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We consider a gravitational theory in which matter is nonminimally coupled to geometry, with the

effective Lagrangian of the gravitational field being given by an arbitrary function of the Ricci scalar, the

trace of the matter energy-momentum tensor, and the contraction of the Ricci tensor with the matter

energy-momentum tensor. The field equations of the theory are obtained in the metric formalism, and the

equation of motion of a massive test particle is derived. In this type of theory the matter energy-

momentum tensor is generally not conserved, and this nonconservation determines the appearance of an

extra force acting on the particles in motion in the gravitational field. It is interesting to note that in the

present gravitational theory, the extra force explicitly depends on the Ricci tensor, which entails a relevant

deviation from the geodesic motion, especially for strong gravitational fields, thus rendering the

possibility of a space-time curvature enhancement by the R��T
�� coupling. The Newtonian limit of

the theory is also considered, and an explicit expression for the extra acceleration that depends on the

matter density is obtained in the small velocity limit for dust particles. We also analyze in detail the so-

called Dolgov-Kawasaki instability and obtain the stability conditions of the theory with respect to local

perturbations. A particular class of gravitational field equations can be obtained by imposing the

conservation of the energy-momentum tensor. We derive the corresponding field equations for the

conservative case by using a Lagrange multiplier method, from a gravitational action that explicitly

contains an independent parameter multiplying the divergence of the energy-momentum tensor. The

cosmological implications of the theory are investigated in detail for both the conservative and the

nonconservative cases, and several classes of exact analytical and approximate solutions are obtained.
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I. INTRODUCTION

The recently released Planck satellite data of the 2.7
degree cosmic microwave background (CMB) full sky
survey [1,2] have generally confirmed the standard �cold
dark matter (�CDM) cosmological paradigm. A major
goal of the Planck experiment was to test the �CDM
model to high precision and identify possible areas of
tension. In fact, an interesting result from the fits of the
basic �CDM model to the Planck power spectra is the
lower than expected value of the Hubble constant H0,
H0 ¼ 67:3� 1:2 km=s=Mpc. The Hubble constant can
be tightly constrained by CMB data alone in the �CDM
model [2]. The Planck data have also further constrained
the parameters of dark energy, a possible cause of the late-
time cosmic acceleration. Indeed, a central problem in
present day physics is to elucidate the nature of dark
energy, thought to be driving the accelerated expansion
of the Universe. Perhaps the most straightforward expla-
nation for dark energy is the presence of a cosmological
constant. An alternative is dynamical dark energy [3,4],

usually assumed to be a very light scalar field, having a
canonical kinetic energy term, and being minimally
coupled to gravity. The cosmological constant � has an
equation of state w ¼ p=� ¼ �1, where p and � are the
effective thermodynamic pressure and energy density as-
sociated with �, while scalar field theories usually have
time varying equations of state with w � �1 [2].
The CMB alone does not strongly constrain the dark

energy equation of state parameter w, due to the two-
dimensional geometric degeneracy present in dark energy
models. However, this degeneracy can be broken by com-
bining the CMB data with lower redshift distance mea-
surements [2]. By combining the Planck data with the
measurements ofH0 in [5], the authors provide an equation
of state parameter of dark energy given by w ¼
�1:24þ0:18

�0:19, which is off by more than the 2� compared

to w ¼ �1 [2]. The Planck data combined with the baryon
acoustic oscillations (BAO) data give w ¼ �1:13þ0:24

�0:25 [2].

Therefore, presently there is no convincing observational
evidence that could clearly establish the nature of dark
energy. Moreover, the accelerated expansion of the
Universe (see [5] and references therein), the virial mass
discrepancy at the galactic cluster level and the galaxy
rotation curves [6] as well as other cosmological observa-
tions suggest that the standard general relativistic gravita-
tional field equations, based on the Einstein-Hilbert action
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S ¼ RðR=2þ LmÞ ffiffiffiffiffiffiffi�g
p

d4x, where R is the scalar curva-

ture, and Lm is the matter Lagrangian density, cannot
describe the Universe at large scales, beside passing the
Solar System tests. From a cosmological viewpoint, this
amounts to introducing, by hand, the dark matter and dark
energy components in the theory, in addition to ordinary
matter and energy.

Another possibility is to modify the basic structure of the
Einstein-Hilbert action in the hope that such a modification
could naturally explain dark matter and dark energy, with-
out resorting to some exotic forms of matter. Initially, the
interest in the extension of the Einstein-Hilbert action was
focused on the modification of the geometric part of the
action. One of the interesting research avenues is the
introduction of higher order terms to the gravitational field
action through the substitution of the Ricci scalar with a
generic function fðRÞ [7,8]. (See also [9] for a review.) The
most serious difficulty of fðRÞ theories is that in general,
these theories seem incapable of passing the standard Solar
System tests [10]. However, there exist some theories that
can accommodate this problem [11]. The phase space
analysis of the general fðRÞ theories is considered in
[12]. One can also generalize fðRÞ-type gravity theories
by including the function fðRÞ in the bulk action of the
brane-world theories [13–15].

A new class of modified theories of gravity was proposed
recently, consisting of the superposition of the metric
Einstein-Hilbert Lagrangian with a fðRÞ term constructed
à la Palatini [16]. The dynamically equivalent scalar-tensor
representation of the theory was also formulated, and it was
shown that even if the scalar field is very light, the theory
passes the Solar System observational constraints.
Therefore the theory predicts the existence of a long-range
scalar field, modifying the cosmology [17,18], galactic
dynamics [19] and wormhole physics [20].

Another interesting fact of fðRÞ gravitational theories is
that they are equivalent to Brans-Dicke theories with a
specific ! parameter [9]. This suggests that the theory
describes the nonminimal coupling between matter and
geometry in the Einstein frame. It also provides a motiva-
tion to consider nonminimal coupling between matter and
geometry in a more general manner at the action level. In
the Einstein-Hilbert action, which has a simple additive
structure in terms of R and Lm, geometry and matter appear
at two very different conceptual levels, without any inter-
action between them. However, the idea that the gravita-
tional action may not be additive in matter and geometry
cannot be rejected a priori. One of the first efforts in this
direction was made in [21] where, based on very general
physical arguments, a framework was suggested in which
terms with nonminimal coupling between matter and ge-
ometry should be expected in the action. As a consequence,
a general action for the gravitational field would require a
general coupling between the Ricci scalar and the matter
Lagrangian.

In this context, a maximal extension of the Einstein-
Hilbert Lagrangian was introduced in [22], where the
Lagrangian of the gravitational field was considered to be
a general function of R and Lm, and therefore this theory
came to be known as the fðR;LmÞ gravity theory. In
theories with nonminimal geometry-matter coupling there
exists an extra force, which arises from the interaction
between matter and geometry, as initially suggested in
[23,24], respectively. This extra force affects the motion
of a test point particle, causing it to undergo a nongeodesic
motion [25]. On the other hand, it has been suggested that
the extra force could be ignored if one uses a matter
Lagrangian of the form Lm ¼ p instead of Lm ¼ ��
[26]. However, in [27] it was shown that when the particle
number is conserved, the Lagrangian of a barotropic per-
fect fluid isLm ¼ ��½c2 þ R

Pð�Þ=�2d��, where � is the

rest mass density and Pð�Þ is the pressure. In turn, the
fðR; LmÞ theory was generalized recently by considering a
gravitational theory with an action given by an arbitrary
function of the Ricci scalar, the matter Lagrangian density,
a scalar field and a kinetic term constructed from the
gradients of the scalar field, respectively [28].
Another difficulty of the nonminimal theories is that, in

general, the equivalence principle is violated. In fact, it has
been shown that the observational data of the Abell Cluster
A586 exhibits evidence of the interaction between dark
matter and dark energy, and that this interaction implies a
violation of the equivalence principle [29]. The mass pro-
file in this particular cluster is approximately spherical, and
it is a relaxed cluster, since it has not undergone any
important merging process in the last few Giga years. For
the Abell Cluster A586 the kinetic energy �K and the
gravitational potential energy �W can be computed. Then
the generalized virial theorem 2�K þ �W ¼ ��w, where �
is a coupling constant, allows one to estimate the magni-
tude of the dark energy–dark matter interaction, as well as
the degree of violation of the equivalence principle that
should be detectable in large scale cluster surveys [29].
In the fðR; LmÞ type theories [22–29] it is assumed that

all the properties of the matter are encoded in the matter
Lagrangian Lm. An alternative view would be to consider
theories in which matter, described by some of its thermo-
dynamic parameters, different from the Lagrangian, couple
directly to geometry. In the standard �CDM model the
cosmological constant is spatially uniform and time inde-
pendent, as required by the principle of general covariance.
Physically, it can be interpreted as a relativistic ideal fluid
obeying the equation of state pþ � ¼ 0. Moreover, this
cosmological fluid obeys an equation of continuity that
does not depend on the matter energy density. Such a
form of dark energy is said to be noninteracting [30]. An
interaction between ordinary matter and dark energy can
be introduced in the form of a time-dependent cosmologi-
cal constant. However, to preserve the general covariance
of the field equations, a variable cosmological constant
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must depend only on relativistic invariants. The assump-
tion � ¼ �ðRÞ leads to the fðRÞ class of modified gravity
theories. In these models, a Legendre-Helmholtz transfor-
mation of the Lagrangian, or a conformal transformation of
the metric, transforms the gravitational field equations
of fðRÞ gravity into the form of the Einstein equations of
general relativity, with an additional scalar field. Another
choice, in which the cosmological constant is a function of
the trace of the energy-momentum tensor T, was proposed
in [30]. One advantage of the choice of a gravitational
Lagrangian of the form Rþ 2�ðTÞ, as compared to
fðRÞ-type gravity theories, is that since we use one and
the same metric tensor, the problem about which frame
(Einstein or Jordan) is physical, does not appear [30].

Following the initial work done in [30], the general
nonminimal coupling between matter and geometry was
considered in the framework of a Lagrangian of the form
fðR; TÞ, consisting of an arbitrary function of the Ricci
scalar and the trace of the energy-momentum tensor [31].
The gravitational field equations in the metric formalism,
as well as the equations of motion for test particles, which
follow from the covariant divergence of the stress-energy
tensor, were obtained. The equations of motion of test
particles were also obtained from a variational principle.
The motion of massive test particles is nongeodesic and
takes place in the presence of an extra force orthogonal to
the four-velocity.

The astrophysical and cosmological implications of
the fðR; TÞ gravity theory have been extensively investi-
gated recently [32]. A reconstruction of the cosmological
models in fðR; TÞ gravity was performed in [33]. The
dust fluid reproduces the�CDM cosmology, the phantom–
nonphantom era, and the phantom cosmology. The numeri-
cal simulation for the Hubble parameter shows good
agreement with the BAO observational data for low red-
shifts z < 2. The study of the evolution of scalar cosmo-
logical perturbations was performed [34], by assuming a
specific model that guarantees the standard continuity
equation. The complete set of differential equations for
the matter density perturbations was obtained, and it was
shown that for general fðR; TÞ Lagrangians the quasistatic
approximation leads to very different results as compared
to the ones derived in the frame of the �CDM model. For
sub-Hubble modes, the density contrast obeys a second
order differential equation, with explicit wave-number de-
pendence, and subsequent strong divergences on the cos-
mological evolution of the perturbations. A comparison of
these results with the usual quasistatic approximation in
general relativity shows that the density contrast quantities
evolve very differently. There is also a difference in the
linear regime between these theories. The results obtained
in [34] for fðR; TÞ gravity are in contradiction with the
usually assumed behavior of the density contrast and im-
pose strong limitations on the viability of the fðR; TÞ ¼
f1ðRÞ þ f2ðTÞ-type models. The growth of the scalar

perturbations in the sub-Hubble limit, for this model, is
scale dependent. However, one should emphasize that the
observational data provided by the Planck satellite [35]
show clear evidence of the scale dependence of the CMB
power spectrum. On the other hand, it seems that
Lagrangians of the form fðR; TÞ cannot lead in general to
the standard energy-momentum conservation equations
[31,34]. Cosmological solutions of fðR; TÞ modified theo-
ries of gravity of the form gðRÞ þ hðTÞ, gðRÞhðTÞ, and
gðRÞð1þ hðTÞÞ, respectively, for perfect fluids in spatially
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
were investigated through phase space analysis in [36].
Acceptable cosmological solutions, which contain a matter
dominated era, followed by a late-time accelerated expan-
sion, were found.
However, the fðR; LmÞ or fðR; TÞ type theories are not

the most general Lagrangians describing the nonminimal
coupling between matter and geometry. For example, one
may generalize the above modified theories of gravity by
introducing a term R��T

�� in the Lagrangian. Indeed,

examples of such couplings can be found in the Einstein-
Born-Infeld theories [37] when one expands the square
root in the Lagrangian. An interesting difference in
fðR; TÞ gravity and in an inclusion of the R��T

�� term is

that in considering a traceless energy-momentum tensor,
i.e., T ¼ 0, the field equations of fðR; TÞ gravity reduce to
those of fðRÞ gravity theories. However, considering the
presence of the R��T

�� coupling term still entails a non-

minimal coupling to the electromagnetic field.
It is the purpose of this work to consider an extension of

the fðR; TÞ gravity theory by also taking into account a
possible coupling between the energy-momentum tensor of
ordinary matter, T��, and the Ricci curvature tensor R��.

Therefore we propose to describe the gravitational field by
means of a Lagrangian of the form fðR; T; R��T

��Þ (a

similar approach is carried out in [38], but in a different
setting), where f is an arbitrary function in the arguments
R, T, and R��T

��, respectively. We obtain the gravita-

tional field equations for this theory and formulate them as
an effective Einstein field equation. The equation of mo-
tion of massive test particles is also obtained from the field
equations. In this type of theories the energy-momentum
tensor is generally nonconserved. To study the Newtonian
limit of the theory we derive the equation of motion from a
variational principle. An important requirement for any
generalized gravity theory, besides passing the Solar
System tests, is its stability. Thus, we analyze in detail
the so-called Dolgov-Kawasaki instability, obtaining the
stability conditions for the theory. An interesting question
is the possibility of the conservation of the energy-
momentum tensor in such theories. We impose the conser-
vation of the energy-momentum tensor by employing a
Lagrange multiplier method. The gravitational equations
with energy-momentum conservation are derived from an
action with the Lagrange multiplier, multiplying the
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energy-momentum tensor, included. The cosmological im-
plications of the theory are investigated for both the con-
servative and nonconservative cases, and several classes of
analytical and numerical solutions are obtained.

The present paper is organized as follows. The gravita-
tional field equations of fðR; T; R��T

��Þ gravity theory are
derived in Sec. II, and the equations of motion of massive
test particles are obtained in Sec. III. The Newtonian limit
of the theory is studied in Sec. IV, where in particular, we
obtain the generalized Poisson equation. In Sec. V, the
Dolgov-Kawasaki instability in the fðR; T; R��T

��Þ grav-
ity theory is further investigated. In Sec. VI, the field
equations with a conserved energy-momentum tensor are
obtained via the Lagrange multiplier method. In Sec. VII
the cosmological implications of the theory are investi-
gated. We discuss and conclude our results in Sec. VIII. We
work in a system of units with c ¼ 1.

II. THE FIELD EQUATIONS OF THE
fðR;T;R��T

��Þ GRAVITY THEORY

We consider that the nonminimal coupling between
matter and geometry can be described by the following
action, containing, in addition to the Ricci scalar R and the
trace of the energy-momentum tensor T, an explicit first
order coupling between the matter energy-momentum T��

and the Ricci tensor, respectively,

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðR; T; R��T
��Þ þ

Z
d4x

ffiffiffiffiffiffiffi�g
p

Lm;

(1)

where Lm is the Lagrangian density of the matter sector,
and the matter energy-momentum tensor T�� is defined as

T�� ¼ � 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmÞ

�g�� ¼ g��Lm � 2
@Lm

@g�� : (2)

In the second equality we have assumed that the
Lagrangian is a function of the metric and not its deriva-
tives. The only requirement imposed on the function
fðR; T; R��T

��Þ is that it is an arbitrary analytical function
in all arguments.

By varying the action given by Eq. (1) with respect to the
metric we obtain the gravitational field equations as

ðfR � fRTLmÞG�� þ
�
hfR þ 1

2
RfR � 1

2
fþ fTLm

þ 1

2
r�r	ðfRTT�	Þ

�
g�� �r�r�fR þ 1

2
hðfRTT��Þ

þ 2fRTR�ð�T�Þ
� �r�rð�½T�

�ÞfRT�

�
�
fT þ 1

2
fRTRþ 8�G

�
T��

� 2ðfTg�	 þ fRTR
�	Þ @2Lm

@g��@g�	
¼ 0: (3)

The trace of the gravitational field equation, Eq. (3), is
obtained as

3hfRþ1

2
hðfRTTÞþr�r	ðfRTT�	ÞþRfR�TfT

�1

2
RTfRTþ2R�	T

�	fRTþRfRTLmþ4fTLm

�2f�8�GT�2g��ðg�	fTþR�	fRTÞ @2Lm

@g��@g�	
¼0:

(4)

The second derivative of the matter Lagrangian with
respect to the metric is nonzero if the matter Lagrangian
is the second or a higher order in the metric. Thus, for a
perfect fluid with Lm ¼ ��, or a scalar field with
Lm ¼ �@�
@�
=2, this term can be dropped. However,

for instance, considering the Maxwell field, we have
Lm ¼ �F��F

��=4, and this term results in

@2Lm

@g��@g�	
¼ � 1

2
F��F�	; (5)

thus giving a nonzero contribution to the field equations. In
the framework of fðR; LmÞ theories it has been shown in
[26] that for a matter source in the form of a perfect fluid,
for a nonminimally coupled Ricci scalar and matter
Lagrangian in the form Lm ¼ p, the extra force vanishes
in the case of dust. However, in the present case, we will
see that even with this choice, the extra force does not
vanish in general.
In analogy with the standard Einstein field equation one

can write the gravitational field equation (3) as

G�� ¼ 8�GeffT�� ��effg�� þ Teff
��; (6)

where we have defined the effective gravitational coupling
Geff , the effective cosmological constant �eff , and an
effective energy-momentum tensor Teff

�� as

Geff ¼
Gþ 1

8� ðfT þ 1
2 fRTR� 1

2hfRTÞ
fR � fRTLm

; (7)

�eff ¼
2hfR þ RfR � fþ 2fTLm þr�r	ðfRTT�	Þ

2ðfR � fRTLmÞ ;

(8)

and

Teff
�� ¼ 1

fR � fRTLm

�
r�r�fR �r�fRTr�T��

� 1

2
fRThT�� � 2fRTR�ð�T�Þ

�

þr�rð�½T�
�ÞfRT�

þ 2ðfTg�	 þ fRTR
�	Þ @2Lm

@g��@g�	

�
; (9)
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respectively. In general Geff and�eff are not constants, and
they depend on the specific model considered.

It is worth mentioning the main differences between the
present theory and that presented in [31], in particular,
when assuming a traceless energy-momentum tensor,
T ¼ 0. For instance, when the electromagnetic field is
involved, the gravitational field equations for the fðR; TÞ
theory reduce to that of the field equations for fðRÞ gravity
and all nonminimal couplings of gravity to the matter field
vanish. In contrast, the theory outlined in this work still has
a nonminimal coupling to the electromagnetic field via the
R��T

�� coupling term in the action, which is nonzero in

general.

III. EQUATION OF MOTION OF THE MASSIVE
TEST PARTICLES IN THE fðR; T;R��T

��Þ
GRAVITY THEORY

The covariant divergence of the energy-momentum
tensor can be obtained by taking the divergence of the
gravitational field equation, Eq. (3), which takes the fol-
lowing form:

r�T�� ¼ 2

ð1þ RfTR þ 2fTÞ
�
r�ðfRTR��T��Þ

þ r�ðLmfTÞ � 1

2
ðfRTR�� þ fTg��Þr�T

��

�G��r�ðfRTLmÞ � 1

2
½r�ðRfRTÞ

þ 2r�fT�T��

�
; (10)

where we have assumed that @2Lm=@g
��@g�	 ¼ 0, and

we have used the mathematical identities

r�

�
fRR�� þhfRg�� � 1

2
fg�� �r�r�fR

�

¼ � 1

2
½fTr�T þ fRTr�ðR��T

��Þ�; (11)

2T��;�½;�;�� ¼ T��;�R
�
��� þ T��;�R

�
��� þ T��;�R

�
���;

(12)

and ½h;r��T ¼ R��r�T, respectively.

To find the equation of motion for a massive test particle
we start with the energy-momentum tensor of the perfect
fluid, given by

T�� ¼ pg�� þ ð�þ pÞu�u�; (13)

where u� is the four-velocity of the particle. Taking the
divergence of Eq. (13), and by introducing the projection
operator h��, defined as h�� ¼ g�� þ u�u�, we obtain

r�T
�� ¼ h��r�pþ u�u�r��

þ ð�þ pÞðu�r�u
� þ u�r�u

�Þ: (14)

Multiplying the above equation with h�� one finds

h��r�T
�� ¼ ð�þ pÞu�r�u

� þ h��r�p;

where we have used the identity u�r�u
� ¼ 0. The equa-

tion of motion for a massive test particle with the matter
Lagrangian Lm ¼ p, then takes the form

d2x�

ds2
þ ��

��u
�u� ¼ f�; (15)

where we have used Eq. (10) to write the covariant diver-
gence of the energy-momentum tensor and the definition of
the covariant derivative to obtain the left hand side of the
above equation from u�r�u

�. The extra force acting on

the test particles is given by

f� ¼ 1

�þ p

�
ðfT þ RfRTÞr��� ð1þ 3fTÞr�p

� ð�þ pÞfRTR��ðr�h�� � 2r�h��Þ

� fRTR��h
��r�ð�þ pÞ

�
h��

1þ 2fT þ RfRT
: (16)

Contrary to the nonminimal coupling presented in [23],
and as can be seen from the above equations, the extra
force does not vanish even with the Lagrangian Lm ¼ p.
The extra force is perpendicular to the four-velocity,

satisfying the relation f�u� ¼ 0. In the absence of any
coupling between matter and geometry, with fT ¼ fRT ¼
0, the extra force takes the usual form of the standard
general relativistic fluid motion, i.e., f� ¼
�h��r�p=ð�þ pÞ. In the case of fðR; T; R��T

��Þ gravity
theories, there is an explicit dependence of the extra force
on the Ricci tensor R��, which makes the deviation from

the geodesic motion more important for regions with
strong gravitational fields.

IV. THE NEWTONIAN LIMIT OF
fðR;T;R��T

��Þ GRAVITY

Let us now consider the Newtonian limit of the theory.
Using the weak field and slow motion approximation, we
derive the equation of motion of massive test particles in a
weak gravitational field as well as the generalized Poisson
equation satisfied by the Newtonian potential 
.

A. The equation of motion of massive test particles

To obtain the Newtonian limit, we show first that the
equation of motion, Eq. (15), can be derived from a varia-
tional principle [24,31]. To this end, we assume that one
can represent the extra force formally as

f� ¼ ðg�� þ u�u�Þr� ln
ffiffiffiffi
Q

p
; (17)

whereQ is a dimensionless function to be determined from
the variational principle. With this assumption, one can
prove that the equation of motion Eq. (15) can be obtained
by varying the action [22]
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Sp ¼
Z

Lpds ¼
Z ffiffiffiffi

Q
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��u
�u�

q
ds; (18)

where Sp and Lp are the action and Lagrangian density of

the test particle, respectively, provided that Q is not an
explicit function of u�. When

ffiffiffiffi
Q

p ! 1, we obtain the
variational principle for the standard general relativistic
motion for a massive test particle.

To obtain the function Q for Eq. (15) in the Newtonian
limit, we assume that the density of the physical system is
small and therefore the pressure satisfies the condition
p � �. Hence the energy-momentum tensor of the system
can be taken as the energy-momentum tensor of pressure-
less dust. Moreover, by considering the limiting case of
small velocities, we can take the four-velocity in the form
u� ¼ ��

0 =
ffiffiffiffiffiffiffi
g00

p
and drop the covariant derivatives of h��

in Eq. (16). Therefore Eq. (15) takes the form

f� ¼ F

�
h��r��; (19)

where

F ¼ fT þ fRTðR� R�	h
�	Þ

1þ 2fT þ RfRT
: (20)

We also note that F is dimensionless. In the Newtonian
limit, one can expand the energy density around the back-
ground energy density �0 as � ¼ �0 þ ��, and then the
function F can be expanded as

Fð�Þ ¼ Fð�0Þ þ dF

d�

���������0

ð�� �0Þ � F0 þ F1��; (21)

where we have denoted �� � �� �0. The expression (19)
can then be expanded in the first order in �� as

F

�
r�� � F0r��; (22)

where we define fractional energy density perturbation as
� ¼ ��=�0. From the expression above one can read the
dimensionless quantity

ffiffiffiffi
Q

p
for small � as

ffiffiffiffi
Q

p � 1þ F0� ¼ 1� F0 þ F0

�0

�; (23)

We have therefore obtained
ffiffiffiffi
Q

p
in the case of dust as an

explicit function of the energy density �. We may now
proceed to study the Newtonian limit of the theory by using
the variational principle Eq. (18), and also Eq. (23). In the
weak field limit the interval ds for dust moving in a
gravitational field is

ds �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2
� ~v2

q
dt �

�
1þ
� ~v2

2

�
dt; (24)

where 
 is the Newtonian potential and ~v is the three-
dimensional velocity of the fluid. The equation of motion
of the fluid to first order approximation can be obtained
from the variational principle

�
Z �

1þUð�Þ þ
� ~v2

2

�
dt ¼ 0: (25)

The total acceleration of the system, ~a, is given as

~a ¼ � ~r
� ~rUð�Þ ¼ ~aN þ ~aE; (26)

where ~aN ¼ � ~r
 is the Newtonian acceleration, and the
supplementary acceleration, induced by the geometry-
matter coupling, is

~a Eð�Þ ¼ � ~rUð�Þ ¼ F0

�0

~r�: (27)

The acceleration given by Eq. (27) is due to the modi-
fication of the gravitational action. In our case, there is no
hydrodynamical acceleration ~ap term in the total accelera-

tion, because of our assumption that the fluid is pressure-
less. However, such an acceleration does exist in the
general case. We see from Eq. (27) that the extra accelera-
tion ~aE is essentially due to the nonminimal coupling
between matter and geometry. The extra acceleration is
proportional to the gradient of the energy density of the
fluid. Therefore, for a constant energy density source and a
pressureless fluid, the extra acceleration vanishes.

B. The generalized Poisson equation

To obtain the Poisson equation we assume that the
matter content of the self-gravitating system is represented
by dust. Also, noting that in the Newtonian limit one has
R ¼ �2R00 ¼ �2r2
, where 
 is the Newtonian poten-
tial that appears in the (00) component of the metric g00 ¼
�ð1þ 2
Þ, one can compute the individual terms in the
trace equation (4) as

R�	T
�	 � �r2
; hfR �r2fR þrfR 	 r
;

and

r�r	ðfRTT�	Þ � rð�fRTÞ 	 r
þ �fRTr2
;

respectively.
Substituting the above expressions into Eq. (4) and

rearranging terms, we obtain the generalized Poisson equa-
tion as

r2
 ¼ 1

2ðfR � 2�fRTÞ ½8�G�þ 3r2fR

� 3�fT � 2fþrð3fR þ �fRTÞ 	 r
�: (28)

As can be seen, the generalized Poisson equation is modi-
fied by the addition of gradient of the 
 field to the
equation.

V. THE DOLGOV-KAWASAKI INSTABILITY IN
fðR;T;R��T

��Þ GRAVITY

Beside consistency with the Solar System tests, any
gravitational theory should be stable against classical and
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quantum fluctuations. One of the important instabilities of
modified theories of gravity is the Dolgov-Kawasaki in-
stability [39,40], which we shall discuss in the present
section.

Let us assume that, in order to be consistent with the
Solar System tests, the Lagrangian can be written as

fðR; T; R��T
��Þ ¼ Rþ �ðR; T; R��T

��Þ; (29)

where  is a small parameter. Following [39], we expand
the space-time quantities around a constant curvature back-
ground with geometrical and physical parameters
ð���; R0; T

0
��; T0; L0Þ, so that

R�� ¼ 1

4
R0��� þ R1

��; R ¼ R0 þ R1;

T�� ¼ T0
�� þ T1

��; T ¼ T0 þ T1;

Lm ¼ L0 þ L1;

(30)

where we have locally expanded the metric tensor as
g�� ¼ ��� þ h��. We note that in the above equations

we really have two types of approximations, as mentioned
in [40]. The first is an adiabatic expansion around a con-
stant curvature space, which is justified on the time scales
much shorter than the Hubble time. The second approxi-
mation is a local expansion in the small regions of space-
time, which are locally flat. These approximations have
been used extensively in fðRÞ gravity theories [39,40]. The

function fðR; T; R��T
��Þ can be expanded as

fðR; T; R��T
��Þ

¼ R0 þ R1 þ 

�
�ð0Þ þ�Rð0ÞR1 þ�Tð0ÞT1

þ�RTð0Þ
�
1

4
R0T

1 þ R1
��T

��
0

��
¼ R0 þ �ð0Þ þ ½1þ �Rð0Þ�R1 þHð1Þ; (31)

where (0) denotes the computation of the function at the
background level, and for simplicity we have defined the

first order quantity Hð1Þ as

Hð1Þ ¼ 

�
�Tð0ÞT1 þ�RTð0Þ

�
1

4
R0T

1 þ R1
��T

��
0

��
: (32)

We then obtain

fR ¼ 1þ �Rð0Þ þ �R;Rð0ÞR1 þHð1Þ
R ; (33)

fT ¼ �Tð0Þ þ �T;Rð0ÞR1 þHð1Þ
T ; (34)

fRT ¼ �RTð0Þ þ �RT;Rð0ÞR1 þHð1Þ
RT: (35)

The trace equation (4) can then be expanded to first order to
obtain

�
3�R;Rð0Þ þ 1

2
T0�RT;Rð0Þ

�
hR1 þ T�	

0 �RT;Rð0Þr�r	R1 þ
�
fRð0Þ þ R0�R;Rð0Þ � T0�T;Rð0Þ � 1

2
T0fRTð0Þ

� 1

2
R0T0�RT;Rð0Þ þ 1

2
R0T0�RT;Rð0Þ þ R0L0�RT;Rð0Þ þ fRTð0ÞL0 þ 4L0�T;Rð0Þ � 2� �Rð0Þ

�
R1

þ 3hHð1Þ
R þ 1

2
fRTð0ÞhT1 þ 1

2
T0hHð1Þ

RT þ fRTð0Þr�r	T
�	
1 þ T�	

0 r�r	H
ð1Þ
RT þ R0H

ð1Þ
R � T1fTð0Þ � T0H

ð1Þ
T

þ 2R1
��T

��
0 fRTð0Þ þ R0fRTð0ÞL1 þ R0L0H

ð1Þ
RT þ 4fTð0ÞL1 þ 4L0H

ð1Þ
T � 2Hð1Þ þ 8�GT1

� 2�����	

�
fTð0Þ þ 1

4
R0fRTð0Þ

�
@2L1

@g��@g�	
¼ 0: (36)

In the limit considered, one may write h ¼ �@2t þr2, thus obtaining

T�	
0 r�r	R1 ¼ T00

0
€R1 þ Tij

0 @i@jR1: (37)

One can then rewrite the above equation as

€R 1 þ Vij
effrirjR1 þm2

effR1 ¼ Heff ; (38)

where we have defined

Vij
eff ¼

ð3�R;Rð0Þ þ 1
2 T0�RT;Rð0ÞÞ�ij þ Tij

0 �RT;Rð0Þ
T00
0 � 3�R;Rð0Þ � 1

2 T0�RT;Rð0Þ
; (39)

and
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Heff ¼
�
3�R;Rð0Þ þ 1

2
T0�RT;Rð0Þ � T00

0

��1
�
3hHð1Þ

R þ 1

2
fRTð0ÞhT1 þ 1

2
T0hHð1Þ

RT þ fRTð0Þr�r	T
�	
1

þ T�	
0 r�r	H

ð1Þ
RT þ R0H

ð1Þ
R � T1fTð0Þ � T0H

ð1Þ
T þ 2R1

��T
��
0 fRTð0Þ þ R0fRTð0ÞL1 þ R0L0H

ð1Þ
RT

þ 4fTð0ÞL1 þ 4L0H
ð1Þ
T � 2Hð1Þ þ 8�GT1 � 2�����	

�
fTð0Þ þ 1

4
R0fRTð0Þ

�
@2L1

@g��@g�	

�
; (40)

respectively, and we have introduced the effective mass meff as

m2
eff ¼

��
T00
0 � 1

2
T0

�
fRT;Rð0Þ � 3fRRð0Þ

��1
�
R0�R;Rð0Þ � T0�T;Rð0Þ � 1

2
R0T0�RT;Rð0Þ � 1

2
T0�RTð0Þ

þ 1

2
R0T0�RT;Rð0Þ þ R0L0�RT;Rð0Þ þ �RTð0ÞL0 þ 4L0�T;Rð0Þ � 1� �Rð0Þ

�
: (41)

The dominant term in the above expression is
1=½3fRRð0Þ þ ð12T0 � T00

0 ÞfRT;Rð0Þ�, and therefore the con-
dition to avoid the Dolgov-Kawasaki instability is

3fRRð0Þ �
�
�0 � 1

2
T0

�
fRT;Rð0Þ � 0; (42)

where �0 is the background energy density of the matter
[39]. We note that because of the above expression, the
condition for the stability does not depend on the derivative
of the function f with respect to T. So, the DK stability
condition for the case of fðR; TÞ gravity is the same as fðRÞ
gravity. However, the condition is modified in the case of
fðR; T; R��T

��Þ.

VI. fðR;T;R��T
��Þ GRAVITY THEORIES WITH

ENERGY-MOMENTUM CONSERVATION

The general nonminimal coupling between matter and
geometry leads to the important consequence that the
matter energy-momentum tensor is not conserved. In
Sec. III we have shown that this property of the gravita-
tional theory determines the appearance of the extra force.
However, the energy nonconservation can be interpreted as
a shortcoming of these types of theories. In the framework
of the fðR; TÞ theory, models with energy conservation
have been investigated in [34]. By assuming a specific
additive form for the function fðR; TÞ, fðR; TÞ ¼ f1ðRÞ þ
f2ðTÞ, by imposing the condition of the energy

conservation, and under the assumption of a barotropic
fluid, the function f2ðTÞ can be uniquely determined as

f2ðTÞ � T1=2. In the following we investigate the energy
conservation in fðR; T; R��T

��Þ gravity.
To impose the matter energy-momentum tensor

conservation, one can use the Lagrange multiplier method
[41]. To do this, let us consider the modified action

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ½fðR; T; R��T

��Þ þ ��r�T���

þ
Z

d4x
ffiffiffiffiffiffiffi�g

p
Lm; (43)

where we have introduced the vector Lagrange multiplier
��. The variations of the first and the third terms are
similar to those computed in Sec. II. The variation of the
second term with respect to the metric is given by

�ð ffiffiffiffiffiffiffi�g
p

��r�T��Þ
¼ ffiffiffiffiffiffiffi�g

p �
��

�
r�T�� � 1

2
r	T�	g��

�
�g��

þ ��r��T��

�
; (44)

where the variation of the energy-momentum tensor is
obtained from Eq. (2). Combining the above results with
the calculations of Sec. II, we obtain the field equations
together with the energy-momentum conservation as

ðfR � fRTLmÞG�� þ
�
hfR þ 1

2
RfR � 1

2
fþ fTLm þ 1

2
r�r	ðfRTT�	Þ

�
g�� �r�r�fR þ 1

2
hðfRTT��Þ

þ 2fRTR�ð�T�Þ
� �r�rð�½T�

�ÞfRT� �
�
fT þ 1

2
fRTRþ 8�G

�
T�� � 2ðfTg�	 þ fRTR

�	Þ @2Lm

@g��@g�	

� 1

2
��r�T��g�� þ ��rð�T

�
�Þ � rð���ÞLm � 1

2
r��

�ðLmg�� � T��Þ þ 2rð��	Þ @2Lm

@g��@g�	
¼ 0: (45)

Now, variation with respect to the vector �� results in

r�T�� ¼ 0; (46)
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which is the conservation of the energy-momentum tensor. Therefore Eqs. (45) and (46) provide the basic equations of the
fðR; T; R��T

��Þ gravity theory with energy conservation. The gravitational field equations explicitly depend on the
Lagrange multiplier ��. The field equations in the case of the matter Lagrangian Lm ¼ �� or Lm ¼ p that lead to
@2Lm=@g

��@g�	 � 0 take a simpler form. For Lm ¼ �� we obtain

ðfR þ �fRTÞG�� þ
�
hfR þ 1

2
RfR � 1

2
f� �fT þ 1

2
T�	r�r	fRT

�
g�� �r�r�fR þ 1

2
hðfRTT��Þ þ 2fRTR�ð�T�Þ

�

�r�rð�½T�
�ÞfRT� �

�
fT þ 1

2
fRTRþ 8�G

�
T�� þ ��rð�T�

�Þ þ �rð���Þ þ 1

2
ð�g�� þ T��Þr��

� ¼ 0; (47)

where the conservation of the energy-momentum tensor is taken into account.
In the case of the electromagnetic field, because the trace of the energy-momentum vanishes, we have fT ¼ 0, and using

Eq. (5) we find the field equations

�
fR þ 1

4
F2fRT

�
G�� þ

�
hfR þ 1

2
RfR � 1

2
f� �fT þ 1

2
T�	r�r	fRT

�
g�� �r�r�fR þ 1

2
hðfRTT��Þ

þ 2fRTR�ð�T�Þ
� �r�rð�½T�

�ÞfRT� �
�
1

2
fRTRþ 8�G

�
T�� þ fRTR

�	F��F�	

þ ��rð�T�
�Þ þ

1

4
F2rð���Þ þ 1

2
F2
��r��

� �rð��	ÞF��F�	 ¼ 0; (48)

where we have defined F2 ¼ F�	F
�	 and F2

�� ¼ F��F�
�

and used the conservation of the energy-momentum tensor.

VII. COSMOLOGICAL APPLICATIONS OF
fðR;T;R��T

��Þ GRAVITY

Let us now consider some examples of cosmological
solutions of the theory. In Secs. VII A, VII B, and VII C we
will consider the cosmology of the standard theory without
the energy-momentum conservation, and in Sec. VII D we
will consider the cosmology of the conservative case. To
obtain explicit results and as a first step, one has to fix the
functional form of the function fðR; T; R��T

��Þ. In the

following we consider three specific choices for f, namely

f ¼ Rþ �R��T
��, f ¼ Rþ �R��T

�� þ 	
ffiffiffiffi
T

p
and f ¼

Rþ �RR��T
��, where �, 	 ¼ const, respectively. We

analyze the evolution and dynamics of the Universe for
the above with and without energy conservation. In all
cases we assume that the Universe is isotropic and homo-
geneous, with the matter content described by the energy
density �, and thermodynamic pressure p with the matter
Lagrangian as Lm ¼ ��. The geometry of the space-time
is described by the FLRW metric, given by

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (49)

where aðtÞ is the scale factor of the Universe. We define the
Hubble parameter as H ¼ _a=a, and we describe the accel-
erated expansion of the Universe through the values of the
deceleration parameter q, defined as

q ¼ d

dt

1

H
� 1: (50)

If q < 0, the expansion of the Universe is accelerating,
while positive values of q, q � 0, describe decelerating
evolutions.

A. Specific case I: f ¼ Rþ �R��T
��

Let us first consider the simplest case, in which the
interaction between matter and geometry takes place
only via the coupling between the energy-momentum and
Ricci tensors. This simple case can also show the main
differences of the present theory with the so-called fðR; TÞ
gravity theory [31]. The gravitational field equations for
this form of f are given by

G�� þ �

�
2R�ð�T�

�Þ �
1

2
R��T

��g�� � 1

2
RT��

� 1

2
ð2r�rð�T�

�Þ �hT�� �r�r	T
�	g��Þ

�G��Lm � 2R�	 @2Lm

@g��@g�	

�
� 8�GT�� ¼ 0: (51)

The effective gravitational coupling, the effective cos-
mological constant, and the effective energy-momentum
tensor are given for this choice of f by

Geff ¼ 16�Gþ �R

16�ð1� �LmÞ ; (52)

�eff ¼ �

2ð1� �LmÞ ðr�r	 � R�	ÞT�	; (53)

and
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Teff
�� ¼ �

2ð1� �LmÞ ½g�	r�r� þ g	�r�r�

� g��g�	h� 4R�ð�g�Þ	
�
T�	: (54)

For the case of the FLRW metric the independent cos-
mological field equations are

3H2 ¼ �

1� ��
�þ 3

2

�

1� ��
Hð _�� _pÞ (55)

and

2 _Hþ 3H2 ¼ 2�

1þ�p
H _�� �p

1þ�p
þ 1

2

�

1þ�p
ð €�� €pÞ;

(56)

respectively, where we have denoted � ¼ 8�G for sim-
plicity. When � ¼ 0 we recover the standard Friedmann
equations. To remove the under determinacy of the field
equations, we must impose an equation of state for the
cosmological matter, p ¼ pð�Þ. A standard form of the
cosmological matter equation of state is p ¼ !�, where
! ¼ const, and 0 
 ! 
 1.

1. High cosmological density limit of the field equations

We shall first consider the high energy density limit of
the system of modified cosmological equations (55) and
(56). Moreover, we assume that the constant � is small, so
that �� � 1 and �p � 1, respectively. In the high-energy
limit, � ¼ p, and Eqs. (55) and (56) take the approximate
form

3H2 ¼ ��; (57)

2 _H þ 3H2 ¼ ���þ 2�H _�: (58)

The time evolution of the Hubble parameter is described
by the equation�

1� 6�

�
H2

�
_H þ 3H2 ¼ 0; (59)

and hence for this model the evolution of the Hubble
parameter is given by

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðC1 þ 3�tÞ2 � 24��

p þ C1 þ 3�t

12�
; (60)

whereC1 is an integration constant. One can see that�> 0
in order to have a positive Hubble parameter. The scale
factor of the Universe is given by

aðtÞ ¼ C2

exp
hðC1þ3�tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC1þ3�tÞ2�24��

p
þ9�t2þ6�C1t

72��

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðC1 þ 3�tÞ2 � 24��
p þ C1 þ 3�t

3

q ; (61)

where C2 is an integration constant. To have a positive
scale factor one should impose that C2 > 0. To have a
physical solution, the scale factor should be real for all
times including the t ¼ 0. So one may impose the follow-
ing constraint on C1:

C1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
24��

p
: (62)

The values of the integration constant can be determined
from the condition Hð0Þ ¼ H0, and að0Þ ¼ a0, where H0

and a0 are the initial values of the Hubble parameter and of
the scale factor of the Universe, respectively. This condi-
tion immediately provides for C1 the following value:

C1 ¼ 6�H2
0 þ �

H0

: (63)

For the integration constant C2 we obtain

C2 ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� 6�H2

0Þ2
H2

0

s
þ 6�H0 þ �

H0

3

vuut

� exp

2
6664�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��6�H2

0
Þ2

H2
0

r
ð6�H2

0 þ �Þ
72�H0�

3
7775: (64)

In the small time limit, the scale factor can be repre-
sented by

aðtÞ � a0

�
1þ �

6H0�
t

�
: (65)

The deceleration parameter is obtained as

qðtÞ ¼ � 36�H0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6�H2

0
þ3H0�tþ�Þ2
H2

0

� 24��

r
½6�H2

0 þH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6�H2

0
þ3H0�tþ�Þ2
H2

0

� 24��

r
þ 3H0�tþ ��

� 1; (66)

and it can be represented in a form of a power series as

qðtÞ � �1� 18�H2
0

�� 6�H2
0

þ 6H0�
2

ð�� 6�H2
0Þ3

t: (67)

For small values of time, if 24�H2
0 � �, q � �1, and the

Universe starts its expansion from a de Sitter–like phase,
entering, after a finite time interval, into a decelerating

phase. On the other hand, if � > 6�H2
0 , q <�1, and the

nonsingular Universe experiences an initial superacceler-
ating phase.

2. The case of dust matter

Next we consider the case of low density cosmological
matter, with p ¼ 0. Moreover, we assume again that the
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condition �� � 1 holds. Then the gravitational field equa-
tions, Eqs. (55) and (56), corresponding to a FLRW
Universe, take the approximate form

3H2 ¼ ��þ 3

2
�H _�; (68)

2 _H þ 3H2 ¼ 2�H _�þ 1

2
� €�: (69)

First we consider the matter dominated phase of the
model, in which the nonaccelerating expansion of
the Universe can be described by a power law form of
the scale factor, so that a ¼ tm, m ¼ const, and H ¼ m=t,
respectively. The deceleration parameter is given by q ¼
1=m� 1. Therefore Eq. (68) gives for the time evolution of
the density the equation

3�m

2t
_�þ ��� 3

m2

t2
¼ 0; (70)

with the general solution given by

�ðtÞ ¼ e��t2

3� ½3�0�e
�t2
0

3� þ Eiðt2�3�Þ � Eiðt20�3�Þ�
3�

; (71)

where EiðzÞ ¼ �R1
�z e

�tdt=t is the exponential integral

function, and we have used the initial condition �ðt0Þ ¼
�0. By substituting the expressions of the density and of the
Hubble parameter into Eq. (69), to first order, we obtain the
following constraint on m:

9m2 � 10mþ 1

3t2
þOðt2Þ � 0; (72)

which is (approximately) satisfied if m is given by the
algebraic equation 9m2 � 10mþ 1 ¼ 0, having the solu-
tions m1 ¼ 1, and m2 ¼ 1=9, respectively. The decelera-
tion parameters corresponding to these solutions are
q1 ¼ 0 and q2 ¼ 8, respectively. Since a value of the
deceleration parameter of the order of q ¼ 8 seems to be
ruled out by the observations, the physical solution has a
scale factor a ¼ t, and q ¼ 0. The cosmological solutions
with zero value of the deceleration parameter are called
marginally accelerating, and they describe the preacceler-
ating phase of the cosmic expansion.

Now we look for a de Sitter–type solution of the field
equations for the pressureless matter, Eqs. (68) and (69), by
taking H ¼ H0 ¼ const. Then it follows that, to have an
accelerated expansion, the matter density must satisfy the
equation

€��H0 _�þ 2�

�
� ¼ 0; (73)

with the general solution given by

�ðtÞ¼e
1
2H0ðt�t0Þ

8><
>:

ffiffiffiffi
�

p ð2�01�H0�0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H2

0�8�
q

�sinh

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H2

0�8�
q

2
ffiffiffiffi
�

p ðt� t0Þ
3
75

þcosh

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H2

0�8�
q

2
ffiffiffiffi
�

p ðt� t0Þ
3
75
9>=
>;; (74)

where we have used the initial conditions �ðt0Þ ¼ �0 and
_�ðt0Þ ¼ �01, respectively. Therefore, in the presence of a
nontrivial geometry-matter coupling, once the evolution of
the matter density is given by Eq. (74), the time evolution
of the Universe is of the de Sitter type.

B. Specific case II: f ¼ Rþ �
ffiffiffiffiffiffiffijTjp þ�R��T

��

In this section, we generalize the previous action by

adding a term 	
ffiffiffiffi
T

p
, 	 ¼ const. Such a model, satisfying

the energy conservation, was considered, in the framework
of the fðR; TÞ theory, in [34], where a model with action

given by fðR; TÞ ¼ Rþ 	T1=2 was investigated. The field
equations of the fðR; T; R��T

��Þ gravity in this case are

G�� þ �

�
2R�ð�T�

�Þ �
1

2
R��T

��g�� � 1

2
RT��

� 1

2
ð2r�rð�T�

�Þ �hT�� �r�r	T
�	g��Þ

�G��Lm � 2R�	 @2Lm

@g��@g�	

�
� 8�GT��

þ 	

2
ffiffiffiffi
T

p
�
ðLm � TÞg�� � T�� � 2g�	

@2Lm

@g��@g�	

�
¼ 0:

(75)

The cosmological equations of this model with the perfect
fluid matter in the FRW space-time can be written as

3ð1� ��ÞH2 ¼ ��þ 3

2
�Hð _�� _pÞ � 1

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j3p� �j

q
;

(76)

and

ð1þ �pÞð2 _H þ 3H2Þ
¼ 2�H _�� �pþ 1

2
�ð €�� €pÞ � 2	pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij3p� �jp ; (77)

respectively.

1. High density regime

In the high density cosmological regime the matter
equation of state is given by the Zeldovich stiff causal
equation of state, with p ¼ �. Then the field equations
take the form
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3ð1� ��ÞH2 ¼ ��� ffiffiffi
2

p
	

ffiffiffiffi
�

p
(78)

and

ð1þ ��Þð2 _H þ 3H2Þ ¼ 2�H _�� ��� ffiffiffi
2

p
	

ffiffiffiffi
�

p
; (79)

respectively. For a small coupling �, and by assuming
�� � 1, the field equations reduce to

3H2 ¼ ��� ffiffiffi
2

p
	

ffiffiffiffi
�

p
; (80)

_H ¼ �H _�� ��; (81)

thus giving the evolution equation for the density as

_�ðtÞ ¼ 4��3=2ðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3��ðtÞ � 3

ffiffiffi
2

p
	

ffiffiffiffiffiffiffiffiffi
�ðtÞpq

ffiffiffi
2

p
	½1� 4��ðtÞ� þ 2�

ffiffiffiffiffiffiffiffiffi
�ðtÞp ½2��ðtÞ � 1� :

(82)

By neglecting the term �� compared to 1, and by series
expanding the right hand side of Eq. (82), to first order we
obtain

_� ¼ �2
ffiffiffiffiffiffi
3�

p
�3=2

�
1� 	ffiffiffi

2
p

�
ffiffiffiffi
�

p
��
1þ 	

2
ffiffiffi
2

p
�

ffiffiffiffi
�

p
�
; (83)

with the general solution given by

� ¼ 	2

32�2

�
3 tanh

�
3

8

�
8

3
tanh�1

�
	� 4�

ffiffiffiffiffiffiffiffi
2�0

p
3	

�

þ
ffiffiffi
6

p
	tffiffiffiffi
�

p
��

� 1

�
2
; (84)

where we have used the initial condition �ð0Þ ¼ �0. After
substituting the density given by Eq. (84) into Eq. (80), and
performing a series expansion with respect to the time, to
first order we obtain for the Hubble parameter

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0 �

ffiffiffi
2

p
	

ffiffiffiffiffiffi
�0

pq
ffiffiffi
3

p

þ
ffiffiffi
2

p
	3 � 6

ffiffiffi
2

p
	�2�0 þ 8�3�3=2

0

8�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

p ð� ffiffiffiffiffiffi
�0

p � ffiffiffi
2

p
	Þ

q t: (85)

To obtain a physical solution the parameters of the

model must satisfy the constraint �
ffiffiffiffiffiffi
�0

p
>

ffiffiffi
2

p
	. For the

scale factor of the Universe we obtain

aðtÞ ¼ a0 exp

8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0 �

ffiffiffi
2

p
	

ffiffiffiffiffiffi
�0

pq
ffiffiffi
3

p t

þ
ffiffiffi
2

p
	3 � 6

ffiffiffi
2

p
	�2�0 þ 8�3�3=2

0

8�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

p ð� ffiffiffiffiffiffi
�0

p � ffiffiffi
2

p
	Þ

q t2

2

9>=
>;: (86)

In the high density regime, and in the considered order of
approximation, the expansion of the Universe is super-
exponential, with the scale factor proportional to the ex-
ponential of t2.

2. The pressureless matter fluid case

In the case of dust, having p ¼ 0, the gravitational field
equations take the form

3ð1� ��ÞH2 ¼ ��þ 3

2
�H _�� 	

2

ffiffiffiffi
�

p
; (87)

2 _H þ 3H2 ¼ 2�H _�þ 1

2
� €�; (88)

respectively. We consider the late time expansionary
phase of the Universe, by assuming a de Sitter–type form
for the scale factor, aðtÞ ¼ exp ðH0tÞ, with H0 ¼ const.
Then Eq. (88) can be immediately integrated, to give

�ðtÞ ¼ e�4H0ðt�t0Þ
�
3

8�
� �01

4H0

�
þ 3H0

2�
ðt� t0Þ þ �0

þ �01

4H0

� 3

8�
; (89)

where �0 ¼ �ðt0Þ, and �01 ¼ _�ðt0Þ. In the limit of large
time the matter density is linearly increasing in time, and
hence this model does not have a physical late time de
Sitter phase. Other types of solutions, including the matter
dominated phase, can be obtained through the detailed
numerical study of the system of Eqs. (87) and (88), which
will not be performed here.

C. Specific case III: f ¼ Rð1þ �R��T
��Þ

As a third example of a cosmological model we
consider the case in which the function f is given by
f ¼ Rð1þ �R��T

��Þ. The field equations in this case

are given by

½1þ �ðR�	T
�	 � RLmÞ�G�� þ �½hðR�	T

�	Þ
þ r�r	ðRT�	Þ�g�� � �r�r�ðR�	T

�	Þ
þ 1

2
�hðRT��Þ þ 2�RR�ð�T�

�Þ � �r�rð�½RT�
�Þ�

�
�
1

2
�R2 þ 8�G

�
T�� � 2�RR�	 @2Lm

@g��@g�	
¼ 0:

(90)

1. The matter dominated phase

As a first example of a cosmological solution of the field
equations (97) and (98) we consider that the scale factor
has a power law time evolution, a ¼ t	, where 	 is a
constant. In this case the field equations are
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27tð	� 2=3Þ�	2 d�ðtÞ
dt

� 45ð	� 2=5Þt�	2 dpðtÞ
dt

þ ð27�	2 � 54�	3 þ �t4 þ 27�	4Þ�ðtÞ
� 3ð�9�ð	2 � 1þ 2	ÞpðtÞ þ t2Þ	2 ¼ 0 (91)

and �
9t2ð	� 2=3Þ�	d2�ðtÞ

dt2
� 15ð	� 2=5Þt2�	d2pðtÞ

dt2
þ 30ð	� 4=5Þt�	ð	� 1Þ d�ðtÞ

dt

� 18ð	2 þ 4=3� 11=3	Þt�	dpðtÞ
dt

þ ð�9�	4 � 111�	2 þ 36	�� �t4 þ 60�	3ÞpðtÞ

� 3

�
3

�
� 29

3
	þ 4þ 	3 þ 16=3	2

�
��ðtÞ þ t2ð	� 2=3Þ

�
	

�
t�4 ¼ 0; (92)

respectively. The general solution of these cosmological evolution equations involves an implicit differential equation for
pðtÞ, obtained from Eq. (92). Then �ðtÞ can be determined in terms of pðtÞ from Eq. (91). In the particular case 	 ¼ 2=3,
pðtÞ is determined by the equation

d2pðtÞ
dt2

þ 648�t7�2 � 672�2t3�

128�3 � 192�2�t4 � 216��2t8
dpðtÞ
dt

� 972��2t6 þ 81�3t10 � 1536�2�t2

128�3 � 192�2�t4 � 216��2t8
pðtÞ

þ 2ð4�� 21�t4Þ
16�2 � 24��t4 � 27�2t8

¼ 0; (93)

and �ðtÞ can be determined from the equation

�ðtÞ ¼ 16�t½dpðtÞdt � � 28�pðtÞ þ 4t2

4�þ 3�t4
: (94)

In the limit of small t, t ! 0, Eq. (93) can be approximated
as

d2pðtÞ
dt2

þ 1

2�
� 0; (95)

giving for the time evolution of the pressure pðtÞ ¼ p0 þ
p01ðt� t0Þ � ðt� t0Þ2=4�, where p0 ¼ pðt0Þ, and p01 ¼
_pðt0Þ. The energy density for this decelerating, matter
dominated phase, is given by

�ðtÞ��28�p0�6tð2�p01þ t0Þþ7t0ð4�p01þ t0Þþ3t2

4�þ3�t4
:

(96)

2. The de Sitter–type phase of evolution

In the following, we investigate the cosmological solu-
tions for the zero pressure matter filled Universe. The
cosmological gravitational field equations are given by

� 3H2 þ ��þ �ð18H €H�þ 18H _H _�þ54H2 _H�

� 9 _H2�þ 27H3 _�þ 27H4�Þ ¼ 0 (97)

and

� 2 _H� 3H2 þ �ð6H:::�þ 12 €H _�þ36H €H�

þ 6 _H €�þ54H _H _�þ48H2 _H�þ 15 _H2�

þ 9H2 €�þ 30H3 _�� 9H4�Þ ¼ 0; (98)

respectively. The terms proportional to� in the generalized
Friedmann equations (97) and (98) play the role of an
effective supplementary density and pressure, which may
be responsible for the late time acceleration of the
Universe.
Next, we look for a de Sitter–type solution of Eqs. (97)

and (98), assuming that H ¼ H0 ¼ const. Then the field
equations take the form

� 3H2
0 þ ��þ 27H3

0�ð _�þH0�Þ ¼ 0; (99)

� 3H2
0 þH2

0�ð9 €�þ 30H0 _�� 9H2
0�Þ ¼ 0; (100)

respectively, leading to the following differential consis-
tency condition for the matter density �:

9�H2
0 €�þ 3�H3

0 _�� ð36�H4
0 þ �Þ� ¼ 0: (101)

The general solution of Eq. (101) is given by

�ðtÞ ¼ e�1
6H0ðt�t0Þ �

8<
:

ffiffiffiffi
�

p
H0ðH0�0 þ 6�01Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
145�H4

0 þ 4�
q

� sinh

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
145�H4

0 þ 4�
q

6
ffiffiffiffi
�

p
H0

ðt� t0Þ
3
5

þ �0 cosh

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
145�H4

0 þ 4�
q

6
ffiffiffiffi
�

p
H0

ðt� t0Þ
3
5
9=
;; (102)

where we have used the initial conditions �ðt0Þ ¼ �0 and
_�ðt0Þ ¼ �01, respectively. In order that the ordinary matter
density decays exponentially for t � t0, all the exponential
terms must be negative, which imposes on � the constraint
�<��=36H4

0 . The high energy density regime of this
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model, corresponding to p ¼ �, has similar properties with
the p ¼ 0 case; that is, it admits a de Sitter phase, which
can be obtained by analytical methods.

D. fðR;T;R��T
��Þ gravity cosmological models with

conserved energy-momentum tensor

We now consider cosmological models with a conserved
energy-momentum tensor. For this case the relevant field
equations are obtained in Sec. VI by using the Lagrange
multiplier method and are given by Eqs. (45) and (46),
respectively. For the isotropic and homogeneous FLRW
Universe the energy conservation equation becomes

_�þ 3Hð�þ pÞ ¼ 0: (103)

Assuming a barotropic equation of state for the matter of
the form pðtÞ ¼ !�ðtÞ, ! ¼ const, and the ansatz �� ¼
�ðtÞ��

0 for the Lagrange multiplier, the gravitational field

equations with energy conservation are given by

3

�
fR þ!� 1

2
�fRT

�
_H

þ 3

�
fR þ 3!2 þ 3!� 2

2
�fRT

�
H2

þ
��
ð!þ 1Þ��!� 1

2
_fRT

�
�� _fR

�
H

þ � _�� 1

2
fþ 8�G� ¼ 0 (104)

and�
fR þ 3!2 �!� 6

2
�fRT

�
_H

þ 3

�
fR � 3!3 þ 3!2 þ 2

2
�fRT

�
H2

þ
��
ð3!2 � 1Þ _fRT þ!þ 3

2
�

�
�� 2 _fR

�
H

� €fR � 1

2
ð!� 1Þ� €fRT þ 1

2
ð!þ 1Þ� _�

� ð!þ 1Þ�fT � �!�� 1

2
f ¼ 0; (105)

respectively, where we have eliminated _� from the above
equations by using the conservation equation (103).

As an example for cosmological applications we con-
sider the case where the function f is given by

f ¼ Rþ �R��T
��; (106)

where � ¼ const. In this case Eqs. (104) and (105) become

3

�
1

2
ð3!2�1Þ���1

�
H2þ3ð!þ1Þ��Hþ� _�þ��¼0

(107)

and

�
2� �

2
ð3!2 � 4!� 3Þ�

�
_H þ 9

2
�!ð!þ 1Þ2�H2

þ 1

2
ð5!þ 3Þ��H þ 1

2
ð1�!Þ� _�þ �ð!þ 1Þ� ¼ 0;

(108)

respectively.

1. The high energy density phase

In the high energy density limit we assume that the
equation of state of the cosmological matter is the stiff
causal equation of state, with p ¼ �. Then the energy
conservation equation gives

p ¼ � ¼ �0

a6
: (109)

The field equations for the high density phase of the
evolution of the Universe are given by

3ð��� 1ÞH2 þ 6�H�þ � _�þ �� ¼ 0 (110)

and

ð1þ ��Þ _H þ 9��H2 þ 2��H þ �� ¼ 0; (111)

respectively. By assuming that �� � 1, Eqs. (110) and
(111) become

3�H2 þ 6�H þ _�þ � ¼ 0; (112)

� _H þ 9�H2 þ 2�H þ � ¼ 0: (113)

For H ¼ H0 ¼ const, and � ¼ �0 ¼ const, and for �< 0,
Eqs. (112) and (113) have the solution

H0 ¼ 1

2

ffiffiffiffiffiffiffiffiffi
�

3j�j
r

; �0 ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffi
3�j�j

p
: (114)

Therefore in the fðR; T; R��T
��Þ gravity with energy

conservation a de Sitter–type phase does exist during the
high density regime of the cosmological evolution of
the Universe. From the above equations we obtain the
relation between the Lagrange multiplier and the Hubble
parameter as

�0 ¼ 1

8

�

H0

: (115)

2. The pressureless matter case

In the case of dust matter, i.e., ! ¼ 0, from the conser-
vation of the energy-momentum tensor we obtain the
density of the Universe as

� ¼ �0

a3
: (116)

The gravitational field equations with the conservation of
energy-momentum and dust matter take the form
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� 3

�
1þ �

2
�

�
H2 þ 3��H þ � _�þ �� ¼ 0 (117)

and �
2þ 3�

2
�

�
_H þ 3

2
��H þ 1

2
� _�þ �� ¼ 0; (118)

respectively. From Eqs. (117) and (118) we immediately
obtain

2

�
2þ 3�

2
�

�
_H þ 3

�
1þ �

2
�

�
H2 þ �� ¼ 0: (119)

In the limit of large densities �� � 1, Eq. (119) be-
comes

3� _H þ 3
�

2
H2 þ � ¼ 0; (120)

with the general solution given for �> 0 by

HðtÞ ¼
ffiffiffiffiffiffi
2�

3�

s
tan

2
4tan�1

0
@ ffiffiffiffiffiffi

3�

2�

s
H0

1
Aþ

ffiffiffiffiffiffi
�

6�

r
ðt0 � tÞ

3
5;

(121)

where we have used the initial condition Hðt0Þ ¼ H0. For
�< 0 we obtain

HðtÞ ¼
ffiffiffiffiffiffi
2�

3�

s
tanh

2
4tanh�1

0
@ ffiffiffiffiffiffi

3�

2�

s
H0

1
Aþ

ffiffiffiffiffiffi
�

6�

r
ðt� t0Þ

3
5:

(122)

For �> 0, the time evolution of the scale factor is
given by

aðtÞ ¼ a0cos
2

� ffiffiffiffiffiffi
�

6�

r
ðt� t0Þ � a>

�
; (123)

where a0 is an arbitrary constant of integration and we
define

a> � tan�1

0
@ ffiffiffiffiffiffi

3�

2�

s
H0

1
A:

One can see that in this case we have a bouncing universe.
The deceleration parameter can be obtained as

q ¼
0
@sec

2
4 ffiffiffiffiffiffi

2�

3�

s
ðt� t0Þ � 2a>

3
5� 1

1
A�1

;

which is negative for

T < t < T þ
ffiffiffiffiffiffi
3�

2�

s
�; (124)

where we have defined

T ¼
ffiffiffiffiffiffi
3�

2�

s 0
@2nþ 1

2
�þ 2a< þ

ffiffiffiffiffiffi
2�

3�

s
t0

1
A;

and n ¼ 0; 1; 2; . . . . For �< 0 the scale factor takes the
form

aðtÞ ¼ a0cosh
2

� ffiffiffiffiffiffi
�

6�

r
ðt� t0Þ þ a<

�
; (125)

where in this case

a< � tanh�1

0
@ ffiffiffiffiffiffi

3�

2�

s
H0

1
A:

The deceleration parameter can then be obtained as

q ¼
0
@1� sech

2
4 ffiffiffiffiffiffi

2�

3�

s
ðt� t0Þ þ 2a<

3
5
1
A�1

:

In this case the deceleration parameter is always positive
and we have a decelerating universe.
In the opposite limit of small densities �� � 1,

Eq. (119) takes the form

4 _Hþ 3H2 þ ��0

a3
¼ 0; (126)

with the general solution given by

aðtÞ ¼ fð3a30H2
0 � ��0Þg2=3

4a0ð6a30H2
0 � 2��0Þ2=3

½a30ð3H0ðt� t0Þ þ 4Þ2

� 3��0ðt� t0Þ2�2=3; (127)

where we have used the initial conditions aðt0Þ ¼ a0 and
_aðt0Þ ¼ a0H0, where H0 ¼ Hðt0Þ. The deceleration pa-
rameter can be obtained as

q ¼ � 1

4
þ 4��0a

3
0

½��ðt� t0Þ � a30H0ð4þ 3ðt� t0ÞH0Þ�2
:

(128)

In this case one can easily see that for

0< t < 4
a30H0 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0a

3
0

q
��0 � 3a30H

2
0

þ t0 (129)

or

t > 4
a30H0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0a

3
0

q
��0 � 3a30H

2
0

þ t0 (130)

we have an accelerating universe. We note that the upper
and lower signs refer to the cases � > 3a30H

2
0=�0 and

0< �< 3a30H
2
0=�0, respectively.
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The general solution of the cosmological field equations
(117) and (118) can be obtained as

t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G�0

p
Z Aa1=2daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0 � B
p ; B ¼

Z
A�10da; (131)

where a0 is an integration constant and we have denoted

A ¼ ð3��0 þ 4a3Þ1=12: (132)

One can then obtain the Lagrange multiplier � in terms
of a as

� ¼ 1

2�0a
3

Z
a3ð3��0H

2 þ 6H2a2 � 2��0Þdt: (133)

In classical mechanics, the Lagrange multiplier has the
meaning of the force that keeps the constraint on the
mechanical system. In the models with energy conserva-
tion, we would like to conserve the energy of the ordinary
matter, which amounts to provide some energy to the
gravitational system. Equation (133) can be written in a
differential form as

1

a3
d

dt
ð�a3Þ ¼ 1

2�0

H2

�
3��0 þ 6a2 � 2

��0

H2

�
; (134)

showing that the time variation of the Lagrange multiplier
density is proportional to the square of the Hubble
parameter.

VIII. DISCUSSIONS AND FINAL REMARKS

In this paper we have extended the work initiated in
[30,31] by considering a more general gravitational action
in which the Lagrangian of the field explicitly depends not
only on R and T but also on the contraction of the matter
energy-momentum tensor with the Ricci tensor. The gravi-
tational field equations have been obtained in the metric
formalism in two cases, corresponding to a nonconserva-
tive and a conservative physical system, respectively. To
impose the condition of the conservation of the energy-
momentum tensor we have used a Lagrange multiplier
method, which implies the introduction of a new vector
field in the gravitational action. The equation of motion of
massive test particles was derived in the nonconservative
case and so was its Newtonian limit, corresponding to
weak gravitational fields and low velocities. A density-
dependent supplementary acceleration, acting on massive
test particles, is induced in the presence of a nonminimal
coupling between geometry and matter. The extra force on
massive particles generated by the geometry-matter cou-
pling is always present, even in the case Lm ¼ p, and
causes a deviation from geodesic paths. The presence of
the extra force could explain the properties of the galactic
rotation curves without resorting to the dark matter hy-
pothesis. It is interesting to note that this supplementary
acceleration is also proportional to the matter density

gradient, tending to zero for constant density self-
gravitating systems. A similar dependence on the gradient
of the Newtonian gravitational potential also appears in the
generalized Poisson equation.
The viability of the theory was studied by examining the

stability of the theory with respect to local perturbations. In
pure fðRÞ gravity, a fatal instability develops on time scales
of the order of 1026 s when the function fðRÞ satisfies
the condition f00ðRÞ< 0. This instability, called the
Dolgov-Kawasaki instability, was discovered in the proto-
type model fðRÞ ¼ R��4=R, with ��H0 � 10�33 eV
[39], which is therefore ruled out. In the present case,
the condition of the stability with respect to the
local perturbations can be formulated as fRRðR0Þ�
ð�0 � T0=2ÞfRT;RðR0Þ � 0, where R0 is the background

Ricci scalar.
The cosmological implications of the theory were also

investigated for both conservative and nonconservative
theories. For this study we have adopted four functional
forms for fðR; T; R��T

��Þ. In the nonconservative case

we have shown that for two choices of the function f, the
gravitational field equations admit an exponential, de
Sitter–type solution. Therefore matter-geometry coupling
may be responsible for the late time acceleration of the
Universe, as suggested by the observation of the high
redshift supernovae [5]. An interesting solution of the
field equations was obtained in the case of a conservative
model with fðR; T; R��T

��Þ ¼ Rþ �R��T
��. In this

case if the coupling constant �> 0, the solution has an
oscillatory behavior, with alternating expanding and col-
lapsing phases. For �< 0, the scale factor of the Universe
has a hyperbolic cosine-type dependence. We have also
investigated models containing the square root of the
trace of the energy-momentum tensor. In this case in
the high density limit the Universe has a superaccelerated
expansion, but no de Sitter–type phase can be obtained
analytically.
Work along similar lines has been done independently in

[38], although in a different setting, and with a different
focus, with mainly the cosmological aspects of the theory
being investigated. Indeed, the authors of [38] mainly
considered the accelerating solutions of the
fðR; T; R��T

��Þ theory, and attempted to find the func-

tional form of f analytically. On the other hand, we dealt
with the other aspects of the theory, including the motion of
a test body in the gravitational field, as well as the
Newtonian limit and the generalized Poisson equation.
We have also considered some cosmological solutions for
the model. An important new result in our work is the use
of the Lagrange multiplier method to implement energy-
momentum conservation. In both our work and in [38], the
Dolgov-Kawasaki instability was explored, and the same
results were obtained.
The field equations of fðR; T; R��T

��Þ gravity are ex-

tremely complex. For different choices of the function f,

HAGHANI et al. PHYSICAL REVIEW D 88, 044023 (2013)

044023-16



cosmological solutions with many types of qualitative

behaviors can be obtained. These models can be used to

explain the late acceleration of the Universe, without re-

sorting to the cosmological constant, or to the dark energy.

On the other hand, this theory can open a new perspective

on the very early stages of the evolution of the Universe,

and may provide an alternative to the inflationary

paradigm, which is facing very serious challenges due to

the recently released Planck results.
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