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We propose a geometric interpretation for the Stokes phenomenon in de Sitter spacetime that particles

are produced in even dimensions but not in odd dimensions. The scattering amplitude square for a

quantum field between the in-vacuum and the transported one along a closed path in the complex-time

plane gives the particle-production rate that explains not only the Boltzmann factor from the simple pole

at infinity, corresponding to the cosmological horizon, but also the sinusoidal behavior from simple poles

at the north and south poles of the Euclidean geometry. The Stokes phenomenon is a consequence of

interference among four independent closed paths in the complex plane.
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I. INTRODUCTION

Nature in some circumstances distinguishes the dimen-
sionality of spacetime through the underlying theory.
The fundamental solution to the wave equation has a
delta-function support in even dimensions while it has a
step-function support in odd dimensions. Another interest-
ing feature of dimensionality is that a de Sitter (dS) space-
time produces particles in even dimensions while it does
not produce any particles in odd dimensions [1,2].
Polyakov interpreted the reflectionless scattering of a
quantum field in an odd-dimensional dS spacetime as a
soliton of the Korteweg-de Vries (KdV) equation [3,4].
In fact, the quantum field in all odd-dimensional dS
spacetimes has the Pösch-Teller potential [5], whose
asymptotically reflectionless scattering implies the soli-
tonic nature of produced particles [6].

In the phase-integral method [7] each mode of a quantum
field in time-dependent gauge fields or curved spacetimes
has at least one pair of complex turning points in the
complex-time plane, for which the Hamilton-Jacobi action
between each pair determines the particle-production rate
for that channel. Remarkably the actions frommore than one
pair of complex turning points may contribute constructively
and destructively to the particle production, known as the
Stokes phenomenon. The Stokes phenomenon in Schwinger
mechanism discovered by Dumlu and Dunne explains the
substructure of produced particles for some time-dependent
electric fields [8–10]. In a dS spacetime a quantum field has
one pair of complex turning points in the planar coordinates
and two pairs in the global coordinates. The actions along
Stokes lines connecting two anti-Stokes lines have both the
imaginary part determining the dS radiation and the real part
resulting in constructive or destructive interference for dS
radiation in the global coordinates [11].

In this paper we propose a geometric interpretation in
the complex-time plane of the Stokes phenomenon for dS

radiation. Instead of tunneling paths and their actions in the
phase-integral method, we study the quantum evolution
operator for the field and calculate the geometric contribu-
tions to the transported in-vacuum in the complex-time
plane. It is shown that each harmonics of the field in the
global coordinates of dS spacetime obtains not only a
geometric factor for dS radiation which originates from
the simple pole at infinity corresponding to the cosmologi-
cal horizon but also interfering terms from finite simple
poles at the north and south poles of the Euclidean geome-
try which explain the sinusoidal behavior responsible for
the presence or absence of particle production in even and
odd dimensions.
The geometric transition of the time-dependent

Hamiltonian in the complex plane leads to an exponential
decay of the initial state through level crossings [12,13].
The geometric transition has been formulated to include the
higher corrections in Ref. [14]. Recently it has been shown
that the in-vacuum of a time-dependent oscillator trans-
ported along a closed path in the complex plane may gain
a geometric contribution from the simple pole at infinity and
that the geometric factor explains Schwinger pair produc-
tion in a constant electric field and dS radiation in the planar
coordinates [15]. It has been further argued that the scatter-
ing amplitude between the transported in-vacuum and the
in-vacuum determines multiple pair production, depending
on the winding number of the closed path in the complex
plane. However, these models have only one pair of com-
plex turning points and rule out the Stokes phenomenon,
whereas the global coordinates of dS spacetime provide two
pairs of complex turning points for each harmonics of
quantum field and lead to the Stokes phenomenon.
The organization of this paper is as follows. In Sec. II the

real-time evolution of a quantum field is formulated in the
functional Schrödinger picture. In Sec. III the scattering
amplitudes between the in-vacuum and the transported one
along closed paths in the complex-time plane are computed
and the particle-production rate is given by summing the
scattering amplitude squares for all independent paths of*sangkim@kunsan.ac.kr
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winding number 1. It is shown that the Stokes phenomenon
is a consequence of the interference among different paths,
which has a geometric origin. In Sec. IV we compare the
result of this paper with other methods and discuss the
physical implications.

II. EVOLUTION OPERATOR IN REAL TIME

For the sake of simple harmonics decomposition we
consider a complex scalar in the global coordinates of a
ðdþ 1Þ-dimensional dS spacetime (in units of c ¼ ℏ ¼ 1)

ds2 ¼ �dt2 þ 1

H2
cosh 2ðHtÞd�2

d: (1)

The field equation for the complex scalar field with massm
may be derived from the Lagrangian1

L�ðtÞ ¼
Z ffiffiffiffiffiffiffi�g

p
ddx

1

2
ðc �hc �m2c �c Þ; (2)

where h ¼ ð1= ffiffiffiffiffiffiffi�g
p Þ@�ð ffiffiffiffiffiffiffi�g

p
g��@�Þ. Decomposing c

and c � by the spherical harmonics on Sd, r2u�ðxÞ ¼
��2u�ðxÞ with �2 ¼ lðlþ d� 1Þ, ðl ¼ 0; 1; . . .Þ [17] and
symmetrizing them, we obtain the Hamiltonian
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� and ��
� ¼ _c � þ ð _g=4gÞc �,

and

!2
�ðtÞ ¼ �2 þ ð�HÞ2

cosh 2ðHtÞ ; (4)

where for a massive scalar ðm> dH=2Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � ðdHÞ2
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In the functional Schrödinger picture, the evolution
operator for the field obeys the time-dependent
Schrödinger equation

i
@

@t

Y
�

Û�ðtÞ ¼
X
�

Ĥ�ðtÞ
Y
�

Û�ðtÞ: (6)

Each Hamiltonian is diagonalized by the time-dependent
annihilation and creation operators as

Ĥ�ðtÞ ¼ !�ðtÞ
�
ây�ðtÞâ�ðtÞ þ 1

2

�
: (7)

Then the evolution operator is expressed by the spectral
resolution [15]

Û�ðt;t0Þ¼�T
�ðtÞTexp

�
�i

Z t

t0
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(8)

where H�DðtÞ ¼ !�ðtÞ diagð1=2; . . . ; nþ 1=2; . . .Þ is the
diagonal matrix and �TðtÞ ¼ ðj0�; ti; . . . ; jn�; ti; . . .Þ is
the row vector of the number states for (7), and A�ðtÞ is
the induced vector potential from the time-dependent
number states with entries

ðA�ðtÞÞmn ¼ ihm; tj
�
@

@t
jn; ti

�

¼ i
_!�ðtÞ
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p
�mnþ2

�
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Here T denotes the transpose of the matrix or vector. Note
that !�ðtÞ> 0 and A�ðtÞ does not have any singularity, so

Û�ðt0; t0Þ ¼ I for any path along the real-time axis and the
in-in formalism thus becomes trivial. In the real-time
dynamics the in-out formalism carries all physical
information through the scattering matrix between the
out-vacuum and the in-vacuum. Hence, to implement the
in-in formalism for particle production, the real-time
dynamics should be extended to the complex-time plane,
as will be shown in the next section.

III. GEOMETRIC INTERPRETATION OF
STOKES PHENOMENON

It has been known for long that the quantum evolution of
a time-dependent Hamiltonian system exhibits a rich struc-
ture in the complex-time plane, such as geometric phases
and nonadiabatic evolutions [12,13,18]. Now we extend the
quantum evolution (6) to a complex plane. For that purpose
we assume that the geometry (1) and the Hamiltonian (3)
have an analytical continuation in the whole complex plane,
which is realized by the conformal mapping

eHt ¼ z; ð��< arg ðHtÞ � �Þ: (10)

Being interested in the quantum evolution along a path zðtÞ
in the complex plane, we analytically continue Eq. (6) to

i
@

@z

Y
�

Û�ðzÞ ¼
X
�

Ĥ�ðzÞ
Y
�

Û�ðzÞ; (11)

where Ĥ�ðzÞ :¼ @t
@z Ĥ�ðtðzÞÞ. The quantum field theory in

analytically continued geometries has also been discussed
in Ref. [19].
Hence the spectrally resolved evolution operator (8) is

analytically continued to a closed path CðzÞ in the complex
plane provided that hm; zjn; zi holds along the path. Then
the lowest order of the Magnus expansion [20,21] gives the
scattering amplitude between the in-vacuum and the trans-

ported one along a path CðnÞ of winding number n with the
base point t0 [15]

1The Lagrangian under a field redefinition �c ¼ c =ð�gÞ1=4 is
equivalent to that of Ref. [16].
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h0�; t0j0�; CðnÞðt0Þi ¼ exp

�
� i

2

I
CðnÞðt0Þ

!ðzÞdz
�
: (12)

In the in-out formalism the vacuum persistence, which is
the magnitude of the square of the scattering amplitude
between the out-vacuum and the in-vacuum, is the proba-
bility for the out-vacuum to remain in the in-vacuum. The
decay of the vacuum persistence results from one-pair and
multipair production in bosonic theory [22]. Similarly, the
magnitude of the scattering amplitude square (12) is the
rate for multiparticle production

N ðnÞ
� ¼

��������exp
�
�i

I
CðnÞðt0Þ

!ðzÞdz
���������; (13)

and depends only on the information of simple poles
included in the path. The pair-production rate in time-
dependent electric fields has been proposed of the form

je�i
H

Cð1Þ !ðzÞdzj in the phase-integral method [23]. The
dynamical phase has an extension to the complex plane

along CðnÞðt0Þ asI
!�ðtÞdt ¼ �

H

I 1

ðz2 þ 1Þz ððz� z�þÞðz� zþÞ

� ðz� z��Þðz� z�ÞÞ1=2dz; (14)

where the branch points are
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0
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�

1
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(15)

Cutting the branch points zþ, z� and their conjugates z�þ,
z�� as shown in Fig. 1, the integrand in Eq. (14) is an
analytic function. The integrand (14) has a simple pole at
z ¼ 1, which corresponds to the cosmological horizon,
and which is located outside the path and can be obtained
by the large z expansion [24]. The geometric contribution
from the pole at infinity is universal for all paths of nonzero
winding numbers. Further, there are two finite simple poles
at zi ¼ i and zi ¼ �i, which correspond to the north and
south poles of the Euclidean geometry of dS space (1).

The simple poles at z ¼ �i classify four independent
paths of winding number 1 with the base point t0 in the z

plane: the first class Cð1Þ
I does not include any pole at z ¼

�i as shown in Fig. 1, the second class Cð1Þ
II and the third

class Cð1Þ
III include only one pole at z ¼ �i as shown in the

left panel of Fig. 2, and the fourth class Cð1Þ
IV includes both

poles at z ¼ �i as shown in the right panel of Fig. 2. The
scattering amplitude between the in-vacuum and the trans-
ported one along a path of each class always receives a
geometric contribution �2i�Res!ð1Þ from the simple
pole at z ¼ 1, which is located outside the path. The
particle-production rate is the magnitude of the sum of
the scattering amplitude square for each class path

N � ¼
��������
X4
J¼1

h0�; t0j0�; Cð1Þ
J ðt0Þi2

��������
¼ jð1þ 2e2i�� þ e4i��Þje�2��

H: (16)

Here the first term in the parenthesis comes from Cð1Þ
I ðt0Þ,

the second term from Cð1Þ
II ðt0Þ and Cð1Þ

IIIðt0Þ, and the last term
fromCð1Þ

IV ðt0Þ. It should be noted that the magnitude is taken
after summing over all independent paths of winding num-
ber 1. In the limit of large action (jH!�j � 1 and l � 1),
we approximately have � � lþ d=2� 1=2 and obtain the
particle-production rate

N � ¼ 4sin 2ð�ðlþ d=2ÞÞe�2��
H: (17)

Hence, in odd dimensions (d even) the particle-production
rate vanishes while in even dimensions it is the leading
Boltzmann factor of the exact formula [2]

N � ¼ sin 2ð�ðlþ d=2ÞÞ
sinh 2ð��=HÞ : (18)

Finally, we compare the result of this paper with the
Stokes phenomenon in the phase-integral method [11].
In the complex plane fz��; z�g and fzþ; z�þg constitute two
pairs of complex turning points and each pair gives the
Hamilton-Jacobi action for the scattering over barrier

2
Z z�

z��
!�ðzÞdz ¼ 2

Z z�þ

zþ
!�ðzÞdz ¼

I
Cð1Þ
J

!�ðzÞdz

¼ �2i�
�

H
� 2��; (19)

FIG. 1. A pair of branch points Zþ and Z� is cut by a line
segment in the upper half of the plane and another pair Z�þ and
Z�� is cut by another line segment in the lower half of the plane.

The first class consists of closed paths Cð1Þ
I of winding number 1

that start from an initial time t0 and do not include any finite
simple poles. But the path still receives a geometric factor
�2i�Res!ð1Þ from the simple pole at the infinity.
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where J denotes the class II or III. The imaginary and real
parts of the actions determine the exponential and oscil-
latory behaviors for the particle-production rate, respec-
tively [11]. Thus the Stokes phenomenon for dS radiation
originates from the interference among four independent
paths involving two simple poles at the north and south
poles of the Euclidean geometry.

IV. CONCLUSION

We have shown that the Stokes phenomenon for dS
radiation, constructive interference in even dimensions
and destructive interference in odd dimensions, has a geo-
metric interpretation in the complex-time plane. In contrast
to the trivial real-time dynamics in the in-in formalism, the
transported in-vacuum of a quantum field along a closed
path in the complex-time plane may gain geometric con-
tributions from possible simple poles and the magnitude of
the scattering amplitude square between the in-vacuum and
the transported one gives the particle-production rate for
that path. The global coordinates of a dS spacetime have
two finite simple poles corresponding to the north and
south poles of the Euclidean geometry as well as the simple
pole at infinity, corresponding to the cosmological horizon.
It is shown that the four classes of paths, either including or
not including the finite simple poles, provide each channel
for dS radiation, which explains not only the leading
Boltzmann factor from the simple pole at infinity but
also the sinusoidal behavior from finite simple poles.
Thus the Stokes phenomenon for dS radiation has a
geometric interpretation in the complex-time plane.

We now compare the geometric interpretation of this
paper with other tunneling approaches to dS radiation. In
the tunneling interpretation of dS radiation the cosmologi-
cal horizon in the static coordinates plays an essential role
in emitting particles from vacuum fluctuations near the
horizon [25–32]. On the other hand, the geometric inter-
pretation relies on the nonstationary nature of the time-
dependent Hamiltonian of a quantum field in dS spacetime.
The quantum evolution in the complex-time plane provides
the geometric factor when the in-vacuum is transported
along a closed path and returns to the initial time. In fact,
the magnitude of the scattering amplitude square between
the in-vacuum and the transported one along an indepen-
dent path gives a channel for particle production. Further,
the two simple poles from the north and south poles of the
Euclidean geometry result in the interference among
independent paths, constructive in even dimensions and
destructive in odd dimensions. It would be interesting to
investigate physics behind two methods by comparing
different coordinates for the embedding spacetime.
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FIG. 2. The second class consists of closed paths Cð2Þ
II and the third class of closed paths Cð1Þ

III that start from t0 and include only one of
finite simple poles zi ¼ i and zi ¼ �1, and they also receive the geometric factor from z ¼ 1 (left panel). The fourth class of closed

paths Cð1Þ
IV starts from the initial time t0 and includes both simple poles zi ¼ i and zi ¼ �1, and it also receives the geometric

contribution from z ¼ 1 (right panel).
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