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We study the collapse of a fuzzy sphere, that is a spherical membrane built out of D0-branes, in the Banks-

Fischler-Shenker-Susskindmodel. At weak coupling, as the sphere shrinks, open strings are produced. If the

initial radius is large then open string production is not important and the sphere behaves classically. At

intermediate initial radius the backreaction from open string production is important but the fuzzy sphere

retains its identity. At small initial radius the sphere collapses to form a black hole. The crossover between

the later two regimes is smooth and occurs at the correspondence point of Horowitz and Polchinski.
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I. INTRODUCTION

Recently in [1] we studied bound state formation in
D-brane collisions, including the possible formation of a
black hole. We considered collisions between clusters of
D-branes, as well as a configuration in which D-branes
were arranged in a spherical shell with velocities directed
toward the center. At weak coupling a bound state forms
via a process of open string production. At strong coupling,
where the system has a dual supergravity description [2],
the collision results in formation of a black hole. We found
that the crossover between these two mechanisms for
bound state formation is smooth. It occurs at an intermedi-
ate value of the coupling, in accord with the correspon-
dence principle introduced by Horowitz and Polchinski [3].

The purpose of the present paper is to study a different
initial configuration, namely a fuzzy sphere or spherical
membrane built out of 0-branes and open strings. Starting
from rest, a fuzzy sphere will shrink under its own tension.
Classically the sphere shrinks to zero size and re-expands.
But taking quantum effects into account, as the sphere
shrinks open string production can occur at weak coupling,
while black hole formation can occur at strong coupling.
Our objective is to study these processes in more detail and
show that they are smoothly connected at the correspon-
dence point.

As motivation for this work, note that the spherical shell
of D-branes studied in [1] was described by commuting
matrices. In contrast the fuzzy sphere has a noncommuta-
tive geometry, in which a network of open strings is present
in the initial state. By considering the collapse of a fuzzy
sphere we will obtain another example of the correspon-
dence principle at work, further supporting its validity and
generality. We will also obtain a better understanding of

membrane dynamics, a subject of intrinsic interest which
may be important in scenarios such as [4].
An outline of this paper is as follows. In Sec. II we review

the description of fuzzy spheres and study the spectrum of
fluctuations about a fuzzy sphere. In Sec. III we study the
collapse of a fuzzy sphere at weak coupling as open strings
are produced. In Sec. IV we argue that there is a smooth
match to the process of black hole formation at strong
coupling. In Sec. V we study the perturbative evolution of
the sphere in more detail, including backreaction from open
string production. In Sec. VI we provide further evidence for
a smooth crossover at the correspondence point.
There is a great deal of literature on fuzzy geometry in

various matrix models; for a review, see [5]. For studies of
thermalization and black hole formation in these models,
see for example [6–9].

II. FUZZY SPHERES

To describe an ordinary sphere embedded in Rd, we
begin by introducing three Cartesian coordinates xA ¼
ðx; y; zÞ on a unit S2, subject to the constraintX

A

x2A ¼ 1:

The embedding coordinates in Rd, which we denote Xi for
i ¼ 1; . . . ; d, can then be expanded in powers of the xA’s:

Xi ¼ X1
‘¼0

ciA1���A‘
xA1

� � � xA‘
: (1)

The coefficients ciA1���A‘
are symmetric and traceless on

their lower indices. They transform in the spin-‘ represen-
tation of SUð2Þ. After the traces are removed, the product
xA1

� � � xA‘
provides a Cartesian basis for the spin-‘ spheri-

cal harmonics [10].
To make the sphere fuzzy or noncommutative we use the

dictionary [11–13]
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xA $ 2

N
JA; (2)

where the matrices JA are generators of SUð2Þ in the
N-dimensional representation (i.e. with spin j ¼ N�1

2 ).

They obey

½JA; JB� ¼ i�ABCJC
X
A

J2A ¼ N2 � 1

4
1: (3)

The embedding coordinates become Hermitian matrices,
with the expansion

Xi ¼ XN�1

‘¼0

ciA1���A‘

�
2

N

�
‘
JA1

� � � JA‘
: (4)

Note that the expansion terminates at ‘ ¼ N � 1, since
beyond this point one no longer gets independent matrices.
To make this plausible, note that summing the dimensions
of the appropriate SUð2Þ representations accounts for the
N2 parameters in a Hermitian matrix:

XN�1

‘¼0

ð2‘þ 1Þ ¼ N2: (5)

In fact there is a stronger result: the matrices vanish
identically for ‘ � N. To see this, it is convenient to
work in a basis of raising and lowering operators J� ¼
Jx � iJy with metric ds2 ¼ dxþdx� þ dz2. Note that

ðJþÞ‘ is traceless and symmetric on its lower indices—it
is the highest weight state in the spin-‘ representation—
and with N-dimensional generators it vanishes identically
for ‘ � N, ðJþÞ‘ ¼ 0 for ‘ � N. Then by applying low-
ering operators a general symmetrized traceless product
must vanish for ‘ � N.

This construction of a fuzzy sphere finds a natural home
in the BFSS model [14], or the quantum mechanics of N
D0-branes, where the bosonic part of the action is1

S ¼ 1

g2YM

Z
dtTr

�
1

2
ð@0XiÞ2 þ 1

4
½Xi; Xj�2

�
: (6)

We have fixed the gauge A0 ¼ 0, so the equation of motion

€Xi þ ½½Xi; Xj�; Xj� ¼ 0 (7)

must be supplemented with the Gauss constraint

½@0Xi; Xi� ¼ 0: (8)

At the classical level a simple configuration is a
spherical membrane of initial radius U0, described by
setting [15,16]

XAðtÞ ¼ UðtÞ 2
N
JA

A ¼ 1; 2; 3

XI ¼ 0

I ¼ 4; . . . ; 9:

(9)

The Gauss constraint is trivially satisfied since ½JA;JA�¼0,
while the equation of motion reduces to

€U ¼ � 8

N2
U3: (10)

Solving this with the initial conditionsUð0Þ ¼ U0, _Uð0Þ¼0
one finds that the sphere collapses after a time

� ¼ N�ð1=4Þ2ffiffiffiffiffiffiffiffiffiffiffiffi
128�

p
U0

: (11)

This construction of a spherical membrane is based on the
pioneering work of de Wit et al. [17]. The collapsing sphere
solution was first described by Collins and Tucker [18].
In the quantum theory we will be interested in fluctua-

tions about this solution, so we set2

XAðtÞ ¼ UðtÞ 2
N
JA þ xAðtÞ;

XIðtÞ ¼ xIðtÞ:
(12)

At linearized order the Gauss constraint (8) reduces to

_U½JA; xA� ¼ U½JA; _xA�: (13)

This constraint removes roughly N2 degrees of freedom
from the 3N2 degrees of freedom contained in xA.3

However, to linearized order it puts no constraint on xI.
The linearized equation of motion for xI is

€xI þ 4

N2
U2½JA; ½JA; xI�� ¼ 0: (14)

To solve this we expand the field in fuzzy spherical
harmonics,

xI ¼ XN�1

‘¼0

cIA1���A‘

�
2

N

�
‘
JA1

� � � JA‘
: (15)

With the SUð2Þ algebra ½JA; JB� ¼ i�ABCJC and the
identity �ABC�ADE ¼ �BD�CE � �BE�CD one can show
that (assuming the indices A1 � � �A‘ are contracted with a
symmetric traceless tensor)

½JA; ½JA; JA1
� � � JA‘

�� ¼ ‘ð‘þ 1ÞJA1
� � � JA‘

: (16)

1Conventions: the fields Xi have units of energy. They are
related to 0-brane positions by X ¼ ðpositionÞ=2��0. The Yang-
Mills coupling is g2YM ¼ gs

ð2�Þ2‘3s .

2The results for the spectrum in the remainder of this section
have also been obtained by Steinacker and Zahn [19].

3More precisely it removes N2 � 1 degrees of freedom: the
trace of a commutator vanishes, so the trace of the Gauss
constraint is trivially satisfied.
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In other words, fuzzy spherical harmonics are angular
momentum eigenstates, with the expected eigenvalue of
the total angular momentum. The linearized equation of
motion (14) then reduces to

€cIA1���A‘
þ 4‘ð‘þ 1Þ

N2
U2cIA1���A‘

¼ 0: (17)

This determines the spectrum of fluctuations in the trans-
verse dimensions I ¼ 4; . . . ; 9. In each of these dimensions
there are fluctuations with ‘ ¼ 0; . . . ; N � 1. A fluctuation
with angular momentum ‘ is (2‘þ 1)-fold degenerate and
has frequency

!‘ ¼ 2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp

U: (18)

The spectrum of fluctuations in the dimensions A ¼ 1, 2, 3
is studied in Appendix A. Here we just summarize the
results. Decomposing xA into SUð2Þ representations we
find that there are s-type fluctuations with spin ‘þ 1 for
‘ ¼ 0; . . . ; N � 1. These fluctuations are (2‘þ 3)-fold
degenerate and have frequency

!‘ ¼ 2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘� 1Þp

U: (19)

There are also u-type fluctuations with spin ‘� 1 for
‘ ¼ 1; . . . ; N � 1. These fluctuations are (2‘� 1)-fold
degenerate and have frequencies

!‘ ¼ 2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1Þð‘þ 2Þ

p
U: (20)

The spectrum of fluctuations is summarized in Table I. In
the rest of this paper the distinction between these various
types of frequencies will not matter, and from now on we
will ignore the differences between the formulas (18)–(20).
When we write explicit formulas we will make use of the
transverse frequencies (18).

III. PERTURBATIVE SPHERE COLLAPSE

Assuming the 0-brane quantum mechanics is weakly
coupled, we study the collapse of a fuzzy sphere in a little
more detail. The conserved total energy of the quantum
mechanics is

EYM ¼ 1

g2YM
Tr

�
1

2
ð@0XiÞ2 � 1

4
½Xi; Xj�2

�
; (21)

which at large N for the classical solution (9) reduces to

EYM � 1

g2YM

�
N

2
_U2 þ 2

N
U4

�
: (22)

So the radial velocity _U is related to the initial radius of the
sphere U0 by

_U2 � 4

N2
ðU4

0 �U4Þ: (23)

Classically a fuzzy sphere remains spherical as it
collapses, but quantum mechanically other modes will
get excited. This happens when the adiabatic approxima-
tion breaks down. For a mode with frequency !‘, the
adiabatic approximation fails when

_!‘

!2
‘

* 1: (24)

Given the frequencies (18), adiabaticity breaks down when

N _U

U2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp * 1; (25)

which using (23) can be rewritten as

U &
U0

ð‘ð‘þ 1Þ þ 1Þ1=4 : (26)

So a large fuzzy sphere evolves adiabatically. As the sphere
shrinks modes with more and more angular momentum
become excited. The mode with the largest angular
momentum, ‘max � N, gets excited when the fuzzy sphere
reaches the inner radius for open string production

Uinner �U0=
ffiffiffiffi
N

p
: (27)

At this point the adiabatic approximation has completely
broken down, and allN2 degrees of freedom in the matrices
have become excited, or equivalently all possible open
strings have been produced. The subsequent evolution of
the sphere will be studied in Sec. V.

IV. BLACK HOLD FORMATION AND
THE CORRESPONDENCE POINT

At large N and strong coupling the 0-brane quantum
mechanics has a dual description in terms of IIA super-
gravity [2]. Introducing the ’t Hooft coupling � ¼ g2YMN
and a radial coordinate with units of energy U ¼ r=�0, the
0-brane quantum mechanics is weakly coupled when

TABLE I. Spectrum of fluctuations about a fuzzy sphere of radius U.

Name Labels Spin Degeneracy Frequency

Transverse I ¼ 4; . . . ; 9 ‘ ¼ 0; . . . ; N � 1 ‘ 2‘þ 1 2
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp

U

s-type ‘ ¼ 0; . . . ; N � 1 ‘þ 1 2‘þ 3 2
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘� 1Þp

U

u-type ‘ ¼ 1; . . . ; N � 1 ‘� 1 2‘� 1 2
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þ 1Þð‘þ 2Þp
U
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U > �1=3 and has a dual supergravity description when

U < �1=3.4

In the supergravity regime one would expect a fuzzy
sphere to collapse and form a black hole with N units of
0-brane charge. The Schwarzschild radius of such a black
hole is [2]

US � ðg4YMEÞ1=7: (28)

Here E is the energy above extremality, identified with the
Hamiltonian of the quantum mechanics. Given (22), the
Schwarzschild radius is related to the initial radius of
the sphere by

US �
�
g2YMU

4
0

N

�
1=7

: (29)

Of course this discussion only makes sense if the black
hole fits in the region where supergravity is valid. This

requires US < �1=3 or equivalently E< N2�1=3, which
means

U0 <N1=2�1=3: (30)

The perturbative description of fuzzy sphere collapse
worked out in Sec. III, on the other hand, is only valid if
the quantum mechanics is weakly coupled. We followed
the evolution of the sphere perturbatively down to the
radius Uinner given in (27), at which point all N2 degrees
of freedom have gotten excited. This perturbative descrip-

tion is only valid if Uinner > �1=3, or equivalently

U0 >N1=2�1=3: (31)

We now see that there is a smooth crossover between the
perturbative description of fuzzy sphere collapse and
the nonperturbative process of black hole formation. The
crossover occurs when the initial radius and total energy
are

U0 � N1=2�1=3; E� N2�1=3: (32)

At the crossover point the Schwarzschild radius and inner
radius for open string production agree,

US �Uinner � �1=3: (33)

For a black hole of this size the curvature at the horizon is
of order string scale:

�0R� ðU3=�Þ1=2 � 1: (34)

So this crossover is an example of the correspondence
principle of Horowitz and Polchinski at work [3].

V. BACKREACTION AND PARAMETRIC
RESONANCE

In Sec. III we followed the evolution of a weakly-

coupled fuzzy sphere down to the radius Uinner �
U0=

ffiffiffiffi
N

p
. At this radius adiabaticity has broken down for

all of the fluctuation modes, so OðN2Þ open strings have
been produced. In this section we study the subsequent
evolution of the sphere, still assuming weak coupling, but
taking into account backreaction from open string produc-
tion. Wewill show that a parametric resonance is present in
the weakly-coupled field theory which exponentially
amplifies the number of open strings present.
To study the backreaction from open string production,

we begin by estimating the total energy in open strings.
Suppose that as the sphere collapses roughly one open
string is produced in each of the fluctuation modes (18).
This is justified in Appendix B. Then once the sphere has
crossed the radius Uinner, the total energy in open strings is

Eopen �
XN�1

‘¼0

ð2‘þ 1Þ!‘

¼ XN�1

‘¼0

ð2‘þ 1Þ 2
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þ

p
U

� N2U: (35)

For this description of the collapse process to make sense,
we should check that backreaction from open string
production can be neglected down to the radius Uinner.
To do this we compare the energy in open strings (35) to
the total energy of the sphere (22). At the radius Uinner

we have Eopen � N2Uinner, while the total energy EYM �
U4

0=�� N2U4
inner=�, so

Eopen

EYM

� �

U3
inner

: (36)

Indeed, provided the field theory remains weakly coupled

down to the radius Uinner, we have Uinner > �1=3 (or equiv-

alently U0 >N1=2�1=3) and backreaction can be neglected
during the initial collapse of the sphere.
Even though backreaction can be neglected during the

initial collapse of the sphere, it is not necessarily negligible
when the sphere subsequently re-expands. To decide this
issue we compare the potential energy in open strings (35),
Eopen � N2U, to the classical potential energy of a fuzzy

sphere, which from (22) is given by Eclassical ¼ 2
�U

4. Thus

Eopen

Eclassical

� N2�

U3
: (37)

The linear potential from open strings dominates at
small radius, while the classical U4 potential dominates
at large radius. The two energies are comparable when

U� N2=3�1=3.

4The radial coordinate U introduced here differs by a factor
2� from the radius of the sphere introduced in (9): see footnote 1.
We will ignore this difference from now on.
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We can now identify three qualitatively different behav-
iors, depending on the initial radius of the sphere. See
Appendix C for a more detailed analysis.

Large initial radius, U0 >N2=3�1=3

In this case the classical potential energy of the sphere is
dominant near the turning point, which is located at
U � U0. The classical evolution of the sphere described
in Sec. II is a good approximation to the true behavior. In
particular the sphere collapses to zero size on the timescale
�� N=U0 given in (11).

Intermediate initial radius, N1=2�1=3 <U0 <N2=3�1=3

In this case the field theory remains weakly coupled
down to the radiusUinner, but when the sphere subsequently
re-expands it is the linear potential arising from open string
production which is dominant near the turning point. The
classical U4 potential can be neglected, and overall energy
conservation reads [in place of (22)]

N

2g2YM
_U2 þ cN2U ¼ 2U4

0

�
: (38)

Here c is an Oð1Þ constant reflecting the number of open
strings present in each mode. In this linear potential the
turning point is located at U ¼ 2U4

0=cN
2�, which fortu-

nately is in the weakly coupled regime of the field theory.
After reaching the turning point, the sphere recollapses to
zero size in a time

� ¼ 2U2
0

cN�
: (39)

Small initial radius, U0 <N1=2�1=3

In this case the sphere enters the regime where super-
gravity is valid and falls within its own Schwarzschild
radius to form a black hole.

We can now describe the subsequent evolution of the
sphere in a little more detail. At weak coupling the sphere
pulsates with a frequency

�� 1=��
(
U0=N large initial radius

N�=U2
0 intermediate initial radius

: (40)

One can approximate this as an oscillating classical
background UðtÞ ¼ ~U0 sin�t, where the backreacted am-
plitude of oscillation

~U0 �
(
U0 large initial radius

U4
0=N

2� intermediate initial radius
: (41)

Plugging this oscillating background into the fluctuation
Eq. (17) for the transverse fluctuations, one finds
that small fluctuations are governed by the Mathieu
equation. As in [1], this means there is a parametric
resonance which makes the number of open strings grow

exponentially with time, on a timescale set by the period
of oscillation �.5

VI. MORE ON THE CORRESPONDENCE POINT

The collapse of a fuzzy sphere appears qualitatively
different depending on whether the initial radius is large,
intermediate or small. In this section we study the transi-
tions between these different regimes, and argue that they
are in fact smoothly connected.
One can smoothly continue from large to intermediate

initial radius in the formulas (40) and (41) for the fre-
quency and amplitude of oscillation, since the expressions

agree at the large-to-intermediate crossover point U0 �
N2=3�1=3. In a way this is not surprising. At large and
intermediate initial radius open string production takes
place while the field theory is still weakly coupled. As
the initial radius is decreased open string production
becomes more important. The resulting linear potential
smoothly takes over from the classical U4 potential, and
this is responsible for modifying the frequency and
amplitude of oscillation.
Now let us see if we can continue from intermediate to

small initial radius. This intermediate-to-small crossover

occurs when U0 � N1=2�1=3, which corresponds to a total

energy E�U4
0=�� N2�1=3. This amounts to working at

the correspondence point of Horowitz and Polchinski [3],
since the Schwarzschild radius of the resulting black
hole

US � ðg4YMEÞ1=7 � �1=3; (42)

which means the curvature at the horizon is of order string
scale:

�0R� ðU3
S=�Þ1=2 � 1: (43)

In other words, the resulting black hole just fits in the
region where supergravity is valid [2].
There are various quantities we can compare at the

Horowitz-Polchinski correspondence point which suggest
that the crossover is smooth.
Classical size
In the weakly-coupled field theory the classical back-

ground is a pulsating sphere with a maximum size given

in (41). Evaluating this at U0 ¼ N1=2�1=3 we find that the
back-reacted amplitude of oscillation is set by the ’t Hooft

scale, ~U0 � �1=3. This matches the Schwarzschild radius
(42) of a black hole at the correspondence point,

US � �1=3.

5Similarly, for s-type and u-type fluctuations, we obtain
Mathieu equations with !l given by (19) and (20). However,
the derivation of (19) and (20) in Appendix A is under the
adiabatic approximation, _U ! 0. Therefore, we expect the
Mathieu equations for s-type and u-type fluctuations are modi-
fied once the adiabatic approximation breaks down and para-
metric resonance occurs.
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Size of quantum fluctuations
For the classical background (9), the size of the sphere

can be measured by

1

N
TrðXAXAÞ ¼ U2ð1þOð1=N2ÞÞ: (44)

Let us compare this to the spread in the 0-brane positions
due to quantum fluctuations, measured by

ð�XÞ2 � 1

N
hTrðXIXIÞi I ¼ 4; . . . ; 9: (45)

To evaluate this, recall that for a harmonic oscillator

hnjx̂2jni ¼ ℏ
m!

�
nþ 1

2

�
: (46)

We can adapt this to the problem at hand by identifying
ℏ=m with g2YM. Then assuming small fluctuations and
using the frequencies (18) we have

ð�XÞ2 ¼ X
I

1

N

XN�1

‘¼1

X‘
m¼�‘

g2YM
!‘

�
nI‘m þ 1

2

�

� 1

N

XN�1

‘¼1

ð2‘þ 1Þ g2YMNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp

U
� �

U
: (47)

In the first line we suppressed the ‘ ¼ 0 modes which
describe center of mass position. In the second line we
dropped the sum on I and took the quantum numbers
nI‘m �Oð1Þ, appropriate to having one open string per

mode. To compare the size of these quantum fluctuations
to the size of the classical background, we set U ¼ ~U0 and
consider the ratio

ð�XÞ2
ð ~U0Þ2

� �

ð ~U0Þ3
: (48)

Provided the maximum size of the sphere is larger than the

’t Hooft scale, ~U0 > �1=3 or equivalently U0 >N1=2�1=3,
then the quantum fluctuations in the 0-brane positions are
small compared to the radius of the sphere. This shows that
at large and intermediate initial radius a classical fuzzy
sphere provides a good description of the quantum state.6

It also shows that as we go to the Horowitz-Polchinski

correspondence point, ~U0 ¼ �1=3, the classical back-
ground merges into the quantum fluctuations. This fits
with a general expectation in gravity-gauge duality, that
at strong coupling the D-brane positions have quantum
fluctuations which are comparable in size to the region in
which supergravity is valid [20,21].

Thermalization time
On the weakly-coupled side we identified a parametric

resonance which leads to open string production on a
timescale set by the frequency (40). Evaluating this at

U0 ¼ N1=2�1=3 we find that the frequency of oscillation

is set by the ’t Hooft scale, �� �1=3.
What does this correspond to on the supergravity side?

The black hole has a spectrum of quasinormal frequencies
which govern the approach to equilibrium. The quasinor-
mal frequencies are set by the Hawking temperature

[22–24], namely T � 1ffiffiffi
�

p U5=2
S , which at the correspondence

point is of order the ’t Hooft scale, T � �1=3. Thus at the
correspondence point the timescale for parametric reso-
nance agrees with the relaxation time of the black hole.
This suggests that the weak-coupling process of open
string production via parametric resonance smoothly
matches on to the strong-coupling process of black hole
formation.
Entropy production
At weak coupling, during the initial collapse of a fuzzy

sphere, we saw that OðN2Þ open strings are produced.
These strings have an entropy Sstring � N2. On the other

hand, on the supergravity side, the equilibrium entropy of
the black hole is [2]

Sbh � N2U9=2
S =�3=2: (49)

Evaluating this at the correspondence point US � �1=3 we
see that Sbh � N2. So at the correspondence point the
entropy produced during the initial collapse of a fuzzy
sphere is close to the equilibrium entropy of the black
hole. This suggests that very little additional evolution—
perhaps just a few e-foldings of parametric resonance—is
required for the system to reach equilibrium.
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APPENDIX A: FLUCTUATIONS
IN THE XA DIMENSIONS

In this appendix we study the spectrum of fluctuations in
the directions A ¼ 1, 2, 3. We need to solve the linearized
Gauss constraint

_U½JA; xA� ¼ U½JA; _xA� (A1)

along with the linearized equation of motion

€xA þ 4

N2
U2½½xA; JB�; JB� þ 4

N2
U2½½JA; xB�; JB�

þ 4

N2
U2½½JA; JB�; xB� ¼ 0: (A2)

6Although as we saw in Sec. V, for intermediate initial radius
one must take backreaction into account to find the correct
frequency and amplitude for the classical background.
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These expressions can be simplified somewhat. In the adiabatic approximation we study the spectrum of fluctuations
treating U as constant. Then the fluctuation modes can be taken to have definite frequency, xA � e�i!t, so the Gauss
constraint amounts to the requirement that

½JA; xA� ¼ 0: (A3)

Also we can simplify the equation of motion using

½½JA; xB�; JB� ¼ �½½xB; JB�; JA� � ½½JB; JA�; xB� ðJacobi identityÞ
¼ ½½JA; JB�; xB� ðGauss constraintÞ:

This reduces the equation of motion to

€xAþ 4

N2
U2½½xA;JB�;JB�þ 8

N2
U2½½JA;JB�;xB�¼ 0: (A4)

To go further we expand the fluctuations in fuzzy vector
spherical harmonics. These are constructed as follows.
Expanding in a complete set of matrices we can set7

xA ¼ XN�1

‘¼0

xAA1���A‘
JA1

� � � JA‘
: (A5)

The tensor xAA1���A‘
is symmetric and traceless on the

indices A1 � � �A‘, so taking all indices into account it
transforms as a ðspin 1Þ 	 ðspin ‘Þ product representation
of SUð2Þ. Decomposing this product, the irreducible pieces
correspond to tensors s, t, u that have spin ‘þ 1, ‘, ‘� 1
respectively. These tensors can be constructed explicitly:8

sA0A1���A‘
� ðxA0A1���A‘

þ cyclic permutations of A0 � � �A‘Þ

� 2

2‘þ 1

X‘
i;j¼0
i<j

�AiAj
xBBA0���Âi���Âj���A‘

; (A6)

tA1���A‘
�X‘

i¼1

�AiABxABA1���Âi���A‘
; (A7)

uA2���A‘
� �ABxABA2���A‘

: (A8)

The tensors s, t, u are constructed to be symmetric and
traceless on all indices, so that they correspond to the
appropriate irreducible SUð2Þ representations.

This decomposition helps in understanding the Gauss
constraint (A3), since

½JA; xA� ¼ xAA1���A‘
½JA; JA1

� � � JA‘
�

¼ ið�A1ABxABA2���A‘
þ �A2ABxAA1BA3���A‘

þ � � � þ �A‘ABxAA1���A‘�1BÞJA1
� � � JA‘

� itA1���A‘
JA1

� � � JA‘
:

Thus the Gauss constraint requires that we set the spin-‘
irreducible piece to zero, tA1���A‘

¼ 0.

Now let us study the equation of motion (A4). Using
(16) in the middle term, and evaluating the commutators in
the last term, the equation of motion becomes

€xAA1���A‘
JA1

� � �JA‘
þ 4

N2
U2‘ð‘þ1ÞxAA1���A‘

JA1
� ��JA‘

þ 8

N2
U2xBBA2���A‘

ðJAJA2
� � �JA‘

þJA2
JAJA3

� � �JA‘
þ���Þ

� 8

N2
U2xBAA2���A‘

ðJBJA2
� � �JA‘

þJA2
JBJA3

� � �JA‘
þ���Þ

¼ 0 (A9)

(there are ‘ terms in the second and third lines, where the
generators JA and JB are inserted at different positions).
We consider the different irreducible pieces in turn.
s-type fluctuations
To study the irreducible piece with spin ‘þ 1 we take x

to be symmetric and traceless on all indices,

xAA1���A‘
¼ sAA1���A‘

: (A10)

For such a tensor the Gauss law is automatically satisfied,
while the equation of motion (A9) reduces to

€sAA1���A‘
þ 4

N2
U2‘ð‘� 1ÞsAA1���A‘

¼ 0: (A11)

We read off the frequencies

!‘ ¼ 2

N
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘� 1Þp

: (A12)

These modes are ð2‘þ 3Þ-fold degenerate. There are two
zero-frequency modes: ‘ ¼ 0 is a translation zero mode in
the XA directions, while ‘ ¼ 1 is an energy-preserving
quadrupole deformation of the sphere.

7To save writing we are adopting a different normalization
convention in expanding xA, without the factor ð2NÞ‘ present
in (15).

8A hat denotes a missing index. There is an overall normal-
ization in these formulas which we leave unspecified.
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t-type fluctuations
These exist for ‘ � 1. We can reconstruct the tensor x

from its spin-‘ irreducible piece t by setting

xAA1���A‘
¼ �AA1BtBA2���A‘

þ �AA2BtA1BA3���A‘

þ � � � þ �AA‘BtA1���A‘�1B: (A13)

This map has been constructed so that x is symmetric and
traceless on the indices A1 � � �A‘. In other words, it defines
the embedding of ðspin ‘Þ ,! ðspin 1Þ 	 ðspin ‘Þ. Given
(A13), the corresponding Hermitian matrix xA can be
written as a commutator,

xA� xAA1���A‘
JA1

� � �JA‘
¼ itA1���A‘

½JA;JA1
� � �JA‘

�: (A14)

As we saw earlier, these fluctuations fail to satisfy the
Gauss constraint, since from (16)

½JA; xA� ¼ i‘ð‘þ 1ÞtA1���A‘
JA1

� � � JA‘
: (A15)

Again the only solution to the Gauss constraint is to set
t ¼ 0.

u-type fluctuations
These exist for ‘ � 1. We can reconstruct x from its

spin-ð‘� 1Þ irreducible piece using

xAA1���A‘
¼ X‘

i¼1

�AAi
uA1���Âi���A‘

� 2

2‘� 1

X‘
i;j¼1
i<j

�AiAj
uAA1���Âi���Âj���A‘

: (A16)

This map is constructed so that x is symmetric and trace-
less on A1 � � �A‘. For such a tensor the Gauss law is
automatically satisfied. Substituting the expression for x
into the equation of motion (A9), we find after some
algebra that

€uA2���A‘
þ 4

N2
U2ð‘þ 1Þð‘þ 2ÞuA2���A‘

¼ 0: (A17)

From this we read off the frequencies

!‘ ¼ 2

N
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið‘þ 1Þð‘þ 2Þp
: (A18)

These modes are ð2‘� 1Þ-fold degenerate. The ‘ ¼ 1
mode is a monopole deformation of the sphere, U ! Uþ
�U. The frequency !1 agrees with what one obtains by
perturbing the background equation of motion (10).

APPENDIX B: OPEN STRING PRODUCTION

In this appendix we study the process of open string
production in more detail. Our goal is to show that, during
the initial collapse of a fuzzy sphere, roughly one open
string is produced in each of the fluctuation modes. We
assume the fluctuations are weakly coupled, which as

discussed in Sec. V means U0 >N1=2�1=3.
We focus on a particular fluctuation mode. For concrete-

ness we consider a transverse mode (18) with frequency

!‘ ¼ 2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp

U: (B1)

For this mode, the adiabatic approximation breaks down
when _!‘=!

2
‘ � 1 or

N _U

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ð‘þ 1Þp

U2
� 1: (B2)

Energy conservation (23) fixes _U2 � 4
N2 ðU4

0 �U4Þ. By the
time the adiabatic approximation has broken down we can
neglect the U4 term, so the velocity is

_U � 2

N
U2

0; (B3)

and the adiabatic approximation fails at

U � U0

ð‘ð‘þ 1ÞÞ1=4 : (B4)

At the point where the adiabatic approximation fails the
mode can be thought of as a harmonic oscillator in its
ground state, with a frequency

! � 2

N
ð‘ð‘þ 1ÞÞ1=4U0 (B5)

and a ground state wave function (identifying ℏ=m
with g2YM)

c 0ðxÞ ¼
�

!

�g2YM

�
1=4

e�1
2!x2=g2YM : (B6)

After the adiabatic approximation breaks down the
sphere continues to shrink. We must follow the evolution
of the mode through the nonadiabatic regime, until the
sphere re-expands to the radius (B4) at which adiabaticity
is restored. In the nonadiabatic regime the frequency is so
low that it seems reasonable to neglect the potential energy
for the mode, in other words, to treat it as a free particle. In
this approximation the Gaussian wave function (B6) under-
goes free diffusion, spreading to a width

�x2 ¼ �x20 þ
g4YM�t

2

4�x20
: (B7)

Here the initial position uncertainty is �x20 ¼ g2YM=2!,

while the time spent in the nonadiabatic regime is

�t ¼ �U
_U
� N

ð‘ð‘þ 1ÞÞ1=4U0

: (B8)

This gives �x2 � 5�x20: the wave function spreads by a

factor of roughly
ffiffiffi
5

p
as the sphere transits the nonadiabatic

regime. This factor is independent of the parameters N, ‘,
U0, which suggests that of order one open string is pro-
duced in each of the fluctuation modes.
To argue this more precisely we recall some properties

of squeezed states [25]. For a harmonic oscillator these are
defined by
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j�i ¼ exp

�
�

2
ðâyây � â âÞ

�
j0i; (B9)

where the squeezing parameter 0< �<1. An equivalent
expression is

j�i ¼ ð1� �2Þ1=4 exp
�
�

2
âyây

�
j0i; (B10)

where � ¼ tanh�. A squeezed state has a Gaussian wave
function with a width

�x ¼ e��x0; (B11)

so we identify e� � ffiffiffi
5

p
. Expanding the exponential in

(B10), the probability of finding 2n strings present is

Pð2n stringsÞ ¼ ð1� �2Þ1=2 ð2nÞ!ðn!Þ2
�
�

2

�
2n
: (B12)

The probability decreases monotonically with n. The
average number of strings present is

X1
n¼0

2nPð2n stringsÞ ¼ �2

1� �2
� 4

5
: (B13)

So the simple approximation of free diffusion in the non-
adiabatic regime supports the claim that roughly one open
string is produced in each fluctuation mode.

APPENDIX C: MORE ON UðtÞ OSCILLATIONS

During the initial collapse, after U has passed by U ¼
Uinner, we know thatOðN2Þ open strings have been created.
Then the dynamics of the fuzzy sphere radius UðtÞ is
dominated by the following energy conservation law:

2U4
0

�
¼ N2

2�
_U2 þ VpotðUÞ; VpotðUÞ � 2U4

�
þ cN2jUj:

(C1)

Here U0 sets the total energy. This is a one-dimensional
oscillator with a potential VpotðUÞwhich is positive definite
and monotonically increasing as we increase U. It has
linear behavior for small U, U <Uc and U4 behavior for
large U, U >Uc where

Uc �
�
c

2

�
1=3

N2=3�1=3: (C2)

In this appendix we study the resulting dynamics for UðtÞ
in more detail. We will always consider U0 satisfying

U0 >N1=2�1=3 so that a perturbative analysis is valid.

A. Intermediate initial radius, U0 < Uc

In this case, the dynamics of U is restricted to the region
where the potential has linear behavior. Keeping just the
linear term in VpotðUÞ, the conservation law reads

2U4
0

�
� N2

2�
_U2 þ cN2jUj: (C3)

This sets the amplitude of oscillation of UðtÞ as

~U0 � 2U4
0

c�N2
: (C4)

Since U0 <Uc, this yields a consistent relation

~U0 � U4
0

�N2
<

U4
c

�N2
�Uc: (C5)

Using ~U0, we can rewrite the conservation law (C3) as

N2

2�
_U2 � cN2ð ~U0 �UÞ: (C6)

This yields periodic oscillations with period �, where

� �
ffiffiffiffiffiffiffiffiffiffiffi
32 ~U0

c�

s
(C7)

or, neglecting some numerical factors including c, �� U2
0

�N .

Note that U has acceleration or deceleration c�, with

periodicity 4
ffiffiffiffiffiffi
2 ~U0

c�

q
, so setting t ¼ 0 at U ¼ 0 we have

UðtÞ ¼
8><
>:

~U0 � 1
2 c�

�
t� ð4nþ 1Þ

ffiffiffiffiffiffi
2 ~U0

c�

q �
2

for 4n
ffiffiffiffiffiffi
2 ~U0

c�

q

 t 
 ð4nþ 2Þ

ffiffiffiffiffiffi
2 ~U0

c�

q

� ~U0 þ 1
2 c�

�
t� ð4nþ 3Þ

ffiffiffiffiffiffi
2 ~U0

c�

q �
2

for ð4nþ 2Þ
ffiffiffiffiffiffi
2 ~U0

c�

q

 t 
 ð4nþ 4Þ

ffiffiffiffiffiffi
2 ~U0

c�

q

Π
4

Π
2

t

0.2

0.4

0.6

0.8

1.0
U�t�

FIG. 1 (color online). Blue solid curve: UðtÞ ¼ �ð2t=�Þ2 þ 1,
red dashed curve: UðtÞ ¼ cos t. The two functions are very
similar.
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for integers n. This periodic behavior of UðtÞ is well-
approximated by a circular function with frequency �

UðtÞ � ~U0 sin�t; ~U0 � U4
0

�N2
; �� ��1 � �N

U2
0

:

(C8)

Figure 1 shows that this approximation works very well.

B. Large initial radius, U0 > Uc

In this case, the dynamics of U is no longer restricted to
the region where the potential VpotðUÞ has linear behavior.
Instead the conservation law gives

2U4
0

�
¼ N2

2�
_U2 þ 2U4

�
þ cN2U: (C9)

Again we have oscillatory behavior. Near the turning point

U4
0

�
> N2U0; (C10)

so the amplitude is very well approximated by U0,
~U0 � U0.
During each oscillation U starts from U0, passes by

U ¼ Uc given in Eq. (C2), then enters the region where
U <Uc. The timescale for U to run from U ¼ U0 to
U ¼ Uc, which we call ��1, is given by

��1 ¼ N
Z U0

Uc

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4

0 �U4 � �N2U
q

� N
Z U0

Uc

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4

0 �U4
q � N

U0

; (C11)

since in this region the potential VpotðUÞ is well approxi-
mated by the quartic term. On the other hand, the timescale
for U to run from U ¼ Uc to U ¼ 0, which we call ��2, is

��2 ¼ N
Z Uc

0

dUffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U4

0 �U4 � �N2U
q & N

Z Uc

0

dUffiffiffiffiffiffi
U4

0

q
¼ N

Uc

U2
0

; (C12)

since in this region the potential is well approximated by
the linear term.

Since Uc < U0, note that ��1 > ��2, and therefore
the period of oscillation is dominated by the motion from

U0 to Uc. The conservation law is well approximated
by neglecting the backreaction from open string creation
and taking

2U4
0

�
¼ N2

2�
_U2 þ 2U4

�
: (C13)

Taking t ¼ 0 at U ¼ 0 we find the solution

UðtÞ ¼ U0sn

�
2U0t

N
;�1

�
; (C14)

where snðu;mÞ is a Jacobi elliptic function, given by

snðu;mÞ¼sin	 where	is definedbyu¼
Z 	

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�msin2s

p :

(C15)

In our case m ¼ �1 so u ¼ R	
0

dsffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsin 2s

p . Since snðu;mÞ ¼
sin	 is periodic under 	�	þ 2�, it follows that u is
periodic under u� uþ R

2�
0

dsffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsin 2s

p � uþ 2�=1:2. In

fact, the behavior of UðtÞ is very well approximated by

UðtÞ ¼ U0sn

�
2U0t

N
;�1

�
� U0 sin

2:4U0t

N
: (C16)

Figure 2 shows that this approximation works very well.
This means UðtÞ can be approximated as

UðtÞ � ~U0 sin�t; ~U0 �U0; �� ��1 �U0

N
:

(C17)

Note that (C8) and (C17) agree at U0 �Uc.

Π 2 Π 3 Π
t

�1.0

�0.5

0.5

1.0
U�t�

FIG. 2 (color online). Blue solid curve: UðtÞ ¼ snðt;�1Þ, red
dashed curve: UðtÞ ¼ sin ð1:2tÞ. The two functions are very
similar.
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