our ability to
measure EOS parameters using binary neutron star
systems.

VI. CONCLUSIONS

It is now clear that tidal effects due to the finite size of
neutron stars can produce a detectable signature in gravi-
tational signals that are likely to be observed by ground-
based gravitational-wave detectors such as Advanced
LIGO. The observation of these tidal effects presents the
possibility of measuring neutron-star properties which in
turn will constrain models for the neutron-star EOS. In
particular, using only numerical simulations of the final
orbits, we estimate that two EOSs, H and B, which produce
isolated neutron-star radii that differ by 6R ~ 1.3 km, are
marginally distinguishable at D = 100 Mpc. This gives
an effective SR/R ~ 10%. However, the measurement

PHYSICAL REVIEW D 88, 044042 (2013)

accuracy does not improve linearly with the SNR, and
weaker signals will have less discriminatory power.

If trusted hybrids can be constructed incorporating addi-
tional information from the tidal post-Newtonian terms,
then measurement errors drop significantly, and the above
EOS can be distinguished at D ¢ = 300 Mpc. Numerical
relativity efforts are required to generate the waveforms
needed to make these measurements, but the current state-
of-the-art simulations are already up to the task for large-
radius neutron stars. Future advances in numerical relativity
will provide waveforms of higher accuracy, and extending
to lower frequencies, which will reduce systematic errors on
measurements of tidal effects. Further improvements in the
scope of physical processes that are simulated by numerical
relativity will also enable us to follow the waveform through
binary coalescence and past merger and therefore could
allow for the measurement of additional EOS properties
from oscillations of a postmerger hypermassive remnant.
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