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We investigate the global structure of a recently discovered simple exact, nonstationary solution of

topologically massive and new massive gravity with the asymptotic charges of an undeformed Bañados-

Teitelboim-Zanelli black hole. We establish the existence of a timelike singularity in the causal structure

of the spacetime even in the absence of angular momentum. The dynamical trapping and event horizons

are determined, and we investigate the evolution of the outer horizon showing that it may increase or

decrease with time, depending on the value of the mass parameter. Finally, we test two proposals for

dynamical entropy on this solution, one of them depending on the Kodama vector. In addition we show

that the Kodama vector leads to the correct entropy for all stationary black holes in 2þ 1 dimensions.
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I. INTRODUCTION

Exact dynamical black hole solutions in general
relativity are notoriously hard to find. Known examples
in four dimensions include the Oppenheimer-Snyder and
the Vaidya solution (see e.g. [1,2]) while dynamical black
holes in three dimensions have been previously studied for
example in [3–5]. Einstein gravity in three dimensions with
a negative cosmological constant is perhaps the simplest
theory of gravity allowing for genuine black hole solutions.
All classical solutions in this theory are locally equivalent
to three-dimensional anti–de Sitter (AdS) space. The so-
called Bañados-Teitelboim-Zanelli (BTZ) black hole is
obtained as a discrete quotient [6,7] (see e.g. [8,9] for a
review). Of course in this theory there is no propagating
graviton. This, however, can be remedied by adding
a higher derivative term to the action as was done in
topologically massive gravity (short TMG), where a gravi-
tational Chern-Simons-Term was added to the Einstein-
Hilbert action [10,11]. A similar thing was later done in
new massive gravity (short NMG, see [12,13]).

Linear stability of the BTZ black hole has been
established in [14] and its quasinormal mode spectrum in
TMG was determined in [15]. Recently it was found,
however, that away from the chiral point some of the
linearized modes give rise to new exact nonstationary
solutions to the TMG equations of motion with asymptotic
charges equal to those of nonrotating BTZ black holes [16].

In this article we provide a detailed description of the
global structure of the resulting spacetime. We explicitly
determine its trapping and event horizons; in particular, we
show that the perturbed spacetime develops an inner hori-
zon and that the formerly spacelike singularity of the BTZ
black hole is timelike. This may come as a surprise given
the fact that the global charges are those of a nonrotating

BTZ black hole [16] but is, of course, not in contradiction

with Birkhoff’s theorem. Still it is an interesting example

of new phenomena that can arise once stationarity is

abandoned.

While the dynamical solution at hand was originally

found to be a solution to TMG, we will show that it also

solves the equations of motion of NMG for suitably

chosen parameters. This means, in particular, that we

can apply a previously proposed definition for a dynami-

cal entropy based on the dynamics of trapping horizons

[17–19]. To do so, however, we have to revisit the defi-

nition of the Kodama vector for black holes in 2þ 1
dimensions. As a by-product we show that the Kodama

vector gives rise to the correct expression for the entropy

for all stationary (i.e. including rotating) black holes in

2þ 1 dimensions for NMG as well as generalizations

thereof. The outcome of this procedure outlined below,

however, leads to results in apparent contradiction with

the second law and physical intuition when applied to

such dynamical black holes.
The paper is organized as follows: In Sec. II we will

discuss the dynamical black hole metric presented in [16],
in particular, its event and trapping horizons. We will also
show that this metric is a solution of NMG. In Sec. III we
will define the Kodama vector and elaborate on Hayward’s
approach to dynamical black hole entropy. We will apply
this approach to the dynamical black holes in Sec. IV and

to the general stationary (2þ 1)-dimensional black hole in
Sec. V. We end with a conclusion in Sec. VI. In Appendix A
we will review the action of NMG and its properties such as
unitarity, while in Appendix B we apply the definition of
dynamical black hole entropy proposed by Iyer and Wald
[20] to the dynamical black holes in the framework of
TMG. In the entire work, we will use units in which
ℏ ¼ c ¼ k ¼ 1 and the convention that spacetime indices
in d dimensions take values �, � in f0; 1; . . . ; d� 1g.
We will also use GN ¼ 1=8 if not stated otherwise.
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II. DYNAMICAL BLACK HOLES IN
THREE DIMENSIONS

To fix the notation let us first recall the line element
of the nonrotating BTZ black hole with M ¼ 1 and l ¼ 1
(i.e. � ¼ �1) [6,7] which reads

ds2 ¼ �g��dx
�dx�

¼ �sinh2ð�Þdt2 þ cosh2ð�Þd�2 þ d�2:

Both in TMG and NMG the linearized gravitational
perturbations are given by the solutions of an equation
D�

�h�� ¼ 0 [21–24], subject to suitable boundary

conditions [25]. They can be classified in terms of highest
weight representation of the slð2; RÞ � slð2; RÞ isometry
of AdS3.

A. The metric

In [16] it was observed that adding a highest weight
perturbation to the BTZ metric, i.e.

g�� ¼
�sinh 2ð�Þ 0 0

0 cosh 2ð�Þ 0

0 0 1

0BB@
1CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ �g��

þ ðet sinh�Þ1þ�

1 1 2
sinh ð2�Þ

1 1 2
sinh ð2�Þ

2
sinh ð2�Þ

2
sinh ð2�Þ

4
sinh 2ð2�Þ

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�h��

; (1)

yields a solution to the full nonlinear vacuum equations
of motion of TMG, G�� þ 1

�C�� ¼ 0 with G�� � R�� �
1
2 g��Rþ�g��, the Cotton tensor C�� and the mass pa-

rameter �. Here, h�� is a metric that was first constructed

as a solution to the linearized equations on motion of TMG
in [14,15]. It should be noted that in the coordinate system
we are using x0 ¼ t 2� �1;þ1½, x2 ¼ � 2�0;þ1½ and
x1 ¼ � 2 ½0; 2�½ with ���þ 2�. Obviously, the met-
ric (1) has the structure ‘‘background plus distortion.’’

The Riemann and Einstein tensor of (1) were already
calculated in [16] and read

R�� ¼ R

3
g�� þ�2 � 1

12
Rh��; G�� ¼ 1��2

2
h��;

(2)

where we made use of the Ricci scalar R ¼ �R ¼ �6 which
for vacuum solutions is fixed by the trace of the equations of
motion of TMG as a function of the AdS radius. Having
justified that (1) represents an exact vacuum solution of the
full nonlinear equations of motion of TMG, we can ask what
kind of spacetime does this metric describe? In [16] the
spacetime was already classified as a locally AdS pp-wave

spacetime [16,26] of Petrov type N (see [26]) and Kundt
CSI type (see [27,28]). Apart from these facts, as the
metric (1) was derived from a black hole background and
indeed asymptotes to this background in certain limits, we
can already speculate that this metric might describe a
dynamical black hole spacetime.

B. Global coordinates

A good coordinate system should fulfill two require-
ments: Firstly, it should bring the line element to a simple
form. Secondly, it should cover a large part of the space-
time. The coordinates that prove most useful for discussing
the global structure of the metric g�� are defined by

z ¼ e�t 1

sinh ð�Þ ; R ¼ e�2tcoth2ð�Þ;
y ¼ tþ�þ log ðtanh ð�ÞÞ; (3)

where we choose x0 ¼ z, x1 ¼ y and x2 ¼ R. In these
coordinates, the Killing vector @� is equal to @y. The line

element of the metric (1) takes the very simple form

ds2 ¼ 1

z2
ðdz2 þ dydRþ Rdy2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�g��dx
�dx�

þ 1

z1þ�
dy2|fflfflfflffl{zfflfflfflffl}

h��dx
�dx�

: (4)

Here, the second term on the right-hand side corresponds
to the perturbation h�� while the first term corresponds to

the background metric �g��. Because of the factor z
��, we

need to restrict z to positive values for general �. Apart
from this we can set y 2 ½0; 2�½ with y� yþ 2� and
R 2� �1;þ1½. This coordinate system thus covers a
much larger part of the spacetime than was the case for
the Schwarzschild-like coordinates used in (1). Therefore,
we call these coordinates the global coordinates.
The spacetime’s structure is much easier to understand

in these new coordinates. In [7] it was pointed out that the
singularity of BTZ black holes is not a curvature singular-
ity but merely a singularity in the causal structure of the
spacetime implied by the presence of closed causal curves.
In order to find out whether there is a similar singularity
present in the family of metrics given by Eq. (1), we note
that because of the periodicity in the coordinate � and (3),
the point ðz; R; yÞ is identified with the point (z, R, yþ 2�).
As closed causal curves therefore appear where @y is null

or timelike, we have to restrict the physical part of the
spacetime to the region where R>�z1��, with the equa-
tion R ¼ �z1�� determining the singularity. For the non-
rotating BTZ background metric �g�� the singularity is the

hypersurface determined by the equation R ¼ 0. It can be
shown that in the physical part of the spacetime, the
coordinate R has to decrease along every future pointing
causal curve [29].
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C. Event horizons

Having proven the existence of a singularity, it is natural
to ask about the existence of event horizons. For simplicity,
we will limit our investigation to the cases where � � 1.
Now, the global nature of the definition of event horizons
becomes a problem, especially as the asymptotics of our
spacetime at infinity are not necessarily AdS like for
general �. The limit � ! 1 and t ¼ const corresponds
to z ! 0 and R ! const in global coordinates. We there-
fore adopt the viewpoint that in these coordinates, z ¼ 0,
R> lim z!0ð�z1��Þ and y being arbitrary describes
‘‘infinity,’’ and that the (outer) event horizon of the space-
time will be described by the boundary of its causal past.
This ansatz is far from perfect; the possible problems of
such an approach were discussed in [30]. We will never-
theless pursue this approach for three reasons: Firstly, it
reproduces the correct event horizon in the cases � ¼ �1
as we will see in Secs. IVA and IVB. Secondly, for
�<�1 the asymptotics for � ! 1 are the same as in
the BTZ case as ðet sinh ð�ÞÞ1þ� ! 0 in this limit. Thirdly,
using this definition for �< 1, in a spacetime diagram
such as Fig. 1, event and trapping horizons approach the
same point z ¼ 0 ¼ R in the limit z ! 0.

In the following, we will show how to numerically
determine the horizons. As the singularity contains a time-
like direction for� � 1, there will in general be an outer as
well as an inner horizon.

Due to the definition of the outer and inner event hori-
zons as boundaries between points from which a certain
limit or hypersurface can be reached on causal curves1 and
points from which this is not possible, the event horizons
will be generated by null geodesics of maximal and mini-
mal slope when projected down to the z-R plane.
Therefore, the outer horizon is for �< 1 defined to be
the solution of the differential equation2

dR

dz
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ z1��

p
with the initial condition Rð0Þ ¼ 0: (5)

Similarly, the inner horizon is defined to be the solution of

dR

dz
¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ z1��

p
with Rð0Þ ¼ 0: (6)

Unfortunately, there is no closed-form expression for the
solutions of these equations for j�j � 1, but numerical
solutions can be calculated. They are shown for � ¼ 1

2

and � ¼ � 3
2 together with the trapping horizons and the

singularity in Fig. 1.
Next we want to investigate the properties of the outer

event horizon. The topology of the spacetime at hand is
R2 � S1, and in the physical part of the spacetime the
radius of the compact dimension is (see Sec. III)

rðz; RÞ ¼ ffiffiffiffiffiffiffi
gyy

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ z1��

p
z

: (7)

We can numerically compute the radius r of the outer event
horizon as a function of z. As the outer event horizon is
always defined by a monotonous function RðzÞ, z can be
used as a measure of time instead of R, with large values of
z corresponding to early times and small values of z
corresponding to late times. Figure 2 shows the evolution
of the outer event horizons as functions of z for � ¼ 1=2
(solid) and � ¼ �3=2 (dashed). While for 1>�>�1
the horizon circumference generally increases towards
small z, it generally decreases for �1>�.

D. Trapping horizons

In this section we will recall the definition of trapping
horizons, which might be used as a definition of black hole
boundaries instead of event horizons.
Definition [27,28].—In a d-dimensional spacetime

(d > 2), the expansion � of a null geodesic vector field
u� is defined to be

� ¼ 1

d� 2
u�;�: (8)

This definition allows us to mathematically formalize
the trapping of a light ray in a strong gravitational field.
Definition [31,32].—Within a d-dimensional space-

time, a trapped surface is a (d� 2)-dimensional, closed,
compact, spacelike surface S such that for the expansions
of the two families of future pointing null geodesics or-
thogonal to S, �þ and ��, �þ�� > 0 holds everywhere
on S. The surface is called past trapped or antitrapped when
�� > 0 everywhere on S and future trapped when �� < 0
everywhere on S.
Past trapped surfaces are typical for the interiors of

white holes while future trapped surfaces are typical for
black hole interiors. In order to describe black and white
hole boundaries, the previous definition has to be refined in
the following way.
Definition [31].—A marginal surface is a (d� 2)-

dimensional, closed, compact spacelike surface S such
that either �þ or �� (but not both) vanish on S.
Definition [31,33].—A trapping horizon �H is the closure

of a (d� 1)-dimensional surface H foliated by marginal
surfaces with �a � 0 and La�b � 0 everywhere on H.
Here, we use the notation a � b, a, b 2 fþ;�g and L�
denotes the Lie derivative with respect to the outgoing or
ingoing null geodesic vector field orthogonal to the
marginal surfaces.

1We define the inner event horizon to be the boundary between
points in the physical part of the spacetime from which the
singularity can be reached on past-pointing causal curves and
such points in the physical part of the spacetime from which this
is not possible.

2For a discussion of geodesics (both analytical and numerical),
light cones and causal curves in the spacetime (1) see [29].
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As the trapping horizons can be calculated as the
hypersurfaces where the Kodama vector is a null vector
(see Sec. III or [34]), we will not give a detailed derivation
here. Instead, we will merely state the results:

RþðzÞ ¼ 1

2
z�2�ðð��� 1Þz�þ1 þ z2�þ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3�þ3ðz�þ1 � 2�þ 2Þ

q
Þ; (9)

R�ðzÞ ¼ 1

2
z�2�ðð��� 1Þz�þ1 þ z2�þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z3�þ3ðz�þ1 � 2�þ 2Þ

q
Þ: (10)

Let us shortly discuss the properties of the hypersurfaces
described by these curves.
For �< 1 it is easy to show that both RþðzÞ ! 0 and

R�ðzÞ ! 0 in the limit z ! 0. This means that in global
coordinates, both trapping horizons, event horizons and the
singularity meet at R ¼ 0 ¼ z. Furthermore, one can show
that R�ðzÞ � �z1�� for any � with equality for �< 1
only for z ¼ 0 or the limit z ! þ1, which means that both
trapping horizons [as RþðzÞ � R�ðzÞ] will always be in the
physical part of the spacetime.
Another interesting feature is that while for � � �1,

RþðzÞ is a monotonous function of z, for j�j< 1
the function RþðzÞ initially decreases, attains a minimum
and then increases again with z. This ‘‘bow’’ of the outer
trapping horizon is quite unphysical if we want the trap-
ping horizon to be a description of the black hole boundary.
This means that there are points in the spacetime which are
outside of the outer trapping horizon but which have a
coordinate R< 0, and from which it is not possible to
escape the singularity. See Fig. 1 for a plot of the trapping
horizons for � ¼ 1

2 and � ¼ � 3
2 .

It is possible to calculate the determinant g of the
induced metric on the trapping horizon, which contains
one important physical information: its sign. For � ¼ �1
it follows that gðzÞ ¼ 0, which means that the outer trap-
ping horizon is a null surface in these cases. For �<�1
we find gðzÞ< 0 for any z, which means that in these cases
the outer trapping horizon is a timelike hypersurface with
signature ð�1;þ1Þ. For j�j< 1 nevertheless, gðzÞ< 0 for
small z and gðzÞ> 0 for large z, indicating that due to the
bow discussed above and shown in Fig. 1, the outer
trapping horizon switches from a spacelike to a timelike
hypersurface for some value of z. We called the trapping

FIG. 2 (color online). Radii r ¼ ffiffiffiffiffiffiffi
gyy

p
of the outer event hori-

zon as a function of z for � ¼ 1=2 (solid) and � ¼ �3=2
(dashed). Smaller values of z correspond to later times.

FIG. 1 (color online). Diagrams for � ¼ 1=2 on the left and � ¼ �3=2 on the right. Event horizons are depicted as solid (black)
lines, trapping horizons as dashed (black) lines and the singularity is the lowest (red) line. The projections of several null geodesics of
maximal slope in the z-R plane are drawn as thin (blue) lines.
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horizon (9) ‘‘outer’’ as it resembles the outer event horizon
for � � 1. Hayward [31] used the deviating terminology
that a trapping horizon is outer when the expansion of the
family of null geodesics that vanishes on the horizon
shrinks while passing through the horizon following the
other family of null geodesics (with nonvanishing expan-
sion) and inner when it grows. In this sense, what we
called the outer trapping horizon changes from being an
outer trapping horizon to being an inner trapping horizon
when z ! 0.

E. Dynamical black holes in NMG

In [16] it was shown that the metric (1) is a solution
to the full nonlinear vacuum equations of TMG. By com-
paring the linearized equations of motion for massive
modes of TMG and NMG (see [21] for TMG and
[22–24] for NMG), it can be seen that a linear solution of
TMG will also be a linear solution of NMG if we set
m2 ¼ �2 � 1=2.3 We can now ask whether we will have
the same effect for NMG as for TMG, i.e. whether the
metric (1) is also a solution of the full nonlinear equations
of motion (A2) of NMG (see Appendix A). In order to
answer this question, it is advisable to first consider the
trace of the equations of motion of NMG, (A4). Making
use of R ¼ �6 and (2) it is easy to find K ¼ R��R

�� �
3
8R

2 ¼ � 3
2 independently of �, which is also the case for

the background metric �g��. Equation (A4) then reads

6þ 6�þ 3

2m2
¼ 0;

) � ¼ �4m2 � 1

4m2
or m2 ¼ � 1

4ð�þ 1Þ ;
(11)

which is equivalent to (A5) for � ¼ �1. Inserting now (1)
in (A3) using m2 ¼ � 1

4ð�þ1Þ yields

R�� � 1

2
g��Rþ �g�� � 1

2m2
K��

¼ 1

2
ð1��2Þð4ð�þ 1Þ�2 � 2�� 1Þh��: (12)

The right-hand side is obviously zero for � ¼ �1 and

� ¼ �
ffiffiffiffiffiffiffiffiffi
2�þ1
4�þ4

q
or equivalently � ¼ 1�4�2

2ð2�2�1Þ . This means

that for the correct choices of the parameters �, m2 and �,
(1) is also a solution to NMG. Inserting this relation
between � and � into the relation (11) yields the expres-
sion m2 ¼ �2 � 1

2 which is exactly the condition that we

where expecting from the comparison between the linear-
ized equations of motion of TMG and NMG above.

Exact solutions of NMG have been studied extensively
in the past, and the conditions under which certain
solutions of TMG are also solutions of NMG have been
investigated for example in [27,35]. It would be interesting
to investigate how the solution (1) fits into the general
families of exact solutions presented in [36,37]. This will
be left to future research. It seems nevertheless that in [16]
and in this work, the metric (1) was first investigated as
describing a dynamical black hole.

III. THE KODAMAVECTOR AND
DYNAMICAL ENTROPY

In 1980, Kodama [38] investigated four-dimensional
black hole spacetimes with spherical symmetry. He found
that in this case a vector field can be defined which
coincides with the timelike Killing vector in the stationary
case up to normalization and thereby offers a possible
generalization of the timelike Killing vector to dynamic
spacetimes [17–19,34,38,39]. We will now present a
generalization of this approach to dimensions d � 3.4

Suppose we have a d-dimensional spacetime M which
has the symmetry of a (d� 2)-dimensional (hyper)sphere
Sd�2 with all corresponding Killing vectors being space-
like. Starting from any point P in the spacetime and
following the flows of the Killing vectors of this symmetry
will generate a (d� 2)-sphere as spacelike submanifold.
This sphere will be a geometrical invariant, therefore its
(d� 2) volume V and its thereby defined aerial radius

r ¼ ðV �ððd�1Þ=2Þ
2�ðd�1Þ=2 Þ 1

d�2 will be coordinate-invariant scalar

quantities defined at every point in the spacetime.
Because of this, r�r ¼ @�r will fix a well-defined

1-form. This 1-form can now be contracted with the
binormal5 	�� of the two-dimensional space orthogonal
to the (d� 2)-sphere at P to yield the Kodama vector

k� ¼ 	��@�r; (13)

as it was defined for d ¼ 4 in [17,19]. In the case of our
spacetime (1), we find for general �:

k� ¼
�z

ð��1Þz
2ðRz�þzÞ þ 1

�ð�þ 1Þz1�� � 2R

0BB@
1CCA: (14)

3This is also what was found in [35] for a solution of TMG of
Petrov type N to be a solution of NMG.

4While the resources used in this work [17–19,34,38,39]
restrict their discussion to four-dimensional spacetimes, a gen-
eralization of the Kodama vector to other dimensions has been
discussed in [3,40,41]. Nevertheless these authors assume that
the coordinate system can be brought to a block diagonal (or
warped product) form ds2 ¼ g�
dy

�dy
 þ r2ðyÞ�ijðzÞdzidzj
(with �;
 2 f0; 1g, i, j 2 f2; . . . ; d� 1g), which is not neces-
sarily possible for a three-dimensional metric with rotational
symmetry.

5We define the binormal to a closed spacelike surface S as
	�� ¼ l�n� � l�n� where l� is the ingoing and n� is the out-
going null vector field orthogonal to S with l�n� ¼ �1 [42]. It
obviously follows 	��	

�� ¼ �2.
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The geometrical meaning of the Kodama vector field
is that it is tangent to constant r hypersurfaces, as obvi-
ously k�@�r ¼ 	��@�r@�r ¼ 0 due to the antisymmetry

of 	�� [34]. Therefore, the Kodama vector field is
spacelike in trapped regions, null on trapping horizons
and timelike otherwise [34], making it easy to calculate
trapping horizons when the Kodama vector field is
known.

Furthermore, in four dimensions it can be proven that the
Kodama and Killing vector agree in stationary, spherically
symmetric spacetimes if the vector fields k� and g��@�r
commute [39].

In [20,43,44] it was shown how the entropy of a sta-
tionary black hole can be calculated via the Noether charge
associated with a certain Killing field. In dynamic space-
times such a Killing vector field does not exist, but it was
suggested by Hayward and others [17–19] that one could
use the Kodama vector defined above as a generalization of
the Killing vector to dynamic spacetimes, and thereby
assign entropy to the trapping horizon of a dynamical black
hole via a Noether charge approach.

First, one has to define the dynamical surface gravity �
associated with the trapping horizon via [17,19]

� ¼ 1

2
	�
r�k
: (15)

For a theory of the form S ¼ 1
16�GN

R
dxd

ffiffiffiffiffiffiffi�g
p

Lðg��;

R�
�
Þ, the entropy of a spacelike slice �0 of the trapping
horizon is then proposed to be [19]

S ¼ 1

16GN�

Z
�0
Q��	��

ffiffiffiffi
�

p
dyd�2; (16)

where again 	�� is the binormal defined above andffiffiffiffi
�

p
dyd�2 is the volume element on �0. Q�� are the com-

ponents of the Noether charge (d� 2)-form corresponding
to k� given by [19,45,46]

Q�
 ¼ 2½X�
��r�k� � 2k�r�X
�
���; (17)

with X�
�
 � @L
@R�
�


. For NMG one finds (see also [3])

Q�
 ¼
�
1

2
þ 3

8m2
R

�
ðr�k
 �r
k�Þ

� 1

2m2
ðr�k�R


� �r�k�R

� �r
k�R�

�

þr�k
R�
�Þ þ 1

m2
ðk�r�R
� � k�r�R


�

� k�r
R�� þ k
r�R
��Þ: (18)

This proposal to dynamical entropy will be called
Hayward’s approach. We will use this approach in the
following subsections to calculate the dynamical

entropy of the black holes given by (1) in the framework
of NMG.6

IV. HAYWARD’S APPROACH APPLIED TO THE
DYNAMICAL BLACK HOLES

A. � ¼ þ1

From (2) it follows that the metric (1) is not only a
vacuum solution of TMG and NMG, but also a solution
of ordinary Einstein gravity in the chiral cases � ¼ �1.
These special cases shall be investigated in more details in
this and the following subsection before turning to the
general case.
It can easily be seen that in the case � ¼ þ1 the

line element (4) is equivalent to the line element d�s2 ¼
�g��dx

�dx� of the undisturbed BTZ black hole which

can be verified by a simple coordinate shift R0 ¼ Rþ 1.
The Kodama vector (14) can then be transformed to the
Schwarzschild-like coordinates used in (1) and one finds
for � ¼ þ1 that k�@� ¼ @t, i.e. that the Kodama vector

equals the timelike Killing vector field in this static case,
as expected. Consequently, Hayward’s approach to black
hole entropy will by definition yield the correct values
for entropy and � in this case.

B. � ¼ �1

Before moving on to the investigation of the case
� ¼ �1, we will comment on a detail of the metric (1)
that was not addressed so far. In [16] it was described
how the solution h�� of the linearized equations of motion

of TMG around the background �g�� describes the metric

g�� ¼ �g�� þ h�� which is a solution to the full equations

of motion of TMG. But solutions to the linearized
equations of motion can have arbitrary prefactors, and in
general, we could have multiplied h�� with an arbitrary

prefactor �. Even if we had chosen to do so in Sec. II E,
this would not have affected the fact that (1) fulfills the
nonlinear equations of motion.
For (1), such a prefactor � can obviously always be

absorbed up to sign by a shift in the coordinate t, ex-
cept for the case where � ¼ �1, as there the prefactor of
h�� becomes ðet sinh�Þ1þ� ¼ 1. Therefore, h�� actually

describes two distinct7 one-parameter families of ex-
act solutions of TMG, g��ð�Þ ¼ �g�� þ h��ð�Þ and

g0��ð�Þ ¼ �g�� � h��ð�Þ, which at the point � ¼ �1 are

6There are formulas similar to (17) for TMG [47], but evalu-
ating these on a dynamical trapping horizon does not give a
coordinate-invariant result. Therefore, we will not present any
results of Hayward’s approach applied to dynamical black holes
in the framework of TMG.

7Of course, the choice� ¼ 0 would lead to the trivial solution
g0�� ¼ �g��. We nevertheless do not explicitly exclude the pos-
sibility� ¼ 0, as for the continuum of solutions at� ¼ �1, this
value will be important, too.
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connected by a continuum of nonisometric solutions

g��� ¼ �g�� þ�h��ð�1Þ.
Let us now come back to the metric g�� with � ¼ �1

and � ¼ 1. In this case, the singularity still contains a
timelike direction, and there are still two horizons, an
outer and an inner one as discussed in Secs. II C and II D.
The metric can therefore not be globally equivalent to
the background metric �g�� as was the case for � ¼ þ1

but might describe a rotating black hole with parameters
M � 1, J � 0. Motivated by these considerations, we can
now search for a coordinate transformation that maps the
metric [see (1)]

g��� ¼
�sinh 2ð�Þ 0 0

0 cosh 2ð�Þ 0

0 0 1

0BB@
1CCA

þ�

1 1 2
sinh ð2�Þ

1 1 2
sinh ð2�Þ

2
sinh ð2�Þ

2
sinh ð2�Þ

4
sinh 2ð2�Þ

0BBB@
1CCCA (19)

to the BTZmetric for l ¼ 1 (with x0 ¼ t0, x1 ¼ �0, x2 ¼ r):

gBTZ�� ¼
M� r2 � J

2 0

� J
2 r2 0

0 0 1
J2

4r2
þr2�M

0BBBB@
1CCCCA; (20)

with parameters M and J that will certainly depend on �.
Such a coordinate transformation can easily be found and
reads

t ¼ t0 þ 1

4

24�2 log ðr2 � 1��Þ þ
2arctanh

�
2��2r2þ1ffiffiffiffiffiffiffiffiffiffi

4�þ1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�þ 1

p

þ log ½�2 þ r4 � ð2�þ 1Þr2�
35;

� ¼ �0 þ 1

4

24� log ½ðr2 ��Þ2 � r2� þ 2 log ðr2 ��Þ

�
2arctanh

�
�2�þ2r2�1ffiffiffiffiffiffiffiffiffiffi

4�þ1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�þ 1

p
35;

� ¼ cosh�1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 ��
p �

:

This transformation maps the metric (19) to the metric (20)
with parameters M ¼ 1þ 2� and J ¼ �2�.8 Above we
restricted ourselves to transformations that do not reverse

time. It should also be noted that in the form used above this

coordinate transformation is only valid for r > 1
2 �

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�þ 1

p þ 1Þ, and this lower bound can indeed be shown
to be the radius rþ of the outer event horizon of the black
hole with M ¼ 1þ 2�, J ¼ �2�. Interestingly, the
cosmic censorship bound Ml � jJj is only fulfilled for
� � � 1

4 .

As the metric (19) describes a rotating but stationary
black hole, Hayward’s approach reproduces the correct
entropy as shown in Sec. V.

C. � < 1, � � �1

We can calculate the dynamic surface gravity � using
the definition (15) proposed in [17] or alternatively using
the definition��k� ¼ k
r½�k
�, � � 0 proposed in [39].

It should be noted that these two definitions only coincide
on the trapping horizon [39]. We find

� ¼ 1

2
	�
r�k


¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ z1��

p
z

þ ð�� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ z1��

p
ðRz� þ�Rz� þ 2zÞ

4ðRz� þ zÞ2 ; (21)

where we have to insert (9) for R in order to obtain � on the
outer trapping horizon. Some plots of �ðzÞ are shown in
Fig. 3 for representative values of � � 1. The first thing
that we should notice is that for� ¼ �1, � is a constant in
time and attains the correct values. For �<�1 we find
that � is monotonously decreasing with z and approaches
the BTZ value � ¼ 1 in the limit z ! 0, while for z ! 1
we find � ! þ1. For j�j< 1, in contrast, we find � ! 1
for z ! 1, while for small � a nonmonotonous behavior is
possible. Starting from large values of z and taking the
limit z ! 0 we find that at first � increases, only to attain a
maximum for some � > 0 and then diverge to �1. In
general, it is obvious that � attains the value � ¼ 1 of the
background metric in limits where the distortion h�� �
z1�� becomes small and g�� 	 �g�� whereas it shows a

complicated behavior where the distortion h�� is large.

The values z0 where � ¼ 0 for j�j< 1 are exactly the
values where the outer trapping horizon switches from
spacelike to timelike, as discussed in Sec. II D. This is
another reason why one might doubt the validity of the

FIG. 3 (color online). Dynamic surface gravity �ðzÞ as de-
scribed in (21) for two representative values of �.

8This means that we singled a one-parameter (�) family out of
the two-parameter ðM; JÞ space of BTZ black holes for l ¼ 1.
These black holes are exactly those with an entropy S ¼ �

2GN
in

the framework of TMG with � ¼ �1, l ¼ 1.
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trapping horizons as black hole boundary at least for small
z when j�j< 1.

We can now calculate the dynamic entropy according to
Hayward’s approach using (16). Some plots for SðzÞ for
representative values of� are given in Fig. 4. In these plots,
z is used as a measure of time as the outer trapping horizons
are monotonously increasing functions RðzÞ at least for
sufficiently large z, and as the coordinate R can be used
as a measure of time, see Sec. II B. Small values of z will
then correspond to the future, while large values of z
correspond to the past.

When discussing the results obtained for the dynamical
entropy we should compare these to the values that the

entropy �S of the background metric �g�� would have as a

function of �. For NMG we find with (16), m2 ¼ �2 � 1
2

(see Sec. II E) and l ¼ 1 that �Sð�Þ ¼ ��
2GN

ð1þ 1
1�2�2Þ (see

also [48]).
For �<�1, SðzÞ is monotonously decreasing in time

(i.e. increasing in z) for � ¼ þ1 (see Appendix A) and
approaching the value S ¼ 1 for z ! 0. The distortion
h�� � z�1�� becomes small in this limit and it is not

surprising that S ! �S as g�� ! �g��. Furthermore, with

m2 ¼ �2 � 1
2 the limit � ! �1 corresponds to the limit

where the NMG action (A1) approaches the Einstein-Hilbert
action, and thus the entropy becomes increasingly domi-
nated by the horizon circumference which was shown in
Sec. IIC to decrease with time. Choosing � ¼ �1 as re-
quired by (A6) would result in an entropy S that is monoto-
nously increasing from �1 for large z to �1 for z ! 0.

For j�j< 1 the behavior of SðzÞ is more complicated.
First of all, it should be noted again that due to the
unphysical behavior of the trapping horizon discussed in

Sec. II D the coordinate z cannot be used as a time coor-
dinate for arbitrarily small z. Abovewe saw that the surface
gravity � vanishes at the z value where the trapping horizon
becomes timelike which leads to a divergence of SðzÞ at
the same value of z. Secondly, for this range of �, S is
generally not a monotonous function as can be seen in
Fig. 4. The behavior for values �1<�< 1 cannot be
explained even qualitatively solely using the properties of
NMG (such as unitarity, positivity of energy, etc.) as the
parameters of NMG, � and m2 only depend on �2 (see
Sec. II E). This means that for example the qualitative
differences in SðzÞ for � ¼ �0:2 cannot be just due to
properties of the action.
The value � ¼ 0 deserves special attention. For TMG

this value has to be excluded due to the divergence in the
action, but the metric (1) and the NMG action (A1) are well

defined for this value. In this special case one finds SðzÞ ¼
�S ¼ const although the metric is clearly not stationary
as can be seen from the surface gravity �ðzÞ � const or
the time-dependent circumference of the event horizon.
Interestingly, � ¼ 0 corresponds to the special case
� ¼ m2 discussed in Appendix A. Also, a dynamical
Vaidya-type null-dust solution in NMG with � ¼ m2 has
been studied, and the validity of the second law has been
proven for this solution in [3].

V. A NOTE ON THE GENERAL
(2 þ1)-DIMENSIONAL

STATIONARY BLACK HOLE

It was mentioned in Sec. IVB (and could of course
be checked by straightforward calculations), Hayward’s
approach reproduces the correct entropy for � ¼ �1, �

FIG. 4 (color online). SðzÞ evaluated on the outer trapping horizon following Hayward’s approach for different values of�, see (16).
The dynamic entropy SðzÞ is shown as a solid (red) line, the constant entropy value �S of the background metric �g�� for the respective

value of m2 ¼ �2 � 1
2 is shown as a dashed (blue) line. SðzÞ and �S are identical for � ¼ 0.
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arbitrary, and we want to point out the significance of these
results. The situation in three dimensions is special in the
sense that only in this case the Kodama vector can be
defined for rotating black holes, as only for d ¼ 3 the axial
symmetry of a rotating black hole equals the symmetry of a
(d� 2)-sphere used in Sec. III. The fact that for � ¼ �1
Hayward’s approach reproduces correct values for surface
gravity and entropy although the Kodama vector is not a
Killing vector seems at first nontrivial. Instead of now
applying Hayward’s approach to other (ideally rotating)
stationary black hole solutions known in NMG (see e.g.
[13,48–51]) one after the other, we can look at the general
stationary black hole metric in 2þ 1 dimensions.

Assume that there is a metric which allows for two
commuting Killing vectors � (timelike) and � (spacelike).
One can then find a coordinate system in which the coor-

dinates are ~t, � and ~� such that ��@� ¼ @~t and ��@� ¼
@ ~�. Assume furthermore that in these coordinates ~t 2� �
1;þ1½ and ~� 2 ½0; 2�½ with ~�� ~�þ 2�. This means

that ~� is an angular coordinate. One can now
always perform a coordinate transformation that yields
a metric

g�� ¼
g1ðrÞ 0 g2ðrÞ
0 g3ðrÞ�1 0

g2ðrÞ 0 r2

0BB@
1CCA (22)

in coordinates t, r, � with @t ¼ @~t and @� ¼ @ ~�. In this

metric, the binormal can equivalently be defined as 	�� ¼
1

r
ffiffiffiffiffi�g

p 	���g�3 where 	
��� denotes the ordinary Levi-Cività

symbol with values�1, 0 or 1. Using this it is easy to show
that the Kodama vector reads

k� ¼ rffiffiffiffiffiffiffi�g
p

�


�
1 � g2ðrÞ

r2


�
3

�
:

It is noteworthy that k�k� ¼ �g3ðrÞ, which means that

this metric only describes a genuine black hole with a
(trapping) horizon if a coordinate singularity is present in
the Schwarzschild-like coordinates. The horizon is then
defined by the radial coordinate rþ with g3ðrþÞ ¼ 0.9

The determinant of (22) reads g ¼ r2g1ðrÞ�g2ðrÞ2
g3ðrÞ . As r ¼

rþ is only supposed to be a coordinate singularity, we
assume g to be well defined there, which means
r2þg1ðrþÞ � g2ðrþÞ2 ¼ 0 (see also [52] for a related issue).
If this assumption is true, there exists a Killing vector

�� ¼
�


�
1 � g2ðrþÞ

r2þ


�
3

�
� k�; (23)

which is null on the horizon, and this is exactly the Killing
vector used to calculate the black hole entropy according to

[20,43,44]. It is known that this vector vanishes on the
bifurcation surface of the black hole [43], and the same is
obviously true for the Kodama vector which on the horizon
is just k� ¼ const 
 ��. Therefore, as the entropy can be
evaluated on the bifurcation surface [43], the term propor-
tional to k� can be neglected in (17) for the black hole (22).
As one can show that r½�k
�jr¼rþ ¼ const 
 	�
jr¼rþ , and

as this constant is canceled from the integral (16) by the
prefactor ��1, Hayward’s approach yields the entropy

S ¼ �2�

16�GN

Z
�
X�
�
	�
	�


ffiffiffiffi
�

p
d�; (24)

which is also obtained from the usual ansatz using the
Killing vector (23) [20,44].
This proves that Hayward’s approach reproduces the

correct entropy for the general stationary (but possibly
rotating) black hole in the framework of an arbitrary
(2þ 1)-dimensional covariant theory of gravity10 when
one can use an expression of the form (17). There is a little
subtlety here: It has already been noted in [44] that for a
general covariant theory, Q�� might depend on arbitrary
high derivativesr� . . .r�k� of the used vector field [using

this yields S1 in (7) of [44]]. This expression can then
always be brought into the form (17) using identities that
hold if k� is a Killing vector, yielding S2 in (7) of [44].

While in [19] it was proposed to use the full Noether
potential (i.e. S1 in [44]) for Hayward’s approach, in [18]
it was suggested to use S2. As shown, at least in the latter
case Hayward’s approach reproduces the correct entropy
for stationary black holes in 2þ 1 dimensions.

VI. CONCLUSION

We investigated the metric (1) and showed that for
general � it describes a dynamical black hole with inner
and outer event and trapping horizons. The metric is a
solution of NMG for suitable parameters m2ð�Þ and
�ð�Þ, and reduced to previously known stationary BTZ
black holes for� ¼ �1. We applied the three-dimensional
Kodama vector and Hayward’s approach to dynamical
black hole entropy to our dynamic black hole metric (1).
For j�j � 1 the results are in apparent contradiction with
the second law, except for � ¼ 0 where we found the
entropy to be constant in spite of the time-dependent area
of the event horizon. For � ¼ �1 where due to the emer-
gence of the additional parameter � the metric (1) de-
scribes a whole family of rotating BTZ black holes, the
correct entropy is reproduced although Kodama and
Killing vector do not agree. In fact we proved that this is
the case for the general stationary but possibly rotating
black hole in 2þ 1 dimensions. In Appendix B we will

9As the metric is stationary, we assume that the trapping and
event horizon agree.

10It should be noted that in the sense of [20,43,44], TMG is not
a covariant theory. This has for example been pointed out in
[42,47].

DYNAMICAL BLACK HOLES IN 2þ 1 DIMENSIONS PHYSICAL REVIEW D 88, 044034 (2013)

044034-9



apply the definition proposed by Iyer and Wald in [20] to
the dynamical black holes (1).
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APPENDIX A: NEW MASSIVE GRAVITY

The action of NMG can be written in the form11

[13,22,27]

SNMG ¼ �

16�GN

Z
d3x

ffiffiffiffiffiffiffi�g
p �

R� 2�� 1

m2
K

�
; (A1)

where � is the cosmological constant, � ¼ �1 is the
overall sign of the action that is irrelevant for the equations
of motion but relevant for conserved charges, and
K ¼ R��R

�� � 3
8R

2 is the trace of the tensor [12]

K�� ¼ 2r2R�� � 1

2
ðr�r�Rþ g��r2RÞ � 8R�

�R��

þ 9

2
RR�� þ

�
3R��R�� � 13

8
R2

�
g��: (A2)

It should be noted that the parameter m2 will be allowed to
have positive as well as negative values [13]. The equations
of motion read [12,27]

R�� � 1

2
g��Rþ �g�� � 1

2m2
K�� ¼ 0; (A3)

and taking the trace obviously yields

R� 6�þ 1

m2
K ¼ 0: (A4)

This means that in contrast to Einstein-Hilbert gravity
and TMG, in NMG the Ricci scalar R is not fixed by
the cosmological constant. For a maximally symmetric
spacetime (such as AdS3) with R�� ¼ 2�g�� and there-

fore R ¼ 6�, the expressions containing r in (A2) will
automatically vanish yielding K�� ¼ � 1

2�
2g�� and con-

sequently K ¼ � 3
2 �

2. Upon inserting these expressions,

the equations of motion (A3) reduce to

��g�� þ �g�� þ �2

4m2
g�� ¼ 0:

Evidently, for a maximally symmetric spacetime with
curvature � to be a solution of NMG the parameters
need to fulfill12 [13]

� ¼ 2m2

0@1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

m2

s 1A: (A5)

For �
m2 > 1, maximally symmetric solutions are obviously

not possible.
When the theory is linearized around a maximally

symmetric background metric satisfying R�� ¼ 2�g��

(for example AdS3), it can be proven [13] that NMG is
ghost free when the condition

m2

�
ð�þ 2m2Þ< 0 (A6)

is satisfied. Together with (A5) and the Breitenloher-
Freedman bound [13]

2m2 � �; (A7)

there are several inequalities that restrict the physically
acceptable sets of parameters �, � and m2 for which
linearization about an AdS background yields a unitary,
ghost-free theory [13].
NMG has two propagating bulk degrees of freedom

corresponding to massive graviton modes with spin �2,
except for � �

m2 ¼ �1 or � �
m2 ¼ 3 and � ¼ �2m2 [13].

In the first exceptional case there appears a so-called single
partially massless mode [13]. The second exceptional case,
where � �

m2 ¼ 3, was shown to be a very special situation.

There, the linearized Lagrangian equals the Proca
Lagrangian for a spin-1 field with squared mass 8m2 [13].
As in this case unitarity requiresm2�< 0, the spin-1 modes
are tachyons for � ¼ 1 but physical for � ¼ �1 [13].
When the parameters of NMG are chosen in order to

allow AdS vacua with R�� ¼ � 2
l2
g�� (l > 0), then a dual

CFT can be conjectured to exist according to the
AdS3=CFT2 correspondence having left- and right-moving
central charges [13]

cL ¼ cR ¼ c ¼ 3l�

2GN

�
1� 1

2m2l2

�
: (A8)

The sign of the central charges obviously depends on �
and changes when m2 ¼ 1

2l2
. Positivity of the central

charge is required as well for unitarity of the CFT as for
positivity of entropy and mass of the BTZ black hole [13].

11Unfortunately, there seem to be competing conventions on
how to present this action in the literature. The form employed in
[12,13,22] has the integrand �0R� 2�0m02 þ 1

m02 K. The dictio-
nary for comparing results obtained with the two actions reads
� ¼ �0, � ¼ �0m02=�0 or �0 ¼ ��=m2 and �0m02 ¼ �m2.

12For our conventions of signs and prefactors in (A1), this is
equivalent to the condition presented in (2) of [22] and in (1.11)
of [13] which relates the AdS radius l (� ¼ � 1

l2
) of possible

AdS solutions of NMG to the parameters of the theory.
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Unfortunately, as realized in [13] the conditions on the
parameter space arising from the requirement c � 0 are
inconsistent with the requirements arising from the desire
to have unitary positive-energy modes apart from the
special case � �

m2 ¼ 3 where c ¼ 0.

APPENDIX B: IYER-WALD APPROACH
TO DYNAMIC ENTROPY

1. Idea

Immediately after the discovery that black hole en-
tropy can be calculated via the Noether charge approach
in [43], ideas were presented in [20,43,44] on how these
results could be used to generalize the definition of black
hole entropy to the nonstationary case. In this section,
we will make use of the prescription for defining dy-
namical black hole entropy that was put forward by Iyer
and Wald in [20], and which we will call the Iyer-Wald
approach.

The entropy of a black hole can be calculated by an
integral of the form [20]

Sð�0Þ ¼ 2�
Z
�0
X�
	0�
; (B1)

where �0 is a spacelike slice of the horizon and 	0 is the
binormal to �0. It was shown in [44] that in the stationary
case the value of (B1) is independent of the choice of the
slice �0 and that we can consequently choose �0 to be the
bifurcation surface �. In the dynamic case the entropy
will be a function of time by definition. Thus, if an
expression of the form (B1) is still valid in the dynamical
case, the choice of spacelike slice �0 corresponds to the
choice of time at which the entropy is to be computed.
What is now needed for a definition of dynamical black
hole entropy is a generalization of the integrand X�
 to
the dynamical case [20].

The Iyer-Wald approach is based on the following idea
[20]: Consider a spacetime with metric g�� with a dynami-

cal outer event horizon, and take a spacelike slice �0 of this
horizon corresponding to a certain time. Then apply a trans-
formation g�� ! ~g�� that generates an entirely new metric

in which the horizon slice �0 is embedded as the bifurcation

surface of a stationary black hole. The entropy ~Sð�0Þ of this
black hole can readily be calculated using the appropriate
formula for the stationary case (B1) and is set to be equal to
the dynamic black hole entropy Sð�0Þ. This embedding of
the horizon slice does obviously not change the horizon
area. Therefore, for dynamical black holes in Einstein-
Hilbert gravity the entropy calculated using the Iyer-Wald
approach is proportional to the horizon surface. Due to the
area theorem this means that for Einstein-Hilbert gravity a
second law can be inferred for the dynamic entropy follow-
ing from the Iyer-Wald approach [20].

In the following, we will give the definition of the trans-
formation g�� ! ~g�� which Wald and Iyer proposed in

[20] in order to calculate dynamic black hole entropy.
Definition [20].—Let �0 be a (d� 2)-dimensional

spacelike surface with a field M�1;�2;...

1;
2;...

defined on

it. M�1;...

1;...

will be called boost invariant on �0 if for
every point P on �0, M�1;...


1;...
is invariant under Lorentz

boosts in the tangent space at P in the (1þ 1)-dimensional
plane orthogonal to �0. When at the point P one chooses a
set of orthogonal spacelike vectors s�i (i 2 f1; . . . d� 2g)
tangent to � and l� and n� as independent null vectors
orthogonal to �0, then these vectors can be used to define a
tetrad e�a.

13 One can then expand M in this basis:

M�1;�2;...

1;
2;...

¼ ~Ma1a2;...
b1;b2;...

e�1
a1e

�2
a2e
1

b1e
2

b2 . . . :

(B2)

The tensor M is boost invariant if and only if the basis
expansion coefficients ~Ma1;...

b1;...
are only nonvanishing for

terms with equal numbers of l� ’s and n�’s [20].
In order to illustrate this definition and obtain an impor-

tant result, we will now prove for d ¼ 3 that the metric is
always boost invariant on �0 [20]: Let us choose the tetrad
e�0 ¼ l�, e�1 ¼ n� and e�2 ¼ s�. The tetrad expansion

(B2) of the metric can easily be found as the relation
�mn ¼ g��e

�
me

�
n holds. This relation defines the three-

dimensional Minkowski metric in light cone coordinates,
as we are working with a null tetrad. We can read off�00 ¼
l�l

� ¼ 0, �11 ¼ n�n
� ¼ 0 and �02 ¼ l�s

� ¼ 0 ¼ �20 ¼
�12 ¼ �21 due to orthogonality. Therefore, the inverse
relation g�� ¼ �mne�

me�
n yields the expression g�� ¼

�01l�n� þ �10l�n� þ �22s�s� where in each term the

number of l�’s equals the number of n� ’s. Therefore, the
metric is always boost invariant on �0.
Definition [20].—Let �0, M�1;...


1;...
and the tetrad be

defined as in the previous definition. WhenM�1;...

1;...

is not

boost invariant, then we can extract the boost-invariant partdM�1;...

1;...

of M�1;...

1;...

by defining it to be the field on �0

that is obtained when in the tetrad expansion (B2) only the
terms with equal numbers of l� ’s and n�’s are kept.
It should be noted that this definition of the boost-

invariant part is independent of the choice of the tetrad
[20]. Although the metric itself is always boost invariant
this does not hold for objects containing derivatives of
the metric, such as Christoffel symbols and curvature
tensors. Hence, it is useful to define a metric gI�� which

is boost invariant and also yields boost-invariant curva-
ture tensors [20]. In order to achieve this goal, Iyer and
Wald proposed to define a certain coordinate system in

13Technically, the term tetrad is only for d ¼ 4. The general
term is frame field or vielbein.
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the neighborhood of �0 in the following approach [20]14:
On �0 we define again a null tetrad with vectors l�, n�

and s� such as in the definitions above. Furthermore, we
require the normalization l�n

� ¼ �1. The neighborhood

around �0 that we are going to investigate is assumed to
be small enough that every point P 0 lies on a unique
geodesic orthogonal to�0. This geodesic is assumed to be
(affinely) parametrized in such a way that P 0 is at unit
affine distance from �0, and �� is then assumed to be the
tangent of the geodesic at the intersection point P with
�0. The coordinates of P 0 are now defined to be U, V and
s where U and V are the components of �� along l� and
n� respectively, and s is the coordinate of P on �0.

In these coordinates the Taylor expansion of the metric
g�� around �0 (being defined by U ¼ 0 ¼ V, s being

arbitrary) reads [20]

g�
 ¼ X1
n;m¼0

UmVn

m!n!

�
@mþng�
ðU;V; sÞ

@Um@Vn

���������U¼V¼0
:

In an arbitrary coordinate system this equation reads

gab¼
X1

n;m¼0

UmVn

m!n!
ðlc1 


lcmncmþ1 




ncmþn@c1 


@cmþn
gabÞjU¼V¼0; (B3)

where U and V are to be understood as implicit functions
of the new coordinates. It should be noted that in our three-
dimensional case the term ðlc1 
 
 
@cmþn

gabÞjU¼V¼0 is a

constant as U and V are set to zero and as the metric
does not depend on the remaining angular coordinate.15

Wald and Iyer proposed [20] to define a new metric g
Iq
��

by truncating the infinite series in (B3) at the level nþ
m ¼ q and replacing each of the expressions @c1 
 
 
 g�

by its boost-invariant part. They realized [20] that the

metric gI1�� had a Killing vector field � ¼ U@U � V@V
which vanished on the slice �0 which was defined by
U ¼ V ¼ 0. Thus, this Killing vector field generated a
Killing horizon with �0 as bifurcation surface. The idea
of Wald and Iyer to define dynamical black hole entropy
with respect to a horizon slice �0 was to construct the

metric tensor g
Iq
�� with q being larger than the highest

derivative order appearing in the entropy formula and
calculate the entropy of this new metric using the appro-
priate formula for the stationary case [20].

2. Calculation

In order to apply the method described in the pre-
vious subsection it seems that we have to find the exact

coordinate transformation U ¼ Uðz; RÞ, V ¼ Vðz; RÞ, s ¼
yþ s0ðz; RÞ16 that allows us to write the metric (4) with
respect to these coordinates. However, for TMG there is
an easier way to do this calculation.
For stationary black holes in TMG, Tachikawa [42]

found that the contribution of the Chern-Simons term to
the entropy reads17

SCSð�0Þ ¼ 1

8GN�

Z
�0
	�
g

��g
�����dx
�; (B4)

where 	�
 denotes the binormal as defined in Sec. III. For

the nonstationary case, according to Wald and Iyer one
would have to calculate the Christoffel symbols ����ðgI�
Þ
with respect to the new metric. The construction of (B3) is
based on the substitution of the expressions @c1 
 
 
gab by

their boost-invariant parts. Hence, one can ask if there is
the possibility to calculate the boost-invariant part of
����ðg�
Þ instead of ����ðgI�
Þ. For more general theories

such as NMG, we can furthermore ask whether instead of
calculating for example the Ricci scalar RðgI�
Þ, we can

write the Ricci scalar as a function of the metric and its
derivatives [Rðg�
; @cg�
; @d@cg�
Þ] and subsequently

substitute these expressions by their boost-invariant parts.
As we will see this is only possible for expressions with at
most first derivative order of the metric.
As the metric is boost invariant it is obvious from (B3)

that on the horizon (U ¼ V ¼ 0)

gIabj�0 ¼ cgabj�0 ¼ gabj�0 :

In addition, for the first derivative we find @yg
I
abj�0 ¼ 0 ¼

@ygabj�0 due to symmetry, and for @cg
I
abj�0 with c � y:

@cg
I
abj�0 ¼

� X1
n;m¼0

�
m
Um�1Vn

m!n!
@cUþ n

UmVn�1

m!n!
@cV

�

� ðlc1 
 
 
 @cmþn
gabÞj�0

	���������0

¼ ð@cUlc1 þ @cVn
c1Þj�0 ð d@c1gabÞj�0

¼ 
c1
c ð d@c1gabÞj�0 ¼ d@cgabj�0 :

In this derivation we used that @U ¼ l�@� and @V ¼ n�@�.
From the coordinate relations it then follows that

@c ¼
�
@U

@xc

�
@U þ

�
@V

@xc

�
@V þ

�
@s

@xc

�
@s;

) ðð@cUÞl� þ ð@cVÞn�Þ@� ¼ ð
�
c � ð@csÞ
�

s Þ@�:
Here the term containing 
�

s can be omitted as the deriva-
tive of the metric with respect to the angular coordinate

14For simplicity, we will restrict the discussion to three dimen-
sions in the following.
15For simplicity we always use slices of the horizon which are
generated by the Killing vector @�.

16We assume a coordinate transformation that respects the
Killing symmetry generated by @y, in the sense that @y ¼ @s.
17As mentioned above, the contribution from the Einstein-
Hilbert term will still be proportional to the circumference of
the horizon slice.
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vanishes due to @s being a Killing vector. It is therefore
justified to substitute @cUlc1 þ @cVn

c1 by 
c1
c in the above

derivation.
Using the same approach one can show that

@d@cg
I
abj�0 � d@d@cgabj�0

due to terms involving expressions such as ð@d@cUÞj�0

ðlc1 d@c1gabÞj�0 that are not vanishing and that cannot be

eliminated in a way similar to the one used above.
Therefore, we can calculate the dynamic entropy

according to Iyer and Wald without knowing the exact
coordinate transformation to the coordinate system U, V,
s for TMG, but not for NMG where higher derivatives of
the metric are needed.

3. Discussion

Let us now discuss the results for TMG. The first con-
sistency check of our calculations is that for � ¼ �1 we
know (see the footnote in Sec. IVB) that we need to find
STMGð�0Þ ¼ �

2GN
. This is indeed the case, but in some

sense this is trivially the case for an unfortunate reason:

While we have 	�� d���� � 	������ in general, we obtain

	�� d���y ¼ 	�����y which is the only part of the integrand

that matters, as on the horizon
R
�0 ð. . .Þdx� ¼R

2�
0 ð. . .Þjz¼z0;R¼R0dy in (B4). This means that taking the

boost-invariant part does not give other results than the
direct use of (B4) would have given.

For �< 1 and � � �1 we find that the dynamic
entropy STMGð�0Þ will not be constant. As in Sec. III it
will be easiest to take spacelike slices of spacetime
denoted by a certain value of R � R0 which leads for
the intersection with the horizon also to a certain value
of z � z0. As we wrote the horizons as functions RðzÞ in
Sec. II C for the event horizon and in Sec. II D for the
trapping horizon, we can therefore also write the
dynamic entropy as a function SðzÞ. Due to monotonicity
of the event horizons and for large enough z also of the
trapping horizons, smaller values of z will correspond to
the future and larger values of z will correspond to the
past. Plots of the results for SðzÞ for several � � 1 can
be found in Fig. 5. We find that when evaluated on the
event horizon, STMGðzÞ is increasing (and actually
diverging) in time for �> 0 and decreasing in time
for �< 0, where as z ! 0 it diverges to �1 for �1<
�< 0 and limits to �

2GN
for � � �1.18 As expected,

there is always a limit in which the entropy approaches
the value STMGðzÞ ! �

2GN
which is the same limit in

which the distortion h�� becomes small, i.e. z ! þ1
for j�j< 1 and z ! 0 for �<�1.
The great advantage of the Iyer-Wald approach is that it

is not intrinsically limited to slices of the event horizon.

FIG. 5 (color online). SðzÞ in the framework of TMG evaluated on the outer event horizon following the Iyer-Wald approach for
different values of �. The dynamic entropy SðzÞ is shown as a solid (red) line, the contribution from the Einstein-Hilbert term of the
action (proportional to the horizon circumference) is shown as a dashed (blue) line, the contribution from the Chern-Simons term (B4)
is shown as a dot-dashed (purple) line.

18As the event horizon can only be studied numerically for� �
�1 there is always the risk that a certain behavior at some limit
is due to numerical problems.
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Indeed, there have been arguments that in the dynamic
cases entropy should in fact be assigned to the trapping
horizon rather than to the event horizon, see [17–19]
(Sec. III) and [53,54] for two different approaches to
dynamic black hole entropy that both favor trapping or
apparent horizons over event horizons. We can therefore in
our calculations substitute the event horizon (5) with the
trapping horizon (9) and calculate the dynamic entropy
with respect to this quantity. It should be noted that for
j�j< 1 this might be problematic for small values of z due
to the unphysical behavior of the trapping horizon dis-
cussed in Sec. II D. Therefore, in our results for STMGðzÞ
the variable z cannot be interpreted as a time variable
anymore. As it turns out, the qualitative behavior of SðzÞ
calculated with respect to the trapping horizons is not

different from the qualitative behavior of the entropy
when calculated with respect to the event horizon.
The results obtained using the Iyer-Wald approach are

clearly not satisfactory, as they indicate a decreasing entropy
as a function of time for some parameters �. This might be
due to either the method we used for calculating the
entropy or to the properties of TMG. On one hand, it
was already pointed out in a note added to [20] that the
entropy calculated using the Iyer-Wald approach is not
invariant under field redefinitions, in contrast to what
should be expected for physical reasons. On the other
hand, it was discussed in [21] that TMG has some un-
physical properties for l� � �1, making a possible vio-
lation of the second law of black hole thermodynamics
less surprising.
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