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We consider an extension of the Weyl-Cartan-Weitzenböck (WCW) and teleparallel gravity in which

the Weitzenböck condition of the exact cancellation of curvature and torsion in a Weyl-Cartan geometry is

inserted into the gravitational action via a Lagrange multiplier. In the standard metric formulation of the

WCW model, the flatness of the space-time is removed by imposing the Weitzenböck condition in

the Weyl-Cartan geometry, where the dynamical variables are the space-time metric, the Weyl vector and

the torsion tensor, respectively. However, once the Weitzenböck condition is imposed on the Weyl-Cartan

space-time, the metric is not dynamical, and the gravitational dynamics and evolution are completely

determined by the torsion tensor. We show how to resolve this difficulty and generalize the WCW model

by imposing the Weitzenböck condition on the action of the gravitational field through a Lagrange

multiplier. The gravitational field equations are obtained which explicitly depend on the Lagrange

multiplier. As a particular model we consider the case of the Riemann-Cartan space-times with zero

nonmetricity which mimics the teleparallel theory. The Newtonian limit of the model is investigated and a

generalized Poisson equation is obtained, with the weak field gravitational potential explicitly depending

on the Lagrange multiplier and on the Weyl vector. The cosmological implications of the theory are also

studied, and three classes of exact cosmological models are considered.
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I. INTRODUCTION

General relativity (GR) is considered to be the most
successful theory of gravity ever proposed. Its classic
predictions on the perihelion advance of Mercury, on the
deflection of light by the Sun, gravitational redshift, or
radar echo delay have been confirmed at an unprecedented
level of observational accuracy. Moreover, predictions
such as the orbital decay of the Hulse-Taylor binary pulsar,
due to gravitational-wave damping, have also fully
confirmed the observationally weak-field validity of the
theory. The detection of the gravitational waves will allow
the testing of the predictions of GR in the strong gravita-
tional field limit, such as, for example, the final stage of
binary black hole coalescence (for a recent review on the
experimental tests of GR see [1]).

Despite these important achievements, recent observa-
tions of supernovae [2] and of the cosmic microwave
background radiation [3] have suggested that on cosmo-
logical scales GR may not be the ultimate theory to
describe the Universe. If GR is correct, in order to explain
the accelerating expansion of the Universe, we require that
the Universe be filled with some component of unknown
nature, called dark energy, having some unusual physical
properties. To find an alternative to dark energy to explain
cosmological observations, in the past decade many modi-
fied theories of gravity, which deviate from the standard

GR on cosmological scales have been proposed (see [4] for
a recent review on modified gravity and cosmology). On
the other hand, because of its prediction of space-time
singularities in the big bang and inside black holes GR
could be considered as an incomplete physical model.
In order to solve the singularity problem it is generally
believed that a consistent extension of GR into the
quantum domain is needed.
Since GR is essentially a geometric theory, formulated

in the Riemann space, looking for more general geometric
structures adapted for the description of the gravitational
field may be one of the most promising ways for the
explanation of the behavior at large cosmological scales
of the matter in the Universe, whose structure and dynam-
ics may be described by more general geometries than the
Riemannian one, valid at the Solar System level.
The first attempt to create a more general geometry is

due toWeyl [5], who proposed a geometrized unification of
gravitation and electromagnetism. Weyl abandoned the
metric-compatible Levi-Civita connection as a fundamen-
tal concept, since it allowed the distant comparison of
lengths. Substituting the metric field by the class of all
conformally equivalent metrics, Weyl introduced a con-
nection that would not carry any information about the
length of a vector on parallel transport. Instead the latter
task was assigned to an extra connection, a so-called length
connection that would, in turn, not carry any information
about the direction of a vector on parallel transport, but
that would only fix, or gauge, the conformal factor.
Weyl identified the length connection with the electromag-
netic potential. A generalization of Weyl’s theory was
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introduced by Dirac [6], who proposed the existence of two
metrics, one unmeasurable metric dsE, affected by trans-
formations in the standards of length, and a second mea-
surable one, the conformally invariant atomic metric dsA.

In the development of the generalized geometric theo-
ries of gravity a very different evolution took place due to
the work of Cartan [7], who proposed an extension of
general relativity, which is known today as the Einstein-
Cartan theory [8]. The new geometric element of the
theory, the torsion field, is usually associated from a physi-
cal point of view to a spin density [8]. The Weyl geometry
can be immediately generalized to include the torsion. This
geometry is called the Weyl-Cartan space-time, and it was
extensively studied from both mathematical and physical
points of view [9]. To build up an action integral from
which one can obtain a gauge covariant (in the Weyl sense)
general relativistic massive electrodynamics, torsion was
included in the geometric framework of the Weyl-Dirac
theory in [10]. For a recent review of the geometric
properties and of the physical applications of the
Riemann-Cartan and Weyl-Cartan space-times see [11].

A third independent mathematical development took
place in the work of Weitzenböck [12], who introduced
the so-called Weitzenböck spaces. A Weitzenböck mani-
fold has the properties r�g�� ¼ 0, T

�
�� � 0, and R

�
��� ¼

0, where g��, T
�
�� and R

�
��� are the metric, the torsion, and

the curvature tensors of the manifold, respectively. When
T�
�� ¼ 0, the manifold is reduced to a Euclidean manifold.

The torsion tensor possesses different values on different
parts of the Weitzenböck manifold. Therefore, since their
Riemann curvature tensor is zero, Weitzenböck spaces
possess the property of distant parallelism, also known as
absolute, or teleparallelism. Weitzenböck type geometries
were first used in physics by Einstein, who proposed a
unified teleparallel theory of gravity and electromagnetism
[13]. The basic idea of the teleparallel approach is to
substitute, as a basic physical variable, the metric g�� of

the space-time by a set of tetrad vectors ei�. In this

approach the torsion, generated by the tetrad fields, can
be used to describe general relativity entirely, with the
curvature eliminated in favor of torsion. This is the
so-called teleparallel equivalent of general relativity,
which was introduced in [14], and is also known as the
fðTÞ gravity model. Therefore, in teleparallel, or fðTÞ
gravity, torsion exactly compensates curvature, and the
space-time becomes flat. Unlike in fðRÞ gravity, which in
the metric approach is a fourth order theory, in the fðTÞ
gravity models the field equations are of second order.
fðTÞ gravity models have been extensively applied to
cosmology, and in particular to explain the late-time accel-
erating expansion of the Universe, without the need of dark
energy [15].

An extension of the teleparallel gravity models, called
Weyl-Cartan-Weitzenböck (WCW) gravity, was intro-
duced recently in [16]. In this approach, the Weitzenböck

condition of the vanishing of the sum of the curvature and
torsion scalar is imposed in a background Weyl-Cartan
type space-time. In contrast to the standard teleparallel
theories, the model is formulated in a four-dimensional
curved space-time, and not in a flat Euclidean geometry.
The properties of the gravitational field are described by
the torsion tensor and the Weyl vector fields, defined in a
four-dimensional curved space-time manifold. In the
gravitational action a kinetic term for the torsion is also
included. The field equations of the model, obtained from
a Hilbert-Einstein type variational principle, allow a com-
plete description of the gravitational field in terms of two
vector fields, the Weyl vector and torsion, respectively,
defined in a curved background. The Newtonian limit of
the model was also considered, and it was shown that in the
weak gravitational field approximation the standard
Poisson equation can be recovered. For a particular choice
of the free parameters, in which the torsion vector is
proportional to the Weyl vector, the cosmological applica-
tions of the model were investigated. A large variety of
dynamical evolutions can be obtained in the WCW gravity
model, ranging from inflationary/accelerated expansions to
noninflationary behaviors. The nature of the cosmological
evolution is determined by the numerical values of the
parameters of the cosmological model. In particular a de
Sitter type late-time evolution can be naturally obtained
from the field equations of the model. Therefore the WCW
gravity model leads to the possibility of a purely geomet-
rical description of dark energy where the late-time accel-
eration of the Universe is determined by the intrinsic nature
of the space-time.
Recently, the use of Lagrange multipliers in the formu-

lation of dynamical gravity models has attracted consid-
erable attention. The method of Lagrange multipliers is a
strategy for finding the local maxima and minima of a
function subject to equality nonholonomic constraints,
which are capable of reducing the dynamics [17]. The
extension of fðRÞ gravity models via the addition of a
Lagrange multiplier constraint has been proposed in [18].
This model can be considered as a new version of fðRÞ
modified gravity since dynamics, and the cosmological
solutions, are different from the standard version of fðRÞ
gravity without such constraint. Cosmological models with
Lagrange multipliers have been considered from different
points of view in [19].
It is the purpose of the present paper to investigate a

class of generalized WCW type gravity models, in which
the Weitzenböck condition of the exact compensation of
torsion and curvature is introduced into the gravitational
action via a Lagrange multiplier approach. We start our
analysis by considering the general action for a gravita-
tional field in a Weyl-Cartan space-time, and we explicitly
introduce the Weitzenböck condition into the action via a
Lagrange multiplier. By taking the Weyl vector as being
identically zero, we obtain the field equations of this
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gravity model in a Riemann-Cartan space time, with the
Weitzenböck condition being described by a proportional-
ity relation between the scalar curvature and torsion scalar,
included in the gravitational action via a Lagrange multi-
plier method which mimics the teleparallel gravity. The
weak field limit of the general theory is also investigated,
and a generalized Poisson equation, explicitly depending
on the Lagrange multiplier and theWeyl vector is obtained.

The cosmological implications of the model are investi-
gated for three classes of models. The solutions obtained
describe both accelerating and decelerating expansionary
phases of the Universe, and they may prove useful for mod-
eling the early and late phases of cosmological evolution.

The paper is organized as follows. The gravitational
action of the WCW theory with Lagrange multiplier is
introduced in Sec. II. The gravitational field equations
are derived in Sec. III. Some particular cases are also
considered in detail. The field equations for the case of
the zero Weyl vector are presented in Sec. IV. The weak
field limit of the theory is investigated in Sec. V, and the
generalized Poisson equation is obtained. The cosmologi-
cal implications of the theory are investigated in Sec. VI,
and several cosmological models are presented. We discuss
and conclude our results in Sec. VII. Some aspects of the
Weyl invariance of the theory are considered in the
Appendix.

II. WCW GRAVITY MODELWITH
LAGRANGE MULTIPLIER

In this section we formulate the action of the gravita-
tional field in theWCW gravity with a Lagrange multiplier.
A Weyl-Cartan space CW4 is a four-dimensional con-
nected, oriented, and differentiable manifold, having a
metric with a Lorentzian signature chosen as (�þþþ),
curvature, torsion, and a connection which can be deter-
mined from the Weyl nonmetricity condition. Hence the
Weyl-Cartan geometry has the properties that the connec-
tion is no longer symmetric, and the metric compatibility
condition does not hold. The Weyl nonmetricity condition
is defined as

r�g�� ¼ 2w�g��; (1)

where w� is the Weyl vector. Expanding the covariant

derivative, we obtain the connection in the Weyl-Cartan
geometry

��
�� ¼

�
�

��

�
þ C�

�� þ g��w
� � ��

�w� � ��
�w�; (2)

where the first term in the lhs is the Christoffel symbol
constructed out of the metric and the contorsion tensor
C�

�� is defined as

C�
�� ¼ T�

�� � g��g��T
�
�� � g��g��T

�
��; (3)

with torsion tensor T�
�� given by

T�
�� ¼ 1

2
ð��

�� � ��
��Þ: (4)

One can then obtain the curvature tensor of the
Weyl-Cartan space-time as

K�
��� ¼ ��

��;� � ��
��;� þ ��

���
�
�� � ��

���
�
��:

(5)

Using Eq. (2) and contracting the curvature tensor with
the metric, we obtain the curvature scalar

K ¼ K��
��

¼ Rþ 6r�w
� � 4r�T

� � 6w�w
� þ 8w�T

�

þ T���T��� þ 2T���T��� � 4T�T
�; (6)

where R is the curvature scalar constructed from the
Christoffel symbols and we have defined T� ¼ T�

��.

Also all covariant derivatives are with respect to the
Riemannian connection described by the Christoffel sym-
bols constructed out of the metric g��. We also introduce

two tensor fields W�� and T��, constructed from the Weyl

vector and the torsion vector, respectively:

W�� ¼ r�w� �r�w�; (7)

T�� ¼ r�T� �r�T�; (8)

where T ¼ T�T
�.

The most general action for a gravitational theory in the
Weyl-Cartan space-time can then be formulated as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

�2
K � 1

4
W��W

�� þ �̂r�Tr�T

þ �̂T��T
�� þ Lm

�
; (9)

where Lm is the matter Lagrangian which depends only on
the matter fields and the metric, and is independent on the
torsion tensor and the Weyl vector. We have also added
a kinetic term for the Weyl vector and two possible kinetic

terms for the torsion tensor. In Eq. (9), �̂ and �̂ are
arbitrary numerical constants, and �2 ¼ 16	G.
Substituting definition of the curvature scalar from
Eq. (6), the action for the gravitational field becomes

S ¼ 1

�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

Rþ T���T��� þ 2T���T���

� 4T�T
� � 6w�w

� þ 8w�T
� � �2

4
W��W

��

þ �r�Tr�T þ �T��T
�� þ �2Lm

�
; (10)

where we have defined � ¼ �2�̂ and � ¼ �2�̂.
The Weitzenböck condition

W �RþT���T���þ2T���T����4T�T
� ¼ 0; (11)
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requires that the sum of the scalar curvature and torsion be
zero. In order to impose this condition on the gravitational
field equations of the theory, we add it to the action by
using a Lagrange multiplier �. The gravitational action
then becomes

S ¼ 1

�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

��2

4
W��W

�� � 6w�w
� þ 8w�T

�

þ ð1þ �ÞðRþ T���T��� þ 2T���T��� � 4T�T
�Þ

þ �r�Tr�T þ �T��T
�� þ �2Lm

�
: (12)

We note that for � ¼ �1 one gets the original WCW
action [16].

III. THE GRAVITATIONAL FIELD EQUATIONS
OF THE WCW GRAVITY MODEL
WITH A LAGRANGE MULTIPLIER

Let us now derive the field equations of the WCW
gravity with the Lagrange multiplier. By considering the
irreducible decomposition of the torsion tensor and impos-
ing a condition on the terms of the decomposition,
we obtain an explicit representation of the Weitzenböck

condition. The field equations of a simplified model in
which the constant � ¼ 0 are also obtained explicitly.

A. The gravitational field equations and the effective
energy-momentum tensor

Variation of the action (12) with respect to the Weyl
vector and the torsion tensor results in the equations of
motion

� �2

2
r�W

�� � 6w� þ 4T� ¼ 0; (13)

and

4w½
���
� þ 2��½�

� r�T

�� � 2�T½
���

� hT

þ ð1þ �ÞðT�

� þ T�


� þ T

�
� � 4T½
���

� Þ ¼ 0;

(14)

respectively. Variation of the action with respect to the
Lagrange multiplier � gives the Weitzenböck condition
(11). Now, varying the action with respect to the metric
and using the condition (11), we obtain the dynamical
equation for the metric as

ð1þ �ÞR�� ¼ �2

2
Tm
�� þr�r��� g��h�� ð1þ �Þð2T��

�T��� � T�
��T��� þ 2T��ð�T��

�Þ � 4T�T�Þ

þ �2

2

�
W��W�

� � 1

4
W��W

��g��

�
� 2�

�
T��T�

� � 1

4
T��T

��g��

�
þ 6

�
w�w� � 1

2
w�w�g��

�

� �

�
r�Tr�T � 1

2
g��r�Tr�T � 2T�T�hT

�
� 8

�
Tð�w�Þ � 1

2
w�T�g��

�
; (15)

where Tm
�� is the energy-momentum of the ordinary matter. The generalized Einstein field equation (15) can be written as

G�� ¼ Teff
��; (16)

where we have defined the effective energy-momentum tensor as

Teff
�� ¼ ð1þ �Þ�1

�
�2

2
Tm
�� þr�r��� g��h�� ð1þ �Þð2T��

�T��� � T�
��T��� þ 2T��ð�T��

�Þ � 4T�T�Þ

þ �2

2

�
W��W�

� � 1

4
W��W

��g��

�
� 2�

�
T��T�

� � 1

4
T��T

��g��

�
þ 6

�
w�w� � 1

2
w�w�g��

�

� �

�
r�Tr�T � 1

2
g��r�Tr�T � 2T�T�hT

�
� 8

�
Tð�w�Þ � 1

2
w�T�g��

�

þ 1

2
ð1þ �ÞðT���T��� þ 2T���T��� � 4T�T�Þg��

�
; (17)

and use has been made of Eq. (11).

B. The decomposition of the torsion tensor

The torsion tensor can be decomposed irreducibly into

T��
 ¼ 2

3
ðt��
 � t�
�Þ þ 1

3
ðQ�g�
 �Q
g��Þ þ ���
�S

�;

(18)

where Q� and S
 are two vectors, and the tensor t��
 is

symmetric under the change of the first two indices, and
satisfies the following conditions:

t��
 þ t�
� þ t
�� ¼ 0; (19)

g��t��
 ¼ 0 ¼ g�
t��
: (20)
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By contracting Eq. (18) over � and 
 we obtainQ� ¼ T�.

Assuming that t��
 � 0 [16], one may formulate the

Weitzenböck condition as

R ¼ �6S�S
� þ 8

3
T: (21)

Now in Eqs. (14) and (15) the terms with coefficient
(1þ �) can be simplified to

T�

�þT�


�þT

�
��4T½
���

� ¼�8

3
T½
���

� ���

��S�;

(22)

and

2T��
�T��� � T�

��T��� þ 2T��ð�T��
�Þ � 4T�T�

¼ � 24

9
T�T� þ 2ðS�S�g�� � S�S�Þ; (23)

respectively. Taking the trace of Eq. (14) over indices �
and �, we have

�r�T

� � �T
hT ¼ 4

3
ð1þ �ÞT
 � 2w
: (24)

Now, substituting the lhs of the above equation into (14) we
obtain

ð1þ �Þ��
��S� ¼ 0: (25)

If one assumes � � �1 then S� ¼ 0. We note that from

Eq. (21) one has R ¼ 8=3T which implies that the vector
T� should be space-like for the accelerating Universe with
R ¼ 6ð _H þ 2H2Þ, where H is the Hubble parameter.

C. The case � ¼ 0

In order to further simplify the gravitational field
equations of the WCW model with a Lagrange multiplier,
let us assume that � ¼ 0, as in [16]. In this case from
Eq. (24) we find

hT ¼ � 4

3�
ð1þ �Þ þ 2

�T
w
T


; (26)

provided that T � 0. Substituting (24) into (14) we obtain

T�T�ðw
��
� � w��


�Þ ¼ w�T�ðT
��
� � T��


�Þ; (27)

which implies that T� ¼ Aw�, where A is a constant. In

order to obtain the value of the constant A, we take the
covariant divergence of Eq. (13), with the result

r�ð6w� � 4T�Þ ¼ 0: (28)

The above equation implies that A ¼ 3=2, so we conclude
that

T� ¼ 3

2
w�: (29)

Substituting the above equation into (13) we obtain the
dynamical field equation of the Weyl vector

hw� �r�r�w
� � w�R�� ¼ 0: (30)

Now, using (29), we write Eq. (14) as

hT ¼ � 4

3�
�; (31)

which implies

� ¼ � 27�

16
hw2; (32)

where w2 ¼ w�w
�. Substituting T� and � from Eqs. (29)

and (32) into the metric field equation we obtain the
effective energy-momentum tensor of the WCW model
with the Lagrange multiplier, Eq. (17), as

Teff
�� ¼

�
1� 27�

16
hw2

��1

�
�
�2

2
Tm
�� � 27�

16
ðr�r�hw2 �h2w2g��Þ

þ �2

2

�
W��W�

� � 1

4
W��W

��g��

�

þ 81�

32
ð2w2hw2g�� � 2r�w

2r�w
2

þ g��r�w
2r�w2Þ

�
: (33)

In summary, one may obtain the Weyl vector from
Eq. (30) and then the Lagrange multiplier � from
Eq. (32). The field equation (16), together with Eq. (33)
can then be used to obtain the evolution of the metric.
Hence a complete solution of the gravitational field equa-
tions in the WCWmodel with a Lagrange multiplier can be
constructed, once the thermodynamic parameters of the
matter (energy density and pressure) are known.
It is worth mentioning that because of the general

covariance, the matter energy-momentum tensor should
be conserved due to the Bianchi identity. One can easily
prove this statement in the case � ¼ 0. Using Eq. (33), one
may write Eq. (16) as
�
1� 27�

16
hw2

�
G��

¼
�
�2

2
Tm
�� � 27�

16
ðr�r�hw2 �h2w2g��Þ

þ �2

2

�
W��W�

� � 1

4
W��W

��g��

�

þ 81�

32
ð2w2hw2g�� � 2r�w

2r�w
2

þ g��r�w
2r�w2Þ

�
: (34)

Taking the divergence of the above equation one obtains
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� 27�

16
r�hw2G��

¼ �2

2
r�Tm

�� � 27�

16
ðhr�hw2 �r�h

2w2Þ

þ 81�

16
w2r�hw2: (35)

Now, using the identity

r�r�A� �r�r�A� ¼ R�
�A�; (36)

and considering the Weitzenböck condition which reads
R ¼ 6w2, where R is the Ricci scalar, one easily finds
r�Tm

�� ¼ 0.

IV. THE LIMITING CASE w� ¼ 0 AND THE
TELEPARALLEL GRAVITY

In this section we consider the limiting case in which the
Weyl vector becomes zero. We also assume � ¼ 0 for
simplicity. The action of the theory becomes

S ¼ 1

�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½�r�Tr�T þ �2Lm

þ ð1þ �ÞðRþ T���T��� þ 2T���T��� � 4T�T
�Þ�:
(37)

One may then obtain the field equations for the torsion
tensor and the metric as

ð1þ �ÞðT�

� þ T�


� þ T

�
� � 4T½
���

� Þ
� 2�T½
���

� hT ¼ 0; (38)

and

G�� ¼ Teff
��; (39)

with

Teff
��¼ð1þ�Þ�1

�
�2

2
Tm
��þr�r���g��h�

�ð1þ�Þð2T��
�T����T�

��T���

þ2T��ð�T��
�Þ�4T�T�Þ

��

�
r�Tr�T�1

2
g��r�Tr�T�2T�T�hT

�

þ1

2
ð1þ�ÞðT���T���þ2T���T����4T�T�Þg��

�
:

(40)

The variation of the action with respect to the Lagrange
multiplier gives the Weitzenböck condition (11). Now
consider the decomposition of the torsion tensor, given
by Eq. (18), with t��
 ¼ 0. One can again obtain S� ¼ 0

by the same trick as in Sec. III. We then obtain the
Weitzenböck condition in the form

R ¼ 8

3
T: (41)

From Eq. (38) one can isolate the Lagrange multiplier

� ¼ � 3�

4
hT � 1: (42)

By substituting Eq. (42) one can check that Eq. (38) is
automatically satisfied. The metric equations then become

hTG�� ¼ � 2�2

3�
Tm
�� þr�r�hT � g��h

2T

þ 4

3
r�Tr�T � 2

3
g��r�Tr�T � 4

3
g��ThT:

(43)

A. The case � ¼ 0

For� ¼ 0 the torsion has no kinetic term. Putting� ¼ 0
in Eq. (38) and using Eq. (22), we obtain T
 ¼ 0. The trace
of Eq. (38) then gives S� ¼ 0. Therefore, from the field

equations we obtain T�

� ¼ 0 and the theory reduces to a

Brans-Dicke type theory, with equations of motion

G�� ¼ ð1þ �Þ�1

�
�2

2
Tm
�� þr�r��� g��h�

�
; (44)

and

h� ¼ �2

6
Tm; (45)

respectively, where Tm is the trace of the energy-
momentum tensor. We have used the Weitzenböck
condition R ¼ 0 to obtain Eq. (45).

V. THE NEWTONIAN LIMIT AND THE
GENERALIZED POISSON EQUATION

In this section, we will obtain the generalized Poisson
equation describing the weak field limit of the WCW
theory with Lagrange multiplier. Taking the trace of
Eq. (15), using the Weitzenböck condition (21), and noting
that S� ¼ 0 in our setup, we obtain

1

2
�2Tm � 3h�� 6w2 þ 8T�w�

þ �ðr�Tr�T þ 2ThTÞ ¼ 0: (46)

Now, using Eq. (24) to eliminate the hT term, we find

ð1þ �ÞR ¼ 1

2
�2Tm � 3h�� 6w2

þ �r�Tr�T þ 12w�T
� þ 2�T�r�T

��:

(47)

In the limit of the weak gravitational fields the (00)
component of the metric tensor takes the form g00 ¼
�ð1þ 2Þ, where  is the Newtonian potential. In this

HAGHANI et al. PHYSICAL REVIEW D 88, 044024 (2013)

044024-6



limit we have R ¼ �r2, and obtain the generalized
Poisson equation as

r2 ¼ ð1þ �Þ�1

�
1

4
�2
þ 3

2
h�þ 3w2 � 6w�T

�

� �T�r�T
��

�
: (48)

In obtaining the above equation we have assumed that the
matter content of the Universe is pressureless dust, and we
have used the Weitzenböck equation to keep terms up to
first order in .

In the particular case � ¼ 0, from Eq. (32) we find that
the Lagrange multiplier is of the order of. Using Eq. (29)
we obtain the generalized Poisson equation as

r2 ¼ 1

4
�2
� 81

32
�h2w2 þ 6w2: (49)

For w ¼ 0, we recover the standard Poisson equation of
Newtonian gravity.

VI. COSMOLOGICAL SOLUTIONS

In this section we consider the cosmological solutions
and implications of the WCW model with Lagrange
multiplier. We assume that the metric of the space-time
has the form of the flat Friedmann-Robertson-Walker
(FRW) metric,

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ: (50)

Also in the following we suppose that the tensor t��


vanishes, t��
 ¼ 0. As we have mentioned in the previous

section, S� ¼ 0 and T� should be space-like in order to

obtain an accelerating solution. We consider only models
in which the Universe is filled with a perfect fluid, with the
energy-momentum tensor given in a comoving frame by

T
�
� ¼ diagð�
; p; p; pÞ; (51)

where 
 and p are the thermodynamic energy density and
pressure, respectively. The Hubble parameter is defined as
H ¼ _a=a. As an indicator of the accelerated expansion we
will consider the deceleration parameter q, defined as

q ¼ d

dt

1

H
� 1: (52)

If q < 0, the Universe experiences an accelerated expan-
sion while q > 0 corresponds to a decelerating dynamics.

A. The case � ¼ 0

In this case the cosmological dynamics is described by
Eq. (30) which represents the dynamical equation for the
Weyl vector together with Eqs. (32) and (16) which
determine the Lagrange multiplier and the scale factor,
respectively. The Weitzenböck condition is

R ¼ 6w2: (53)

Let us assume that the Weyl vector is of the form

w� ¼ aðtÞc ðtÞð0; 1; 1; 1Þ: (54)

The Weitzenböck equation reduces to

_H þ 2H2 � 3c 2 ¼ 0; (55)

and the Lagrange multiplier can be obtained as

� ¼ 81�

8
ð2�2 þ _�þ 3�HÞc 2; (56)

where we have defined � ¼ _c =c . The dynamical
equation for the Weyl vector is

_�þ _Hþ�2 þ 2H2 þ 3�H ¼ 0: (57)

The off diagonal elements of the metric field equation
gives

�þH ¼ 0: (58)

One can then check that the Weyl equation (57) is
automatically satisfied. By substituting H from (58) to
the diagonal metric equations one obtains

3

8
�� €�þ 3

8
�ð3c 2 ��2Þ _�� 3

8
�ð3c 2 ��2Þ�2

� 1

27
c�2�2 þ 1

162
�2c�2
 ¼ 0; (59)

and

1

8
��

::: � 1

8
�ð2 _�þ 9c 2 þ�2Þ _�� 2

81
c�2 _�

� 3

8
��4 þ 1

27
c�2�2 þ 1

162
�2c�2p ¼ 0: (60)

We note that in this case we have four equations, (55) and
(58)–(60), for four unknowns a, c , 
 and p. The Lagrange
multiplier can then be obtained from Eq. (56).
Equation (58) can be immediately integrated to give

aðtÞc ðtÞ ¼ constant ¼ C0 � 0; (61)

where C0 is an arbitrary constant of integration. With the
use of c ðtÞ ¼ C0=aðtÞ, the Weitzenböck condition,
Eq. (55), becomes

a €aþ _a2 � 3C2
0 ¼ 0; (62)

or equivalently

d

dt
ða _aÞ ¼ 3C2

0; (63)

which immediately leads to

a2ðtÞ ¼ 3C2
0t

2 þ C1tþ C2; (64)

where C1 and C2 are arbitrary constants of integration. By
assuming the initial conditions að0Þ ¼ a0 and Hð0Þ ¼ H0,
respectively, we obtain C2 ¼ a20, and C1 ¼ 2a20H0. Thus

for the Hubble parameter we obtain
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HðtÞ ¼ a20H0 þ 6C2
0t

a20 þ 2a20H0tþ 6C2
0t

2
: (65)

The energy density of the Universe can be obtained from Eq. (60) as

�2
ðtÞ ¼ 4374C12
0 t10

ð2a20H0tþ a20 þ 3C2
0t

2Þ6 þ
2916a20C

10
0 t8ð5H0tþ 2Þ

ð2a20H0tþ a20 þ 3C2
0t

2Þ6 þ
6a120 H2

0ð2H0tþ 1Þ4
ð2a20H0tþ a20 þ 3C2

0t
2Þ6

þ 36a100 C2
0H0tð2H0tþ 1Þ3ð4H0tþ 1Þ

ð2a20H0tþ a20 þ 3C2
0t

2Þ6 þ 54a80C
4
0t

2ð2H0tþ 1Þ2ð26H2
0t

2 þ 12H0tþ 1Þ
ð2a20H0tþ a20 þ 3C2

0t
2Þ6

þ 648a60C
6
0t

4ð2H0tþ 1Þð11H2
0t

2 þ 7H0tþ 1Þ
ð2a20H0tþ a20 þ 3C2

0t
2Þ6 þ 486a40C

8
0t

6ð41H2
0t

2 þ 32H0tþ 6Þ
ð2a20H0tþ a20 þ 3C2

0t
2Þ6 þ 243�

4ð2a20H0tþ a20 þ 3C2
0t

2Þ6
� f2430a20C10

0 H0t
4 þ 324a20C

8
0t

3ð8a20H2
0 � 9C2

0Þ þ 3a40C
4
0t

2½a40H4
0 þ 6a20C

2
0H

2
0ð84H0 � 1Þ

þ C4
0ð9� 972H0Þ� þ a60C

2
0½a40H4

0ð48H0 þ 1Þ � 6a20C
2
0H

2
0ð24H0 þ 1Þ þ 9C4

0ð6H0 þ 1Þ�
þ 2a40C

2
0t½a60H5

0 þ 6a40C
2
0H

3
0ð36H0 � 1Þ þ 9a20C

4
0ð1� 60H0ÞH0 þ 81C6

0� þ 1458C12
0 t5g: (66)

The thermodynamic pressure is found in the form

�2p ¼ 2½a40H2
0 � 6a20C

2
0H0t� 6a20C

2
0 � 9C4

0t
2�

ð2a20H0tþ a20 þ 3C2
0t

2Þ2 þ 81C2
0�

4ð2a20H0tþ a20 þ 3C2
0t

2Þ5
� ½�35a80H

4
0 þ 135a60C

2
0H

2
0 � 63a40C

4
0 þ 324a20C

6
0H0t

3 þ tð558a40C4
0H0 � 150a60C

2
0H

3
0Þ

þ t2ð837a20C6
0 � 117a40C

4
0H

2
0Þ þ 243C8

0t
4�: (67)

For t ¼ 0 we obtain the initial values of the density and pressure as


ð0Þ ¼ 
0 ¼ 6H2
0 þ

243�C2
0ð48a40H5

0 þ a40H
4
0 � 144a20C

2
0H

3
0 � 6a20C

2
0H

2
0 þ 54C4

0H0 þ 9C4
0Þ

4a60
; (68)

and

pð0Þ ¼ p0

¼ 2ða20H2
0 � 6C2

0Þ
a20

� 81�C2
0ð35a40H4

0 � 135a20C
2
0H

2
0 þ 63C4

0Þ
4a60

; (69)

respectively. Once the initial conditions ða0; H0; 
0; p0Þ are
known, from Eqs. (68) and (69) the values of the integra-
tion constants can be determined. The deceleration pa-
rameter can be obtained as

qðtÞ ¼ a20
a20H

2
0 � 3C2

0

ða20H0 þ 3C2
0tÞ2

: (70)

If the initial values of the scale factor and Hubble parame-
ter satisfy the condition a0H0 <

ffiffiffi
3

p
C0, q < 0 for all times

then the Universe is in an accelerated expansionary phase.
If a0H0 ¼

ffiffiffi
3

p
C0, qðtÞ � 0 then the Universe is in a mar-

ginally inflating state. Finally, the Lagrange multiplier for
this model can be obtained as

�ðtÞ ¼ 81a20�C
2
0ða20H2

0 � 3C2
0Þ

8½a20ð2H0tþ 1Þ þ 3C2
0t

2�3 : (71)

B. The case � � 0

We assume that the Weyl vector is space-like, mimick-
ing the proportionality of the torsion and theWeyl vector as
in the case � ¼ 0. Let us assume that

T� ¼ aðtÞðtÞð0;1;1;1Þ; w� ¼ c ðtÞ
aðtÞ ð0;1;1;1Þ: (72)

By substituting these forms of the torsion and Weyl vector
into Eq. (14) we obtain, after some algebra, the Lagrange
multiplier

� ¼ 3

4
ð6�2 � �Þ _�� 3

4
� _H þ 9

2
�2ð2�þ 3HÞ�

� 3

4
�ð�2 þ 2H2 þ 3H�Þ þ 3

2

c


� 1; (73)

where we have defined

HAGHANI et al. PHYSICAL REVIEW D 88, 044024 (2013)

044024-8



� ¼
_


: (74)

By using Eq. (73), the field equation (13) becomes

€c þ 3H _c þ ð _H þ 2H2 þ 12��2Þc � 8��2 ¼ 0: (75)

The Weitzenböck equation takes the form

_H ¼ �2H2 þ 4

3
2: (76)

Substituting Eqs. (73) and (76) into (15), one obtains

9Hð6�2 � �Þ €�þ 6½ð�� 6�2Þð22 � 6H2 � 3H�Þ þ 36�2H�� _�� 3 _c

�
�2 _c þ 2�2Hc � 6

H



�

þ 84ð2�� 9��2Þ þ 216�2H�2ð�þ 2HÞ þ 62�ð4��� 27�H3Þ þ 24cþ 9�H2�ð3H��Þ
� 3c 2ð�2H2 þ 12Þ þ 18H

c


ðH ��Þ ¼ 2�2
; (77)

� 9ð�� 6�2Þ�
::: � 9½�ð5H þ 2�Þ � 6�2ð5H þ 8�Þ� €�þ 18 €c þ 18ð18�2 � �Þ _�2

þ 9½40�5 þ 6ð24��2 þ 30�H�� 7�H2 � 2�Þ3 þ �Hð7H� 4�Þ� 2c � _�þ 3�2 _c 2

þ 8ð117��2 � 81�H�� 2�Þ5 þ 18½12�ð2�þ 5HÞ�3 � 2ð4�þ 21�H2Þ�2 þ ð27�H2 � 2�ÞH��3

þ 72c2 þ ½6�2pþ 9�H2�2 þ 3�2H2c 2 � 81�H3�� 36c 2�þ 6ð6H � 6�þ �2Hc Þ _c þ 18c�2

� 36cH�� 18cH2 ¼ 0; (78)

and

�2 _c ð _c þ 2cHÞ þ c 2ð�2H2 � 12Þ
þ 4�2

�
_��H2 þH�þ 4

3
2

�
þ 8c ¼ 0: (79)

Equations (75)–(79) form a closed system of differential
equations for five unknowns c , , H, p and 
.
Equation (73) can then be used to determine the
Lagrange multiplier.

In the following we will look only for a de Sitter type
solution of the field equations (75)–(79) with H ¼ H0 ¼
constant and a ¼ exp ðH0tÞ, respectively. Then the
Weitzenböck condition (76) immediately gives

2 ¼ 3

2
H2

0 ¼ constant; (80)

and � � 0, respectively. Equation (75) takes the form

€c þ 3H0
_c þ ð2H2

0 � 12��2Þc ¼ �4
ffiffiffi
6

p
��2H2

0 ; (81)

with the general solution given by

c ðtÞ ¼ 2
ffiffiffi
6

p
H2

0

6�H2
0�

2
þ c1e

��
ffiffiffiffiffiffiffiffiffiffiffiffi
H2
0
�2þ48

p
�3H0�

2

2�2
tþ c2e

�
ffiffiffiffiffiffiffiffiffiffiffiffi
H2
0
�2þ48

p
�3H0�

2

2�2
t
;

(82)

where c1 and c2 are arbitrary constants of integration. The
simplest case corresponds to the choice c1 ¼ 0, c2 ¼ 0,
giving

c ¼ 2
ffiffiffi
6

p
H2

0

6�H2
0�

2
¼ constant: (83)

By substituting this form of c into Eq. (79) we obtain the
value of � as

� ¼ 12�2

ð6�H2
0�

2Þ2 : (84)

For the energy density of the Universe we obtain

�2
 ¼ 72H2
0ð2�2H2

0 þ 3Þ
ð6�H2

0�
2Þ2 ; (85)

�2p ¼ 72H2
0ð2�2H2

0 � 3Þ
ð6�H2

0�
2Þ2 : (86)

One can see that the energy density and the pressure is

positive if H0 � 1=�2
ffiffiffiffiffiffiffiffi
3=2

p
.

C. Cosmological models with w� ¼ 0

Finally, we consider the cosmological implications of
the WCW model with Lagrange multiplier with w� ¼ 0.
Assuming the following form for the torsion,

T� ¼ aðtÞðtÞ½0; 1; 1; 1�; (87)

the Weitzenböck condition is formulated as

R� 82 ¼ 0: (88)

The Lagrange multiplier can be obtained in the form

�þ 1 ¼ 9

2
�2ð _�þ 2�2 þ 3H�Þ; (89)

where we have defined � ¼ _=. The metric field
equations take the form
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€�þ 2 _�ð2H þ 3�Þ � 4

3

2

H
ð _�þ�2 þ 3H�Þ

þ�ð4�2 þ 3H2 þ 8H�þ 3 _HÞ � �2

27�




H�2
¼ 0;

(90)

and

�
::: þ €�ð5H þ 8�Þ þ 3� €H � 42ð _�þ 3�2 þ 3H�Þ

þ 8�4 þ 4 _Hð2 _�þ 4�2 þ 3H�Þ þ 9H2�ðH þ 2�Þ
þ 20H�3 þ 3 _�ð10H�þ 8�2 þ 3H2 þ 2 _�Þ

þ �2

9�
�2p ¼ 0; (91)

respectively.
Let us consider the case aðtÞ ¼ ts. In this case one

obtains

ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sð2s� 1Þp

t
; (92)

and the energy density and pressure take the form


ðtÞ ¼ 81s2ð3s2 þ 8s� 10Þð2s� 1Þ
4�2

�

t6
; (93)

pðtÞ ¼ � 81ð3s3 þ 2s2 � 26sþ 20Þð2s� 1Þs
4�2

�

t6
: (94)

In order to have a consistent solution,  should be real and

 and p must be positive. This restricts the range of s to

1

3
ð ffiffiffiffiffiffi

46
p � 4Þ< s < 2: (95)

For the deceleration parameter we obtain

q ¼ 1

s
� 1; � 1

2
< q< 0:078: (96)

In the case aðtÞ ¼ eH0t we have

ðtÞ2 ¼ 3

2
H2

0 ; (97)

with the matter energy density and the pressure becoming
exactly zero


 ¼ p ¼ 0: (98)

VII. CONCLUSION

In this paper we have considered an extension of the
Weitzenböck type gravity models formulated in a Weyl-
Cartan space time. The basic difference between the
present and the previous investigations is the way in which
the Weitzenböck condition, which in a Riemann-Cartan
space-time requires the exact cancellation of the Ricci
scalar and the torsion scalar, is implemented. By starting
with a general geometric framework, corresponding to a

CW4 space-time described by a metric tensor, torsion
tensor and Weyl vector, we formulated the action of the
gravitational field by including the Weitzenböck condition
via a scalar Lagrange multiplier. With the use of this action
the gravitational field equations have been explicitly
obtained. They show the explicit presence in the field
equations of a new degree of freedom, represented by the
Lagrange multiplier �. The field equations must be con-
sistently solved together with the Weitzenböck condition
which allows the unique determination of the Lagrange
multiplier �. The weak field limit of the model was also
investigated and it was shown that the Newtonian approxi-
mation leads to a generalization of the Poisson equation
where besides the matter energy-density, the weak field
gravitational potential also explicitly depends on the
Lagrange multiplier and the square of the Weyl vector.
An interesting particular case is represented by the zero

Weyl vector case. For this choice of the geometry the
covariant divergence of the metric tensor is zero and the
Weitzenböck condition takes the form of a proportionality
relation between the Ricci scalar and the torsion scalar,
respectively. When one neglects the kinetic term associated
to the torsion, the model reduces to a Brans-Dicke type
theory where the role of the scalar field is played by the
Lagrange multiplier.
The cosmological implications of the theory have also

been investigated by considering a flat FRW background
type cosmological metric. We have considered three par-
ticular models, corresponding to the zero and nonzero
values of the coupling constant �, and to the zero Weyl
vector respectively. For � ¼ 0 the field equations can be

solved exactly, leading to a scale factor of the form aðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c20t

2 þ 2H0a
2
0 þ a20

q
. The energy density and the pres-

sure are monotonically decreasing functions of time and
are both nonsingular at the beginning of the cosmological
evolution. The nature of the cosmological expansion—
acceleration or deceleration—is determined by the values
of the constants ðC0; a0; H0Þ and three regimes are pos-
sible: accelerating, decelerating, or marginally inflating. In
the case � � 0, we have considered only a de Sitter type
solution of the field equations. Such a solution does exist if
the matter energy density and pressure are constants, or,
more exactly, the decrease in the matter energy density and
pressure due to the expansion of the Universe is exactly
compensated by the variation in the energy and pressure
due to the geometric terms in the energy-momentum
tensor.
In the case of the cosmological models with vanishing

Weyl vector we have investigated two particular models
corresponding to a power law and exponential expansion,
respectively. In the case of the power law expansion, the
energy density and pressure satisfy a barotropic equation of
state, so that p� 
 where both the energy and pressure
decay as t�6. Depending on the value of the parameter s,

HAGHANI et al. PHYSICAL REVIEW D 88, 044024 (2013)

044024-10



both decelerating and accelerating models can be obtained.
On the other hand, for a vanishing Weyl vector, the de
Sitter type solutions require a vanishing matter energy
density and pressure and hence the accelerated expansion
of the Universe is determined by the geometric terms
associated with torsion which play the role of an effective
cosmological constant.

In the present paper we have introduced a theoretical
model for gravity, defined in a Weyl-Cartan space-time, in
which the Weitzenböck geometric condition has been
included in the action via a Lagrange multiplier method.
The field equations of the model have been derived by
using variational methods, and some cosmological impli-
cations of the model have been explored. Further astro-
physical and cosmological implications of this theory will
be considered elsewhere.

APPENDIX: NOTE ON WEYL
GAUGE INVARIANCE

Suppose that length of a vector at point x is l. In theWeyl
geometry, the length of the vector under parallel transpor-
tation to the nearby point x0 is l0 ¼ �l. On the other hand,
the change in the length of the vector can be written as

�l ¼ lw��x�: (A1)

So, the change in the Weyl vector is

w� ! w0
� ¼ w� þ @� log�: (A2)

From the above relations, one obtains the change in the
metric tensor

g�� ! g0�� ¼ �2g��; (A3)

g�� ! g0�� ¼ ��2g��: (A4)

The torsion tensor is invariant under the above gauge
transformation, i.e.,

T�

� ! T0�


� ¼ T�

�: (A5)

We note that the curvature tensor (6) is covariant with the
power �2, which means

K0 ¼ ��2K: (A6)

and the metric determinant has power 4. Naturally, one
demands to make the Lagrangian (9) gauge-invariant. In
order to do so one can add a scalar field � or a Dirac field
with power �1 and write the first term in Eq. (9) asffiffiffiffiffiffiffi�g
p

�2K to make it gauge-invariant. However, the

Weitzenböck condition (11) is neither gauge invariant nor
covariant. In fact, one may write

W 0 ¼ ��2W � 6ðr�k
� þ k�k�Þ; (A7)

where r is the metric covariant derivative and we have
defined k� ¼ @� log�. In order to make the Weitzenböck
condition gauge-covariant, one should add to W some
terms containing the torsion tensor and the Weyl vector.
This generalization of the Weitzenböck condition by add-
ing torsion and Weyl tensors will be considered in our
future work [20].
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