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We show that there is a direct relation between upper limits on (or potential future measurements of) the

m ¼ 2 quadrupole moments of slowly rotating neutron stars and the l ¼ m ¼ 2 deformation of the star’s

surface, in full general relativity, to first order in the perturbation. This relation only depends on the star’s

structure through its mass and radius. All one has to assume about the star’s constituents is that the stress-

energy tensor at its surface is that of a perfect fluid, which will be true with good accuracy in almost all the

situations of interest, and that the magnetic field configuration there is force free, which is likely to be a

good approximation. We then apply this relation to the stars which have direct LIGO/Virgo bounds on

their m ¼ 2 quadrupole moment, below the spin-down limit, and compare with the expected surface

deformations due to rotation. In particular, we find that LIGO observations have constrained the Crab

pulsar’s l ¼ m ¼ 2 surface deformation to be smaller than its l ¼ 2, m ¼ 0 deformation due to rotation,

for all the causal equations of state we consider, a statement that could not have been made just using the

upper bounds on the l ¼ m ¼ 2 deformation from electromagnetic observations.
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I. INTRODUCTION

In the absence of significant internal stresses, objects
bound by gravity are highly symmetric on large scales.
Indeed, Lindblom and Masood-ul-Alam [1,2] have shown
that all static perfect fluid relativistic stars are spherical
(with reasonable assumptions about the equation of state).
Even if one includes rotation, then equilibrium states of
fluid stars must have a high degree of symmetry, as shown
by Lindblom [3]: They must be axisymmetric, if one
takes dissipation into account, and must have reflection
symmetry across the equator, at least in the Newtonian
approximation (though this is conjectured to hold for
relativistic stars, as well).

However, situations in which the internal stresses are
non-negligible are not uncommon. Indeed, it is obvious
that many of the smaller (though still gravitationally
bound) objects in the Solar System have large-scale inter-
nal stresses that are comparable to their self-gravity. This is
particularly true for asteroids and the smaller moons,
which can be highly nonspherical (see, e.g., [4] and
Fig. 2.2 in [5]), but is even true for the larger moons and
the terrestrial planets, to a less immediately apparent
degree. (For instance, see the model for the Earth’s gravi-
tational field given in [6].) What is perhaps surprising is
that such massive, strong-gravity objects as neutron stars
can also have large enough internal stresses to produce a
non-negligible large-scale deformation, with reasonable
theoretical input. In particular, as first appreciated by
Ruderman [7], the star’s solid crust can support a large-
scale deformation, while an internal magnetic field
will necessarily deform the star, as was first noted by
Chandrasekhar and Fermi [8].

In most cases, these deformations will be quite
small (maximum fractional deformations of �10�5, with

considerably smaller deformations in most realistic cases).
But there are certain scenarios in which the deformation
could be (relatively) substantial (*10�4, possibly as much
as tens of percent in extreme cases): If there is a solid
exotic phase (e.g., the hadron-quark mixed phase) in the
star’s core, the entire star is solid (as is the case for
crystalline superconducting quark stars), or there is a large
internal magnetic field of *1015 G. (See, e.g., [9,10] for
the solid case and [11–14] for the magnetic case.)
The mechanisms for creating large deformations on

nonaccreting neutron stars are not clear, though it is worth
pointing out that neutron stars are expected to be born with
some deformation from the violent supernova explosion
that forms them, and it is possible that this deformation
may be frozen in to the solid parts, and only relax slowly
over time, as discussed in [15]. See also Sec. 2.2 in [16] for
a discussion of scenarios involving accretion. However,
deformed neutron stars are an interesting enough prospect
for gravitational wave detection that it is worthwhile to
consider the more extreme cases, and see what bounds
there are on large deformations. In most cases, the best
bounds on the large-scale deformations of neutron stars
come from electromagnetic observations of their spin-
down, which (as discussed in, e.g., [17]) constrain the star’s
m ¼ 2 quadrupole moment, albeit with a factor of �2
uncertainty due to the star’s unknown moment of inertia.
There are also tighter, though less direct, bounds that can
be obtained from electromagnetic observations by folding
in the star’s braking index [18].
But the cleanest bounds come from gravitational wave

observations, and a prominent accomplishment of the first
generation of large-scale laser interferometer gravitational
wave detectors has been setting direct upper bounds on the
m ¼ 2 quadrupole moment of certain known neutron
stars, below the bounds that are given by electromagnetic
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observations of the spin-down, or indirect limits given
by the star’s age [15,19–21]. See [16,22,23] for recent
reviews. It is customary to quote these upper bounds in
terms of a fiducial ellipticity for the star to give a feeling
for the size of the deformation. However, this fiducial
ellipticity only gives a direct measure of the star’s defor-
mation in the uniform density, Newtonian limit, and it is
a priori unclear how to relate this to a measure of the
deformation in more realistic cases. It is our purpose here
to show how one can convert such fiducial ellipticities into
a more physically meaningful, fully relativistic measure of
the shape of the star’s surface. This relativistic shape
measure gives a more tangible interpretation of present
upper bounds on the gravitational radiation emitted from
known pulsars than does the fiducial ellipticity. In particu-
lar, it allows one to compare the bounds on the star’s
l ¼ m ¼ 2 deformation directly with various other defor-
mations (e.g., the star’s deformation due to rotation, or the
deformations of other astronomical objects). [Nota bene
(N.B.): While there is also the possibility of an m ¼ 1
quadrupole deformation, as discussed by Jones [24], we
will not consider this situation here, since there are no final
results for searches for such radiation—though see [25] for
preliminary results. Similarly, we do not consider radiation
from higher multipole deformations, as such radiation is
suppressed by factors of the star’s rotational speed over the
speed of light compared to the l ¼ 2 radiation, and thus not
searched for.]

The relativistic shape measure we define is inspired by
the measure of the horizon deformation of a tidally dis-
torted black hole used by Taylor and Poisson [26] and
involves the ratio of the star’s longest polar circumference
to its equatorial circumference. (Similar ratios have also
been used in numerical studies of distorted black holes
[27–29].) The conversion from fiducial ellipticity to
relativistic shape measure only depends upon the star’s
structure through its mass and radius (with reasonable
assumptions about the magnetic field and shear stresses at
the star’s surface). This simple conversion comes from the
simple relation between the metric on the star’s perturbed
surface and the surface value of the time-time component of
the Regge-Wheeler gauge [30] metric perturbation (given
by Damour and Nagar [31]), and the relationship between
the surface value of this component and the amplitude of the
star’s quadrupole gravitational radiation, given in [10]
(the relation with the quadrupole moment was first given
by Hinderer [32]). (As discussed in [10], these relations
assume slow rotation, using the results of Ipser [33] and
Thorne [34] to show that it is appropriate to calculate the
gravitational waves from the rotating star using the quad-
rupole moment calculated in the static limit. This is quite a
good approximation for the stars we consider, which are
rotating well below the Kepler limit—at most�10% of it.)

One can compute the deformation of the star due
to rotation in the same manner, using Hartle’s classic

calculation [35] of the metric of a slowly rotating
relativistic star. While there is no reason to assume any
sort of correlation between a star’s l ¼ m ¼ 2 deformation
and its rotational deformation,1 the rotational deformation
gives a convenient scale against which to compare the
bounds on the l ¼ m ¼ 2 deformation. We then give these
conversions (from fiducial ellipticity and rotational fre-
quency to surface deformation) for a variety of equations
of state (EOSs), including the case of a strange quark star
(for which one needs to modify the calculations slightly).
We also compare the bounds on the l ¼ m ¼ 2 surface
deformation with the surface deformation due to rotation
for the four stars with known spin periods for which the
LIGO/Virgo bounds on the l ¼ m ¼ 2 deformation are
near or below the (fiducial) spin-down limit. (We also
note that models of strange quark stars with large radii
can give significantly larger moments of inertia than the
maximum of 3� 1045 g cm2 assumed in the LIGO/Virgo
papers, which increases the uncertainty on the spin-down
limit.) Additionally, we show that these results will receive
negligible corrections from stresses and the magnetic field
in the cases of interest (with the possible exception of
corrections to the force-free nature of the magnetic field
configuration, which could be large enough to affect the
results).
The paper is structured as follows: We define the shape

measure, give some intuition about its properties, and
detail how to compute it from the fiducial ellipticity in
Sec. II. We then compute the surface deformation due to
rotation in Sec. III, and compare the sizes of these two
deformations for a variety of equations of state and pulsars
of interest in Sec. IV. Finally, we conclude and consider the
outlook for future bounds on the l ¼ m ¼ 2 deformations
of known neutron stars in Sec. V. In the Appendix, we show
that the corrections to these results due to stresses and the
magnetic field are likely negligible in realistic cases. We
use geometrized units throughout (i.e., take G ¼ c ¼ 1,
where G is Newton’s gravitational constant and c is the
speed of light).

II. THE RELATIVISTIC SHAPE MEASURE

A. Definition

First, recall that the fiducial ellipticity is defined by

�fid;22 :¼
Ixx � Iyy

Ifidzz
; (1)

where Ixx and Iyy are the star’s actual moments of inertia

about the axes other than its rotation axis (the difference

1Indeed, millisecond pulsars, which have the largest rotational
deformations, for a fixed mass, have some of the tightest spin-
down constraints on their m ¼ 2 quadrupoles—see, e.g., Table 1
in [15]; one can obtain a star’s spin-down ellipticity by dividing
the ellipticity bound given in the table by the value of h95%0 =hsd0 .
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between the two is related to the star’s m ¼ 2 quadrupole
moment, which is the observable quantity) and Ifidzz ¼
1045 g cm2 is the fiducial moment of inertia of the star
about its rotational axis. [As is discussed in, e.g., Sec. VI B
of [17], the actual moment of inertia of neutron stars is
expected to lie in the range ð1–3Þ � 1045 g cm2, on theo-
retical grounds, but there are no measurements of this
quantity for any neutron star. As we shall see, one can
obtain even larger moments of inertia, up to at least
�5:5� 1045 g cm2, for models of strange quark stars
with large radii.]

In contrast, our relativistic measure of the deformation
will be constructed solely from quantities on the star’s
surface, which could be measured (in principle) by a
physical observer, viz., the star’s equatorial circumference,
seq;22, and its longest polar circumference, spol;22;max,

giving

�surf;22 :¼
spol;22;max � seq;22

seq;22
(2)

(cf. the calculation of the surface deformation of a tidally
deformed black hole in Sec. VIII of Taylor and Poisson
[26], and the calculations of the shape of deformed black
holes in [27–29]).2 One can compute the quantities enter-
ing this definition using the metric on the star’s surface,
so all we need to do is write this metric in terms of the
star’s quadrupole moment (along with its unperturbed mass
and radius).

To gain some intuition about the properties of this
deformation measure, we consider a Newtonian ellipsoid,
with semiaxes ð1þ �ÞR, ð1� �ÞR, and R, for which we
have �surf;22 ¼ �=2 (to first order in�). [Here we have used
the expression 2�a½1� e2=4þOðe4Þ� for the circum-
ference of an ellipse with semimajor and semiminor axes

a and b and eccentricity e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

p
.] If the ellipsoid

has uniform density, then Ixx�Iyy¼4�Izz¼ð8=5Þ�MR2

[note that here we are using the true moment of inertia
about the z axis, Izz ¼ ð2=5ÞMR2, not the fiducial one, here
and still working to first order in �], so its Newtonian
ellipticity is �N;22 ¼ 4�, giving �surf;22 ¼ �N;22=8.

B. Computation

Let us now relate the relativistic shape measure to the
star’s fiducial ellipticity. The star’s surface metric is given
in standard spherical coordinates by Eqs. (85) and (86) in
Damour and Nagar [31],

ds2 ¼ R2

�
1þ 2

�R

R
Ylm

��
d�2 þ sin2�d�2

�
; (3)

where R is the star’s undeformed radius, Ylm is a spherical
harmonic (we shall only consider l ¼ m ¼ 2 in our

discussion), and the deformation is given by [Eqs. (90)
and (92) in Damour and Nagar [31]]

�R

R
¼ � 1

2
H0ðRÞ

�
2

C
� 1þ C

2
þ C2=4

1� C
þ C

4

d logH0ðRÞ
d logR

�
:

(4)

Here H0ðRÞ is the surface value of the time-time compo-
nent of the l ¼ m ¼ 2 piece of the Regge-Wheeler gauge
[30] perturbation of the star’s metric [see Eq. (24) in [10]
for the full perturbed metric, which comes from the stellar
perturbation formalism of Thorne and Campolattaro [36]]
and C :¼ 2M=R is the star’s compactness, where M is the
star’s mass. (Note that Damour and Nagar denote our H0

by merelyH and define a compactness of half our C, which
they denote by c.) This expression assumes a nonrotating
star, but this is quite a good approximation for the stars in
question, since they are rotating slowly enough that one
can also treat their rotation as a perturbation of a static
star, and the two perturbations are independent to first
order (since their multipolar structure is different). The
corrections due to rotation will thus be at most �1%.
Additionally, as discussed in [10], the gravitational quad-
rupole radiation from a slowly rotating star can be
computed from the static quadrupole moment of the star
with no rotation, as shown by Ipser [33] and Thorne [34].
We now want to relate this to the m ¼ 2 quadrupole

moment of the deformed star. Here we consider the
quadrupole moment amplitude Q22 given by

Q22 ¼
Z 1

0
��ðrÞr4dr (5)

in the Newtonian limit (the relativistic version is read off of
the asymptotic expansion of the metric). (Here �� is the
l ¼ m ¼ 2 piece of the star’s density perturbation.) We
thus substitute the expression for H0ðRÞ in terms of Q22

from Eqs. (39) and (41) in [10], giving

�R

R
¼ � 1

2

�Q22

M3
�H0ðRÞ

�
2

C
� 1þ C

2
þ C2=4

1� C

þ C
4

d log �H0ðRÞ
d logR

�

¼: � 1

2

�Q22

M3
�f22ðCÞ: (6)

Here we have defined �H0ðRÞ to stand for H0ðRÞ with unit
amplitude (i.e., c1 ! 1), so

�H0ðRÞ ¼
�
2

C
� 1

�
C2=2þ 3C� 3

1� C
þ 6

C

�
1� 1

C

�
log ð1� CÞ;

(7)

and have also defined the ‘‘correction factor’’ �f22ðCÞ.
[Since �H0ðRÞ only depends on C, the correction factor
indeed only depends on C. Also note that d log �H0ðRÞ=
d logR ¼ �d log �H0ðRÞ=d log C.]

2Note that in the rotational case, these circumferences can no
longer be determined directly from timelike or null geodesics,
due to frame dragging.
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It is necessary to make a small change to the computa-
tion of �R=R to treat the case of strange quark stars, where
the density does not go to zero at the surface. This affects
the present calculation because the pressure perturbation
no longer goes to zero at the surface, so one must add on
�H0ðRÞR2�� to the expression for �R=R given in Eq. (4),
where �� is the density just inside the star’s surface. This
addition comes from noting that [Eqs. (88) and (91) in
Damour and Nagar [31], recalling that their K is the
negative of ours]

�R

R
¼

��
1� 1

C

�
H0 þ K

2

���������r¼R
; (8)

so we need to take into account corrections to the relation
between K and H0 from the nonzero surface density. Such
corrections can be read off from Eq. (39a) in Ipser [33],
which gives an addition to K of �4�R2�p at the surface,
where �p is the l ¼ m ¼ 2 piece of the Eulerian pressure
perturbation, and is denoted�p1 by Ipser. We then use the
stress-energy conservation expression for �p given in
Eq. (35) of [10] to obtain �p ¼ �H0ðRÞ��=2 at the
surface, which then yields the expression given above.
(N.B.: We neglect the shear stress terms in all of these
relations, which we shall show is a good approximation in
the Appendix.) However, this contribution only decreases
the star’s deformation by &5% in the case we consider.

We now compute the desired arclengths, finding (to first
order in �R=R)

seq;22 ¼ R
Z 2�

0

2
41þ

ffiffiffiffiffiffiffiffiffi
15

32�

s
�R

R
cos 2�

3
5d� ¼ 2�R (9)

and

spol;22 ¼ 2R
Z �

0

2
41þ

ffiffiffiffiffiffiffiffiffi
15

32�

s
�R

R
sin2� cos 2�0

3
5d�

¼ 2�R

2
41þ

ffiffiffiffiffiffiffiffiffiffiffiffi
15

128�

s
�R

R
cos 2�0

3
5; (10)

where we have used ReY22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15=32�

p
sin2� cos 2� and

considered the longitude line with azimuthal angle �0.
We can now write �surf;22 in terms of Q22, or the fiducial

l ¼ m ¼ 2 ellipticity �fid;22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�=15

p
Q22=I

fid
zz , using

Eqs. (2) and (6), yielding

�surf;22 ¼
ffiffiffiffiffiffiffiffiffi
15�

512

s
Q22

M3
�f22ðCÞ ¼ 15

64

Ifidzz
M3

�f22ðCÞ�fid;22
¼: f22ðM; CÞ�fid;22: (11)

Here f22ðM; CÞ gives the conversion factor between the
(l ¼ m ¼ 2) fiducial ellipticity and the l ¼ m ¼ 2 surface
deformation. [N.B.: Since �f22ðCÞ> 0, we have �R=R < 0,
and thus the maximum value of spol;22 is given by taking

cos 2�0 ¼ �1.]

Note that in the Newtonian limit, we have �surf;22 ¼
ð3=8ÞðIfidzz =MR2Þ�fid;22. This does not agree with the

Newtonian calculation for the uniform density ellipsoid
given at the end of Sec. II A, which gives a coefficient of
5=16, but that is to be expected, since the present compu-
tation assumes a fluid star, whose surface will deform to be
an equipotential of its perturbed gravitational field, while
the ellipsoid was taken to be rigid.

III. CALCULATION OF THE ROTATIONAL
DEFORMATION

It is interesting to compare upper bounds on an l¼m¼2
deformation to the l ¼ 2, m ¼ 0 deformation induced by
the star’s rotation. Here, one can use the slow-rotation
results of Hartle [35] to perform the calculation. We start
by recalling that [Eq. (86) in Damour and Nagar [31]; cf.
Eq. (25a) in Hartle and Thorne [37]]

�R

R
¼ �r

r
þ 1

2
KðRÞ; (12)

where �r=r gives the fractional position of the star’s
deformed surface, and KðRÞ is the (l ¼ 2, m ¼ 0 piece of
the) angular component of the metric perturbation, eval-
uated at the star’s surface.3 [Here, following Hartle, we
take the angular dependence to be just the Legendre poly-
nomial portion of Y20, viz., ð3cos2�� 1Þ=2, without the
normalization factor of

ffiffiffiffiffiffiffiffiffiffiffiffi
5=4�

p
present in the spherical

harmonic. Additionally, note that we have reversed the
sign of Damour and Nagar’s K to correspond to the
conventions of Hartle [35] and Ref. [10].]
We will obtain expressions for the quantities entering

Eq. (12) in terms of the surface values of Hartle’s h2 and k2,
the l ¼ 2,m ¼ 0 components of the time-time and angular
metric perturbations [see Eqs. (66)–(69) in Hartle [35]],
noting that K ¼ 2k2 [cf. Eq. (66) in Hartle [35] and
Eq. (24) in [10]]. We will then solve the equations Hartle
gives for h2 and v :¼ h2 þ k2 to obtain these surface
values for a given stellar model.
Specifically, to obtain �r=r, we note that Eq. (146) in

Hartle [35] gives an expression for Hartle’s �2=a, which is
the same as our �r=r, so we have

�r

r
¼

�
2� 2

C

�
h2ðRÞ � 8M2

3C3

�
�� JC3

4M3

�
2
; (13)

where

h2ðRÞ¼A

"
�6ð1�CÞ

C2
logð1�CÞ�6

C
þ3þCþ C2=2

1�C

#

þJ2C3

8M4

�
1þC

2

�
(14)

3We neglect the l ¼ 0 change to the star’s radius, since it gives
a second-order correction to the calculation of the relativistic
shape measure.
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[Eqs. (137) and (139) in Hartle [35]],� is the magnitude of
the star’s angular velocity, and J ¼ Izz� is the magnitude
of its angular momentum, where Izz is the star’s (true)
moment of inertia. Here we have noted that Hartle’s 	 :¼
2=C� 1. We obtain KðRÞ from Eqs. (137) and (139)–(141)
in Hartle [35], giving

1

2
KðRÞ ¼ A

�
6

C
þ 3� Cþ 3

�
2

C2
� 1

�
log ð1� CÞ

�

� J2C3

8M4
ð1þ CÞ: (15)

The amplitude A is given by solving [Eqs. (125) and
(126) in Hartle [35]]

v0 ¼�2�0h2þ1

6
ð1þr�0Þ½r3j2ð �!0Þ2�2r2ðj2Þ0 �!2�; (16a)

h02¼
�
�2�0 þ r

½r�2mðrÞ��0

�
4�ð�þpÞ�2mðrÞ

r3

��
h2

� 2v

r½r�2mðrÞ��0 þ
1

6

�
r�0 � 1

2½r�2mðrÞ��0

�

�r3j2ð �!0Þ2�1

3

�
r�0 þ 1

2½r�2mðrÞ��0

�
r2ðj2Þ0 �!2;

(16b)

where primes denote derivatives with respect to the
(Schwarzschild) radial coordinate r; � and p are the
star’s energy density and pressure, respectively; we have
[cf. Eqs. (26)–(29) and (40) in Hartle [35]]

�0 ¼ mðrÞ þ 4�r3p

r½r� 2mðrÞ� ; (17a)

�ðRÞ ¼ log ð1� 2M=RÞ=2; (17b)

mðrÞ :¼ 4�
Z r

0
�ð�rÞ�r2d�r; (17c)

j :¼
�
1� 2mðrÞ

r

�
1=2

e��; (17d)

and the frame-drag parameter �! is given by [Eq. (46) in
Hartle [35]]

1

r4
ðr4j �!0Þ0 þ 4

r
j0 �! ¼ 0: (18)

[Note that Hartle denotes 2� by 
 and 2�0 by 
R. We
have chosen to use the same notation as in [10] to avoid
confusion with our use of 
 for the star’s spin frequency
here. Similarly, we use � and p for the star’s energy
density and pressure instead of Hartle’s E and P.
Finally, we generally suppress the arguments of functions
when we are not evaluating them at a specific point,
unless we feel that the argument needs to be included
for clarity, as with mðrÞ.]

We slightly streamline the solution process for v
and h2 given above Hartle’s Eq. (146): We still write the
solution as a linear combination of the solutions to the
homogeneous and inhomogeneous equations and determine

the unknown coefficients bymatching the solution and its first
derivative to the known exterior solutions at the surface of the
star [Eqs. (14) and (15), recalling that v ¼ h2 þ K=2].
However, we find that it is not necessary to use Hartle’s
more involved inner boundary conditions, and that we can
simply integrate the inhomogeneous equations starting from
values of 0 at r0, the inner radius where we impose our inner
boundary condition when solving the enthalpy version of the
Oppenheimer-Volkov equations [38]—see the discussion at
the end of Sec. III in [10]. We also take boundary conditions
for the homogeneous equations [i.e., Eqs. (16)with the source
terms that do not contain v and h2 omitted] of h2ðr0Þ ¼
r20=R

2 and v2ðr0Þ ¼ �2�ðpc þ �c=3Þr40=R2 [cf. Eqs. (128)

and (144) in Hartle [35]]. Here pc and �c denote the central
values of the pressure and energy density, which are the same
as those at r0, in our treatment. The boundary condition for �!
is given by �!ð0Þ ¼ const; one then scales the final result
to give the desired angular velocity, using the known solution
of �!ðrÞ ¼ �� 2J=r3 outside the star [Eq. (47) in Hartle
[35]], noting that the surface deformation scales as�2.
Additionally, we convert Eqs. (16) and (18) to enthalpy

form (i.e., with the enthalpy h as the dependent variable;
despite notation, this has no relation to h2). This was first
done for the frame-drag equation (18) in Sec. 4.1 of Keith
Lockitch’s thesis [39]. [The transformed frame-drag equa-
tion also appears in a slightly different form in Appendix A
of [40]. Since this transformation is simply performed by
dividing through by h0ðrÞ and substituting r ! rðhÞ, we
choose not to show the transformed equations explicitly.]
Finally, we perform the matching at the surface using
h2 and its first derivative to obtain the amplitude A
[cf. Eq. (14)], and use the v2 matching as a check. (This
check indicates that our calculations are accurate to better
than �2%, usually much better.)
We must also consider the changes that need to be made

to this calculation to treat strange quark stars, with their
nonzero surface density. Due to Hartle’s method of locating
the surface of the rotating star using a first integral to the
equations of hydrostatic equilibrium, no change is neces-
sary in that portion of the calculation. However, we do
need to modify the surface matching used to obtain the
amplitude. The calculation of the moment of inertia
remains unchanged, since only the second derivative of �!
is discontinuous at the surface. But the contribution to ðj2Þ0
from the density evaluated just inside the star’s surface is

�8�R��=ð1� CÞ [from Eqs. (17), noting that e�2�ðRÞ ¼
1=ð1� CÞ]. Thus, the matching of the solutions to Eqs. (16)
at the surface needs to be adjusted using the replacements

v0
out ! v0

out þ 4�

3

�
2þ C

1� C

�
R3�� �!2ðRÞ

1� C
; (19a)

h02;out ! h02;out þ
4�R2��h2ðRÞ

M
þ 4�

3

�
2

C
þ C

1� C

�

� R3�� �!2ðRÞ
1� C

; (19b)
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where the subscript ‘‘out’’ denotes the solution outside
the star.

One can compare the values for the quadrupole obtained
using the Hartle slow-rotation expansion with the fits to a
fully relativistic calculation for a 1:4M� star given in
Eq. (73) and Table 5 in Frieben and Rezzolla [13]. Here
one uses Eq. (26) in [37] to obtain the quadrupole from the
slow-rotation calculation (the expression given in [35] is in
error). We find quite close agreement for the four EOSs we
both consider—at worst, �2% for the BBB2 and GNH3
EOSs, and at best, better than 0.1%, for the APR and SLy
EOSs. (What we call the SLy EOS is the same as Frieben
and Rezzolla’s SLy4; we give further discussion of these
EOSs in Sec. IV.) Our calculations of the moment of inertia
all agree to better than 0.1%.

Now doing the calculations of the equatorial and polar
circumferences, we have, as previously,

seq;20 ¼ R
Z 2�

0

�
1� 1

2

�
�R

R

�
20

�
d�

¼ 2�R

�
1� 1

2

�
�R

R

�
20

�
; (20)

spol;20 ¼ 2R
Z �

0

�
1þ 1

2

�
�R

R

�
20
ð3cos2�� 1Þ

�
d�

¼ 2�R

�
1þ 1

4

�
�R

R

�
20

�
; (21)

where ð�R=RÞ20 is calculated by combining together
Eqs. (12)–(15). Thus, we have

�surf;20 :¼
seq;20�spol;20

seq;20
¼�3

4

�
�R

R

�
20
¼:g20ðM;CÞ
2 (22)

to first order in �R=R, where we have used the known
scaling of the surface deformation with �2 in the final
equality to write �surf;20 in terms of the star’s spin fre-

quency, 
, defining the conversion factor g20ðM; CÞ.
We have also introduced a minus sign, compared with
the l ¼ m ¼ 2 version, so that �surf;20 will be positive.
For the purposes of comparison, we relate our �surf;20 to

the coordinate radius ellipticity or flattening in the
Euclidean limit (and to first order in the deformation).
This coordinate radius ellipticity is defined by

�c ¼
re � rp

re
; (23)

where re and rp are the star’s equatorial and polar radii,

respectively, so we have �c ¼ 2�surf;20 in the given limit.

(Here we have noted that the eccentricity of an ellipse is
related to the flattening by e2 ¼ 2�c � �2c. Note also that
Frieben and Rezzolla [13] define their surface deformation
to be re=rp � 1 [see their Eq. (68)], though this agrees with

�c to first order in the deformation.)

IV. RESULTS AND DISCUSSION

Here we show the results of our calculations for a
representative selection of EOSs, whose mass-radius
curves and moments of inertia versus mass are illustrated
in Fig. 1. (All the calculations presented here were carried
out using MATHEMATICA 7’s default methods.) Specifically,
we have chosen the four EOSs from the LORENE library
[41] that are compatible with the Demorest et al. [42]
measurement of a 1:97� 0:04M� neutron star (the nucle-
onic EOSs APR [43], BBB2 [44], and SLy [45] and
the hyperonic EOS GNH3 [46]; note that BBB2 is only
compatible within 2�). We also consider the nucleonic
WFF1 EOS [47], the most compact EOS considered in
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FIG. 1 (color online). The mass-radius relation (left) and moment of inertia versus mass (right) for the EOSs considered in this paper.
For the APR and WFF EOSs, the asterisks mark the maximum mass for which the stars do not contain any acausal matter (i.e., for
which the central density is smaller than the density at which the EOS has a sound speed greater than the speed of light).
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[40], obtained from the RNS website [48].4 For more exotic
EOSs, we use three of the hadron-quark hybrid EOSs from
[49] (Hy1, LKR1, and generic) and the strange quark
matter EOS constructed in [10] using the results of
Kurkela, Romatschke, and Vuorinen [50] (KRV1). Most
of these EOSs are 1� compatible with the very recent
measurement of a 2:01� 0:04M� neutron star by
Antoniadis et al. [51].5 However, the GNH3 and

LKR1 EOSs are only compatible within 2� (though the
GNH3 EOS is close to being 1� compatible), while the
BBB2 EOS is only compatible within 3�. (The 3� bounds
are 1.90 and 2:18M�.)
We show the conversion factor f22ðM; CÞ for these EOSs

in Fig. 2. Note also that if one considers a canonical
M ¼ 1:4M�, R ¼ 10 km neutron star, then its compact-
ness is �0:42, and f22ð1:4M�; 0:42Þ ’ 0:22. Thus, we see
that the fiducial ellipticity generally gives a reasonable
impression of the size of the star’s surface deformation.
Of course, the actual size of the deformation depends upon
the star’s undeformed size: One can give a dimensionful
measure of the surface deformation by multiplying �surf by
the star’s radius, R (recalling that the star’s equatorial
circumference is unchanged by the deformation, to linear
order). We show this for the LIGO upper limits on the
Crab’s quadrupole moment in Fig. 2, taking �fid;22 ¼ 10�4

(around the best upper limit given in [15]). And while we
have used the current upper limit on the Crab’s fiducial
ellipticity, one can scale these results linearly to apply to
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FIG. 2 (color online). The l ¼ m ¼ 2 (upper left) and rotational (lower left) conversion functions [f22ðM; CÞ and g20ðM; CÞ] and the
maximum l ¼ m ¼ 2 (upper right) and expected rotational (lower right) surface deformations for the Crab pulsar in dimensionful form
(i.e., R�surf;22 and R�surf;20), all versus mass and for the various EOSs we consider. For the maximum l ¼ m ¼ 2 Crab pulsar surface

deformations, we use the LIGO upper bound on the fiducial ellipticity of �max
fid;22 ¼ 10�4. Also, for the APR and WFF1 EOSs, the

asterisks mark the maximum masses that do not contain acausal matter.

4Note, however, that the high compactness of stars obtained
with the WFF1 EOS is in part attributable to the fact that this
EOS becomes acausal (i.e., has a sound speed greater than the
speed of light) at densities well below the central density of the
maximum mass stable stars. The same is true for the EOS we
consider that generates the second most compact stars, the APR
EOS, which is computed using a variational method, like the
WFF1 EOS. Thus, in our plots, we will mark the points at which
stars constructed with these EOSs start to contain acausal matter.

5But note that the Antoniadis et al. measurement relies on
some modeling of white dwarf atmospheres, and is thus not as
clean as the Demorest et al. [42] measurement considered above.
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any other fiducial ellipticity (for the Crab or any other
neutron star).

Note, however, that if one considers elastic deforma-
tions, then the SLy EOS would not be able to support a
quadrupole large enough to create a fiducial ellipticity
anywhere close to 10�4, unless one assumes a very low-
mass star—see Figs. 5 and 6 in [10] and Fig. 3 in Horowitz
[52]. This is simply because the crust is the only solid
portion of neutron stars with nucleonic EOSs, like the SLy
EOS (and even hyperonic EOSs), and the crustal shear
modulus is (relatively) small, compared with the shear
moduli of the higher-density solids that may be present
in more exotic EOSs. Thus, while there do not yet exist
calculations for the maximum deformations that could be
sustained by the other hadronic or hyperonic EOSs, they
also should not be able to support such large quadrupoles,
with standard crustal compositions, since stars constructed
with these EOSs have compactnesses that are roughly the
same as those obtained using the SLy EOS. Even the three
hybrid EOSs shown would only be able to support a
quadrupole large enough to create such a large fiducial
ellipticity for high masses—see Fig. 9 in [10]. However, as
shown in Fig. 10 in [10], one could easily obtain such a
large quadrupole with the KRV1 EOS, assuming that the
strange matter is in a crystalline state, with a shear modulus
given by the Mannarelli, Rajagopal, and Sharma [53]
calculation, and that its breaking strain is �10�1, similar
to that obtained for the neutron star outer crust in [54,55].6

Moreover, strong enough internal magnetic fields could
sustain such a large quadrupole for all EOSs. See, in
particular, the calculations of magnetic deformations by
Frieben and Rezzolla [13] for four of the nucleonic EOSs
we consider.

Now considering the rotational deformations, we show
the conversion factor g20ðM; CÞ and the dimensionful sur-
face deformation for the Crab in Fig. 2. Again, one can
scale the results for the Crab to any other (slowly rotating)
pulsar, using the scaling of the surface deformation
with 
2.

The behavior of all these quantities is as expected: As
the star becomes more massive and more compact, one
finds that a given m ¼ 2 quadrupole moment (i.e., a given
fiducial l ¼ m ¼ 2 ellipticity) translates into a smaller
surface deformation, as one would anticipate, since the
star’s moment of inertia is increasing. This trend
reverses for the highest masses, however, where the
relativistic suppressions of the quadrupole due to the
increasing compactness (discussed in Sec. V of [10]) now
dominate. Additionally, the more massive, compact stars
do not deform as easily, and this is seen in the mass
dependence of the rotational deformation. In the strange

quark star case, one even sees that the decrease in
deformability with increasing mass is strong enough to
dominate the increase in radius. In general, for a fixed
rotation rate and fiducial ellipticity, the l ¼ m ¼ 2 sur-
face deformation is the largest and the rotational defor-
mation is the smallest for the most compact stars. This is
illustrated using the bounds and expectations for the
dimensionful surface deformation of the Crab pulsar
and the most compact EOSs we consider (all nucleonic)
in Fig. 3.
In Table I, we compare the LIGO/Virgo upper bounds on

the l ¼ m ¼ 2 deformation with the expected rotational
deformations for the four neutron stars for which the
LIGO/Virgo bounds are lower than indirect limits, and
there is a measured spin period (viz., the Crab and Vela
pulsars, J0537�6910, and J1952þ3252) [15,21]. We
do this assuming the fiducial 1:4M� neutron star and con-
sidering all the EOSs used in this paper. But recall that
there is no reason to assume any correlation between the
l ¼ m ¼ 2 and l ¼ 2, m ¼ 0 deformations. We merely
quote the numbers for rotation as a convenient scale
against which to compare the upper bounds on the non-
axisymmetric deformations.
Additionally, note that the last two stars we consider

require a moment of inertia larger than the fiducial one (of
1045 g cm2), or a significantly closer distance than the
estimate used in [15] in order for the LIGO upper bound
to beat the spin-down limit. This is not too much of a
concern for J0537�6910, as one only needs a factor of
�2 larger moment of inertia, which is easily provided by
any number of EOSs (see, e.g., Fig. 1 in this paper and
Fig. 6 in [57]). However, for J1952þ3252, [15] claims that
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FIG. 3 (color online). The maximum l ¼ m ¼ 2 (lower
curves) and expected rotational (l ¼ 2, m ¼ 0; upper curves)
dimensionful deformations (i.e., R�surf;22 and R�surf;20) of the

Crab pulsar versus mass for the hadronic EOSs we consider,
using the LIGO bound of �max

fid;22 ¼ 10�4. As before, asterisks

denote the maximum masses that do not contain acausal matter
for the APR and WFF1 EOSs.

6As discussed in [10], the large breaking strain found for the
neutron star outer crust is due to its high pressure, so it is
reasonable to expect that the breaking strain of other materials
under similar or greater pressures to be comparable.
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LIGO likely just misses beating the spin-down limit, even
given the uncertainties in distance and moment of inertia.
We have still included this star here, since the requisite
moment of inertia of *4� 1045 g cm2 would be easily
attainable with the KRV1 EOS for higher masses.7

Additionally, there is a fair amount of uncertainty in this
pulsar’s distance: Using H I measurements, Verbiest et al.
[58] give distance bounds of 3� 2 kpc, so on the small

side, this is significantly closer than the distance of 2.5 kpc
used in [15], and would be enough to put the LIGO bound
under the spin-down limit, even assuming the fiducial
moment of inertia. (However, note that reducing the dis-
tance would reduce the inferred limit on the fiducial ellip-
ticity from the LIGO results, in addition to increasing the
spin-down limit, while increasing the moment of inertia
does not affect the limit on the fiducial ellipticity.) But even
these large strange quark star moments of inertia are not
quite large enough to make the LIGO limit lie below a
reasonable spin-down limit for J1913þ1011, the pulsar
with the next closest LIGO limit to its fiducial spin-down
limit, without assuming that the pulsar is significantly
closer than thought: The LIGO limit for J1913þ1011 is
4.9 times its fiducial spin-down limit, and the spin-down

limit scales as I1=2zz —cf. Eq. (1.2) in [17].

TABLE I. The maximum l ¼ m ¼ 2 and expected rotational (l ¼ 2, m ¼ 0) surface deforma-
tions (both dimensionless and dimensionful) for the four pulsars for which there are LIGO/Virgo
upper bounds below the spin-down limit, for the various EOSs we consider, assuming a 1:4M�
star. We also give the stars’ rotational frequencies 
, and the upper bounds on fiducial ellipticity
from the LIGO/Virgo results, �max

fid;22. The values for 
 are valid for the years 2005–2007,

corresponding to the time of the gravitational wave observations. The Vela pulsar observations
were later, but the Vela pulsar’s spin-down is relatively slow, so its spin frequency is not affected,
to the given accuracy. Indeed, the spin frequencies given are the same as the current ones to the
given accuracy for all pulsars except for the Crab: The Crab pulsar spins down rather rapidly, so
its current spin frequency is 29.7 Hz (from the Jodrell Bank Crab Pulsar Monthly Ephemeris
[56]), which reduces its rotational surface deformation by�0:7% compared with the values given
in the table. All values for the deformations are rounded to two significant figures.

Crab Vela J0537�6910 J1952þ3252

 ðHzÞ 29.8 11.2 62.0 25.3

�max
fid;22 1:0� 10�4 1:1� 10�3 1:0� 10�4 2:3� 10�4

(10�5) �surf;22 �surf;20 �surf;22 �surf;20 �surf;22 �surf;20 �surf;22 �surf;20
(cm) R�surf;22 R�surf;20 R�surf;22 R�surf;20 R�surf;22 R�surf;20 R�surf;22 R�surf;20

APR 1.6 8.6 18 1.2 1.6 37 3.7 6.2

18 97 200 14 18 420 42 70

BBB2 1.7 8.0 19 1.1 1.7 35 3.9 5.8

19 89 210 13 19 390 43 64

SLy 1.5 9.5 16 1.3 1.5 41 3.4 6.8

17 110 190 16 17 480 40 80

WFF1 2.0 6.6 22 0.93 2.0 29 4.6 4.8

21 69 230 9.7 21 300 48 50

GNH3 0.93 17 10 2.4 0.93 73 2.1 12

13 240 150 34 13 1000 30 170

Hy1 0.97 17 11 2.4 0.97 72 2.2 12

14 230 150 33 14 1000 31 170

LKR1 0.87 19 9.6 2.7 0.87 82 2.0 14

13 280 140 39 13 1200 29 200

Generic 1.1 14 12 1.9 1.1 59 2.6 9.8

15 180 160 25 15 780 34 130

KRV1 0.73 33 8 4.7 0.73 140 1.7 24

11 520 120 73 11 2200 26 370

7In considering the effects of the moment of inertia on the
spin-down limit, be aware of the following typographical errors
in [15]: In that paper’s Eqs. (1) and (7), I38 should be I1=238 and
I�1
38 , respectively. The first of these errors is also present in an
inline equation in the first paragraph of Sec. 1 of [19] and
Eq. (14) of [21] [though Eq. (1.2) in [17] is correct]. The second
is also present in the first paragraph of Sec. 3 of [19], though the
analogous Eqs. (6.1) in [17] and (15) in [21] are correct.
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Considering the EOSs presented here, we can see that
gravitational wave observations have constrained the large-
scale (i.e., l ¼ 2) surface deformation on the Crab to be
due to rotation, not to any sort of l ¼ m ¼ 2 distortion.
[The only exception comes from the near-maximum mass
stars given by the WFF1 EOS, with its high maximum
compactness of 0.668; note that such stars contain a sig-
nificant region (�15% by volume) of acausal matter.] This
conclusion could not have been made solely from electro-
magnetic observations, since the star’s spin-down only puts
a limit on the l ¼ m ¼ 2 deformation that is at least �7
times greater than the LIGO limit (and possibly a factor of
a few more, given the uncertainties in the moment of
inertia)—see Table 3 in [15]. This would only be sufficient
to constrain the Crab pulsar’s l ¼ m ¼ 2 surface deforma-
tion to be smaller than its rotational surface deformation
for stars with large radii. (Note that some interpretations of
x-ray observations of neutron stars [59,60] imply that their
radii are �11–12 km, so the EOSs that give stars with
larger radii may be disfavored, though these interpretations
are by no means conclusive.) Even the smaller, less direct
upper limit obtained by Palomba [18] by folding in the
star’s braking index only bounds the deformation to be
�3 times larger than the LIGO bound, which would be
insufficient to ensure that the l ¼ m ¼ 2 surface deforma-
tion is smaller than the rotational surface deformation for
massive, compact stars, as shown in Fig. 3. (While we have
used the best upper limit for the Crab’s fiducial ellipticity
given in Table 3 in [15] in drawing this conclusion,
note that improved bounds from LIGO/Virgo are forth-
coming [25], so this is a mild caveat.)

Since the Vela pulsar spins at less than half the frequency
of the Crab pulsar, and has an upper bound on its fiducial
ellipticity that is an order of magnitude greater, the obser-
vations do not bound its l ¼ m ¼ 2 surface deformation to
be smaller than its rotational surface deformation, even for
the case in which the two deformations are the most similar,
the LKR1 EOS and a mass of �1:8M�. Conversely, since
J0537�6910 has a rotational frequency that is�2 times the
Crab’s and the same bound on its fiducial ellipticity, we
know that its rotational deformation is larger than its
l ¼ m ¼ 2 deformation for all masses and EOSs, even for
the most massive, compact stars with the WFF1 EOS.
(Indeed, the spin is large enough that this conclusion could
have been obtained from the electromagnetic observations
of the spin-down, even with the uncertainties in the moment
of inertia.) The bounds on J1952þ3252’s l ¼ m ¼ 2 sur-
face deformation compared with its rotational deformation
are similar to the Crab’s, though somewhat less good, due to
J1952þ3252’s somewhat smaller spin frequency and the
larger upper bound on its fiducial ellipticity. In particular,
the bound on J1952þ3252’s l ¼ m ¼ 2 surface deforma-
tion will be larger than its rotational surface deformation for
masses slightly larger than 1:4M� for the WFF1 EOS, and
for all the other nucleonic EOSs for larger masses.

Finally, for a close-to-home scale against which to com-
pare these surface deformations, the Earth’s (dimension-
less) rotational surface deformation is �1:7� 10�3, and
the (dimensionless) l ¼ m ¼ 2 surface deformation of the
geoid (i.e., of a gravitational equipotential near sea level) is
�2:8� 10�6. These values were obtained using the value
of the flattening of the Earth’s reference ellipsoid and the
l ¼ m ¼ 2 component of the Earth’s gravitational field,
both from the WGS84 version of the Earth Gravitational
Model EGM2008 [6], along with the relation between the
flattening and the rotational surface deformation given at
the end of Sec. III. The Crab pulsar’s and J1952þ3252’s
(dimensionless) rotational surface deformations are thus
very similar to the Earth’s for the EOSs with larger radii,
if the pulsars’ masses are close to 1:4M�. However, all of
the bounds on the l ¼ m ¼ 2 (dimensionless) surface
deformation for the pulsars we consider are larger than
the Earth’s l ¼ m ¼ 2 (dimensionless) surface deforma-
tion, though the bounds (electromagnetic or gravitational
wave) for many of the faster rotating pulsars are well below
this (see Table 1 in [15]).

V. CONCLUSIONS AND OUTLOOK

We have shown that one can convert the bounds on the
fiducial ellipticity of neutron stars (from gravitational wave
or electromagnetic observations) into bounds on the shape
of the star’s surface, in full general relativity, to first order
in the perturbation (and in the slow-rotation limit). We
have given the conversion for a variety of EOSs, some
purely nucleonic and others containing exotica, including
the strange quark star case (with the requisite changes to
the calculation), and compared with the shape of the star’s
surface due to rotation. Here we find that the gravitational
wave observations have constrained the Crab pulsar’s
l ¼ m ¼ 2 surface deformation to be smaller than its
l ¼ 2, m ¼ 0 surface deformation due to rotation, for all
the causal EOSs we consider.
For the other three pulsars for which LIGO/Virgo

observations have beaten the spin-down limit, within the
uncertainties on the star’s distance and moment of inertia,
we find that the Vela pulsar’s relatively slow rotation means
that the bound on its l ¼ m ¼ 2 surface deformation is
well above its rotational surface deformation, for all the
EOSs we consider. On the other hand, for the more quickly
rotating J0537�6910, the l ¼ m ¼ 2 surface deformation
is known to be below the rotational deformation from the
electromagnetic observations of its spin-down. (Again, this
holds for all the EOSs we consider.) For J1952þ3252, the
bound on the l ¼ m ¼ 2 surface deformation is below
the rotational surface deformation for all cases except for
heavy stars constructed with the hadronic EOSs.
Looking into the future, the prospects for improving

these bounds are good. Indeed, as mentioned in Sec. 6 of
[21], Virgoþ science run 4 (VSR4) was expected to be
sensitive to fiducial ellipticities of a few � 10�4 for the
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Vela pulsar and �10�5 for the Crab pulsar and
J1952þ3252 if it achieved its sensitivity goal, and prelimi-
nary results using data from this run indeed give improved
bounds for the Crab and Vela pulsars [25]. These improve-
ments would bound the l ¼ m ¼ 2 surface deformation of
the Vela pulsar to be below its rotational surface deforma-
tion for EOSs with larger radii, and place the bounds for the
Crab pulsar and J1952þ3252 well below their rotational
surface deformation for all masses and EOSs. (Of course,
in the most optimistic scenario, one would obtain a mea-
surement of the l ¼ m ¼ 2 surface deformation instead of
a bound.) There are also several other pulsars for which the
Enhanced LIGO and Virgoþ observations already made
could be able to beat the spin-down limit (as discussed in
Sec. 6 of [15]).

Advanced LIGO and Virgo are expected to have sensi-
tivities more than 10 times better than the initial interfer-
ometers for the pulsars considered in [15], which would
allow them to further improve the bounds on the pulsars
already considered and to place bounds below the spin-
down limit for many more pulsars (at least 47, based on the
results in Sec. 2.2 of Pitkin [22]). And looking even further
into the future, Pitkin [22] predicts that the Einstein
Telescope will place bounds below the spin-down limit
for hundreds of pulsars. Additionally, as shown in Fig. 3
of Pitkin [22], the majority of the stars for which these
detectors are expected to beat the spin-down limit have
(relatively) small spin frequencies, so constraining the l ¼
m ¼ 2 surface deformation to be smaller than the expected
l ¼ 2,m ¼ 0 rotational deformation gives another (vaguely
physical) benchmark for searches, below the spin-down
limit. However, we must stress once again that there is no
expected relation between the two deformations.

On the theoretical side, it would be interesting to com-
pute the rotational surface deformation of more rapidly
rotating stars using either LORENE [41] or RNS [48] and
compare with the slow-rotation predictions given here.
Such a calculation, or the more involved calculations likely
needed to obtain the bounds on the l ¼ m ¼ 2 surface
deformations of more rapidly rotating stars from bounds
on their gravitational wave emission, could be of interest in
interpreting results from next-generation detectors, which
are expected to be able to beat the spin-down limit (by a
bit) for one or two pulsars with spin frequencies of
�500 Hz (see Fig. 3 in Pitkin [22]). However, these fre-
quencies are still low enough (compared to the Kepler
frequency) that our slow-rotation approximation is likely
still reasonably accurate (within tens of percent). (See the
values for the discrepancy in the quadrupole moment in
matching a Hartle-Thorne slow-rotation solution to an
exact numerical solution as a function of rotation parame-
ter in Table 6 of Berti et al. [61], and the values for the
Kepler frequency in, e.g., Fig. 2 of Lo and Lin [62].)

Likely more important would be the inclusion of the
magnetic field in the calculation of the conversion from the

m ¼ 2 quadrupole moment to the surface deformation: As
discussed in the Appendix, it is possible that small depar-
tures from a force-free configuration at the star’s surface
could affect the conversion for standard pulsar magnetic
fields. But even if the magnetic field configuration is
force-free to better accuracy than we need, the order-of-
magnitude estimates of its effects on the computation given
in Eq. (A1) suggest that for magnetar-level surface mag-
netic fields of �1015 G, and the fiducial ellipticities of
around 10�6 associated with internal fields of this magni-
tude (as given in, e.g., Sec. 7 of Frieben and Rezzolla [13]),
the effects of the magnetic field could be large enough to
affect the results we have given for the shape. However, it
is worth noting that the internal field could be significantly
larger than the surface field (as discussed in, e.g., Corsi and
Owen [63]), in which case the corrections would be
significantly smaller. Additionally, if the magnetic field is
in the twisted torus configuration with a large toroidal
component, then, as Ciolfi and Rezzolla [14] have very
recently shown, the fiducial ellipticities can be consider-
ably larger, �10�4, at least for a polytropic equation of
state, which would also significantly reduce the correction.

ACKNOWLEDGMENTS
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APPENDIX: CORRECTIONS DUE TO STRESSES
AND THE MAGNETIC FIELD

Since we have obtained our results for the l ¼ m ¼ 2
shape deformation using expressions that were derived
assuming an unmagnetized perfect fluid star, we need to
check that they are still valid in the cases in which we are
interested, where the star is perturbed not by the tidal field
of a companion (as in Damour and Nagar [31]), but by
some internal stresses. (Since we assume that we can treat
these internal stresses as a first-order perturbation, we do
not need to worry about their effects on the rotational
deformation, since the two perturbations will be indepen-
dent, to the order we are computing.) It turns out that we
can indeed apply these expressions with no changes, if one
assumes that the stresses at the star’s surface (times R2 or
1=��) are much smaller than H0ðRÞ, which we shall see is
the case in the majority of situations of interest. Explicitly,
one needs to make this assumption in obtaining the
expression for the star’s perturbed surface using its
enthalpy perturbation [see Eq. (26) in Damour and Nagar
[31]], and also in writing the metric function KðRÞ in terms
of H0ðRÞ and H0

0ðRÞ [see the discussion around Eq. (8)].

In the first case, the expression for the enthalpy used to
obtain the position of the perturbed surface is obtained
from stress-energy conservation. The relevant equation
including the stress terms is given in Eq. (A2) of Ipser
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[33], and with slightly different notation in Eq. (35) of [10].
In the second case, Ipser gives the relation between K and
H0 including the stress terms in Eq. (39a).

We now consider the extent to which realistic surface
stresses affect these results. Looking at the second case
first, the star’s magnetic field produces a stress of�B2=8�,
so the fractional corrections from these stresses to the
relation between K and H0 will be on the order of

� B2R2

H0ðRÞ ¼
B2M3R2

�Q22
�H0ðRÞ

’ 10�9

�
M

1:4M�

�
3
�

R

10 km

�
2
�

B

1012 G

�
2
�
10�4

�fid;22

�
:

(A1)

[We have omitted the dependence on the star’s compact-
ness from �H0ðRÞ in the final expressions here and
later, though it will further suppress these corrections for
higher-mass stars.]

Considering the corrections to the stress-energy conser-
vation equation used to locate the star’s surface, we have
fractional corrections on the order of RJaFab=�sH0ðRÞ,
since the addition to stress-energy conservation from the
electromagnetic field is rbTEM

ab ¼ JbFab, where Ja and

Fab denote the (4-)current density and Faraday tensor,
respectively. [Compare Eq. (35) in [10]; the magnetic field
term would appear on the right-hand side of that equation,
and the factor of R comes from the factor of raYlm that
multiplies everything else in that expression.]

We expect JaFab (which gives the Lorentz force density)
to be small, compared to �s=R, since the magnetic field in
the magnetosphere is expected to be close to force-free (as
is discussed, e.g., at the end of Sec. 2.2 in [64]). If one takes
the magnetosphere to be exactly force-free (as is frequently
done in models of magnetically deformed neutron stars),
then JaFab is zero. However, in the situations we consider,
JaFab could be of the same order as the H0 term, since in
this case, the Lorentz force could help balance the gravi-
tational perturbation, instead of the pressure perturbation
alone balancing it, which is what occurs in the absence of
additional stresses. But treating this properly is a task for
far more detailed neutron star modeling (analogous to the
issue with surface currents discussed in Sec. II C of Corsi
and Owen [63]), so we simply take the magnetic field
configuration to be exactly force-free here.

For the Crab pulsar, with a surface field of�4� 1012 G,
one would have to consider a fiducial ellipticity of at most
�10�11 for the first of these corrections to approach the
percent level. This is well below the predicted sensitivity of
even the proposed Einstein Telescope (see, e.g., Fig. 3 in
Pitkin [22]), and around the minimum ellipticity quoted in
[19] as being produced by an internal field of the same
magnitude as the Crab’s external field. (The Frieben and
Rezzolla [13] fits predict an ellipticity of �10�9 for an
internal field of that strength.) The other three pulsars

considered in Table I have external magnetic fields of
similar magnitudes [65], so this analysis holds for them,
as well.
On the other hand, if we consider a solid strange quark

star, the surface shear stresses could be quite large, if the
gap parameter does not decrease too much as one
approaches the star’s surface and the high breaking
strain assumed for the high-pressure interior continues to
the surface—see the discussion in Sec. IV C of [10].
However, it seems likely that the stresses will be consid-
erably smaller in any sort of reasonable case, since one
expects both the gap parameter and breaking strain to
decrease as the pressure decreases. Indeed, if one assumes
that the surface is not strained much more than the star’s
average strain, then the surface stress cannot be too large in
the cases of interest.
Specifically, considering the KRV1 strange quark EOS,

we have ratios of (in order of magnitude, and putting in the
�15:5 km radius appropriate for a 1:4M� star with this
EOS, in addition to the associated values of the Mannarelli,
Rajagopal, and Sharma [53] shear modulus)

�����R2

H0ðRÞ ¼ M3����R2

�Q22
�H0ðRÞ

’ 10�3

�
M

1:4M�

�
3
�

R

15:5 km

�
2

�
�

��
1033 erg cm�3

��
��
�fid;22

�
; (A2)

and

� ����
H0ðRÞ��

¼ M3����
�Q22

�H0ðRÞ��

’ 10�1

�
M

1:4M�

�
3
�
��=��
10�2

��
��
�fid;22

�
; (A3)

where ���� is the shear stress just inside the star’s
surface (written as a product of shear modulus �� and
shear strain ��). (These come, as before, from the correc-
tions to the relation between K and H0 and to the enthalpy
expression used to locate the star’s surface.)
While it is possible that �� could be as large as�10�1,

around the breaking strain for the neutron star outer crust
obtained in [54,55] (and thus orders of magnitude larger
than �fid;22 for the stars we are considering), this high

breaking strain comes from high pressure, so the breaking
strain at the surface, where the pressure goes to zero, will
likely be much less. Moreover, if one assumes that the
star’s surface is strained at about the same level as the star’s
average strain, then we will have�� ’ �fid;22 (cf. Fig. 10 in
[10], remembering that one can linearly scale the maxi-
mum quadrupoles given there for a uniform strain of 10�1

to any uniform strain). Thus, we feel comfortable quoting
values for the strange quark star case, since the caveats
seem fairly mild in reasonable situations.
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