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We present Newtonian and fully general-relativistic solutions for the evolution of a spherical region of

uniform interior density �iðtÞ, embedded in a background of uniform exterior density �eðtÞ. In both

regions, the fluid is assumed to support pressure. In general, the expansion rates of the two regions,

expressed in terms of interior and exterior Hubble parameters HiðtÞ and HeðtÞ, respectively, are

independent. We consider in detail two special cases: an object with a static boundary, HiðtÞ ¼ 0; and

an object whose internal Hubble parameter matches that of the background, HiðtÞ ¼ HeðtÞ. In the latter

case, we also obtain fully general-relativistic expressions for the force required to keep a test particle at

rest inside the object, and that required to keep a test particle on the moving boundary. We also derive a

generalized form of the Oppenheimer-Volkov equation, valid for general time-dependent spherically

symmetric systems, which may be of interest in its own right.
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I. INTRODUCTION

In a recent paper, we presented metrics for a point mass
residing in each of a spatially flat, open, and closed
expanding universe [1]. These were derived using a
tetrad-based procedure in general relativity [2], and are
essentially a combination of the Schwarzschild metric
and the Friedmann–Robertson–Walker (FRW) metric for a
homogeneous and isotropic universe. In particular, we used
our metrics to study particle dynamics outside the central
object. As one might expect intuitively, for radial motion in
the Newtonian limit, the force acting on a test particle was
found in all three cases to comprise of the usual 1=r2

inwards component due to the central mass and a cosmo-
logical component proportional to r that is directed out-
wards (inwards) when the expansion of the universe is
accelerating (decelerating).

A natural progression of this work is to consider a
central object of finite spatial extent. It may initially
seem sensible (as it did to other authors) to proceed by
deriving an interior metric that, at the boundary of the
object, matches onto a previously obtained exterior solu-
tion for the case of a central point mass. In fact, this
approach is too restrictive, since the interior model has to
be set up so that the effects of the object’s own expansion
vanish at its boundary. We therefore consider the problem
afresh and model the physical system in the manner illus-
trated in Fig. 1. Indeed, this figure may be taken as the
definition of our model, in which a spherical massive
object of size aðtÞ and uniform interior density �iðtÞ resides

in an expanding universe with uniform exterior density
�eðtÞ. In general, the spatially uniform ‘‘Hubble parame-
ters’’ of the interior and exterior regions are independent,
and denoted by HiðtÞ and HeðtÞ, respectively.
From the figure, we may write down an expression for

the total mass (or energy in the relativistic case; will use
natural units c ¼ G ¼ 1 throughout) contained within a
sphere of physical radius r. We denote this by Mðr; tÞ, but
note that dependencies on r and t will usually be sup-
pressed in the equations below, whereas those on r or t
alone will usually be made explicit. It is clear that

M ¼
8<
:

4
3��iðtÞr3; r � aðtÞ;
4
3��eðtÞðr3 � a3ðtÞÞ þ 4

3��iðtÞa3ðtÞ; r > aðtÞ:
We may rewrite the second of these cases and work with
the alternative expressions

M ¼
8<
:

4
3��iðtÞr3; r � aðtÞ;
4
3��eðtÞr3 þmðtÞ; r > aðtÞ; (1)

wheremðtÞ ¼ 4
3�ð�iðtÞ � �eðtÞÞa3ðtÞ is the mass contained

within the boundary aðtÞ at time t, in excess of that which
would be present due to the background alone.
As we will show, in both the Newtonian and fully

general-relativistic cases, the dynamical evolution of the
system may be determined completely by specifying the
internal and external Hubble parameters HiðtÞ and HeðtÞ,
respectively [together with the radius a� � aðt�Þ and
density �� � �iðt�Þ of the object at some reference time
t ¼ t�]. Typically, we will takeHeðtÞ to correspond to some
expanding exterior universe of interest, but HiðtÞ can, in
principle, have any form (and be positive or negative).
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This follows from allowing the relationship between the
fluid pressure and density to be arbitrary, since then the
interplay between the internal pressure of the object and its
self-gravity may allow it to expand or contract at any rate.
This freedom would disappear, however, if one imposed an
equation of state.

We note that, following our approach in [1], in
each region (interior and exterior) we assume a single
‘‘phenomenological’’ fluid. This avoids the complexity of
an explicit multifluid treatment, whereby one would sepa-
rate the fluid in each region into its baryonic and dark
matter components. In particular, in each region we assume
a single overall (uniform) fluid density and a single asso-
ciated (effective) pressure. It is envisaged that the pressure
comprises the ordinary gas pressure due to baryonic
matter, and an effective pressure from the dark matter
that arises from the motions of dark matter particles having
undergone phase mixing and relaxation (see [3,4]).

Our model is sufficiently general to be applied to a range
of physical situations. In reality, no object is simply em-
bedded in the general fluid of the ‘‘expanding universe,’’
but rather inside a hierarchical collection of objects. By
making appropriate choices for the parameters of the
interior and exterior regions, our model could be used to
study a star inside a galaxy, a galaxy inside a cluster, or a
cluster inside a supercluster, for example. It is also possible
to generalize the model to account for objects embedded
inside a number of other objects. For example, a galaxy
embedded inside a cluster, which itself is embedded in the
expanding universe. We will not, however, pursue this
generalization here.

There have, of course, been numerous previous studies
investigating both the Newtonian and general-relativistic
dynamics of self-gravitating spherical bodies. For ex-
ample, Misner, Thorne, and Wheeler [5] describe the
spherically symmetric collapse of a ‘‘ball of dust’’ having
uniform density and zero pressure. They later generalize
the result to incorporate pressure, but only internal to the
object. A fundamental difference between their work and
our model is that the former considers the exterior space-
time to be static rather than expanding. ‘‘Swiss cheese’’
models [6] do incorporate an exterior expanding FRW
universe, albeit pressureless, but the uniform spherical
object is surrounded by a ‘‘compensating void,’’ which
itself expands into the background and ensures that there
is no net gravitational effect on the exterior universe. This
contrasts sharply with our model, which does assume the
central object to affect the exterior spacetime. A more
accurate description than the Swiss cheese models is pro-
vided by models based on the Lemaı̂tre-Tolman-Bondi
(LTB) solution [7–9]. Such models can incorporate an
arbitrary (usually continuous) density profile for the central
object, which is usually not compensated but can be
made so by an appropriate choice of initial radial density
and velocity profiles [10,11]. Nonetheless, these models

assume both the interior and exterior regions to be pressur-
eless, although the LTB solution has recently been ex-
tended in [12] to describe a central object with pressure
embedded in a static vacuum exterior.
We note that a recent resurgence of interest in Swiss

cheese and LTB models has been prompted by the possi-
bility that they may provide an explanation for observa-
tions of the acceleration of the universal expansion,
without invoking dark energy. This might occur if we, as
observers, reside in a part of the universe that happens to be
expanding faster than the region exterior to it. By observ-
ing a source in the exterior region, one would then measure
an apparent acceleration of the universe’s expansion, but
this would be only a local effect. The effects of local
inhomogeneities on the apparent acceleration of the uni-
verse have been widely studied [13–17], and have been
linked with the observations of distant Type-IA superno-
vae. We anticipate that our model may also be useful in
such a context, although we leave the investigation of this
to future research.
The structure of this paper is as follows. In Sec. II we

perform a Newtonian analysis of our model, and derive
analytical expressions for the fluid velocities, densities, and
pressures in both the interior and exterior regions. In
Sec. III, we then present a full general-relativistic method-
ology for the analysis of dynamical spherically symmetric
systems, in which we outline our tetrad-based approach to
solving the Einstein equations, and also derive a general-
ized form of the Oppenheimer-Volkov equation, valid for
time-dependent systems. In Sec. IV, we apply this method-
ology to the analysis of our model system, and obtain
analytical solutions for most of the relevant quantities
defining the line element in the interior and exterior regions,
respectively. For those quantities that cannot be found
analytically, we give the corresponding differential equa-
tions that must be integrated numerically. As noted above,
for a given exterior expanding universe, the dynamical
evolution of the full system is determined by specifying
HiðtÞ. In Sec. V, we consider the interesting special case of
an object with a static boundary, namely HiðtÞ ¼ 0, and
focus particularly on the time-dependent radial pressure
profile in such a system. As our second special case, in
Sec. VI, we consider an object for which the internal
Hubble parameter matches that of the background, HiðtÞ ¼
HeðtÞ. In this case, we concentrate primarily on the form of
the line element in the interior and exterior regions, respec-
tively, for spatially flat, open, and closed background uni-
verses. In particular, we show that we recover the solutions
in the exterior region that we obtained previously in [1]. We
also consider the force required to hold a test particle at rest
inside the object, and that required to hold a test particle on
the moving boundary. Finally, we present our conclusions
in Sec. VII. Throughout this work we continue to use the
subscript i to represent interior quantities and e to represent
exterior quantities.
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II. NEWTONIAN ANALYSIS

Although our ultimate aim is to analyze our model
system in Fig. 1 fully general relativistically, it is useful
to begin with a simple Newtonian treatment to develop an
intuitive understanding of its dynamics.

To set up the Newtonian equations, we begin by consid-
ering the velocity potential � and the gravitational poten-
tial V for the interior and exterior regions. These are related
to the fluid velocity v and gravitational force Fg in each

region via the equations v ¼ r� and Fg ¼ �rV. The
three equations linking the quantities � and V with the
density � and pressure p in each region are the continuity,
Euler, and Poisson equations. Since, in each region, we
have v ¼ vðr; tÞ, V ¼ Vðr; tÞ, p ¼ pðr; tÞ, and � ¼ �ðtÞ,
these equations may be written, with the inclusion of a
cosmological constant �, as

@�ðtÞ
@t

þ�ðtÞ
r2

@ðr2vÞ
@r

¼0 continuity;

@v

@t
þv

@v

@r
þ 1

�ðtÞ
@p

@r
þ@V

@r
¼0 Euler;

1

r2
@

@r

�
r2
@V

@r

�
¼4��ðtÞ�� Poisson:

(2)

In order to solve this set of equations for the physical
quantities v, �, p, and V, in both the interior and exterior
regions, we impose four physically reasonable boundary
conditions:

(1) both the velocity potential � and gravitational
potential V, and their radial derivatives v and Fg,

match across the boundary of the object;
(2) the fluid pressure p is continuous across the bound-

ary of the object;
(3) all physical quantities behave sensibly throughout

the object, so that there are no singularities at the
center, for example; and

(4) all physical quantities tend to those of the exterior
cosmology as r ! 1.

The three equations in (2) lead to two immediate obser-
vations about the density and pressure across the boundary
of the object. Although the gradient of V must be continu-
ous across the boundary, its second-order derivative need
not be necessarily. Therefore, from the Poisson equation,
one can see that � may indeed jump at the boundary, as
required by our model. As a consequence, the Euler equa-
tion shows that the gradient of the pressure may also be
discontinuous at the boundary, despite the pressure itself
being continuous there.
We also note that the continuity of the fluid velocity v

across the object boundary, as specified in our first boundary
condition, means that matter does not cross the boundary
in either direction. Thus, the model does not incorporate
accretion onto the object, or outflow away from it. Hence,
the central object’s total mass MðaðtÞ; tÞ is constant,
although its excess mass mðtÞ may vary with time. It is
worth noting, however, that since the pressure is nonzero,
work is done as the boundary moves, so the total internal
(thermal) energy of the object will change with time.
We may now use the continuity, Euler, and Poisson

equations to solve directly for v, �, V, and p in both the
interior and exterior regions, in terms of HeðtÞ and HiðtÞ
(and the object radius a� and density �� at some reference
time t ¼ t�).

A. General form of the solution

Since the continuity, Euler, and Poisson equations take
the form (2) in both the interior and exterior regions, for the
moment there is no need to distinguish between the regions
using the subscripts i and e.
We first obtain an expression for the velocity v. This can

be found directly by integrating the continuity equation,
which gives

v ¼ � 1

3

�0ðtÞ
�ðtÞ rþ

A1ðtÞ
r2

; (3)

where a prime denotes differentiation with respect to the
cosmic time t (we reserve the dot notation for later use in
denoting differentiation with respect to the proper time of
observers in our relativistic treatment), and A1ðtÞ is an
arbitrary function of t. In (3), we denote the time-dependent
factor in the term proportional to r by HðtÞ, so that

v ¼ rHðtÞ þ A1ðtÞ
r2

; (4)

�0ðtÞ ¼ �3�ðtÞHðtÞ: (5)

In each region, the latter equation may be trivially integrated
to obtain an expression for the density �ðtÞ in terms of HðtÞ
(and the density at some reference time t ¼ t�).
One may also directly obtain an expression for the

gravitational potential V by integrating the Poisson
equation, which gives

FIG. 1. Model of a spherical object of size aðtÞ and uniform
interior density �iðtÞ residing in an expanding universe with
uniform exterior density �eðtÞ. The corresponding Hubble
parameters of the interior and exterior regions are denoted
HiðtÞ and HeðtÞ, respectively.
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V ¼ 1

6
ð4��ðtÞ ��Þr2 þ A2ðtÞ

r
þ A3ðtÞ; (6)

where A2ðtÞ and A3ðtÞ are arbitrary functions of time.
Finally, substituting the expressions (4) and (6) for v and

V, respectively, into the Euler equation, one finds that the
solution for p is

p ¼ �
�
1

6
ð3H0ðtÞ þ 3H2ðtÞ þ 4��ðtÞ ��Þr2

þ A2ðtÞ þ A1ðtÞHðtÞ � A0
1ðtÞ

r
þ A2

1ðtÞ
2r4

�
�ðtÞ þ A4ðtÞ;

(7)

where A4ðtÞ is another arbitrary function of time.

B. Interior region

Beginning with the interior region, our third boundary
condition requires that there is no singularity at r ¼ 0, and
hence A1ðtÞ ¼ 0 in the expression (4) for the fluid velocity.
Thus,

vi ¼ rHiðtÞ; (8)

�0
iðtÞ ¼ �3�iðtÞHiðtÞ: (9)

Moreover, applying the result (8) at the object boundary
gives its rate of growth

a0ðtÞ ¼ HiðtÞaðtÞ: (10)

The equations (9) and (10) may be trivially integrated to
obtain the object radius aðtÞ and its density �iðtÞ in terms of
HiðtÞ (together with a� and ��).

For the gravitational potential Vi, applying our third
boundary condition again requires that A2ðtÞ ¼ 0 in (6),
so that one may write

Vi ¼ VbðtÞ � 1

6
ð4��iðtÞ ��Þða2ðtÞ � r2Þ; (11)

where VbðtÞ is the gravitational potential at the object
boundary, which remains arbitrary.

For the fluid pressure pi, applying our third boundary
condition once more requires that A1ðtÞ ¼ 0 ¼ A2ðtÞ in (7),
so that

pi ¼ pbðtÞ þ 1

6
�iðtÞð3H0

iðtÞ þ 3H2
i ðtÞ

þ 4��iðtÞ ��Þða2ðtÞ � r2Þ; (12)

where pbðtÞ is the pressure at the boundary, which can only
be determined after considering the exterior region.

C. Exterior region

For the exterior region, the arbitrary function A1ðtÞ in the
expression (4) for the fluid velocity need not vanish, so one
may write only

ve ¼ rHeðtÞ þ A1ðtÞ
r2

; (13)

�0
eðtÞ ¼ �3�eðtÞHeðtÞ: (14)

Nonetheless, we note that (13) is consistent with our fourth
boundary condition, which requires that ve ! rHeðtÞ as
r ! 1. In principle, one could straightforwardly integrate
(14) to obtain an expression for �eðtÞ in terms of HeðtÞ and
the value of the external density at some reference time
t ¼ t�. As we will see, however, this is unnecessary, since
we will shortly obtain an alternative direct expression for
�eðtÞ, which is given in (16) below.
For the gravitational potential ve, in the exterior

region one cannot require the arbitrary functions A2ðtÞ
and A3ðtÞ in (6) to vanish, and hence the expression
remains

ve ¼ 1

6
ð4��eðtÞ ��Þr2 þ A2ðtÞ

r
þ A3ðtÞ: (15)

For the fluid pressure pe, by applying our fourth bound-
ary condition, we require that, as r ! 1, the right-hand
side of (7) tends to some uniform time-dependent pressure
p1ðtÞ corresponding to the external cosmological model.
This implies that A4ðtÞ ¼ p1ðtÞ and that the r2 term on the
right-hand side must vanish. The latter condition leads
immediately to the following expression for �eðtÞ in terms
of HeðtÞ:

H0
eðtÞ þH2

e ðtÞ � 1

3
� ¼ � 4

3
��eðtÞ: (16)

This is easily recognized as the standard (general relativ-
istic) dynamical cosmological field equation, written in
terms of the external Hubble parameter, with the exception
that the right-hand side does not depend on the fluid
pressure in addition to the density. This is to be expected,
however, since, as is well known, Newtonian theory does
not take into account the gravitational effect of the fluid
pressure. The resulting expression for the fluid pressure is
then

pe ¼ p1ðtÞ �
�
A2ðtÞ þ A1ðtÞHeðtÞ � A0

1ðtÞ
r

þ A2
1ðtÞ
2r4

�
�eðtÞ:
(17)

D. Matching at the object boundary

To complete our analysis, all that remains is to match
the interior and exterior solutions at the object boundary
according to our chosen conditions there.
Demanding that the expressions (8) and (13) for the fluid

velocities vi and ve, respectively, match at the boundary
immediately gives an expression for A1ðtÞ, such that the
exterior fluid velocity becomes

ve ¼ rHeðtÞ � a3ðtÞ
r2

ðHeðtÞ �HiðtÞÞ: (18)
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This elegant expression clearly shows how the standard
cosmological result is modified by the presence of the
central object, unless HiðtÞ ¼ HeðtÞ. This modification
was not present in the point mass analysis in [1], indicating
the unrealistic nature of that model.

Applying the conditions that the gravitational potential
and its radial derivative must match across the boundary
yields expressions for A2ðtÞ and A3ðtÞ in (15), which allows
us to rewrite the exterior gravitational potential as

ve ¼ VbðtÞ þ 1

6
ð4��eðtÞ ��Þðr2 � a2ðtÞÞ

þ 4

3
�a2ðtÞ

�
1� aðtÞ

r

�
ð�iðtÞ � �eðtÞÞ; (19)

where VbðtÞ remains undetermined.
Finally, one may insert the expressions obtained for

A1ðtÞ and A2ðtÞ into the expression (17) for the exterior
pressure pe. Moreover, demanding that the pressure is
continuous across the boundary allows one also to derive
a form for pbðtÞ. Combining these results, keeping �eðtÞ
and �iðtÞ in our expressions for brevity, and momentarily
dropping the t dependencies, the expressions (12) and (17)
for the interior and exterior pressure, respectively, may be
written as

pi ¼ p1 þ �ea
2

�
4

3
�ð�i � �eÞ þ ðHi �HeÞ0

þ ðH2
i �H2

e Þ þ 3

2
ðHi �HeÞ2

�

þ 1

6
�ið4��i þ 3H0

i þ 3H2
i ��Þða2 � r2Þ; (20)

pe ¼ p1 þ�ea
3

�
4

3
�ð�i ��eÞ þ ðHi �HeÞ0 þ ðH2

i �H2
e Þ

þ 2ðHi �HeÞ2
�
r�1 � 1

2
�ea

6ðHe �HiÞ2r�4: (21)

We now have a complete Newtonian solution for our
model system, which can be written in terms of the internal
and external Hubble parameters HiðtÞ and HeðtÞ, respec-
tively (and a� and ��). The resulting expressions are
expected to be reasonably accurate for a wide range of
physical systems that resemble our model. Nonetheless, for
an exact analysis it is necessary to employ the equations of
general relativity.

III. GENERAL RELATIVISTIC METHODOLOGY

We now describe our general-relativistic methodology
for the analysis of spherically symmetric systems. We
solve the Einstein field equations for such systems using
the tetrad-based method described in [1], and originally
presented in [2], which we now summarize.

A. Tetrad-based solution for spherical systems

In a Riemannian spacetime in which events are labelled
with a set of coordinates x�, each point has the correspond-
ing coordinate basis vectors e�, related to the metric via

e� � e� ¼ g��. At each point we may also define a local

Lorentz frame by another set of orthogonal basis vectors êi
(Roman indices), which are not derived from any coordi-
nate system and are related to the Minkowski metric �ij ¼
diagð1;�1;�1;�1Þ via êi � êj ¼ �ij. One can describe a

vector v at any point in terms of its components in either
basis: for example v� ¼ v � e� and v̂i ¼ v � êi. The rela-

tionship between the two sets of basis vectors is defined in
terms of tetrads, or vierbeins ek

�, where the inverse is

denoted ek�:

êk ¼ ek
�e�; e� ¼ ek�êk: (22)

It is not difficult to show that the metric elements are given
in terms of the tetrads by g�� ¼ �ije

i
�e

j
�.

The local Lorentz frames at each point define a family
of ideal observers whose worldlines are the integral curves
of the timelike unit vector field ê0. Along a given world-
line, the three spacelike unit vector fields êi (i ¼ 1, 2, 3)
specify the spatial triad carried by the corresponding
observer. The triad may be thought of as defining the
orthogonal spatial coordinate axes of a local laboratory
frame that is valid very near the observer’s worldline. In
general, the worldlines need not be timelike geodesics, and
hence the observers may be accelerating.
For our spherically symmetric system, we work in terms

of the tetrad components f1 � e0
0, g1 � e1

1, and g2 �
e0

1, as described in [1], which define the system via the line

element

ds2 ¼ g21 � g22
f21g

2
1

dt2 þ 2g2
f1g

2
1

dtdr� 1

g21
dr2 � r2d�2; (23)

where d� is an element of solid angle and we have adopted
a ‘‘physical’’ (noncomoving) radial coordinate r, whereby
the proper surface area of a sphere of radius r is given by
4�r2. We have also made use of the invariance of general
relativity under general coordinate transformations to
choose a time coordinate t that specializes to the so-called
Newtonian gauge (f2 � e1

0 ¼ 0; see [2]). It is also con-
venient to introduce explicitly the spin-connection coeffi-
cients F � !0

11 and G � !1
00, as described in [1]; since

we are assuming standard general relativity, for which
torsion vanishes, the spin-connection can, however, be
written entirely in terms of the tetrad components and
their derivatives. Each quantity is, in general, a function
of t and r.
For matter in the form of a perfect fluid with proper

density � and isotropic rest-frame pressure p, the equations
linking the quantities f1, g1, g2, F, andG have been shown
to be [2]
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Lrf1 ¼ �Gf1 ) f1 ¼ exp

�
�
Z r G

g1
dr

�
;

Lrg1 ¼ Fg2 þM

r2
� 1

3
�r� 4�r�;

Lrp ¼ �Gð�þ pÞ;
LrM ¼ 4�g1r

2�;

Ltg2 ¼ Gg1 �M

r2
þ 1

3
�r� 4�rp;

Lt� ¼ �
�
2g2
r

þ F

�
ð�þ pÞ;

LtM ¼ �4�g2r
2p;

(24)

where the two linear differential operators are defined by

Lt � f1@t þ g2@r; Lr � g1@r; (25)

and the function F, radial acceleration G, and mass M (or
energy) contained within some radius r are defined via

Ltg1 � Gg2; Lrg2 � Fg1;

M � 1

2
r

�
g22 � g21 þ 1� 1

3
�r2

�
;

(26)

where� is the cosmological constant. The above equations
provide a means of uniquely determining the quantities
describing a spherically symmetric physical system, given
a specific form chosen for M. In the next section we will
solve the equations using our definition forM describing a
finite, uniform-density object embedded in an expanding
universe, given by equation (1).

We note that in deriving the system of equations (24), we
have made use of the invariance of general relativity under
local rotations of the Lorentz frames to choose the timelike
unit vector ê0 at each point to coincide with the four-
velocity of the fluid at that point. Thus, by construction,
the four-velocity u of an observer comoving with the fluid
(or a fluid particle) has components ½ûi� ¼ ½1; 0; 0; 0� in
the tetrad frame. Since u� ¼ ei

�ûi, the four-velocity
may be written in terms of the tetrad components and
the coordinate basis vectors as u ¼ f1e0 þ g2e1. Thus,
the components of a comoving observer’s four-velocity

in the coordinate basis are simply ½u�� � ½ _t; _r; _�; _�� ¼
½f1; g2; 0; 0�, where dots denote differentiation with respect
to the observer’s proper time �. Consequently, we may
identify the differential operator Lt in (25) as the derivative
with respect to the proper time of a comoving observer,
since Lt ¼ _t@t þ _r@r ¼ d=d� (it is also straightforward to
show that Lr coincides with the derivative with respect to
the radial proper distance of a comoving observer).

Moreover, since g2 is the rate of change of the r coor-
dinate of a comoving observer (or fluid particle) with
respect to its proper time, it can be physically interpreted
as the fluid velocity, which we denoted by v in the
Newtonian analysis. We will therefore, in general, use g2
and v interchangeably in our general-relativistic analysis.

We also note that the Lt� equation may thus be regarded
as the general relativistic equivalent of the continuity
equation given in (2).
Finally, as shown in [1], the proper radial acceleration of

a comoving observer (or fluid particle) is G, and hence the
motion is, in general, not geodesic. This behavior results
from the presence of a pressure gradient in the fluid; indeed
the Lrp equation in (24) shows that, in the absence of a
pressure gradient, G vanishes and hence the motion
becomes geodesic.

B. Densities, pressures, and forces

It is worth noting that, as shown in [1], one can derive
general expressions in terms of the five functions f1, g1, g2,
F, and G for important physical quantities. These
expressions can be applied to any system for which M is
specified.
Assuming a matter energy-momentum tensor describing

a perfect fluid, the following expressions give the density
and pressure of the fluid in terms of the quantities defining
the metric (23):

8�� ¼ 1

r2
ðg22 � g21 þ 1��r2Þ þ 1

r
@rðg22 � g21Þ;

8�p ¼ � f1
rg2

@tðg22 � g21Þ � 8��:
(27)

The form for p appears to be analytical, but since f1 is
defined through an integral, for any system of interest a
suitable boundary condition would be required to fix the
form for p completely. It may therefore sometimes be more
instructive simply to leave the expression for the pressure
in terms of the differential equation defining it.
In [1] we also derived an expression for the force

required to keep a test particle at rest relative to the origin;
the idealized particle was assumed to be infinitesimal, and
so not subject to fluid forces due to pressure gradients, but
only to gravitational forces. As discussed in [1], the rela-
tionship between the ‘‘physical’’ coordinate r and proper
radial distance ‘ to the origin is defined through d‘ ¼
�ð1=g1Þdr, so it is only in cases for which g1 ¼ g1ðrÞ is
independent of t that _r ¼ 0 or _‘ ¼ 0 are equivalent con-
ditions (where the dot denotes differentiation with respect
to the particle’s proper time). In general, one must thus
choose which condition defines ‘‘at rest.’’ As in [1], here
we adopt the condition _r ¼ 0, which corresponds physi-
cally to keeping the test particle on the surface of a sphere
with proper area 4�r2. In practice, it would probably be
easier for an astronaut (i.e. test particle) to make a local
measurement to determine the proper area of the sphere on
which he is located, rather than to determine his proper
distance to the origin. With this proviso, the required force,
which is the negative of the force experienced by such a
particle, is given by
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f ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 � g22

q �
f1g1ðg2@tg1 � g1@tg2Þ

g21 � g22
þGg1 � Fg2

�
:

(28)

C. Generalized Oppenheimer-Volkov equation

It is possible to combine some of the equations in (24) to
obtain a differential equation for the radial pressure gra-
dient @rp in terms of the pressure p, the fluid velocity v
(� g2), and M (or, equivalently, � via the LrM equation).
In the special case where all the quantities are independent
of t, and hence functions of r alone, the resulting equation
should reduce to the standard Oppenheimer-Volkov
equation for a static spherically symmetric system [18].
Accounting for the possible time dependence of the quan-
tities, however, makes our result valid for any spherically
symmetric system, so we refer to it as a ‘‘generalized
Oppenheimer-Volkov’’ equation. We will use this equation
later to obtain forms for the interior and exterior pressures
for our model system, but our general equation may also be
of interest in its own right.

From the Lrp equation in (24), one has

@rp ¼ � G

g1
ð�þ pÞ: (29)

For this to be considered a generalized Oppenheimer-
Volkov equation, we require forms for both g1 and G.
One may immediately write down an expression for the
former in terms of v and M using the definition of M in
equation (26):

g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r
þ v2 � 1

3
�r2

s
: (30)

Obtaining an expression forG in terms of v andM alone is
slightly more complicated. Combining the Ltg1 equation
in (26) with equation (30) and the LrM equation in (24)
gives

G¼
f1
v ðv@tv� 1

r@tMÞþM
r2
�4�r�þv@rv� 1

3�rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r þv2� 1
3�r2

q : (31)

One can then eliminate f1 from this expression, effectively
replacing it with p, using the LtM equation in (24), which
implies a form for f1 given by

f1 ¼ �4�r2vð�þ pÞð@tMÞ�1: (32)

The final generalized Oppenheimer-Volkov equation is
obtained by substituting Eqs. (30)–(32) into (29) to give

@rp ¼ �
�
�þ p

r

�
Mþ 4�r3p� 1

3�r3 þ r2v@rv� 4�r4ð�þ pÞð@tMÞ�1v@tv

ð1þ v2Þr� 2M� 1
3�r3

: (33)

We illustrate the use of this result in Appendix A
by obtaining the relationship between p and � for the
particular case of a point mass in a homogeneous and
isotropic expanding universe, as studied in [1]. We also
note that in the special case of a stationary object,
v ¼ 0 and the t dependency in (33) is lost; it can then
easily be seen that our result reduces, as required, to the
standard Oppenheimer-Volkov equation with a cosmologi-
cal constant [19]:

dpðrÞ
dr

¼ �
�
�ðrÞ þ pðrÞ

r

�
MðrÞ þ 4�r3pðrÞ � 1

3�r3

r� 2MðrÞ � 1
3�r3

:

(34)

IV. GENERAL RELATIVISTIC ANALYSIS

We now apply the general-relativistic methodology out-
lined above to the analysis of our model system depicted in
Fig. 1, for whichM is specified by (1). This entails solving
the corresponding equations (24) and (26), in the interior
and exterior regions, for the tetrad components f1, g1, and
g2, thus obtaining a form for the spacetime metric (23),
and the spin-connection coefficients F and G (which can
be written in terms of the tetrad components and their

derivatives). From now on, we will exclusively use v
instead of g2, and distinguish between interior and exterior
quantities using the subscripts i and e respectively, so that
the interior quantities are written as f1;i, g1;i, vi, Fi, and Gi

and the corresponding exterior quantities are written as
f1;e, g1;e, ve, Fe, and Ge.

A. Boundary conditions

In the general-relativistic case, on the three-dimensional
(timelike) hypersurface � traced out by the (in general)
moving spherical boundary of the object, the solution must
satisfy the Israel junction conditions [20,21]. These require
continuity both of the induced metric and the extrinsic
curvature on �. As shown in Appendix B, the first condi-
tion requires continuity of f1, g1, and v, and the second
condition further requires the continuity of @rf1.
Using the equations in (24), the above junction

conditions have consequences for the continuity of other
variables of interest. In particular, from the Lrf1 equation,
one has G ¼ �ðg1=f1Þ@rf1, which must therefore also be
continuous at the object boundary. Moreover, the Lrp
equation and the continuity of g1 and G imply that the
pressure p is also continuous across the boundary, although
its radial derivative, in general, has a step there.
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Comparing the relativistic boundary conditions with
those adopted in the Newtonian analysis in Sec. II, the
continuity of v and the radial acceleration G are analogous
to the continuity of v and the Newtonian force Fg assumed

in boundary condition 1. Moreover, the continuity in p
recovers boundary condition 2. In our general relativistic
analysis below, we will also again adopt condition 3 that
there are no singularities in physical quantities.

We note that, as in the Newtonian case, the continuity of
the fluid velocity v at the object boundary means that
matter does not cross the boundary in either direction,
and so the model does not incorporate accretion onto the
object, or outflow away from it. In the general-relativistic
case, however, this does not imply that MðaðtÞ; tÞ is con-
stant, since this now denotes the object’s total energy,
which does change as the boundary moves, as is clear
from the LtM and LrM equations in (24).

Finally, we also adopt the general relativistic equivalent
of our previous boundary condition 4, namely that all
physical quantities tend to those of the exterior cosmology
for large r. For spatially flat and open universes, this
corresponds to r ! 1, whereas for a closed universe one
must instead consider the limit aðtÞ � r < RðtÞ, where
RðtÞ is the universal scale factor which also corresponds
to the curvature scale for a closed universe. In each case,
we require the line element (23) to tend to the correspond-
ing FRW line element at large r. Our ‘‘physical’’ radial
coordinate r is simply related to the usual ‘‘comoving’’
radial coordinate r̂ by r ¼ r̂RðtÞ, so that the FRW line
element becomes

ds2¼
h
1� kr2

R2ðtÞ�r2H2
e ðtÞ

i
dt2þ2rHeðtÞdtdr�dr2

1� kr2

R2ðtÞ
�r2d�2;

(35)

where HeðtÞ is the exterior Hubble parameter and k ¼ 0,
�1, 1 corresponds to a spatially flat, open, or closed
exterior cosmology, respectively. Comparing this line ele-
ment with that in (23), one quickly sees that, for large r,
one requires

f1 ! 1; g1 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr2

R2ðtÞ

s
; g2 ! rHeðtÞ: (36)

B. Interior region

Let us begin by considering the interior region, for
whichM ¼ 4

3��iðtÞr3. As in the Newtonian case, we begin
by finding an expression for vi. The LtM and Lt� equa-
tions in (24) may be combined with the above expression
for M and the Lrg2 equation from (26) to obtain

@rvi ¼ vi

r
;

which is immediately solved for vi to yield

vi ¼ rHiðtÞ; (37)

whereHiðtÞ is the ‘‘constant’’ of integration which we have
defined as the interior Hubble parameter. Hence, one also
has the simple relation Fi � @rvi ¼ HiðtÞ.
Substituting the above expressions for vi and Fi back

into the Lt� equation in (24), gives the useful result

Lt�iðtÞ ¼ �3HiðtÞð�iðtÞ þ piÞ: (38)

This is analogous to the Newtonian expression in (9), but
with �iðtÞ on the right-hand side replaced by �iðtÞ þ pi,
and �0

iðtÞ on the left-hand side replaced by Lt�iðtÞ; as

discussed previously, Lt corresponds simply to the deriva-
tive with respect to the proper time of an observer moving
with the fluid. Using (38), we may write

f1;i ¼ � 3HiðtÞð�iðtÞ þ piÞ
�0
iðtÞ

: (39)

Moreover, substituting our expressions for vi andM into
(26) immediately gives

g21;i ¼ 1þ
�
H2

i ðtÞ �
8

3
��iðtÞ � 1

3
�

�
r2: (40)

In order to evaluate the above expressions for f1;i and
g1;i, one requires forms for �iðtÞ and pi. Unlike in the

Newtonian case, however, one cannot obtain analytical
solutions for these functions. Nonetheless, substituting
the above expressions for M and vi into the generalized
Oppenheimer-Volkov equation (33), and integrating, will
yield an (integral) expression for pi in terms of HiðtÞ, �iðtÞ
and the pressure on the boundary pbðtÞ, where the last two
functions can only be determined after considering the
exterior region. This should be contrasted with the
Newtonian case, for which only the determination of
pbðtÞ first required consideration of the exterior region.

C. Exterior region

For the exterior region, one has M ¼ 4
3��eðtÞr3 þmðtÞ.

Indeed, since both �eðtÞ and �iðtÞ appear in the exterior
definition of M, it is initially ambiguous to which density
the symbol ‘‘�’’ in the equations in (24) refers. Using the
LrM equation, however, one quickly finds that “�” ¼ �eðtÞ.
We again begin by finding an expression for the velocity.

Using the same procedure as in the interior region, one
finds that

@rve ¼ 2ve

r

�
2�r3�0

eðtÞ � 3m0ðtÞ
4�r3�0

eðtÞ þ 3m0ðtÞ
�
;

which may easily be integrated to obtain the solution

ve ¼ AðtÞ
r2

ð4�r3�0
eðtÞ þ 3m0ðtÞÞ;

where AðtÞ is an arbitrary function of time. This function
may be determined using the boundary condition ve !
rHeðtÞ for large r from (36), which gives
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ve ¼ rHeðtÞ þ 3m0ðtÞHeðtÞ
4�r2�0

eðtÞ
; (41)

from which the corresponding expression for Fe ¼ @rve is
easily obtained.

Substituting these expressions for ve and Fe back into
the Lt� equation in (24), one obtains the useful result
Lt�eðtÞ ¼ �3HeðtÞð�eðtÞ þ peÞ. This is analogous to that
found in the interior region and immediately leads to

f1;e ¼ � 3HeðtÞð�eðtÞ þ peÞ
�0
eðtÞ : (42)

Moreover, substituting the expressions forM and ve into
(26) then gives

g21;e ¼ 1� 2mðtÞ
r

þ
�
H2

e ðtÞ � 8

3
��eðtÞ � 1

3
�

�
r2

þ 9H2
e ðtÞm0ðtÞ

16�2�02
e ðtÞr4

�
8

3
��0

eðtÞr3 þm0ðtÞ
�
: (43)

The boundary conditions (36) on f1 and g1 at large r
therefore require

�0
eðtÞ þ 3HeðtÞð�eðtÞ þ p1ðtÞÞ ¼ 0; (44)

H2
e ðtÞ � 8

3
��eðtÞ � 1

3
� ¼ � k

R2ðtÞ ; (45)

where the uniform time-dependent pressure p1ðtÞ corre-
sponds to the external cosmological model. If desired,
one may define the equation-of-state parameter w1ðtÞ �
p1ðtÞ=�eðtÞ, which would typically be time independent
for standard cosmological fluids such as dust (w1 ¼ 0) or
radiation (w1 ¼ 1=3). We recognize (44) and (45) as the
standard cosmological fluid evolution equation and the
Friedmann equation, respectively. Moreover, these can be
combined in the usual manner to yield the dynamical
cosmological field equation

H0
eðtÞ þH2

e ðtÞ � 1

3
� ¼ � 4

3
�ð�eðtÞ þ 3p1ðtÞÞ; (46)

which thus provides an expression for �eðtÞ in terms of
HeðtÞ [and the assumed form for p1ðtÞ or w1ðtÞ].

In order to evaluate the above expressions for f1;e and
g1;e, one also requires forms for pe, �iðtÞ, and aðtÞ. It is not
possible, in general, to obtain analytical solutions for
these quantities. Nonetheless, substituting our expressions
for M and ve into the generalized Oppenheimer-Volkov
equation (33), integrating and using (46), will yield an
(integral) expression for pe in terms of �iðtÞ, aðtÞ, p1ðtÞ,
and HeðtÞ, which may then be used to obtain the boundary
pressurepbðtÞ ¼ peðaðtÞ; tÞ in terms of these functions. One
is free to specify p1ðtÞ and HeðtÞ, and the functions �iðtÞ
and aðtÞmay be determined by considering the matching of
the interior and exterior solutions at the object boundary.

D. Matching at the object boundary

To complete the solution in both the interior and exterior
regions one requires �iðtÞ and aðtÞ. This may be achieved
by imposing the required junction conditions at the object
boundary. As discussed earlier, we may satisfy the junction
conditions by requiring f1, g1, v, and p to be continuous
there; indeed, the last condition has already been assumed
in defining the boundary pressure pbðtÞ.
If f1 and p are continuous at the boundary, the expres-

sions (39) and (42) immediately yield the relationship

�0
iðtÞ ¼

HiðtÞ�0
eðtÞ

HeðtÞ
�
�iðtÞ þ pbðtÞ
�eðtÞ þ pbðtÞ

�
: (47)

The above expression should be contrasted with the
corresponding Newtonian result (9). In the latter, �iðtÞ is
determined entirely by HiðtÞ (and ��), whereas in the
general-relativistic case �iðtÞ also depends on pbðtÞ, and
on the exterior Hubble parameter HeðtÞ and density �eðtÞ.
This shows that the exterior spacetime has an effect on the
dynamics of the interior, contrary to popular belief. As
recently discussed by [22], this opinion stems from a
common misunderstanding of Birkhoff’s theorem.
If v is continuous at the boundary, one first notes from

the general expression (30) that g1 is also automatically
continuous there. Moreover, combining (37) and (41), the
continuity of v yields an expression for the rate of growth
of the boundary, given by

a0ðtÞ ¼ � aðtÞHiðtÞ�0
eðtÞ

3HeðtÞð�eðtÞ þ pbðtÞÞ : (48)

We note that in deriving this expression we have also made
use of the result (47) and thatmðtÞ¼ 4

3�ð�iðtÞ��eðtÞÞa3ðtÞ.
By evaluating the expression (42) at the object boundary,
one sees that (48) may be written as f1;bðtÞa0ðtÞ ¼
HiðtÞaðtÞ, which is equivalent to the elegant result

LtaðtÞ ¼ HiðtÞaðtÞ; (49)

where the operatorLt is, in this case, evaluated at the object
boundary. Comparing this expression with the Newtonian
result (10) for the rate of growth of the boundary, one sees
that a0ðtÞ on the left-hand side of the latter has simply been
replaced by LtaðtÞ, which corresponds to the derivative
with respect to the proper time of an observer comoving
with the fluid. This observation also reconciles (49) with
the expression (37) for the fluid velocity in the interior
region. Evaluating the latter at the boundary and recalling
that vð� g2Þ is the rate of change of the r coordinate of a
fluid particle with respect to its proper time, one sees that it
is indeed consistent with (49). This also verifies our earlier
conclusion that the central object experiences no accretion
or outflow. It is also worth noting that, in the Newtonian
case, aðtÞ depends only on HiðtÞ (and a�), whereas the
general-relativistic expression (48) also depends on the
boundary pressure pbðtÞ, and on the exterior Hubble
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parameter HeðtÞ and density �eðtÞ. This provides another
example of the exterior spacetime influencing the dynam-
ics of the interior.

We note that substituting our expression for mðtÞ into
(41), and using the results (47) and (48), leads to the
elegant expression

ve ¼ rHeðtÞ � a3ðtÞ
r2

ðHeðtÞ �HiðtÞÞ; (50)

which is identical to that found in (18) from the Newtonian
analysis; thus, there is no general-relativistic correction to
the fluid velocity. In a similar manner, one finds that the
expression (43) becomes (momentarily suppressing t
dependencies for brevity)

g21;e ¼ 1� 2m

r
þ

�
H2

e � 8

3
��e � 1

3
�

�
r2

þ a3

r
ðHi �HeÞ

�
2He þ a3

r3
ðHi �HeÞ

�
: (51)

To complete the solution, the differential equations (47)
and (48) must typically be (numerically) integrated simul-
taneously to obtain �iðtÞ and aðtÞ, since, in general, the
expression for pbðtÞ depends on both these functions.

Finally, we have arrived at a full solution to our system
of equations (albeit not analytical), with all quantities
specified in terms of the interior and exterior Hubble
parameters HiðtÞ and HeðtÞ [together with the object den-
sity �� and radius a� at some reference time t ¼ t�, and the
pressure p1ðtÞ or equation-of-state parameter w1ðtÞ of the
external cosmological fluid at large r]. For a given exterior
cosmology and initial conditions, the solution thus depends
only on the internal Hubble parameter HiðtÞ, which we are
free to choose. To illustrate our solution, we now consider
two special cases: HiðtÞ ¼ 0, which corresponds to an
object with a static boundary; and HiðtÞ ¼ HeðtÞ, which
corresponds to an object whose expansion rate coincides
with that of the background.

V. OBJECT WITH HiðtÞ ¼ 0

For an object withHiðtÞ ¼ 0, one sees immediately from
(48) that the boundary is static, namely a0ðtÞ ¼ 0, or equiv-
alently aðtÞ ¼ a ¼ constant. Intuitively, one would expect
an object with a fixed boundary to have a constant total
energy. This is confirmed by Eq. (47), which implies that
�iðtÞ ¼ �i ¼ constant, so that the total energy of the object
from equation (1) is MðaðtÞ; tÞ ¼ ð4=3Þ��ia

3 ¼ constant,
which we will denote by M, but its excess mass (energy)
mðtÞ is still time dependent. At first glance, this physical
situation appears to mirror the Schwarzschild interior
uniform-density solution. Differences arise, however, be-
cause of the presence of the expanding fluid exterior to the
object in our model, rather than a simple vacuum as in the
Schwarzschild case. The expanding exterior fluid causes
the boundary conditions at the edge of the object to be time

dependent, rather than fixed, and therefore changes the
overall interior and exterior solutions.

A. Interior region

In the interior region, M ¼ 4
3��ir

3. From (37), one

confirms immediately that vi ¼ 0, so the entire fluid in
the interior of the object is static. As a result, the line
element (23) in the interior region reduces to the simple
diagonal form

ds2 ¼ 1

f21;i
dt2 � 1

g21;i
dr2 � r2d�2: (52)

From (40), one immediately finds

g1;iðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
8

3
��i þ 1

3
�

�
r2

s
; (53)

which we note is time independent. In order to obtain a
form for f1;i, it is convenient first to find an expression

for pi, using the generalized Oppenheimer-Volkov
equation (33). Since vi ¼ 0, this reduces to the form (34),
but with dp=dr on the left-hand side replaced by @rp, since
the interior pressure still depends on t, and reads

@rpi ¼ �
ð�i þ piÞ

�
4
3��i þ 4�pi � 1

3 �
	
r

1�
�
8
3��i þ 1

3�
	
r2

: (54)

Recalling that pi ¼ piðr; tÞ and �i is a constant, this equa-
tion is separable and can be integrated straightforwardly to
obtain

4��i þ 12�pi ��

�i þ pi

¼ 4��i þ 12�pcðtÞ ��

�i þ pcðtÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
8

3
��i þ 1

3
�

�
r2

s
; (55)

where pcðtÞ denotes the time-dependent central pressure of
the object. We note that pcðtÞ could be eliminated, and
effectively replaced with the boundary pressure pbðtÞ, by
remembering that piðaðtÞ; tÞ ¼ pbðtÞ. We choose not to do
this here, however, since we will later use the expression in
its current form. It is also worth noting that, if desired,
equation (55) can be reorganized into an explicit expression
for pi, but the result is somewhat complicated and unillu-
minating, so we retain the implicit form (55).
SinceHiðtÞ ¼ 0 and �0

iðtÞ ¼ 0, our general form (39) for

f1;i is undefined, so we must use an alternative expression

in this case. Combining the Lrf1 and Lrp equations in (24),
one quickly finds the general result

@r ln f1 ¼ @rp

�þ p
: (56)

Thus, integrating this equation directly and using (54), in
this case one has
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f1;i ¼ AðtÞ exp
�
�
Z r ð43��i þ 4�pi � 1

3�Þ �r
1� ð83��i þ 1

3�Þ �r2 d�r

�
; (57)

where AðtÞ is an arbitrary function of time. This integral may be performed analytically using (55) to obtain

f1;i ¼ f1;bðtÞ
4�ð�i þ pcðtÞÞ �

�
4
3��i þ 4�pcðtÞ � 1

3�
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�
8
3��i þ 1

3�
	
a2

r

4�ð�i þ pcðtÞÞ �
�
4
3��i þ 4�pcðtÞ � 1

3 �
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�
8
3��i þ 1

3�
	
r2

r ; (58)

where we have written the solution explicitly in terms of
the boundary value f1;bðtÞ and the central pressure pcðtÞ
[which can itself be expressed in terms of the pressure pbðtÞ
at the boundary, if desired]. These functions can be deter-
mined only after considering the exterior region. Note that
the expressions (53) and (58) may be trivially rewritten in
terms of the constant mass M ¼ 4

3��ia
3 of the object,

rather than its density �i.

B. Exterior region

In the exterior region, M ¼ Mþ 4
3��eðtÞðr3 � a3Þ.

The expression (50) for the fluid velocity ve becomes

ve ¼ rHeðtÞ
�
1� a3

r3

�
; (59)

and, from (51), one quickly finds

g21;e ¼ 1� 2M
r

� 1

3
�r2

þ
�
H2

e ðtÞ
�
1� a3

r3

�
� 8

3
��eðtÞ

��
1� a3

r3

�
r2: (60)

To obtain a form for f1;e, one must again first consider

the generalized Oppenheimer-Volkov equation (33) to find
an expression for pe. Substituting our expressions for M
and ve into (33) leads to an equation for @rpe in terms of
pe, �i, and a, together with �eðtÞ and HeðtÞ and their time
derivatives. For our later development, however, it is useful
to eliminate �0

eðtÞ, HeðtÞ and H0
eðtÞ in favor of �eðtÞ using

the exterior cosmological equations (44)–(46). This can be
performed for a general exterior cosmology, but for the
sake of simplicity we will restrict our attention to a spa-
tially flat model (k ¼ 0) in which the cosmological fluid is
dust (p1 ¼ 0), which provides a reasonable approximation
to our current Universe. In this case, one obtains

@rpe¼�
�
�eðtÞþpe

r

�4
3�a

3
h
�iþ4�eðtÞ

�
1�a3

r3

	i
þ4�a3peþ1

3�a3
�
1�2a3

r3

	
r�8

3�a
3
h
�iþ�eðtÞ

�
1�a3

r3

	i
�1

3�a3
�
2�a3

r3

	 ; (61)

which, in general, must be integrated numerically to obtain
pe. One may then find f1;e using (42).

By writing the Oppenheimer-Volkov equation in the
form (61), however, we may obtain approximate analytical
solutions for the special case of a dense object, for which
�i 	 �eðtÞ. First, we consider the case of a vanishing
cosmological constant � ¼ 0, so that the exterior cosmol-
ogy is Einstein–de-Sitter. Remembering that r 
 a in the
exterior, in this case (61) becomes simply

@rpe � �
�
�eðtÞ þ pe

r

�
Mþ 4�a3pe

rð1� 2M=rÞ ; (62)

which is separable and thus straightforward to solve for pe.
Moreover, if one again applies the condition �i 	 �eðtÞ in
the resulting solution, one finds that the exterior pressure
can be written in the concise approximate form

pe � �eðtÞ
0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M
r

q � 1

1
A: (63)

Second, we consider the case of a more general spatially
flat exterior cosmology with � � 0, but in the limit that

a ! 0 and �i ! 1 in such as way that the object massM
remains constant. In this case, the Oppenheimer-Volkov
equation (61) reduces to (62) but without the 4�a3pe term
on the right-hand side, to which the solution is again given
by (63). In each case, the pressure pbðtÞ at the boundary
r ¼ a can be read off from this equation, which in
turn allows the central pressure pcðtÞ of the object to be
determined from (55).
Moreover, in each case, substituting (63) into the

expression (42) for f1;e, and using the relation (44) with

p1 ¼ 0, one immediately finds the time-independent
result

f1;e � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r

q ; (64)

from which one can read off the value f1;b at the boundary,
which in turn allows one to specify f1;i using (58).

Perhaps unsurprisingly, the above results for pe and f1;e
are identical to those external to a point mass M em-
bedded in a spatially flat universe, as derived in [1]; how-
ever, M now represents the mass of a finite-size object.
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C. Application to the Sun

We illustrate these results in two concrete situations. An
obvious first example, though not one where we would
expect to see any effects of significance, is to a star
embedded in an external expanding universe. We take as
our example the Sun, and model the pressure interior and
exterior to the Sun, under the (crude) assumptions that its
interior density is uniform and that it is embedded simply
in an expanding homogeneous universe.

The Sun has M � 2� 1030 kg and a � 7� 108 m
and, for the purpose of illustration, we will assume a
spatially flat concordance �CDM exterior cosmology
with p1 ¼ 0. In this case, the exterior Hubble parameter
is given by [23]

HeðtÞ ¼
ffiffiffiffiffiffiffiffi
1

3
�

s
coth

0
@3
2

ffiffiffiffiffiffiffiffi
1

3
�

s
t

1
A; (65)

and we adopt the observed value of the cosmological
constant � � 10�35 s�2 [24]. The corresponding expres-
sion for �eðtÞ can be inferred from (45), and is easily shown
to be

�eðtÞ ¼ �

8�
cosech2

0
@3
2

ffiffiffiffiffiffiffiffi
1

3
�

s
t

1
A: (66)

At the current epoch, the external density and pressure
are very much smaller than the internal density and central
pressure in the Sun. Additionally, the Sun is far from being
in a solution regime where general-relativistic corrections
are significant for the pressure profile. Thus both exact and
approximate general-relativistic methods, as well as the
Newtonian solutions (20) and (21) found earlier, will all
give indistinguishable results for the interior and exterior
pressure profiles. These results are still interesting, how-
ever. The key feature is that the external pressure lifts the
whole internal pressure curve up uniformly, by an amount
equal to the pressure at the boundary. We can see this from

the exact result (55), where if we rewrite this in terms of the
pressure at the boundary, pbðtÞ, instead of at the center,
pcðtÞ, and then carry out an expansion in which �i is treated
as a first order quantity, and pbðtÞ and � are treated as
second order quantities, we get the following result, accu-
rate at second order:

pi � 3M2

8�a4

�
1� r2

a2

�
þ pbðtÞ: (67)

This is the ordinary Newtonian pressure profile for a
uniform-density object, lifted up by the excess pressure
at the boundary. This boundary pressure can be calculated
from (63) evaluated at r ¼ a, and changes with time due to
the expansion of the universe.
In Fig. 2, we plot the resulting interior and exterior

pressure profiles derived, respectively, from the exact ex-
pression (55) and approximate result (63), at three different
times: the present cosmological epoch t ¼ t0, for which
Heðt0Þ � H0 ¼ 70 km s�1 Mpc�1 [24], and the future
times t ¼ 1:2t0 and t ¼ 5t0. We note that the resulting
exterior pressure profiles are indistinguishable from those
obtained by numerically integrating the exact exterior
equation (61). At the level of resolution available in a
plot, then the interior profile of course just corresponds
to the static part of equation (67), since pbðtÞ is so tiny. The
ratio of the external pressure to typical internal values can
be seen by comparing the axes of two plots in Fig. 2, which
we can see differ by factors � 1029. To give some specific
figures, at the three cosmic times t ¼ t0, t ¼ 1:2t0, and t ¼
5t0, the pressure at the boundary is pbðtÞ � 5:6� 10�16,
3:2� 10�16 and 3:0� 10�20 Pa, respectively, whereas the
pressure at the center of the object is pcðtÞ � 1:33�
1014 Pa at all three times. [We note that in reality, one
would expect pcðtÞ to be larger than this, since the density
of the Sun increases towards the center rather than being
uniform, as in our model. For example, in [25] the central
pressure of the Sun is found to be�1016 Pa, which is�100
times greater than the value for a uniform density.]
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FIG. 2. The pressure profile interior (left panel) and exterior (right panel) to the Sun, modeled as a uniform-density object residing in
a concordance �CDM universe, at the present cosmological epoch t ¼ t0, and the future times t ¼ 1:2t0 and t ¼ 5t0. For the interior
region, the three profiles are indistinguishable. In both regions, the Newtonian and general-relativistic results are indistinguishable.
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D. Special case of vacuum exterior region

As a another example, and to make contact with some
well-established results, it is of interest to consider the
special case of a vacuum exterior region, for which �e ¼
0 ¼ pe, but with � � 0, in general. For the purposes
of illustration, we will restrict our attention to a spatially
flat (k ¼ 0) exterior cosmology, for which (45) reduces
simply to the standard, time-independent de-Sitter result
H2

e ¼ 1
3�.

For a vacuum exterior region, M ¼ m ¼ M ¼ 4
3��ia

3

and the LtM and Lt� equations in (24) are satisfied iden-
tically, and so we cannot use our earlier general results for
ve, g1;e, and f1;e, which were derived from them. Instead,

using the Lrf1, Lrg1, and Ltg2 equations in (24) and
demanding continuity of v and g1 at the object boundary,

it is straightforward to show that one obtains the time-

independent forms ve ¼ 0, g21;eðrÞ ¼ 1� 2M=r� 1
3 �r2

and f1;eðrÞ ¼ 1=g1;eðrÞ. Thus, as one would expect, the

corresponding exterior line-element (23) reduces to the

standard, time-independent (diagonal) Schwarzschild–

de-Sitter form.
In the interior region, our earlier expressions vi ¼ 0

and g21;iðrÞ ¼ 1� 2Mr2=a3 � 1
3�r2 still hold. To obtain

an expression for f1;i, one first notes that, for a vacuum

exterior, the boundary pressure pbðtÞ ¼ 0, from which one

can derive an expression for the central pressure pcðtÞ from
(55). Substituting this expression into (58) and noting

that, at the boundary, f1;b ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=a� 1

3�a2
q

,

one obtains the time-independent result

f1;iðrÞ ¼
2Mþ 1

3�a3

3M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

a � 1
3�a2

q
� ðM� 1

3�a3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Mr2

a3
� 1

3 �r2
q : (68)

In the case of a vanishing cosmological constant � ¼ 0,
the corresponding line element (52) immediately reduces
to that of the well-known Schwarzschild uniform-density
interior solution (see e.g. [23]).

VI. OBJECT WITH HiðtÞ ¼ HeðtÞ
As our second special case, we now consider an object

whose internal Hubble parameter matches that of the back-
ground, so that HiðtÞ ¼ HeðtÞ. In this case, comparing (41)
and (50), one immediately finds thatmðtÞ ¼ m ¼ constant,
so the excess energy (mass) of the object is constant, but its
total energy MðaðtÞ; tÞ is still, in general, time dependent;
in this sense this special case is complementary to the
previous one considered in Sec. V.

A. Exterior region

In this example, it is more convenient to consider first
the exterior region, for which M ¼ 4

3��eðtÞr3 þm, where

we reiterate that m is time independent. This expression is
thus identical to that originally considered in [1], except
the object was there taken to be a point mass m and so this
form forM was valid for all positive values of r, rather than
just for r > aðtÞ. Nonetheless, the required solutions for
f1;e, g1;e, and g2;e � ve are therefore precisely those listed

in Table 1 of [1], which also gives a detailed discussion of
the appropriate boundary conditions at large r in the case
of a closed (k ¼ 1) exterior cosmology.

It is worth noting, however, that our general expressions
(50) and (51) for ve and g1;e, respectively, do correctly

reduce to the forms

ve ¼ rHeðtÞ; g1;e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
� kr2

R2ðtÞ

s
; (69)

as derived in [1]. For our later discussion, it is also
worth reiterating here that, for a spatially flat (k ¼ 0)

exterior cosmology, one obtains f1;e ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m=r

p
, so

the corresponding line element in the exterior region is
given by

ds2 ¼
�
1� 2m

r
� r2H2

e ðtÞ
�
dt2 þ 2rHeðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q dtdr

� 1

1� 2m
r

dr2 � r2d�2: (70)

As shown in [1], by converting to isotropic and comoving
coordinates via r ¼ �rRðtÞð1þm=ð2�rRðtÞÞÞ2, this is equiva-
lent to McVittie’s line element [26,27], given by

ds2¼
0
@1� m

2�rRðtÞ
1þ m

2�rRðtÞ

1
A2

dt2�
�
1þ m

2�rRðtÞ
�
4
R2ðtÞðd�r2þ �r2d�2Þ:

(71)

B. Interior region

Let us now turn to the interior region, for which M ¼
4
3��iðtÞr3. Expressions for vi and g1;i may be written down

immediately by substituting HiðtÞ ¼ HeðtÞ into (37) and
(40), and using (45) to simplify; these are given in Table I.
In particular, we see that vi ¼ rHeðtÞ ¼ ve, so the fluid
motion in both the interior and exterior regions is described
by a standard cosmological expansion [for later use, we
also note that one trivially obtains Fi ¼ HeðtÞ ¼ Fe].
For the purposes of illustration, we will obtain an ex-

pression for f1;i in this case via a slightly different route

from that employing the generalized Oppenheimer-Volkov
equation (33), which we used previously. Our previous
approach is still applicable, but for our later analysis it is
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more convenient here to obtain f1;i by substituting our

expressions for ve and M directly into the expression
(31) for Gi. We may eliminate �iðtÞ from the resulting
expression in favor of �eðtÞ by using the definition of m
to write

�iðtÞ ¼ �eðtÞ þ 3m

4�a3ðtÞ ; (72)

and, using the results (44)–(46) and (49), one then obtains

Gi ¼
�

r

R2ðtÞ
� kðf1;i � 1Þ þ mR2ðtÞ

a3ðtÞ
�
3f1;i
f1;bðtÞ � 2

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mr2

a3ðtÞ � kr2

R2ðtÞ
q : (73)

Finally, one may obtain f1;i by substitutingGi into the Lrf1
equation in (24) and integrating. To perform this integral,
however, one requires an expression for f1;bðtÞ, and, more-

over, the resulting constant of integration can only be
determined by the imposition of suitable conditions at
the object boundary. Thus the solution for f1;i depends
on the nature of the exterior cosmology. We now consider
each case individually.

C. Interior metric for a spatially flat background

As mentioned above, for a spatially flat (k ¼ 0) exterior

cosmology one has ffk¼0g
1;e ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m=r

p
, from which

one obtains the boundary condition

ffk¼0g
1;b ðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
aðtÞ

q : (74)

Using the Lrf1 equation in (24), one then finds that ffk¼0g
1;i

must satisfy the differential equation

1

f1;i

df1;i
dr

þ mr

a3ðtÞ
�
1� 2mr2

a3ðtÞ
	
0
@3f1;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

aðtÞ

s
� 2

1
A ¼ 0;

where, for brevity, we have omitted the superscript relating
to a spatially flat background. This equation may be inte-
grated to obtain the analytical solution

ffk¼0g
1;i ¼ 2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

aðtÞ
q

þ 2CðtÞa3=2ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mr2

a3ðtÞ
q ;

where, using the boundary condition (74), the integration

constant is found to be CðtÞ ¼ �ð1=2Þa�3=2ðtÞ. Thus, the
final solution for ffk¼0g

1;i is as stated in Table I, and the

interior line element can be written explicitly using
Eq. (23) as

ds2 ¼
h
1� 2mr2

a3ðtÞ � r2H2
e ðtÞ

i�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

aðtÞ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mr2

a3ðtÞ
q �

2

4
�
1� 2mr2

a3ðtÞ
	 dt2

þ
rHeðtÞ

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

aðtÞ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mr2

a3ðtÞ
q �

�
1� 2mr2

a3ðtÞ
	 dtdr

� 1

1� 2mr2

a3ðtÞ
dr2 � r2d�2: (75)

We note that, in the case where there is no expansion,
HiðtÞ ¼ HeðtÞ ¼ 0, so that the boundary of the object
remains fixed, aðtÞ ¼ a, the above result correctly reduces
to the well-known Schwarzschild interior solution for a
uniform density object (see e.g. [23]). We now investigate
some important physical properties of our newly derived
interior metric.

1. Densities and pressures

Let us first consider the density and pressure of the
interior fluid. Using the general expressions in (27), and
simplifying using (49) and (74), one obtains

8��iðtÞ ¼ 3

�
H2

e ðtÞ � 1

3
�þ 2m

a3ðtÞ
�
; (76)

TABLE I. Tetrad components defining the interior metric for an object with HiðtÞ ¼ HeðtÞ in a
spatially flat (k ¼ 0), open (k ¼ �1), and closed (k ¼ 1) expanding universe.

ffk¼0g
1;i

2

3
ffiffiffiffiffiffiffiffiffi
1�2m

aðtÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffi
1�2mr2

a3ðtÞ

q

ffk¼�1g
1;i 1þ

2
4R2ðtÞ

a3ðtÞ � 2
RðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

R2ðtÞ
q

þ
�

1
aðtÞ þ 2aðtÞ

R2ðtÞ � R2ðtÞ
a3ðtÞ

	 ffiffiffiffiffiffiffiffiffiffiffi
1þ r2

R2 ðtÞ
1þa2ðtÞ

R2 ðtÞ

s 3
5mþOðm2Þ

ffk¼1g
1;i 1þ

2
4� R2ðtÞ

a3ðtÞ þ
�

1
aðtÞ � 2aðtÞ

R2ðtÞ þ R2ðtÞ
a3ðtÞ

	 ffiffiffiffiffiffiffiffiffiffiffi
1� r2

R2ðtÞ
1�a2ðtÞ

R2ðtÞ

s 3
5mþOðm2Þ

g1;i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mr2

a3ðtÞ � kr2

R2ðtÞ
q

g2;i � v1 rHeðtÞ
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8�pi ¼ �3

�
H2

e ðtÞ � 1

3
�þ 2m

a3ðtÞ
�

�
4

�
H0

eðtÞ � 3m
a3ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

aðtÞ
q �

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

aðtÞ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mr2

a3ðtÞ
q : (77)

The expression for �iðtÞ could alternatively be obtained by
combining the relationships (45) and (72).

According to our boundary conditions, the internal pres-
sure profile must be continuous with the exterior pressure
profile at the object boundary. One may easily show (see,
e.g., [1]) that the latter is given by

8�pe ¼ �3

�
H2

e ðtÞ � 1

3
�

�
� 2H0

eðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r

q ; (78)

which is clearly continuous with (77) at r ¼ aðtÞ. One may
show, however, that the radial derivative of the pressure
profile has a jump there, given by

8�
@pe

@r









r¼aðtÞ
�8�

@pi

@r









r¼aðtÞ
¼ 6m2

a5ðtÞ
�
1� 2m

aðtÞ
	 : (79)

As an illustration of these results, we show in Fig. 3 the
complete pressure profile for an object intended to approxi-
mate a cluster of galaxies, here modeled as a uniform-
density sphere with excess mass m ¼ 1015M and current
radius aðt0Þ ¼ 5 Mpc. This is embedded in a concordance
�CDM exterior cosmology, for which HeðtÞ is given by
(65), and assuming p1 ¼ 0. The discontinuity in the radial
pressure gradient at r ¼ 5 Mpc can be clearly seen.

Although we expect the pressure to be finite at the center
of the object, one can see from (77) that it, in fact, diverges

when 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m=aðtÞp ¼ 1. This places an upper bound on

the mass/size ratio of any object

m

aðtÞ<
4

9
: (80)

This is equivalent to Buchdahl’s theorem [23] for the
Schwarzschild uniform-density interior metric, but with
a ! aðtÞ.

2. Evolution of the object boundary

We now consider the rate of expansion of the object
boundary. From (49) and (74), one finds

a0ðtÞ ¼ HeðtÞaðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

aðtÞ

s
: (81)

Although elegant, this result indicates the unrealistic nature
of this model for the description of compact astrophysical
objects. Sincem=aðtÞ � 1 for most such objects, the above
result suggests that they expand more or less with the
Hubble flow, which is clearly unrealistic. For example,
both the Sun (a compact object), which has mass m � 2�
1030 kg and current size aðt0Þ � 7� 108 m, and a galaxy
cluster with mass �1015M and size aðt0Þ � 5 Mpc, have
m=aðt0Þ � 10�6, and are therefore within this model pre-
dicted to be currently expanding at very close to the Hubble
rate. While this might be plausible for a cluster, it clearly
does not apply to the Sun. Thus, the expected resistance of
more compact objects to the external Hubble flow is not
encapsulated in the expression (81), and results from our
initial assumption that HiðtÞ ¼ HeðtÞ.
Integrating (81) leads directly to

aðtÞ ¼ �aRðtÞ
�
1þ m

2 �aRðtÞ
�
2
; (82)

where �a is a dimensionless constant. Solving this equation
for �a yields the two roots

�a ¼ aðtÞ
2RðtÞ

2
4�

1� m

aðtÞ
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

aðtÞ

s 3
5: (83)

From (80), we require m=aðtÞ< 4=9, in which case both
roots lead to positive values for �a, as one would expect.
Indeed, combining (80) and (82), one obtains the condition
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FIG. 3. The radial pressure profile for an approximate model of cluster of galaxies, taken to be a uniform-density object with excess
mass m ¼ 1015M and current radius aðt0Þ ¼ 5 Mpc, for (a) r < 5 Mpc; (b) 3< r < 10 Mpc; and (c) 5< r < 1000 Mpc. The
exterior cosmology is assumed to be concordance �CDM. (a) pi, (b) pi and pe, (c) pe.
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m2 � 5RðtÞ �amþ 4R2ðtÞa2 > 0;

which factorizes and leads to the following bounds on the
ratio m= �a of any object in this model:

m

�a
< RðtÞ or

m

�a
> 4RðtÞ; (84)

where the former bound applies to the plus sign in (83), and
the latter bound to the minus sign. Since one is usually
interested in objects for which m � aðtÞ, for which the
former bound holds, the plus sign is the relevant one in
(83). Hence, if one wishes to determine the radius of the
object boundary at some time t using Eq. (82), one first
calculates �a by substituting the object’s current radius
aðt0Þ, its excess mass m, and the current exterior scale
factor Rðt0Þ into (83) (using the plus sign).

In addition to considering the evolution of the object
coordinate radius aðtÞ, it is also of interest to consider the
variation with time of the proper distance lðtÞ from the center
to the boundary of the object. From the line element (75), one
sees that the proper distance is, in general, defined through

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mr2

a3ðtÞ
q

dr. Therefore, lðtÞ is found by integrating

this expression between r ¼ 0 and r ¼ aðtÞ, which gives

lðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=a3ðtÞp arcsin

ffiffiffiffiffiffiffiffi
2m

aðtÞ

s
;

� aðtÞ þ 1

3
m; (85)

where in the second line we have taken the limit m � aðtÞ,
such that the Schwarzschild radius of the object lies well
within its boundary. One can therefore see that the proper
distance from the center to the boundary of the object is only
slightly greater than its coordinate radius.

3. Comparison with Nolan’s interior metric

In [28], Nolan also derived an interior metric for an object
with uniform spatial density residing in a spatially flat
expanding universe. For consistency with McVittie’s earlier
analysis, however, Nolan worked in isotropic and comoving
coordinates; we denote his dimensionless, comoving radial
coordinate by �r. Indeed, in deriving his metric, Nolan
demanded that it matched onto McVittie’s exterior metric
at the boundary of the object, which he assumed to be at a
fixed comoving coordinate radius �r ¼ �a. We note that this
assumption clearly implies that the object is expanding,
although Nolan makes no explicit mention of this.

The resulting interior metric reads

ds2 ¼
2
641� m

�aRðtÞ þ m�r2

�a3RðtÞ
�
1� m

4 �aRðtÞ
	

�
1þ m

2 �aRðtÞ
	�
1þ m�r2

2 �a3RðtÞ
	

3
75

2

dt2

� R2ðtÞ
�
1þ m

2 �aRðtÞ
	
6

�
1þ m �r2

2 �a3RðtÞ
	
2
ðd�r2 þ �r2d�2Þ; (86)

which may be shown to be equivalent to our interior
metric (75) via the coordinate transformation

r ¼ �rRðtÞ
�
1þ m

2 �aRðtÞ
	
3

1þ m�r2

2 �a3RðtÞ
: (87)

In particular, we note that at the edge of the object �r ¼ �a,
one recovers our solution (82) for the growth of the bound-
ary. The above transformation also relates the density and
pressure associated with Nolan’s interior metric to our
expressions in Eqs. (76) and (77), confirming that
Nolan’s results correspond to the subcase HiðtÞ ¼ HeðtÞ
within our set of spatially flat models.

D. Interior metric for spatially curved backgrounds

One may find the interior metric in the case of a spatially
curved exterior cosmology using the same methodology as
in the spatially flat case. The expressions for g1;i and vi are

already known, and given in Table I, so it again only
remains to obtain a form for f1;i.
We must find a solution for f1;i that matches onto the

corresponding exterior solution f1;e at r ¼ aðtÞ. As shown
in [1], in a spatially curved universe f1;e is given in terms of

an elliptic integral. To avoid this complication, we there-
fore focused on the region m � r � RðtÞ, within which
we could represent f1;e as a truncated power series in m.

The resulting solutions have the form

ffk¼�1g
1;e ¼ b0;e þ b1;emþOðm2Þ;

where, for each type of universe, the coefficients bn;e were
found to be

bfk¼�1g
0;e ¼ 1; bfk¼�1g

1;e ¼ 1

r
þ 2r

R2ðtÞ �
2

RðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

R2ðtÞ

s
;

bfk¼1g
1;e ¼ 1

r
� 2r

R2ðtÞ : (88)

We now solve for ffk¼�1g
1;i , also for m � r � RðtÞ, by

looking for a power series solution of the form ffk¼�1g
1;i ¼

b0;i þ b1;imþOðm2Þ, whose coefficients match the exte-

rior solution at the boundary of the object. We begin by
substituting the appropriate expressions for G1 and g1;i,
given in (73) and Table I, respectively, into the Lrf1
equation in (24). The resulting differential equation may
be integrated without specifying a value of k, to obtain

1

ffk¼�1g
1;i

¼ ka3þ3mR2=ffk¼�1g
1;b

ka3þ2mR2
þCRa3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2mr2

a3
�kr2

R2

s
;

(89)

where, for brevity, we have momentarily dropped the
dependencies on t, and CðtÞ arises as a constant of integra-
tion. Evaluating this relationship at r ¼ aðtÞ allows one to
solve for ffk¼�1g

1;b ðtÞ in terms of CðtÞ:
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ffk¼�1g
1;b ðtÞ ¼

ka2

R2 � m
a

ka2

R2 þ CRa3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

a � ka2

R2

q �
ka2

R2 þ 2m
a

	 :
The series expansion of this expression in m should equal
the corresponding exterior result. Before expanding, how-
ever, it is first necessary also to express the function CðtÞ as
a power series in m. Considering CðtÞ ¼ c0 þ c1mþ
Oðm2Þ, the coefficients cn then appear embedded within
the interior coefficients bn;i. In order to satisfy

bn;eðaðtÞ; tÞ ¼ bn;iðaðtÞ; tÞ it can be shown that

cfk¼�1g
1 ¼

RðtÞ
�
1� a2ðtÞ

R2ðtÞ � 2a4ðtÞ
R4ðtÞ

	
a9=2ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2ðtÞ

R2ðtÞ
q þ 2

a3=2ðtÞR2ðtÞ ;

cfk¼þ1g
1 ¼

RðtÞ
�
2a4ðtÞ
R4ðtÞ � a2ðtÞ

R2ðtÞ � 1
	

a9=2ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ðtÞ

R2ðtÞ
q :

With these solutions we are finally able to obtain expres-

sions for bn;i, and hence approximate solutions for ffk¼�1g
1;i ,

which are given in Table I. Figure 4 shows that within the

object our approximate solutions for ffk¼�1g
1;i are sufficient

to represent the true solutions to high accuracy.
It is now possible to write down metrics describing the

spacetime interior to an object with constant spatial density
residing in an open (k ¼ �1) or closed (k ¼ 1) expanding
universe. From equation (23) they are given by

ds2 ¼
1� 2mr2

a3ðtÞ � kr2

R2ðtÞ � a2ðtÞH2ðtÞ
f21;i

�
1� 2mr2

a3ðtÞ � kr2

R2ðtÞ
	 dt2

þ 2rHðtÞ
f1;i

�
1� 2mr2

a3ðtÞ � kr2

R2ðtÞ
	 drdt� 1

1� 2mr2

a3ðtÞ � kr2

R2ðtÞ
dr2

� r2d�2; (90)

where the functions f1;i ¼ ffk¼�1g
1;i are stated in Table I.

E. Force on a test particle

As our final investigation into the physical properties
of our newly derived interior metrics, we now consider the
force experienced by a test particle at various locations in
our model system. By considering an idealized infinitesi-
mal test particle, we exclude forces due to pressure
gradients in the fluid and focus only on the gravitational
force experienced. In particular, we derive the force that
must be exerted on a test particle for it to maintain a
particular state of motion in two different circumstances:
to remain at rest, relative to the origin, in the interior of the
object; and to remain on the, in general, moving boundary
of the object.

1. Particle at rest in the object’s interior

In [1] we derived a fully general-relativistic invariant
expression for the outwards radial force f (per unit rest
mass) required to hold a test particle in any spherically
symmetric spacetime at rest, i.e. at constant physical radius
r; this is equivalent to _r ¼ 0, where a dot denotes differ-
entiation with respect to the particle’s proper time. The
general expression is given by

f¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21�g22

q �
f1ðg2@tg1�g1@tg2Þ

g21�g22
þGg1�Fg2

�
: (91)

We note that this expression becomes singular at any point
where g21 ¼ g22, which be can shown to correspond to the
locations of apparent horizons [29]. Note that these do not
usually coincide with where the metric and fluid pressure
become singular, which occurs when g1 ¼ 0. We now
present approximate expressions for the force f in our
newly derived interior metrics in the region m � r �
aðtÞ � 1=HeðtÞ. This represents our region of interest,
which is deeply embedded within the object but still well
outside its Schwarzschild radius.
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FIG. 4. The logarithm of the fractional error in the approximate series solution for the interior quantity f1;i (Table I), relative to the
exact numerical result, for fixed arbitrary values m ¼ 1, aðtÞ ¼ 1000 and RðtÞ ¼ 10000. (a) k ¼ �1, (b) k ¼ 1.
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In all cases, expanding equation (91) in small quantities
and keeping all terms up to second order, leads to the
expression

f ¼ mr

a3ðtÞ þ
3

2

m2r

a4ðtÞ þ qeðtÞH2
e ðtÞrþ 3

2
ð1þ qeðtÞÞmH2

e ðtÞr
aðtÞ

þ 3k

2

mr

aðtÞR2ðtÞ ; (92)

where qeðtÞ ¼ �H0
eðtÞ=H2

e ðtÞ � 1 is the deceleration pa-
rameter, which currently has a value qeðt0Þ � q0 ��0:55
[24]. One sees that a difference between the spatially flat
and curved backgrounds occurs only in the final term,
which is of second order in small quantities and resembles
a type of gravitational force dependent on both the parti-
cle’s position and the curvature scale of the universe.

Keeping only terms to first order in small quantities, one
finds that in all cases

f � mr

a3ðtÞ þ qeðtÞH2
e ðtÞr: (93)

At the boundary of the object, this is consistent with the
force in the exterior region obtained in [1]. Qualitatively,
we see that the force on an interior particle, given by �f,
comprises an inwards pointing component due to the mass
interior to the particle and an outwards (inwards) pointing
component due to the acceleration (deceleration) of the
background’s expansion.

2. Particle fixed on the object boundary

We now consider the force required to keep a test
particle located on the boundary of the object. Since this
boundary is moving, one obviously cannot use the result
(91), and so we must derive the appropriate expression.

It was shown in [1] that the force per unit mass required
to keep a radially moving test particle in some state of
motion may be written in terms of its rapidity c ð�Þ in the
local tetrad frame as

f̂ ¼ _c ð�Þ þG cosh c ð�Þ þ F sinh c ð�Þ; (94)

where dots denote derivatives with respect to the particle’s

proper time �. Note that we denote this general force f̂, so
as not to confuse it with the specific force f required to
keep a particle at rest. The nonzero components of the
particle’s four-velocity in the coordinate basis are

_t ¼ f1 cosh c ð�Þ; _r ¼ v cosh c ð�Þ þ g1 sinh c ð�Þ:
(95)

A particle fixed to the boundary of the object has
_r ¼ _aðtÞ ¼ a0ðtÞ _t, and so the equations in (95) yield
sinh c ð�Þ ¼ ðcosh c ð�Þ=g1Þðf1a0ðtÞ � vÞ, where g1, v,
and f1 are evaluated at r ¼ aðtÞ. Using cosh 2c ð�Þ �
sinh 2c ð�Þ ¼ 1, one obtains

cosh c ð�Þ ¼ g1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 � x2

q 










r¼aðtÞ
;

sinh c ð�Þ ¼ � xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 � x2

q 










r¼aðtÞ
;

(96)

where x ¼ v� f1a
0ðtÞ. Substituting these expressions into

(94) then leads to a general expression for the force re-
quired to keep a test particle on the object boundary, which
we denote by faðtÞ. Using d=d� ¼ _t@t þ _r@r this may be

written (dropping explicit t dependencies for brevity)

faðtÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21�x2

q �
f1g1

�
xð@tg1þa0@rg1Þ�g1ð@tvþa0@rvÞ

g21�x2

�

þf1g
2
1

�
a0ð@tf1þa0@rf1Þþf1a

00

g21�x2

�
þGg1�Fx

�
;

(97)

where all quantities are calculated at r ¼ aðtÞ. We note
that, as required, in the case of a static boundary, for which
aðtÞ ¼ a, this force reduces to that required to keep an
object at rest, which is given in (91), calculated at the
boundary. We may calculate specific forms for faðtÞ using
either the exterior solutions given in [1], or the interior
solutions derived here and given in Table I.
For a spatially flat background, the force required to

keep a test particle on the boundary of the object is found
to be

ffk¼0g
aðtÞ ¼ m

a2ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

aðtÞ
q : (98)

Unlike the force required to keep a test particle at rest in
the object’s interior, this force is independent of the
acceleration/deceleration qðtÞ of the background expansion.
It is, however, still dependent on the rate of expansion/
contraction through the function aðtÞ. We point out that
the force (98) has the same form as that required to keep a
particle at fixed r in the Schwarzschild geometry exterior to
a static, spherical mass m [2], but with r replaced by
aðtÞ. Interestingly, we found an analogous modification to
Buchdahl’s theorem in Eq. (80). These are perhaps mani-
festations of Birkhoff’s theorem which states that, without
demanding spacetime to be static or stationary, the geometry
outside a general spherically symmetric matter distibution is
the Schwarzschild geometry [23]. Since Birkhoff’s theorem
does not specifically take an expanding background into
account, however, a full investigation into this analogy is
left for future research. For comparison with results for
spatially curved backgrounds given below, we note that
expanding (98) in small quantities within the region m �
r � aðtÞ � 1=HeðtÞ, and keeping all terms up to second
order, gives
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ffk¼0g
aðtÞ � m

a2ðtÞ þ
m2

a3ðtÞ : (99)

For a spatially curved background, although it is difficult
to obtain an analytic expression for the force (97), expand-
ing the expression in small quantities, and keeping all
terms up to second order, one obtains

ffk¼�1g
aðtÞ � m

a2ðtÞ þ
3k

2

m

R2ðtÞ þ
m2

a3ðtÞ : (100)

Compared with the spatially flat case, this expression
contains an extra contribution proportional to m=R2ðtÞ.
This may be interpreted as a type of antigravitational/
gravitational force, for k ¼ �1 and k ¼ 1, respectively,
felt by the test particle if it were dragged out to the
curvature scale of the universe and the central mass were
pointlike.

VII. DISCUSSION AND CONCLUSIONS

In [1] we derived metrics describing the spacetime
around a point mass embedded in each of a spatially flat,
open, and closed expanding universe. In each case, we also
derived the corresponding invariant expression for the
force required to keep a test particle in that spacetime at
rest, i.e. at a fixed physical radial coordinate r relative to
the point mass. In [30], we used these models to investigate
the effects of universal expansion on astrophysical objects,
such as galaxies and galaxy clusters.

In reality, however, astrophysical objects are of finite
spatial extent. In this paper, we therefore extend our pre-
vious work by considering a finite object, modelled as a
spherical ‘‘interior’’ region of uniform density �iðtÞ, em-
bedded in an expanding ‘‘exterior’’ background, also of
uniform density �eðtÞ. In each region we assume a single
‘‘phenomenological’’ fluid that supports pressure, envisaged
to comprise of ordinary gas pressure due to baryonic matter
and an effective pressure from dark matter arising from
phase mixing and relaxation. In general, the object is
dynamic, having a time-dependent boundary aðtÞ, and the
expansion rates of the two regions, expressed in terms of
interior and exterior Hubble parameters HiðtÞ and HeðtÞ,
respectively, can be independent. For a given exterior cos-
mology, one may specify the dynamics of the model by the
choice of the internal Hubble parameterHiðtÞ [together with
the radius a� � aðt�Þ and density �� � �iðt�Þ of the object
at some reference time t ¼ t�]. In principle, HiðtÞ can take
any form (and be positive or negative), since the interplay
between pressure and self-gravity in the object may allow it
to expand or contract at any rate. Our model satisfies the
boundary conditions that the fluid velocity, acceleration, and
pressure are continuous across the object boundary. In par-
ticular, the continuity of the fluid velocity means that matter
does not cross the boundary in either direction.

By making appropriate choices for the parameters in the
interior and exterior regions, our model could be used to
study a wide range of physical systems, beyond simply an

object embedded in the general fluid of the ‘‘expanding
universe.’’ For example, one could use it to model a star in
a galaxy, a galaxy inside a cluster, or a cluster inside a
supercluster. It could even be used to model large-scale
inhomogeneties in the universe. In this context, it may
prove useful in investigating whether local inhomogene-
ities could provide an explanation for the observations of
the acceleration of the universal expansion, without invok-
ing dark energy. This might occur if we, as observers,
reside in an ‘‘interior’’ part of the universe that happens
to be less dense, and therefore expanding faster, than the
region exterior to it. By observing a source in the exterior
region, one would then measure an apparent acceleration
of the universe’s expansion, but this would be only a local
effect. Although the magnitude of such effects are likely to
be small, it is worth investigating this quantitatively, and
we plan to carry this out in a future publication.
In the current work, we first perform a Newtonian analy-

sis of our model system, and derive full analytical solutions
for the various physical parameters describing it, such as
the fluid velocities, densities, and pressures in both the
interior and exterior regions, and the gravitational potential
in each region. We believe that these solutions have not
appeared previously in the literature.
We then undertake a fully general-relativistic analysis of

our model, employing a tetrad-based procedure for general
spherically symmetric systems. We first, however, use this
approach to derive a generalized form of the Oppenheimer-
Volkov equation, which applies to general dynamical
spherical systems and is of interest in its own right. We
show that in the special case of a static spherical system,
our equation reduces to the standard Oppenheimer-Volkov
equation. In the subsequent general-relativistic analysis of
our model, we obtain analytical solutions for most of the
relevant quantities defining the line element in the interior
and exterior regions, respectively. Some quantities cannot
be found analytically, however, so we give the correspond-
ing differential equations that must be integrated numeri-
cally to obtain them.
We investigate two interesting special cases of our model:

an object with a static boundary, HiðtÞ ¼ 0; and an object
whose internal Hubble parameter matches that of the back-
ground,HiðtÞ ¼ HeðtÞ. In the first case, we find that the total
energy (mass)M of the object must remain constant, but its
excess mass mðtÞ (i.e. that in addition to what would be
present due to the background alone) is still time dependent.
We focus particularly on calculating the form of the radial
pressure profile in both the interior and exterior regions. Our
second special case corresponds to an object with constant
excess mass m, but time-dependent total energy (mass)
MðaðtÞ; tÞ, and so is complementary to our first case. We
concentrate on deriving forms for the spacetime metric in
the two regions, in the case of a spatially flat, open, and
closed background, respectively. In the exterior region, we
recover the solutions obtained in [1]. In the interior region,
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we find an analytical form for the metric in the case of a
spatially flat background. We show that this metric is, in
fact, equivalent to that previously derived by Nolan [28] in
isotropic and comoving coordinates. For the spatially curved
backgrounds, the coefficients in the interior metric contain a
function expressible only as an elliptic integral. In these
cases, we therefore obtain approximate series solutions for
the metric coefficients. For all three background geometries,
we also obtain expressions for the force required to keep a
test particle at rest (i.e. with fixed physical coordinate r) in
the interior of the object, and that required to keep a test
particle on the moving boundary r ¼ aðtÞ of the object. In
the spatially flat case, the latter force takes on the same form
as that required to keep a test particle at rest in the
Schwarzschild geometry outside a static mass m, but with
r ! aðtÞ. This modification mirrors a similar modification
found to Buchdahl’s theorem in Sec. VI, which may be a
manifestation of Birkhoff’s theorem. This topic is worthy of
further consideration.

It is worth mentioning a recent relevant publication by
Zhang and Yi [22]. In this work the authors highlight that,
for a model which has both an interior and an exterior
region, contrary to popular belief, the exterior spacetime
does have an effect on the interior. Not including this effect
is common, but incorrect, and arises from a misunderstand-
ing of Birkhoff’s theorem. Our work provides an elegant
demonstration of this fact. By dealing with the interior
and exterior regions simultaneously in our analyses, and
ensuring that physical quantities match at the boundary
of the object, we have seen that exterior parameters do
indeed appear in our interior expressions. For example, the
rate of expansion of the boundary of an object a0ðtÞ is in
general determined by both HiðtÞ and HeðtÞ, as is evident
from Eq. (48).

Finally, we must mention that our model has some
obvious oversimplifications, most notably the assumption
of uniform density in both the interior and exterior regions.
In principle, our approach could be extended to accommo-
date a general radial density profile, which would also
obviate the need to consider two separate regions. In
particular, it would be of interest to investigate the evolu-
tion of an object described by a more realistic density
profile for, say, a cluster of galaxies. Such considerations
are left for future research.
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APPENDIX A: GENERALIZED OPPENHEIMER-
VOLKOV EQUATION FOR A POINT MASS

IN AN EXPANDING UNIVERSE

We illustrate here the use of our generalized
Oppenheimer-Volkov equation (33) by applying it to the

special case of a point mass in a homogeneous and iso-
tropic expanding universe, as studied in [1].
For a point mass, one has M ¼ 4

3��eðtÞr3 þm and we

found in [1] that v ¼ rHeðtÞ. Using the exterior cosmo-
logical equations (44)–(46), it can be shown that the
generalized Oppenheimer-Volkov equation (33) for this
system is

@rpe ¼ � �eðtÞ þ pe

r
�
1� 2m

r � kr2

R2ðtÞ
	 �m

r
þ

�
pe � p1ðtÞ
�e þ p1ðtÞ

�
kr2

R2ðtÞ
�
;

(A1)

where the purely time-dependent pressure p1ðtÞ corre-
sponds to the external cosmological fluid. This result, valid
for general k, was not previously published. Although it
cannot be integrated analytically for general k, in the
spatially flat case (k ¼ 0) it yields the analytical result

pe ¼ �eðtÞ
2
41þ w1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q � 1

3
5; (A2)

where w1 � p1ðtÞ=�eðtÞ is the equation-of-state parame-
ter for the cosmological fluid, which is time independent
for standard fluids such as dust (w1 ¼ 0) and radiation
(w1 ¼ 1

3 ). Indeed, the above expression agrees with the

result obtained in equation (22) in [1].

APPENDIX B: RELATIVISTIC JUNCTION
CONDITIONS AT THE OBJECT BOUNDARY

The line element describing our spherically symmetric
system has the form given in (23). The three-dimensional
timelike hypersurface traced out by the (in general) mov-
ing spherical boundary of the object is defined by�ðt; rÞ �
r� aðtÞ ¼ 0. The unit (spacelike) normal to �, pointing
from the interior to the exterior region, is easily found to
have the covariant components

½n̂	� ¼ ½�a0ðtÞ; 1; 0; 0�
jf21a0ðtÞ2 � 2f1g1a

0ðtÞ þ g22 � g21j1=2
; (B1)

from which one may readily verify that n̂	n̂
	 ¼ �1.

The first Israel junction condition requires continuity of
the induced metric on �, which is given by

h�� ¼ g�� þ n̂�n̂�; (B2)

where g�� can be read off from (23). In addition, h�� acts

as a projection tensor onto the hypersurface �. One sees
immediately that, for the induced metric to be continuous
at the object boundary, one requires the tetrad components
f1, g1, and g2 all to be continuous there, which thus
constitute our first set of boundary conditions.
In the analysis of our model system presented in Sec. IV,

one finds that continuity of f1 and g2 at the boundary
implies that the object radius changes according to LtaðtÞ ¼
aðtÞHiðtÞ, which is equivalent to a0ðtÞ ¼ ½g2=f1�b, where
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the right-hand side is evaluated at the boundary. Thus, on the
hypersurface �, one may write a0ðtÞ ¼ g2=f1 so that the
expression (B1) for the unit normal simplifies to

½n̂	� ¼ 1

g1
½�g2=f1; 1; 0; 0�; (B3)

where we have also used the fact that g1 may always be
taken as positive. Moreover, the contravariant components
of the unit normal have the simple form

½n̂	� ¼ ½0;�g1; 0; 0�: (B4)

The second Israel junction condition requires continuity
of the extrinsic curvature of �, which is given (up to a sign
ambiguity) by

K	
 ¼ h	
�h


�r�n̂� ¼ h	
�r�n̂


¼ r	n̂
 þ n̂	n̂
�r�n̂
; (B5)

where we have used (B2) and the fact that n�n� ¼ �1.

Using the expressions (B3) and (B4) for the components of
the unit normal, the extrinsic curvature thus has the simple
form

K	
 ¼ @	n̂
 � g1n̂	@rn̂
 þ 1

g1

�
g2
f1

�0
	
 � �1

	


�

� n̂	

�
g2
f1

�0
1
 � �1

1


�
: (B6)

Substituting for the components of the unit normal
using the expressions (B3) and (B4), and calculating the
necessary connection coefficients of the line element (23),
after a lengthy, but straightforward, calculation, one
finds that the only nonzero components of the extrinsic
curvature are

K00 ¼ g42 � g41 þ g21g
2
2

f31g1g
2
2

@rf1; K22 ¼ g1r;

K33 ¼ g1rsin
2�:

(B7)

Since the first Israel junction condition requires f1, g1, and
g2 all to be continuous at the object boundary, then the
second junction condition requires only that, in addition,
@rf1 is continuous there.
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[15] K. Bolejko and M.-N. Célérier, Phys. Rev. D 82, 103510

(2010).

[16] G. Beneand and A. Csapo, arXiv:1002.4610.
[17] K. Kainulainen and V. Marra, Phys. Rev. D 80, 127301

(2009).
[18] J. R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55, 374

(1939).
[19] D. Winter, J. Math. Phys. (N.Y.) 41, 5582 (2000).
[20] W. Israel, Nuovo Cimento B 44, 1 (1966).
[21] W. Israel, Nuovo Cimento B 48, 463 (1967).
[22] S.-N. Zhangand and S. Yi, Int. J. Mod. Phys. Conf. Ser. 12,

419 (2012).
[23] M. P. Hobson, G. Efstathiou, and A.N. Lasenby, General

Relativity: An Introduction for Physicists (Cambridge
University Press, New York, 2006).

[24] D. Larson et al., Astrophys. J. 192, 16 (2011).
[25] J. Pain, G. Dejonghe, and T. Blenski, arXiv:1111.3345v1.
[26] G. C. McVittie, Mon. Not. R. Astron. Soc. 93, 325 (1933).
[27] G. C. McVittie, General Relativity and Cosmology, The

International Astrophysics Series (Chapman & Hall,
London, 1956), Vol. 4.

[28] B. C. Nolan, J. Math. Phys. (N.Y.) 34, 178 (1993).
[29] V. Faraoni, A. F. Zambrano Moreno, and R. Nandra, Phys.

Rev. D 85, 083526 (2012).
[30] R. Nandra, A. N. Lasenby, and M. P. Hobson, Mon. Not. R.

Astron. Soc. 422, 2945 (2012).

DYNAMICS OF A SPHERICAL OBJECT OF UNIFORM . . . PHYSICAL REVIEW D 88, 044041 (2013)

044041-21

http://dx.doi.org/10.1111/j.1365-2966.2012.20618.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20618.x
http://dx.doi.org/10.1098/rsta.1998.0178
http://dx.doi.org/10.1098/rsta.1998.0178
http://dx.doi.org/10.1073/pnas.20.3.169
http://dx.doi.org/10.1046/j.1365-8711.1999.02163.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02163.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02164.x
http://dx.doi.org/10.1103/PhysRevD.74.084013
http://arXiv.org/abs/1203.2814
http://dx.doi.org/10.1051/0004-6361/201219104
http://dx.doi.org/10.1103/PhysRevD.82.103510
http://dx.doi.org/10.1103/PhysRevD.82.103510
http://arXiv.org/abs/1002.4610
http://dx.doi.org/10.1103/PhysRevD.80.127301
http://dx.doi.org/10.1103/PhysRevD.80.127301
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1063/1.533427
http://dx.doi.org/10.1007/BF02710419
http://dx.doi.org/10.1007/BF02712210
http://dx.doi.org/10.1142/S2010194512006642
http://dx.doi.org/10.1142/S2010194512006642
http://dx.doi.org/10.1088/0067-0049/192/2/16
http://arXiv.org/abs/1111.3345v1
http://dx.doi.org/10.1063/1.530399
http://dx.doi.org/10.1103/PhysRevD.85.083526
http://dx.doi.org/10.1103/PhysRevD.85.083526
http://dx.doi.org/10.1111/j.1365-2966.2012.20617.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20617.x

