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We show that the higher order gravity model proposed by Meissner and Olechowski has a graviton

mode, a massive spin-two excitation, and no scalar mode in a maximally symmetric spacetime; therefore,

by choosing the coefficients, we can construct a Lagrangian for ‘‘critical gravity’’ from higher order terms

of curvatures in higher dimensions. We also give a comment on construction of the theory with

multicriticality in higher order gravities.
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I. INTRODUCTION

Effective theory of gravity may contain higher-
derivative terms in its Lagrangian density, in addition to
the Einstein-Hilbert term. The correction of the gravita-
tional Lagrangian is motivated from studies on quantum
theory of gravitation and string theory. Some special forms
of higher order terms attract much attention nowadays.

InD-dimensional Lovelock gravity, whose Lagrangian is
written in the dimensionally continued Euler densities [1–9],
the second derivative of the metric tensor disappears in the
action. The excitation mode in the Lovelock gravity is only a
(traceless, transverse) graviton mode in the D-dimensional
Einstein background metric, as has recently been shown by
Camanho, Edelstein, and Paulos [10], Camanho and
Edelstein [11], and Şişman, Güllü, and Tekin [12].

On the other hand, Meissner and Olechowski have found
the particular higher order invariants of the Ricci tensors
and scalar curvatures which effectively coincide with the
dimensionally continued Euler form if the spacetime is
conformally flat [13,14]. Therefore, gravity theory gov-
erned by the Lagrangian constructed from a linear combi-
nation of such invariants has no scalar modes as the
Einstein gravity.

In new massive gravity in three dimensions [15,16] and
critical gravity theory recently proposed in [17–22], scalar
modes are absent from the particle content of the theory. In
the present paper, we generalize the structure of the
Lagrangian of the critical gravity to models with higher
order terms in curvature tensors inD dimensions. We show
that such an extension can be attained by use of the
curvature polynomials introduced by Meissner and
Olechowski.

The outline of this paper is as follows. In Sec. II,
we construct the higher order term in curvatures by

generalizing that in the Lagrangian of the critical gravity.
In Sec. III, the metric fluctuation on a maximally symmet-
ric spacetime is analyzed in the special class of higher
order gravity. We propose an extension of the critical
gravity to more higher-derivative theory in Sec. IV. The
final section is devoted to the conclusion, where a further
prospect is also addressed.

II. LOVELOCK AND MEISSNER-OLECHOWSKI
GRAVITY

We shall begin by introducing the dimensionally con-
tinued Euler density:

LðnÞ
L ¼ 2�n��1�1����n�n

�1�1����n�n
R�1�1

�1�1 � � �R�n�n
�n�n ; (2.1)

where R��
�	 is the Riemann tensor and the generalized

Kronecker delta is defined as
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One should note that

�
��1�2����p
��1�2����p

¼ ðD� pÞ��1�2����p
�1�2����p

; (2.3)

where D denotes the dimension of the spacetime, namely,
all the indices take�; �; . . . ¼ 0; 1; . . . ; D� 1. The dimen-

sionally continued Euler density LðnÞ
L consists of nth order

in the curvature tensors. For example, for n ¼ 1, we find
the Einstein-Hilbert term

Lð1Þ
L ¼ R; (2.4)

where R is the scalar curvature, and for n ¼ 2, we find the
Gauss-Bonnet term

Lð2Þ
L ¼ R����R

���� � 4R��R
�� þ R2; (2.5)
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where R�� is the Ricci tensor. The Lovelock gravity is

described by the Lagrangian density of a linear combina-
tion of the dimensionally continued Euler forms [2–4,6–9].

Next, we consider the Schouten tensor (in our definition,
which is different from the original definition by a factor
ðD� 2Þ�1,) which is known as

S�� ¼ R�� � 1

2ðD� 1ÞRg
��: (2.6)

The nth order Meissner-Olechowski density is defined here
by using the Schouten tensor and the generalized
Kronecker delta as [13,14,23]

LðnÞ
MO ¼ ��

�1����n
�1����n

S�1
�1 � � �S�n�n : (2.7)

In the present paper, we call the theory governed by the
Lagrangian density of a linear combination of this type as
the Meissner-Olechowski gravity.

Particularly, for n ¼ 2, we find the following quadratic
combination in curvatures:

Lð2Þ
MO ¼

�
R�� � 1

2ðD� 1ÞRg
��

��
R�� � 1

2
Rg��

�

¼ R��R
�� � D

4ðD� 1ÞR
2: (2.8)

This scalar invariant is adopted in the argument on critical
gravities in three and four dimensions [15–22]. Thus, the
Meissner-Olechowski gravity is a possible candidate for an
extension of the critical gravity.

III. ANALYSIS ON METRIC FLUCTUATION

We consider perturbative metric fluctuation around a
static, curved background in this section. One should find
the linearized gravitational field equation in order to iden-
tify the particle content in the theory. Assuming that the
metric is divided into the background and fluctuation, we
write

g�� ¼ �g�� þ h��: (3.1)

The indices are raised and lowered by the background
metric �g. Then the trace of the fluctuation is expressed as

h � �g��h��: (3.2)

The following expansions to the quadratic order in h��

are generally known [24]:

Z
dDx

ffiffiffiffiffiffiffi�g
p ¼

Z
dDx

ffiffiffiffiffiffiffi� �g
p �

1þ 1

2
hþ 1

8
ðh2 � 2h��h��Þ

þOðh3Þ
�
; (3.3)
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�
; (3.4)

where �R����, �R��, and �R are the Riemann tensor, the Ricci

tensor, and the scalar curvature derived only from the
background metric �g��.

Now, we consider a D-dimensional maximally symmet-
ric spacetime as the background. Then, the Riemann tensor
can be written as

�R��
�	 ¼ �ð��

���
	 � �

�
	�

�
�Þ; (3.5)

where � is a constant. This background geometry is the
solution of the Einstein equation obtained by varying the
action

S0ð�Þ ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p ½R� ðD� 1ÞðD� 2Þ��: (3.6)

The Riemann tensor, the Ricci tensor, and the scalar
curvature are written to the first order in h�� as

R��
�	 ¼ �R��

�	 þR��
�	 þOðh2Þ;

R�
� ¼ �R�

� þR�
� þOðh2Þ;

R ¼ �RþRþOðh2Þ
(3.7)

[here and hereafter, the abbreviation such that OðhÞ ¼
Oðh��Þ is used], where

R��
�	 ¼ � 1

2
�ð��

�h�	 � �
�
	h

�
� � ��

�h
�
	 þ ��

	h
�
� Þ

þ 1

2
ð� �r�

�r�h�	 þ �r�
�r�h

�
	 þ �r	

�r�h��

� �r	
�r�h�� Þ; (3.8)

R�
� ¼ �ðh�� � ��

�hÞ þ 1

2
ð� �r2h�� � �r�

�r�h

þ �r� �r�h
�
� þ �r�

�r�h
��Þ; (3.9)

R ¼ �ðD� 1Þ�hþ �r�
�r�h

�� � �r2h: (3.10)

The Schouten tensor introduced in the previous section
is also expanded by the order of h�� around the back-

ground. We define the fluctuated part of the Schouten
tensor as
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S��
� � S�� � �S�� ¼ R�

� � 1

2ðD� 1ÞR�
�
� �D� 2

2
���

�

¼ R�
� � 1

2ðD� 1ÞR��
� þOðh2Þ; (3.11)

where the barred quantities indicates that it is estimated in
the background metric, or, the quantity inOðh0Þ. Using this
tensor instead of the ‘‘whole’’ Schouten tensor, we find that
the second order Meissner-Olechowski density becomes

Lð2Þ
MO� � ���	

��S��
�S�	

�

¼
�
R
�
� � 1

2ðD� 1ÞR�
�
� �D� 2

2
��

�
�

��
R�
� � 1

2
R��

� þ ðD� 1ÞðD� 2Þ
2

���
�

�

¼ Lð2Þ
MO þ ðD� 2Þ2

2
�R�DðD� 1ÞðD� 2Þ2

4
�2: (3.12)

On the other hand, since S��
� is obviously of linear and higher order in h��, it is clear that

Lð2Þ
MO� ¼ R�

�R�
� � D

4ðD� 1ÞR
2 þOðh3Þ; (3.13)

i.e., R�
�R�

� � D
4ðD�1ÞR

2 is the quantity of Oðh2Þ. The explicit calculation using (3.9) and (3.10) yields

R�
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2’�2

�
h
�
�h��þðD�2Þh2�1

4
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4
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�
� �ðD�1Þ�h��
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�
�

þD

2
�h �r�

�r�h
��þ1

4

�
h��

�r2 �r2h
�
� �ð �r�

�r�h
��Þ2� 1

D�1
ð �r�

�r�h
��� �r2hÞ2

�ð �r� �r�h
�
�� �r�

�r�h
��Þ2

�
; (3.14)

where ‘‘’’’ denotes the equality up to the total derivatives.
Now, let us suppose the action

S ¼ S0ð�Þ þ �
Z

dDx
ffiffiffiffiffiffiffi�g

p
Lð2Þ
MO�: (3.15)

We can analyze the linearized equation of motion for h�� by taking the variation of the action up to Oðh2Þ. Applying the
following gauge choice

�r�h
�� � �r�h ¼ 0; (3.16)

one can find the trace of the equation of motion derived from the action (3.15) leads to

h ¼ 0: (3.17)

Therefore we get the following on-shell equation of motion for the metric fluctuation, which is transverse and traceless
( �r�h

�� ¼ h ¼ 0), on the maximally symmetric spacetime:

�ð �r2 � 2�Þ
�
�r2 � 2�þ 1

�

�
h�� ¼ 0: (3.18)

Note that the action (3.15) can be rewritten as

S0ð�Þ þ �
Z

dDx
ffiffiffiffiffiffiffi�g

p
Lð2Þ
MO� ¼

Z
dDx

ffiffiffiffiffiffiffi�g
p ��

1þ ðD� 2Þ2
2

��

�
R

� ðD� 1ÞðD� 2Þ �
�
1þDðD� 2Þ

4
��

�
�þ �Lð2Þ

MO

�
; (3.19)

and this is just the action considered in the original literature of critical gravity, after rescaling the Newton and
cosmological constants.

Equation (3.18) indicates that there are two tensor excitation modes in general cases [17–22]. Furthermore, one can find

that the critical point exists at � ! 1, or equivalently, when the action then becomes
R
dDx

ffiffiffiffiffiffiffi�g
p

Lð2Þ
MO�. At this point, a
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single graviton excitation appears but it exists as a log mode [25–27].1 The argument so far is not a new one but a lightning
review of critical gravity. We turn to generalize the construction of critical gravity by using higher order terms in
curvatures. We consider the following higher order scalar invariants:

Lðnþ2Þ
MO� � ��

�1����n�	
�1����n�� S�1

�1 � � �S�n
�nS��

�S�	
�

¼ ��
�1����n�	
�1����n��

�
�R�1
�1 �

1

2ðD� 1Þ
�Rg�1

�1

�
� � �

�
�R�n
�n �

1

2ðD� 1Þ
�Rg�n

�n

�
S��

�S�	
� þOðh3Þ

¼ �ðD� 2ÞðD� 3Þ � � � ðD� n� 1Þ
�
D� 2

2
�

�
n
��	
��S��

�S�	
� þOðh3Þ

¼ ðD� 2ÞðD� 3Þ � � � ðD� n� 1Þ
�
D� 2

2
�

�
n
Lð2Þ
MO� þOðh3Þ

¼ ðD� 2Þ!
ðD� n� 2Þ!

�
D� 2

2
�

�
n
�
R�

�R�
� � D

4ðD� 1ÞR
2

�
þOðh3Þ: (3.20)

Thus, this is trivially of Oðh2Þ. On the other hand, we find the equality:

Lðnþ2Þ
MO � ¼ ��

�1����n�	
�1����n�� S�1

�1 � � �S�n
�nS��

�S�	
�

¼ Lðnþ2Þ
MO � ðD� n� 1ÞðD� 2Þ�Lðnþ1Þ

MO þ ðD� nÞðD� n� 1Þ
�
D� 2

2

�
2
�2LðnÞ

MO: (3.21)

From (3.12) and (3.21), since Lð1Þ
MO / R contains at most second derivatives of h�� and Lð2Þ

MO contains at most fourth-order

derivatives, we find that all LðnÞ
MO ðn � 2Þ contains at most a fourth-order derivative of the metric fluctuation on the

maximally symmetric geometry.2 Moreover, because Eq. (3.20) shows that LðnÞ
MO� ðn � 2Þ is proportional to Lð2Þ

MO�, the

equation of motion can be reduced to the form similar to (3.18).
Solving the recursion relation (3.21) with Eq. (3.12), we obtain

LðnÞ
MO ¼ ðD� 2Þ!

ðD� nÞ!
�
D� 2

2

�
n
�
�DðD� 1Þ�n � n�n�1

�
D� 2

2
�h��h

�� þ 1

4
h��

�r2h��

�

þ nðn� 1Þ
2

�n�2

�
�2h��h

�� ��h��
�r2h�� þ 1

4
h��

�r2 �r2h��

��
; (3.22)

where unphysical modes are discarded, and when the background geometry, as a solution of the equation of motion, is
expressed by (3.5).

To summarize, the particle content of the Meissner and Olechowski gravity governed by the action

S ¼ S0ð�0Þ þ
Z

dDx
ffiffiffiffiffiffiffi�g

p XD
n¼2

�0
nL

ðnÞ
MO; (3.23)

includes two transverse traceless modes only, if �0 is chosen so that the classical background solution arises as
�R��

�	 ¼ �ð��
���

	 � ��
	�

�
�Þ.3

In particular,

Scrit ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p XD
n¼2

�nL
ðnÞ
MO� (3.24)

1The first work on the log mode, in topologically massive gravity in three dimensions, was done by Grumiller and Johansson [28].
For a recent review, see Ref. [29].

2If we define Lð1Þ
MO ¼ � D�2

2ðD�1ÞR and Lð0Þ
MO ¼ �1, Eq. (3.21) holds for n � 0.

3If we introduce an auxiliary field s��, L
ðnÞ
MO can be replaced by��

�1����n
�1����n

s�1�1
���s�n

�n
�n�

�1����n�1�
�1����n�1� s�1

�1
���s�n�1

�n�1
ðR�

�� 1
2ðD�1ÞR�

�
��s��Þ.
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yields the critical gravity.4 Therefore this is an extension of
the critical gravity to a higher order Lagrangian. It is
important to note that since the generalized Kronecker
delta is restricted by the number of dimensions, the
Lagrangian (3.23) is at most Dth order in the curvatures.

IV. COMMENT ON MORE HIGHER ORDER
GRAVITYAND MULTICRITICAL GRAVITY

The order of the Meissner and Olechowski gravity is
limited by the number of dimensions, i.e., it is valid for
n � D. As is obvious at a glance, the Lagrangian density

consisting of combinations of the type fðR����ÞLð2Þ
MO� may

lead to the critical gravity. Note, however, that it is very
complicated to find the background metric, as the solution
of the equation of motion derived from such a general class
of a higher order Lagrangian. Here, we wish to find higher
order, symmetric invariants of curvature tensors by system-
atic construction.

One should have noticed the beautiful symmetry
implemented in the Lovelock gravity. According to
Refs. [10–12], the Lovelock gravity on a maximally sym-
metric spacetime contains a single graviton mode just as in
the Einstein gravity. Therefore we find that the Lovelock
tensor

GðnÞ�
��� 1ffiffiffiffiffiffiffi�g

p �ðRdDx ffiffiffiffiffiffiffi�g
p

LðnÞ
L Þ

�g��
g��

¼�2�ðnþ1Þ���1�1����n�n
��1�1����n�n

R�1�1
�1�1 ���R�n�n

�n�n (4.1)

is expanded in terms of the metric fluctuation h�� on the

background spacetime, where the Riemann tensor is given
by (3.5), as

GðmÞ�
� � �GðmÞ�

� / R�
� � 1

2
R��

� þOðh2Þ: (4.2)

We naturally define an extension of the Schouten tensor as

S
��
ðmÞ � GðmÞ�� � 1

D� 1
GðmÞg��; (4.3)

where GðnÞ � GðnÞ�
�. Then the following relation is

obvious:

SðmÞ�
� � �SðmÞ�

� / R�
� � 1

2ðD� 1ÞR�
�
� þOðh2Þ: (4.4)

It is now evident by the same argument in the previous
section that the Lagrangian density consisting of a certain
linear combination of the following terms

Lðn�mÞ
MO ¼ ���1����n

�1����n
SðmÞ�1

�1 � � � SðmÞ�n

�n (4.5)

leads to a model of critical gravity.5

The gravity theory with multicritical points, or dubbed
‘‘polycritical’’ gravity, has been proposed in Refs. [30–34].
In the theory, the analysis on the equation of motion for the
metric fluctuation reveals that there is no scalar mode
and three or more spin-two excitations, due to the higher
derivatives, than the sixth order. The generalization of
the construction in Refs. [30–34] to the higher order
gravity can be obtained by taking the following iterative
consideration.
To obtain the equation of motion with sixth-order

derivatives for the metric fluctuation, we adopt the
Lagrangian density

LB ¼ KðnÞ�������G
ðmÞ��; (4.6)

where

KðnÞ�� � � 1ffiffiffiffiffiffiffi�g
p �

R
dDx

ffiffiffiffiffiffiffi�g
p

LðnÞ
MO

�g��

; (4.7)

and

����� � 1

2
ðg��g�� þ g��g��Þ � 1

D� 1
g��g��: (4.8)

Similarly, the eighth-order differential equation for h�� is

derived from

LB ¼ KðnÞ�������K
ðmÞ��: (4.9)

To get more higher derivatives on the metric fluctuation,
we repeat the iteration

LN ¼ � 1ffiffiffiffiffiffiffi�g
p �

R
dDx

ffiffiffiffiffiffiffi�g
p

LB

�g��

�����G
ðmÞ��; (4.10)

or

LNN ¼ � 1ffiffiffiffiffiffiffi�g
p �

R
dDx

ffiffiffiffiffiffiffi�g
p

LB

�g��

�����K
ðmÞ��; (4.11)

and obtain the Lagrangian which yields a higher order
differential equation for the metric fluctuation. It has
been explicitly confirmed that there is no scalar mode in
the theory governed by these types of the Lagrangian
density by using conformally flat metrics in Ref. [23].
Therefore a certain linear combination of these terms
yields polycritical gravity, though the critical relation
among the coefficients is not pursued here.
Finally, it is interesting to point out that these candidate

Lagrangians have a form very akin to the Lagrangian with

4It is easily shown that the background (3.5) is the solution of
the equation of motion derived from (3.24), by doing the explicit
calculation as in Ref. [23].

5We should note that the auxiliary field method [15,16,26] also
leads to the term which can be used in critical higher order
gravity, such as �sðnÞ

��GðmÞ
�� � sðmÞ

��GðnÞ
�� þ s

��
ðnÞ sðmÞ�� �

sðnÞ�
�sðmÞ�

�, where s
��
ðmÞ and s

��
ðnÞ are auxiliary fields.
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the ‘‘detailed balance condition’’ of the Hořava-Lifshitz
gravity [35].

V. SUMMARYAND CONCLUSION

In the present paper, we have studied certain models with
higher order terms in curvatures, in which excitation modes
are similar to ones in critical gravity. We have confirmed
that the Lagrangian consisting of the Meissner-Olechowski
densities yields the higher-derivative gravity without scalar

modes and have found that the peculiar combination LðnÞ
MO�

leads to the critical gravity with the fourth-order derivatives
on the tensor mode. We have also given a discussion on the
possible construction of terms which can be utilized in
multicritical gravity.

In general, higher order gravity possesses many solu-
tions. For an interesting example, the Lagrangian consist-
ing of a single Meissner-Olechowski density,R
dDx

ffiffiffiffiffiffiffi�g
p

LðnÞ
MO�, admits two distinct solutions, in which

the curvatures are �R��
�	 ¼ �ð��

���
	 � ��

��
�
	Þ and

�R��
�	 ¼ D�2n

D�2n�4�ð��
���

	 � ��
��

�
	Þ. Of course, a fluctua-

tion mode on the latter background becomes massive and
the theory on it is not critical gravity. The study of possible
vacuum transition by using the massless, massive, and log
modes on the vacua seems to be interesting, since the
investigation may give a novel cosmological evolution.

An extension of the Randall-Sundrummodels [36,37], in
which the spacetime is asymptotically anti-de Sitter geome-
try, can be considered by connecting the model with higher
order gravity. In a general higher order gravity, however, a

thin brane requires more singularity than a usual delta

function source, because of the existence of higher deriva-

tives on the metric fluctuation. Only the Lovelock gravity

has been applied to the Randall-Sundrummodels thus far. A

possibility of higher order generalization is that one use two

or more Meissner-Olechowski densities for the gravita-

tional Lagrangian, in order to cancel the fourth-order de-

rivative (thus this construction no longer leads to critical

gravity). Another possibility is to consider thick branes

[38,39]. Also in this case, the scalar field configuration

coupled to higher order gravity naturally leads to many

vacua. Therefore, the study of thick wall in the cosmologi-

cal context is also an interesting subject.
Because the Meissner-Olechowski gravity model does

not contain the Riemann tensors, the supersymmetrization

of the model is expected to be easy at an on-shell condition

in a perturbative approach. By the same reason, quantum

correction in the naive sense may also be easy to handle in

the model. Also, some compactifications and black hole

solutions in the Meissner-Olechowski gravity are interest-

ing and worth studying in asymptotically anti-de Sitter

spacetimes. We shall return to these various aspects of

the Meissner-Olechowski gravity in future work.
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