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The null energy condition (NEC) can be violated in a consistent way in models with unconventional

kinetic terms, notably, in Galileon theories and their generalizations. We make use of one of these, the

scale-invariant kinetic braiding model, to discuss whether a universe can in principle be created by

manmade processes. We find that, even though the simplest models of this sort can have both healthy

Minkowski vacuum and a consistent NEC-violating phase, there is an obstruction for creating a universe

in a straightforward fashion. To get around this obstruction, we design a more complicated model and

present a scenario for the creation of a universe in the laboratory.
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I. INTRODUCTION

Once it was realized that inflation can stretch a tiny
region of space into the entire visible Universe, a question
has been naturally raised of whether one can in principle
create a new universe by manmade processes [1,2]. In the
context of classical general relativity and conventional
theories of matter obeying the null energy condition
(NEC), the answer is negative [2,3] because of the problem
with the initial singularity guaranteed by the Penrose theo-
rem [4] (see, however, Refs. [5,6]). Widely discussed ways
out are to invoke tunneling [7–16] or other quantum effects
[17–19], modify gravity [20–22], and violate the NEC
[23–26]. The latter option, however, has been problematic,
since most of the NEC-violating theories are plagued by
pathologies like ghosts, gradient instability, and/or super-
luminality. Yet it has been realized some time ago [27–32]
that, within general relativity, the NEC violation is not
necessarily accompanied by unacceptable pathologies, if
one considers theories with unconventional kinetic terms.
One class of examples is given by the Galileon theory [33]
and its generalizations [34–41]. Indeed, by making use of
the Galileon, a cosmological genesis model has been con-
structed [31,32], in which the evolution starts from nearly
Minkowski space-time, the energy density eventually
builds up, and the universe enters an epoch of rapid ex-
pansion. The NEC violation in this scenario occurs in a
controllable and consistent way [32].

These developments suggest that one might be able to
create a universe in the laboratory in a purely classical way
and within general relativity. In this paper, we suggest a
scenario of this sort, allowing ourselves not only to set up
appropriate initial conditions for the field evolution but
also to design a field theoretic model at our will. The
idea is to construct the initial condition in a Galileon-
type theory such that inside a large sphere the field is
nearly homogeneous and behaves like at the initial stage
of genesis, whereas outside this sphere the field tends to a

constant and space-time is asymptotically Minkowskian.
For these initial data, the energy density and pressure are
initially small everywhere and the entire space-time is
nearly Minkowskian, so that the required field configura-
tion can in principle be prepared in the laboratory. As the
field evolves from this initial state according to its equation
of motion, the energy density inside the large sphere
increases, space undergoes accelerated expansion there,
and the region inside the sphere eventually becomes a
manmade universe. Outside this sphere, the energy density
remains small and asymptotes to zero at large distances;
the space-time is always asymptotically Minkowskian.
Implementing this idea is not entirely trivial, however.

The field theoretic model we are after should have not only
a healthy genesis regime but also healthy Minkowski vac-
uum. The latter property is lacking in the model of
Refs. [31,32]. Moreover, there must be smooth and healthy
interpolation between the genesis regime inside the large
sphere and asymptotic Minkowski vacuum; we will see
that this requirement is particularly restrictive. For this
reason, the model we end up with is rather contrived. Yet
it serves the purpose of proof of principle.
This paper is organized as follows. We find it instructive

to begin in Sec. II with a prototype model which actually
does not work. We introduce the model and collect useful
formulas in Sec. II A, consider the stability of the
Minkowski vacuum in Sec. II B, and study a NEC-violating
homogeneous solution in Minkowski space-time in
Sec. II C. We find in Sec. II D that creating a universe in
the laboratory in the way outlined above is actually impos-
sible in the model we consider in Sec. II and, in fact, the
obstruction we encounter is inherent in a class of
NEC-violating theories. Yet we are able to design a work-
ing model in Sec. III by introducing an extra field whose
background produces spatially inhomogeneous couplings.
We present the model and discuss relevant stability issues
in Sec. III A and end up with a fairly detailed scenario for
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the creation of a universe in the laboratory in Sec. III B. We
conclude in Sec. IV.

II. PROTOTYPE MODEL

A. Preliminaries

In this section, we consider a model of kinetic braiding
type [35,36] with a scalar field � and impose dilatation
invariance of the action in Minkowski space-time:

�ðxÞ ! �0ðxÞ ¼ �ð�xÞ þ ln�: (1)

This invariance, albeit ad hoc, simplifies the analysis con-
siderably. The dilatationally invariant kinetic braiding
Lagrangian is (mostly negative signature)

L ¼ FðYÞe4� þ KðYÞh� � e2�; (2)

where

Y ¼ e�2�ð@�Þ2 (3)

and F and K are yet unspecified functions. Assuming that
K is analytic near the origin, we set

KðY ¼ 0Þ ¼ 0: (4)

Indeed, upon integrating by parts, a constant part of K can
be absorbed into the F term in (2).
The field equation is

4e4�F� 2e2�ð@�Þ2F0 � 2@�ðe2�F0@��Þ (5)

þ 2e2�h� � K þhðe2�KÞ � 2h� � ð@�Þ2K0 � 2@�ðh� � K0@��Þ ¼ 0; (6)

where the prime denotes d=dY. Let �cðxÞ be a solution to this equation. We will be interested also in perturbations about
�c. To this end, let us decompose � ¼ �c þ � and write the quadratic Lagrangian for perturbations:

Lð2Þ ¼ ð@�Þ2F0e2�c þ 2F00@��c@��c � @��@��þ ð@�Þ2½�2Ke2�c þ 2ð@�cÞ2K0 þ @�ðK0@��cÞ þh�c � K0�
þ @��@��½�2@�ðK0@��cÞ þ 2h�ce

�2�cK00@��c@��c� þ �2½8Fe4�c � 6F0e2�cð@�cÞ2 � 2@�ðF0e2�c@��cÞ
þ 2F00ð@�cÞ4 þ 2@�ðF00ð@�cÞ2@��cÞ� þ �2½hðe2�cKÞ þ 2Ke2�ch�c �hðK0ð@�cÞ2Þ � 2h�cð@�cÞ2K0

þ 2h�ce
�2�cð@�cÞ4K00 þ 2@�ðh�ce

�2�cð@�cÞ2K00@��cÞ�: (7)

We will eventually need the expression for the
energy-momentum tensor. To this end, we consider mini-
mal coupling to the metric, i.e., set Y ¼ e�2�g��@��@��
and h� ¼ r�r�� in curved space-time. To calculate
the energy-momentum tensor, we note that in curved
space-time, the K term in

ffiffiffiffiffiffiffi�g
p

L can be written, upon
integrating by parts, as

ffiffiffiffiffiffiffi�g
p

g��@��@�ðKe2�Þ. Then the
variation with respect to g�� is straightforward, and
we get

T�� ¼ 2F0e2�@��@��� g��Fe
4� þ 2h� � K0@��@��

� @�� � @�ðKe2�Þ � @�� � @�ðKe2�Þ
þ g��g

��@��@�ðKe2�Þ:
In what follows, we mostly consider homogeneous

backgrounds, � ¼ �ðtÞ, and omit subscript c wherever
possible. For a homogeneous field, equation of motion
(6) reads

4e4�Fþ F0e2�ð�6 _�2 � 2 €�Þ � 2e2� _�F00 _Y

þ Ke2�ð4 _�2 þ 4 €�Þ þ 4e2� _�K0 _Y þ K00 _Yð�2 _�3Þ
þ K0ð�12 _�2 €�þ 4 _�4Þ ¼ 0; (8)

while the energy density and pressure are

� ¼ e4�Z; (9a)

p ¼ e4�ðF� 2YK � e�2�K0 _� _YÞ; (9b)

where

Z ¼ �Fþ 2YF0 � 2YK þ 2Y2K0:

It is straightforward to see that for _� � 0, Eq. (8) is
equivalent to energy conservation, _� ¼ 0. Finally, in a
homogeneous background the quadratic Lagrangian for
perturbations, Eq. (7), simplifies to

Lð2Þ ¼ U _�2 � Vð@i�Þ2 þW�2; (10)

where

U¼ e2�cðF0 þ 2YF00 � 2Kþ 2YK0 þ 2Y2K00Þ ¼ e2�cZ0;
(11a)

V ¼ e2�cðF0 � 2Kþ 2YK0 � 2Y2K00Þþ ð2K0 þ 2YK00Þ €�c:

(11b)

We will not need the general expression for W.

B. Minkowski vacuum

Recalling that Kð0Þ ¼ 0, we find that the Minkowski
vacuum @� ¼ 0 exists (cosmological constant is zero),
provided that
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Fð0Þ ¼ 0: (12)

It is clear from Eq. (11) that it is stable for

F0ð0Þ> 0: (13)

There remains an issue [30,42] of the possible superlumin-
ality of perturbations about backgrounds in the neighbor-
hood of the Minkowski vacuum, i.e., backgrounds with
small @�cðxÞ. From this viewpoint, the most dangerous
terms in (7) involve @��@��@�@��c. Wemake these terms

small by requiring that

K0ð0Þ ¼ 0: (14)

Then the inverse effective metric for perturbations, modulo
irrelevant terms, is

G�� ¼ ��� þ 1

F0e2�c
½2F00@��c@

��c � @�ðK0@��cÞ
� @�ðK0@��cÞ�;

and the metric itself reads

G�� ¼ ��� � 1

F0e2�c
½2F00@��c@��c � @�ðK0@��cÞ

� @�ðK0@��cÞ�: (15)

A potentially dangerous situation is when the null (in the
conventional sense) direction of propagation n� is timelike
in the metric G��. For generic n� this is avoided by

requiring

F00ð0Þ> 0: (16)

Indeed, the dangerous terms are of the order of
K00ð@�cÞ2@2�c, so the first term in square brackets is the
dominant source of Lorentz violation and G��n

�n� < 0

for generic n�.
This argument does not apply to the special direction for

which @��cn
� ¼ 0. Let us consider this direction sepa-

rately. We treat our model near the Minkowski vacuum as a
low energy effective theory with a UV cutoff �. Consider
now the background configuration [we set �cðx ¼ 0Þ ¼ 0
by using the dilatation symmetry]

�c ¼ q�x
� þ 1

2
A��x

�x�;

and choose the wave vector k� ¼ n�k such that q�k
� ¼ 0.

Then the effective metric (15) at distance l from the origin
in the direction n� is

G��¼���� 1

F0ð0Þð2F
00ð0Þl2A��n

�A��n
��2K00ð0Þq2A��Þ:

(17)

We see that G��n
�n� > 0 near the origin, if A��n

�n� �
ðn � A � nÞ< 0 [assuming for definiteness that K00ð0Þ> 0
and q2 < 0], which signalizes the superluminality. Near the

origin the correction to the propagation speed is of the
order of

�c� K00ð0Þ
F0ð0Þ q

2ðn � A � nÞ:

This correction becomes detectable when it yields the
deviation from distance traveled by light which is at least
of the order of the wavelength [30]:

�c � l * k�1:

We require that at this distance the first term in parentheses
in (17), which reduces the speed of signal, dominates:

F00ð0Þl2ðn � A � nÞ2 � F00ð0ÞF02ð0Þ
k2K002ð0Þq4 >K00ð0Þq2ðn � A � nÞ:

For k2, q2, A�� � �2, this inequality holds, provided that

the functions F and K obey a constraint

F00ð0ÞF02ð0Þ
K003ð0Þ * �10: (18)

Under this constraint, the local superluminality is unde-
tectable and, hence, not dangerous.
We conclude that the Minkowski vacuum and its neigh-

borhood are healthy, provided that Eqs. (12)–(14), (16),
and (18) are satisfied.

C. Rolling solution

With an appropriate choice of the functions F and K,
Eq. (8) admits also a rolling solution, similar to that in the
Galileon theory [30–32]:

e � ¼ 1ffiffiffiffiffi
Y�

p ðt� � tÞ ; (19)

where t� is an arbitrary constant. For this solution Y ¼
Y� ¼ const, and Y� is determined from the equation

ZðY�Þ � �Fþ 2Y�F0 � 2Y�K þ 2Y2�K0 ¼ 0; (20)

where F, F0, etc., are evaluated at Y ¼ Y�. For this solu-
tion, one has T00 ¼ � ¼ 0 and

p ¼ 1

Y2�ðt� � tÞ4 ðF� 2Y�KÞ: (21)

Thus, the rolling background violates the NEC, provided
that

NEC violation: 2Y�K � F > 0: (22)

The quadratic Lagrangian for perturbations (10) reduces
in this background to

Lð2Þ ¼ A

Y�ðt� � tÞ2 ½ _�
2 � ð@i�Þ2�

þ B

Y�ðt� � tÞ2 _�2 þ C

Y2�ðt� � tÞ4 �
2; (23)
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where

A ¼ e�2�cV ¼ F0 � 2K þ 4Y�K0;

B ¼ e�2�cðU� VÞ ¼ 2Y�F00 � 2Y�K0 þ 2Y2�K00;

C ¼ 8F� 12Y�F0 þ 8Y2�F00 þ 8Y�K � 8Y2�K0 þ 8Y3�K00

are time-independent coefficients. As a cross-check, one
can derive from the latter Lagrangian the equation for
homogeneous perturbation �ðtÞ about the rolling back-
ground and see that � ¼ @t�c ¼ ðt� � tÞ�1 obeys this
equation, as it should. Indeed, making use of Eq. (20),
one finds that the coefficients of _�2 and �2 in Eq. (23)
are related in a simple way:

4ðAþ BÞ ¼ C=Y�:

Hence, homogeneous perturbation obeys a universal
equation

� d

dt

�
_�

ðt� � tÞ2
�
þ 4

�

ðt� � tÞ4 ¼ 0;

whose solutions are � ¼ ðt� � tÞ�1 and � ¼ ðt� � tÞ4.
This shows that the rolling background is stable against
low momentum perturbations; like in the Galileon case
[31], the growing perturbation � ¼ ðt� � tÞ�1 � �0ðxÞ
with slowly varying �0ðxÞ can be absorbed into a slightly
inhomogeneous time shift.

In fact, we can see in more general terms that the rolling
background is an attractor in the class of homogeneous
solutions. To this end, we use the conservation of energy
(9a) to write for any homogeneous solution

e4�Z ¼ C ¼ const: (24)

Now, the relation _� ¼ 0 for positive _� can be written as

4 _�Zþ _YZ0 ¼ 4e�Y1=2Zþ _YZ0

¼ 4

�jCj
jZj

�
1=4

Y1=2Zþ _YZ0 ¼ 0:

If Z0 � 0, this gives

_Y ¼ �4

�jCj
jZj

�
1=4

Y1=2 Z

Z0 ; (25)

so that

_Z ¼ �4jCj1=4Y1=2 Z

jZj1=4 : (26)

This shows that the rolling solution with Z ¼ 0 and _�> 0
is an attractor whose basin of attraction is bounded by the
points, if any, where Z0ðYÞ ¼ 0. This is also obvious from
Eq. (24): If � increases, jZj decreases.

Let us consider the stability of the rolling background
and subluminality of the perturbations about it. The spatial
gradient term in (23) has correct (negative) sign provided
that

no gradient instability: A ¼ F0 � 2K þ 4Y�K0 > 0: (27)

The speed of perturbations about the rolling background is
smaller than the speed of light, if the coefficient of _�2 is
greater than that of �ð@i�Þ2, i.e.,
subluminality: B ¼ 2Y�F00 � 2Y�K0 þ 2Y2�K00 > 0: (28)

We require that the latter inequality holds in a strong sense;
then the perturbations about the rolling solution are strictly
subluminal, and hence the perturbations about back-
grounds neighboring the rolling solution are subluminal
as well. When both inequalities (27) and (28) are satisfied,
there are no ghosts either. The conditions (22), (27), and
(28) together with Eq. (20) can be satisfied at Y ¼ Y� by a
judicious choice of the functions F and K in the neighbor-
hood of this point, so that the NEC violation is stable and
subluminal. This can be seen as follows. Equation (20) can
be used to express FðY�Þ in terms of F0ðY�Þ, KðY�Þ, and
K0ðY�Þ, namely, F ¼ 2Y�F0 � 2Y�K þ 2Y2�K0. Then the
inequalities (22) and (27) are satisfied, provided that
2K � 4Y�K0 < F0 < 2K � Y�K0, which is possible for
positive K0. The condition (28) can be satisfied by an
appropriate choice of F00 and K00.
Obviously, the functionsFðYÞ andKðYÞ can be chosen in

such a way that both Minkowski vacuum and the rolling
solution are stable and healthy;1 i.e., Eqs. (12)–(14), (16),
and (18) are satisfied at Y ¼ 0 and Eqs. (20), (22), (27), and
(28) are satisfied at Y ¼ Y�. With such a choice of FðYÞ
andKðYÞ, both Minkowski vacuum and the rolling solution
are attractors, with nonoverlapping basins of attraction.

D. Obstruction to a simple way of creating a
universe in the laboratory

It is now tempting to implement the approach outlined in
Sec. I in a simple way, by considering the initial field
�ðt;xÞ which slowly varies in space and interpolates be-
tween the rolling solution (19) inside a large sphere and
Minkowski vacuum @� ¼ 0 at spatial infinity. By slow
variation in space, we mean that the spatial derivatives of
� are negligible compared to temporal ones, so that at each
point in space � evolves in the same way as in the homo-
geneous case.
An advantage of this quasihomogeneous approach is the

simplicity of the analysis; a disadvantage is that it actually
does not work in our prototype model. The point is that,
irrespectively of the equation of motion, the term with _�2

in (10) is proportional to Z0ðYÞ; see Eq. (11a). Thus, for
configurations slowly varying in space, the absence of
ghosts requires

1This does not mean, though, that the entire model is com-
pletely healthy: It can be a low energy effective theory of some
Lorentz-invariant UV-complete theory only if perturbations
about any allowed background are subluminal [42]. This prop-
erty should hold also in the presence of gravity; cf. Ref. [43]. The
analysis of this issue is beyond the scope of this paper.
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Z0ðYÞ> 0

everywhere. For both Minkowski vacuum and the rolling
solution, we have Z ¼ 0, so there is no ghost-free configu-
ration that slowly varies in space and interpolates between
the two solutions as r, the distance from the center of the
sphere, changes from 0 to 1.

This obstruction to have a quasihomogeneous ghost-free
configuration, interpolating between two different solu-
tions of zero energy, is generic in theories with the follow-
ing properties: (i) There is a single scalar field �; (ii) the
field equation is second order; (iii) the action is invariant
under dilatations (1). This class of theories includes,
e.g., conformal higher order Galileons of Ref. [33] and
conformal Dirac-Born-Infeld Galileons of Ref. [34]. The
argument is essentially the same as above. The Noether
energy-momentum tensor obeys

@�T
�
� ¼ �ðEOMÞ � @��;

where (EOM) stands for the equation of motion. Therefore,
the equation of motion for spatially homogeneous
� ¼ �ðtÞ is

ðEOMÞ ¼ � 1

_�
_�: (29)

Since the field equation is second order, � ¼ �ð�; _�Þ does
not contain €� and higher derivatives, and by scale invari-
ance it has the form � ¼ exp ð4�ÞZðYÞ, where Y ¼
_�2 exp ð�2�Þ [cf. Eq. (3)], and Z is a model-dependent
function. It follows from Eq. (29) that the equation of
motion for homogeneous perturbation about the back-
ground �cðtÞ reads

� 1

_�c

@�

@ _�c

€�þ � � � ¼ 0;

where omitted terms do not contain €�. Hence, the kinetic
part of the Lagrangian for the perturbations has the form

Lð2Þ � 1

2 _�c

@�

@ _�c

_�2 ¼ e2�cZ0ðYÞ _�2;

which is the same as in (10). Both zero energy solutions
have Z ¼ 0, so an interpolating configuration has Z0 < 0
somewhere in between, and thus it is not ghost-free.

One way to get around this obstacle would be to insist on
slow spatial variation of the initial field configuration but
give up the prescription that the field inside the large sphere
is in the rolling regime (19). Instead, one would consider
the field with nonzero energy density inside the sphere, so
that there exists a smooth and ghost-free configuration that
interpolates, as r increases, between this field and the
asymptotic Minkowski vacuum. This can hardly lead to
the creation of a universe, however, since Eq. (26) shows
that the point Y ¼ 0 is an attractor, and the field in the
interior of the sphere will likely relax to it.2 Near Y ¼ 0,

one has F ¼ F0ð0ÞY and Z ¼ F0ð0ÞY, so that the equation
of state is p 	 � [recall that Kð0Þ ¼ 0; one can show that
the last term in (9b) is negligible at small Y]. Thus, the
NEC does not get violated.
Other possibilities are to consider field configurations

with non-negligible spatial gradients or give up scale in-
variance of the action. In both cases the above no-go
argument would be irrelevant, but the analysis would
be more complicated. We will follow another route and
complicate the model instead.

III. IMPROVED MODEL

A. Spatially inhomogeneous couplings

We do not abandon quasihomogeneity but now allow the
functions F and K to depend explicitly on spatial coordi-
nates. This can be the case if there is another field, call it ’,
which determines the couplings entering these functions,
and this field acts as a quasihomogeneous background,
’ ¼ ’ðxÞ. In this case, one can consider a field configu-
ration �ðt;xÞ which at any point in space is approximately
given by the rolling solution (19) but with Y� depending on
x (recall that Y� is independent of time for the homoge-
neous solution). We prepare the background ’ðxÞ in such a
way that Y�ðxÞ is constant inside the large sphere (to evolve
into a manmade universe) and gradually approaches zero
as r ! 1. We have to check that, with an appropriate
choice of the functions FðY;’Þ and KðY;’Þ, this construc-
tion is healthy everywhere in space; i.e., there are no
pathologies inside the large sphere, at spatial infinity, and
in the intermediate region (‘‘the wall’’).
Let �ð’Þ be a function of the new field, such that Y� ¼

�ð’Þ is a solution to Eq. (20). As r varies from zero to
infinity, �ðxÞ changes from some positive value �0 to
zero. We are going to check that the inequalities (27) and
(28) can be satisfied for any� 2 ð0;�0Þ, so that there is no
ghost or gradient instability anywhere in space (including
the wall region), and propagation of perturbations is sub-
luminal, also in any region of space. To this end, wewrite F
and K in the vicinity of Y� ¼ � as a series in (Y ��):

F ¼ að�Þ þ bð�ÞðY ��Þ þ cð�Þ
2

ðY ��Þ2; (30a)

K ¼ 	ð�Þ þ 
ð�ÞðY ��Þ þ �ð�Þ
2

ðY ��Þ2; (30b)

and set 	ð0Þ ¼ 0 without loss of generality; see Eq. (4). In
these terms, Eq. (20) reads

a� 2�bþ 2�	� 2�2
 ¼ 0; (31)

and the inequalities (27) and (28) become

no gradient instability: bð�Þ � 2	ð�Þ þ 4�
ð�Þ> 0;

(32a)

subluminality: cð�Þ � 
ð�Þ þ��ð�Þ> 0: (32b)2A loophole here is that we neglect effects of gravity.
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Let us also write the pressure (21) for the rolling solution:

p ¼ 1

�2ðt� � tÞ4 ða� 2	�Þ

¼ 1

�2ðt� � tÞ4 � 2�ðb� 2	þ 
�Þ; (33)

where we used Eq. (31). We require the NEC violation
inside the large sphere, i.e.,

NEC violation: bð�0Þ� 2	ð�0Þþ�0
ð�0Þ< 0: (34)

Finally, the stability conditions of the Minkowski vacuum,
Eqs. (13) and (14), read

bð0Þ> 0; 
ð0Þ ¼ 0;

while Eq. (18) requires that � is sufficiently small. The
condition (12) is satisfied automatically, provided that the
coefficients in (30) obey Eq. (31). Note that, since bð0Þ> 0
and 	ð0Þ ¼ 0, pressure (33) is positive at small �. Away
from the large sphere with � ¼ �0, the space contracts.

To see explicitly that all the above conditions can be
satisfied, let us choose

bð�Þ ¼ uþ v�2; 	ð�Þ ¼ 0; 
ð�Þ ¼ w�;

cð�Þ>
ð�Þ; �ð�Þ ¼ 0

with constant u > 0, w> 0, v < 0, and w�2
0 
 u, while

að�Þ is given by Eq. (31). Then the only nontrivial con-
straints are (32a) and (34). These are satisfied by choosing

� 4w< v<�w:

Thus, there is indeed a choice of FðY;’Þ and KðY;’Þ such
that the entire setup is not pathological everywhere in
space (including the wall region), at least in the quasiho-
mogeneous case.

B. Sample scenario

Let us now sketch a concrete scenario for creating a
universe. Let us assume that the field ’ is a usual scalar
field which has two vacua, ’ ¼ 0 and ’ ¼ ’0. We prepare
a spherical configuration of this field with ’ ¼ ’0 inside a

sphere of large enough radius R and ’ ¼ 0 outside this
sphere; see Fig. 1. We assume for definiteness (although
this assumption can be relaxed) that there is a source for the
field ’ that keeps this configuration static. Let L � R be
the thickness of the wall separating the two vacua; L is also
kept time independent by the source. We require that the
mass of this ball is small enough, so that R 
 Rs, where Rs

is the Schwarzschild radius. The mass is of the order of
�4R2L, where� is the mass scale characteristic of the field
’. Hence, the latter requirement reads �4RL � M2

Pl. For

small enough �, both R and L can be large.
Let the function �ð’Þ of Sec. III A be such that

�ð0Þ ¼ 0, �ð’0Þ ¼ �0, and �0ð’0Þ ¼ 0. The latter prop-
erty ensures that coupling of� to’ does not move’ out of
the vacuum ’0 inside the large sphere, whatever � does
there.3

We prepare the initial configuration of� at t ¼ 0 in such
a way that it initially evolves as

e � ¼ 1ffiffiffiffiffiffiffi
�0

p
t�ðrÞ �

ffiffiffiffiffiffiffiffiffiffi
�ðrÞp

t
; (35)

where we allow the parameter t� in (19) to vary in
space, and choose a convenient parametrization. We
choose t�ðrÞ ¼ t�;in inside a somewhat smaller sphere of

radius R1 <R (but R1 � R) and t�ðrÞ ¼ t�;out 
 t�;in at

r > R1 (hereafter subscripts in and out refer to the regions
r < R1 and r > R1, respectively), as shown in Fig. 1, with
the transition region of, say, the same thickness L. We take
t�;out � L; then the characteristic time scales are smaller

than the smallest length scale L inherent in the setup, so the
spatial derivatives of� are negligible compared to the time
derivatives. This ensures that the field � is in the quasiho-
mogeneous regime. As r ! 1, we have �ðrÞ ! 0 and
t� ! const, so the field � tends to the Minkowski vacuum
� ¼ const.
At the initial stage of evolution, pressure inside the

sphere of radius R1 is

pin ¼ � M4

�2
0ðt�;in � tÞ4 ;

whereM is the mass scale characteristic of the field �. We
require that jpinjR3=M2

Pl � R; then the gravitational po-

tentials are small everywhere, and gravity is initially in the
linear regime. Thus, we impose a constraint

M4R2

�2
0t

4
�;in

� M2
Pl; (36)

which is consistent with the above conditions forM � MPl

and �0 * M2.

FIG. 1. The setup. Dashed and solid lines show t�ðrÞ and ’ðrÞ,
respectively. The behavior of the function �ðrÞ ¼ �ð’ðrÞÞ is
similar to that of ’ðrÞ.

3We implicitly neglect kinetic mixing between � and ’. It can
be made small by considering the function �, which depends on
�’, where � is a small parameter.
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At least at the initial stage of the evolution, the field
�ðr; tÞ is in the quasihomogeneous regime and evolves
according to (35). The metric is also quasihomogeneous:

ds2 ¼ dt2 � a2ðr; tÞðdr2 þ r2d�2Þ:
We integrate the equation _H ¼ �4�Gp to find that, soon
after the evolution begins, the Hubble parameter inside the
sphere of radius R1 is

Hin ¼ 4�M4

3M2
Pl�

2
0ðt�;in � tÞ3 : (37)

In view of (36) and t�;in � R, the Hubble length scale is

large for some time, H�1 
 R. This is true also at r > R1,
so there are no antitrapped surfaces initially.

As t approaches t�;in, pressure becomes large at r < R1

and the Hubble length shrinks there to R1 � R. The anti-
trapped surfaces get formed inside the sphere of radius R1,
and a new universe gets created and enters the genesis
regime there. This occurs when Hin � R�1, i.e., at time
t1 such that

ðt�;in � t1Þ �
�
M4R

M2
Pl�

2
0

�
1=3

:

Note that at that time the energy density �in �M2
PlH

2
in is

still relatively small:

�in

jpinj �
�

M4

�2
0R

2M2
Pl

�
1=3 � 1:

This implies that, at time t1, space-time is locally nearly
Minkowskian. Another manifestation of this fact is that the
scale factor is close to 1:

ainðt1Þ ¼ 1þ 2�M4

3M2
Pl�

2
0ðt�;in � t1Þ2

;

where the correction to 1 is of the order of �in=jpinj. Hence,
our approximate solution (35) and (37) is legitimate.

Since t�;out 
 t�;in, the field e� at time t1 is still small at

r > R1, and the Hubble length scale exceeds R there.
Gravity is still weak at r > R1, so it is consistent to assume
that the configuration of ’ is not modified by that time.
Note also that a black hole is not formed by then either.

At somewhat later times, the geometry of hypersurfaces
t ¼ const is that of a semiclosed world: At some distance
from the origin, the area of the sphere r ¼ const decreases
as r increases, @ðarÞ=@r < 0. This regime begins (i.e., a
neck gets formed) when there appears a solution to

@a

@r
� rþ a 	 � 4�M4

3M2
Pl�

2
0½t�ðrÞ � t�3

@t�
@r

� rþ 1 ¼ 0:

Clearly, this happens at a place where t�ðrÞ ’ t�;in, but
@t�=@r starts to deviate from zero. The neck gets formed
at time t2 such that

M4

M2
Pl�

2
0ðt�;in � t2Þ3

t�;outR
L

� 1:

Since we take t�;out � L, we have t2 > t1 indeed.

Nevertheless, it is straightforward to arrange parameters
in such a way that our approximate solution (35) and (37) is
legitimate at time t2 as well.
This completes the discussion of the initial stage of the

creation of a new universe. To make the scenario complete,
one would specify the way to design the configuration of
the field ’ and keep it static (or consider an evolving field
’ instead). Also, one would like to trace the dynamics of
the system to longer times and see what geometry develops
towards the end of the genesis epoch occurring at r < R1.
Since the background we have studied is healthy, one does
not expect surprises from this complete analysis.

IV. DISCUSSION

Because of the obstruction we encountered in Sec. IID, it
is rather unlikely that simple, scale-invariant Galileon-type
theories can be employed to create a universe in the labo-
ratory. We had to make the model a lot more complicated,
to the extent that the whole scenario may appear completely
unrealistic. While the particular model we considered in
Sec. III is indeed not very appealing, we think that the
overall situation is not absolutely hopeless. First, one can
think of a possibility that a model designed on paper can be
implemented in the laboratory, even though this certainly
sounds like fiction. Barring this possibility, let us make the
second point. If there is anything like a Galileon in nature,
and if the Universe experienced anything like the genesis
epoch, there must be a smooth and consistent interpolation
between the genesis regime and Minkowski vacuum, albeit
in the course of cosmological evolution rather than in the
radial direction in space as we need. It is not inconceivable
that one may be able to use the mechanism making this
interpolation healthy in cosmology for the purpose of creat-
ing a universe in the laboratory.
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