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Area products for multihorizon stationary black holes often have intriguing properties, and are often

(though not always) independent of the mass of the black hole itself (depending only on various charges,

angular momenta, and moduli). Such products are often formulated in terms of the areas of inner (Cauchy)

horizons and outer (event) horizons, and sometimes include the effects of unphysical ‘‘virtual’’ horizons.

But the conjectured mass independence sometimes fails. Specifically, for the Schwarzschild–de Sitter

[Kottler] black hole in (3þ 1) dimensions it is shown by explicit exact calculation that the product of

event horizon area and cosmological horizon area is not mass independent. (Including the effect of the

third ‘‘virtual’’ horizon does not improve the situation.) Similarly, in the Reissner-Nordstrom–anti-de

Sitter black hole in (3þ 1) dimensions the product of the inner (Cauchy) horizon area and event horizon

area is calculated (perturbatively), and is shown to be not mass independent. That is, the mass

independence of the product of physical horizon areas is not generic. In spherical symmetry, whenever

the quasilocal massmðrÞ is a Laurent polynomial in aerial radius, r ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
A=4�

p
, there are significantly more

complicated mass-independent quantities, the elementary symmetric polynomials built up from the

complete set of horizon radii (physical and virtual). Sometimes it is possible to eliminate the unphysical

virtual horizons, constructing combinations of physical horizon areas that are mass independent, but they

tend to be considerably more complicated than the simple products and related constructions currently

being mooted in the literature.
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I. INTRODUCTION

There has recently been some considerable ongoing
interest in the products of horizon areas for various types
of stationary black holes. Some of this interest has arisen
specifically within the general relativity community [1–4],
while for somewhat different reasons interest has also
arisen from within the string community [5–8]. In some
cases the product of horizon areas is in fact independent of
the mass of the black hole.

For instance, based on classical general relativistic tech-
niques it is known that both for standard (3þ 1) dimen-
sional Kerr-Newman, and even for (3þ 1) dimensional
Kerr-Newman black holes distorted by the presence of
arbitrary stationary axisymmetric matter, the product of
the inner (Cauchy) horizon area and outer (event) horizon
areas is [1–4]

ACAE ¼ ð8�Þ2
�
J2 þQ4

4

�
: (1)

The underlying physics here is that due to stationarity there
can be no matter present between the inner and outer
horizons (where the radial direction is timelike) [9]. The
region between inner and outer horizons is then stationary,
axisymmetric, and electro-vac; this is not quite enough to
be able to apply the black hole uniqueness theorems, but it

appears that enough of the flavor of uniqueness survives to
guarantee that the area product is not only independent of
the mass of the black hole, but more remarkably is inde-
pendent of the way the static axisymmetric matter external
to the black hole (and distorting its gravitational field away
from exact Kerr-Newman) is distributed. (Note that in the
special case of extremal horizons, such conditions are
enough to guarantee that the near horizon geometry
uniquely corresponds to extreme Kerr–Newman [10,11].)
These results are closely related to mass-independent in-
equalities for the area of generic dynamical axisymmetric
apparent horizons, holding in particular for the outer
Killing horizon in stationary axisymmetric black holes
with surrounding matter [12–22]:

AE � 8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þQ4

4

s
: (2)

Apart from the standard (3þ 1) dimensional Kerr-
Newman spacetime, there are also many multidimensional
string-inspired black hole configurations for which similar
formulas hold [5–8]. More boldly, there are also conjec-
tures to the effect that this product of areas is sometimes
quantized. That is, in the supersymmetric extremal limit
one often finds

ACAE ¼ ð8�Þ2L4
PN with N 2 N: (3)*matt.visser@msor.vuw.ac.nz
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For specific discussion of potential pitfalls for such a
conjecture see [23,24]. A safer statement is that when
one moves away from extremality and supersymmetry
then quite often the product of areas is discretized in terms
of the Planck area and fine structure constant with

ACAE ¼ ð8�Þ2L4
P

�
‘ð‘þ 1Þ þ �2q2

4

�
; (4)

or some natural generalization thereof [23]. Here ‘ 2 N
and q 2 Z.

But how generic are such mass-independence results?
For instance, to what extent do they survive introduction of
a cosmological constant? It is already known that the area
inequalities behave in a more complicated manner once a
cosmological constant is introduced [15,19]. Herein we
address this issue in an elementary way by straightfor-
wardly exhibiting several simple spherically symmetric
(3þ 1) dimensional examples where, due precisely to a
nonzero cosmological constant, the product of physical
horizon areas is explicitly not mass independent. We shall
explicitly consider the Schwarzschild–(anti)-de Sitter and
Reissner-Nordström–(anti)-de Sitter spacetimes, before
considering general lessons we can extract for generic
static spherically symmetric spacetimes. The fact that
asymptotically anti-de Sitter black holes often fail to
have mass-independent area products is perhaps of most
interest to the string community, indicating that more
complicated functions of horizon area might be of interest.

There will typically be some (sometimes several) more
complicated functions of physical horizon areas that are
mass independent, but generically these functions are no-
where near as straightforward as a simple product of areas.
As we shall soon see, obtaining mass-independent func-
tions of horizon areas in spherical symmetry is intimately
related to the quasilocal mass mðrÞ being a Laurent poly-
nomial of the areal radius r defined by AðrÞ ¼ 4�r2.
(Because of spherical symmetry the quasilocal mass is
always guaranteed to be well defined, and so is a suffi-
ciently general tool for the current article. Any attempt at
moving to axisymmetry would require slightly more subtle
tools; the norm of the horizon-generating Killing vector is
an appropriate quantity to consider.) The relevant mass-
independent area-related functions are constructed in terms
of the elementary symmetric polynomials built up from the
radii of the various horizons (both physical and virtual).
Sometimes one can eliminate the virtual horizons to obtain
more complicated mass-independent qualities depending
only on the physical horizons.

II. FRAMEWORK

Based only on symmetry one can without any loss of
generality write any static spherically symmetric space-
time in the form [25]

ds2 ¼ � exp f2�ðrÞg
�
1� 2mðrÞ

r

�
dt2 þ dr2

1� 2mðrÞ=r
þ r2fd�2 þ sin 2�d’2g: (5)

HeremðrÞ denotes the quasilocal mass [26,27], and�ðrÞ is
the anomalous redshift [25]. The Killing horizons are then
found by solving

�ðrÞ � 1� 2mðrÞ
r

¼ 0: (6)

Once we have extracted the various roots of this equation,
the individual horizon areas are immediate.

III. SCHWARZSCHILD–DE SITTER
BLACK HOLES

For Schwarzschild–de Sitter (Kottler) black holes the
Killing horizons are found by solving the equation

�ðrÞ ¼ 1� 2m

r
� 1

3
�r2 ¼ 0: (7)

This is equivalent to solving the cubic

r3 � 3r=�þ 6m=� ¼ 0: (8)

For �> 0 it is convenient to set � ¼ 1=a2, where a is
(asymptotically) the spatial radius of curvature. Then

r3 � 3ra2 þ 6ma2 ¼ 0: (9)

The three exact roots for this cubic are (see the Appendix)

r ¼ 2a sin

�
1

3
sin�1

�
3m

a

�
þ �

2�

3

�
; � 2 f0;�1g: (10)

A. Killing horizons

The two physical roots are the event horizon at

rE ¼ 2a sin

�
1

3
sin�1

�
3m

a

��
¼ 2mþ 8m3

3a3
þO

�
m5

a4

�
; (11)

and the cosmological horizon at

r� ¼ 2a sin

�
2�

3
þ 1

3
sin�1

�
3m

a

��
¼ ffiffiffi

3
p

a�mþO
�
m2

a

�
:

(12)

There is a third (unphysical and purely formal) ‘‘virtual’’
horizon which is located at negative r:

rV ¼ �r� � rE: (13)

Note that the product of physical horizon areas, AE � A�,
has no nice quantization features. Nor does it have any nice
‘‘independence of mass’’ features. Indeed
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AE � A� ¼ ð16�a2Þ2sin 2

�
2�

3
þ 1

3
sin�1

�
3m

a

��

� sin 2

�
1

3
sin�1

�
3m

a

��
(14)

¼ ð8�a2Þ2
�
cos

�
2�

3
þ 2

3
sin�1

�
3m

a

��
� 1

2

�
2

(15)

¼ ð8�Þ2f3m2a2 � 2
ffiffiffi
3

p
m3aþ 6m4 þOðm5=aÞg: (16)

If one restricts attention to the two physical horizons at the
two physical roots of the cubic, then in terms of area
products this is the best one can do. If one includes the
effect of the virtual horizon rV , as advocated in Ref. [5],
then we have the exact results

rVrEr� ¼ �6ma2; AVAEA� ¼ ð4�Þ336m2a4: (17)

These are, however, explicitly mass-dependent quantities.

B. Mass independence

In counterpoint, note that there is an exact mass-
independent quantity arising from a quadratic sum over
all three roots of the cubic. Namely,X

i>j

rirj ¼ �3a2: (18)

That is

rVfrE þ r�g þ rEr� ¼ �3a2: (19)

We can eliminate the virtual radius and rewrite this as

fr� þ rEg2 � r�rE ¼ 3a2; (20)

and so

r2� þ r2E þ r�rE ¼ 3a2: (21)

If one prefers to work in terms of areas one has

A� þ AE þ ffiffiffiffiffiffiffiffiffiffiffiffi
A�AE

p ¼ 12�a2: (22)

So there is certainly some function of physical horizon
areas that is mass independent, but the function that ex-
hibits mass independence is nowhere near as straightfor-
ward as a simple product of horizon areas.

IV. SCHWARZSCHILD–ANTI-DE
SITTER BLACK HOLES

Consider the Schwarzschild–anti-de Sitter black hole.
Now set � ¼ �1=jaj2. We determine the Killing horizons
via the polynomial

r3 þ 3rjaj2 � 6mjaj2 ¼ 0: (23)

There is now only one physical root, only one physical
horizon (an event horizon), located at

rE ¼ 2jaj sinh
�
1

3
sinh�1

�
3m

jaj
��
: (24)

To make this fully explicit, in terms of Cardano’s formulas
one can rewrite this as

rE¼jaj
8<
:
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ9m2

jaj2
s

þ3m

jaj

3
51=3

�
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ9m2

jaj2
s

�3m

jaj
�
1=3

9=
;:
(25)

There are now two purely formal and unphysical virtual
horizons, at complex conjugate values of rV and r�V . There
is an exact result that

rVr
�
VrE ¼ 6mjaj2; AVA

�
VAE ¼ ð4�Þ336m2a4: (26)

This is again explicitly mass dependent. The mass-
independent quantity constructed from the event horizon
and two virtual horizons is nowX

i>j

rirj ¼ 3jaj2: (27)

That is

rEfrV þ r�Vg þ rVr
�
V ¼ 3jaj2: (28)

We can simplify this a little by noting that

rE þ rV þ r�V ¼ 0; (29)

so that

r2E ¼ rVr
�
V � 3jaj2; AE ¼ jAVj � 12�jaj2: (30)

This is at least formally mass independent—but since jAV j
is not directly observable (and not calculable except by
explicitly solving the mass-dependent cubic), the result is
not particularly useful.

V. REISSNER-NORDSTRÖM–DE SITTER
BLACK HOLES

The situation improves somewhat for Reissner-
Nordström–de Sitter black holes. To locate the Killing
horizons we need to find the roots of

�ðrÞ ¼ 1� 2m

r
þQ2

r2
� 1

3
�r2 ¼ 0: (31)

Again setting � ¼ 1=a2, we now rearrange this to obtain
the quartic

r4 � 3r2a2 þ 6mra2 � 3Q2a2 ¼ 0: (32)

Taking � ! 0 (corresponding to a ! 1) gives the stan-
dard Reissner-Nordström geometry. Also,Q ! 0 gives the
Schwarzschild–de Sitter (Kottler) solution previously con-
sidered. Let us now write the quartic as

r4 � 3a2fr2 � 2mrþQ2g ¼ 0; (33)

and reformulate this as
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r4 � 3a2ðr� rþÞðr� r�Þ ¼ 0: (34)

Here r� are the locations where the horizons would be in
the limit where the cosmological constant is switched off
(� ! 0, that is, a ! 1). For simplicity we shall take
jQj � m, so that the r� are guaranteed real. (There is no
real point to considering the subcase where r� are
complex.)

A. Approximate results

While we know on general principles that the quartic
appearing above has an exact solution, it can be more
advantageous to perturbatively extract approximate solu-
tions. First, rearrange the quartic to yield the exact equation

r ¼ r� þ r4

3a2ðr� r�Þ
: (35)

We shall now solve this equation perturbatively.

1. Event and Cauchy horizons

To a first approximation, for the event horizon we have

rE 	 rþ þ r4þ
3a2ðrþ � r�Þ

¼ rþ
�
1þ r3þ

3a2ðrþ � r�Þ
�
: (36)

For the inner (Cauchy) horizon we have

rC 	 r� � r4�
3a2ðrþ � r�Þ

¼ r�
�
1� r3�

3a2ðrþ � r�Þ
�
: (37)

Consequently,

rErC 	 rþr�
�
1þ r3þ � r3�

3a2ðrþ � r�Þ
�
; (38)

and so

rErC 	 rþr�
�
1þ r2þ þ rþr� þ r2�

3a2

�
: (39)

But in terms of the mass and charge we know

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �Q2

q
; (40)

whence

rþr� ¼ Q2; (41)

and

r2� ¼ 2m2 �Q2 � 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 �Q2

q
; (42)

so

r2þ þ rþr� þ r2� ¼ 4m2 �Q2: (43)

This implies

rErC 	 Q2

�
1þ 4m2 �Q2

3a2

�
; (44)

which can also be written as

rErC ¼ Q2f1þ 1

3
�ð4m2 �Q2Þ þOð�2Þg: (45)

Therefore

AEAC ¼ 16�2Q4f1þ 2

3
�ð4m2 �Q2Þ þOð�2Þg; (46)

which is certainly not mass independent.
For completeness we also note

rE þ rC 	 2mþ r4þ � r4�
3a2ðrþ � r�Þ

; (47)

which again is explicitly mass dependent.

2. Cosmological horizon

From the exact result

r2 ¼ 3a2
ðr� rþÞðr� r�Þ

r2
; (48)

we have, as a zero order approximation,

r� 	 ffiffiffi
3

p
a: (49)

Therefore as a first order approximation

r� 	 ffiffiffi
3

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

3
p

a� rþÞð
ffiffiffi
3

p
a� r�Þ

3a2

s
(50)

	 ffiffiffi
3

p
a

�
1� rþ þ r�

2
ffiffiffi
3

p
a

�
(51)

¼ ffiffiffi
3

p
a

�
1� mffiffiffi

3
p

a

�
: (52)

So for the cosmological horizon

r� 	 ffiffiffi
3

p
a�m: (53)

Oddly enough the location of the cosmological horizon is
to this order independent of the charge Q, but it does
definitely depend on the mass m.

3. Virtual horizon

Finally, from the exact quartic, we know there is a
(unphysical) virtual horizon at negative r:

rV ¼ �frE þ rC þ r�g: (54)

So to a first approximation

rV 	 � ffiffiffi
3

p
a�m: (55)

B. Exact results

What quantities might actually be independent of m?
From the exact quartic we know
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rVrErCr� ¼ �3Q2a2; (56)

implying, in terms of physical horizons, that the quantity

frE þ rC þ r�grErCr� ¼ 3Q2a2 (57)

is strictly independent of m. But this looks nothing like the
product of event and Cauchy horizon areas AþA�. Perhaps
more promising is the exact conditionX

i>j

rirj ¼ �3a2: (58)

That is

rVfrE þ rC þ r�g þ rEfrC þ r�g þ rCr� ¼ �3a2; (59)

whence

frE þ rC þ r�g2 � rEfrC þ r�g � rCr� ¼ 3a2; (60)

so that

r2E þ r2C þ r2� þ rErC þ rCr� þ r�rE ¼ 3a2: (61)

We can furthermore eliminate explicit (though not im-
plicit) occurrence of the cosmological constant by dividing
these two exact results to get

frE þ rC þ r�grErCr�
r2E þ r2C þ r2� þ rErC þ rCr� þ r�rE

¼ Q2: (62)

This is certainly mass independent, but is a rather
complicated function of physical horizon radii. As
a ! 1 (that is � ! 0, so r� ! 1) one recovers the usual
Reissner-Nordström result

lim
a!1rErC ¼ Q2: (63)

If one insists on working with areas then we have the exact
result that 4�Q2 is equal to

f ffiffiffiffiffiffi
AE

p þ ffiffiffiffiffiffi
AC

p þ ffiffiffiffiffiffiffi
A�

p g ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AEACA�

p
A2
E þ A2

C þ A2
� þ ffiffiffiffiffiffiffiffiffiffiffiffi

AEAC

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ACA�

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
A�AE

p : (64)

Again, there is certainly some function of physical horizon
areas that is mass independent (and in this particular case,
even free of explicit cosmological constant dependence),
but it is nowhere near as straightforward as a simple
product of horizon areas.

VI. REISSNER-NORDSTRÖM–ANTI-DE SITTER
BLACK HOLES

Set � ¼ �1=jaj2. The relevant quartic becomes

r4 þ 3r2jaj2 � 6mrjaj2 þ 3Q2jaj2 ¼ 0: (65)

There are now two complex conjugate (utterly formal and
unphysical) virtual horizons r�V , and two physical hori-
zons: an event horizon rE and an inner (Cauchy) horizon
rC. Because there are only two physical horizons, this
particular situation is closest in spirit to the standard
Reissner-Nordström spacetime.

A. Approximate results

To a first approximation, for the event horizon we have

rE 	 rþ � r4þ
3jaj2ðrþ � r�Þ

¼ rþ
�
1� r3þ

3jaj2ðrþ � r�Þ
�
:

(66)

For the inner (Cauchy) horizon we see

rC 	 r� þ r4�
3jaj2ðrþ � r�Þ

¼ r�
�
1þ r3�

3jaj2ðrþ � r�Þ
�
:

(67)

Finally, for the two unphysical virtual horizons we obtain

r�V 	 �i
ffiffiffi
3

p jaj �m: (68)

Then it is easy to compute

rErC 	 rþr�
�
1� r3þ � r3�

3jaj2ðrþ � r�Þ
�
; (69)

so that

rErC 	 rþr�
�
1� r2þ þ rþr�rþ þ r2�

3jaj2
�
; (70)

and so

rErC 	 Q2

�
1� 4m2 �Q2

3jaj2
�
: (71)

Then (and I again emphasize that for �< 0 we are in an
asymptotically AdS spacetime with no cosmological hori-
zon, and we really only have these two physical horizons to
deal with), we see

rErC ¼ Q2f1� 1

3
j�jð4m2 �Q2Þ þOð�2Þg: (72)

In fact this now implies that for either sign of the cosmo-
logical constant one has

rErC ¼ Q2f1þ 1

3
�ð4m2 �Q2Þ þOð�2Þg: (73)

Note this is very definitely not mass independent.

B. Exact results

Some exact results can again be obtained by computing
various combinations of the roots of the quartic. Note that
the key basic results obtained by picking off the various
coefficients of the quartic are

rþV þ r�V þ rC þ rE ¼ 0; (74)

rþV r�V þ ðrþV þ r�V ÞðrC þ rEÞ ¼ 3jaj2; (75)

rþV r�V ðrC þ rEÞ þ ðrþV þ r�V ÞrCrE ¼ �6mjaj2; (76)

and
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rþV r�V rCrE ¼ 3Q2jaj2: (77)

Therefore

ðrþV þ r�V Þ ¼ �ðrC þ rEÞ; r�V ¼ � 1

2
ðrC þ rEÞ � i�;

(78)

and so

rþV r�V ¼ 3jaj2 þ ðrC þ rEÞ2; (79)

ðrþV r�V � rCrEÞðrC þ rEÞ ¼ �6mjaj2; (80)

rþV r�V ¼ 1

4
ðrC þ rEÞ2 þ �2: (81)

We can eliminate some of the unknowns in the above
expressions but not all. In particular

rþV r�V rCrE
rþV r�V þ ðrþV þ r�V ÞðrC þ rEÞ ¼ Q2; (82)

so

½14 ðrC þ rEÞ2 þ �2
rCrE
�2 � 3

4 ðrC þ rEÞ2
¼ Q2: (83)

Unfortunately, while the right-hand side depends only on
the charge Q, the left-hand side contains the parameter �,
which is not directly accessible to physical observation.
(Nor is it easy to calculate without explicitly solving the
quartic.) Alternatively, one could also write

f3jaj2 þ ðrC þ rEÞ2grCrE ¼ 3Q2jaj2: (84)

Therefore �
1þ 1

3
j�jðrC þ rEÞ2

�
rCrE ¼ Q2: (85)

This is at least m independent, and � independent, but
explicitly contains both Q and �. If we work in terms of
areas

�
1þ 1

12�
j�jð ffiffiffiffiffiffi

AC

p þ ffiffiffiffiffiffi
AE

p Þ2
� ffiffiffiffiffiffiffiffiffiffiffiffi

ACAE

p ¼ 4�Q2: (86)

Again, there is some function of the physical horizon areas
that is mass independent, but it is nowhere near as straight-
forward as a simple product of horizon areas.

VII. LAURENT POLYNOMIAL FOR THE
QUASILOCAL MASS

Let us now try to put these specific results into a broader
context. Suppose merely that the quasilocal mass mðrÞ is
some generic Laurent polynomial. Then without loss of
generality �ðrÞ is also a Laurent polynomial and can be
written in the form

�ðrÞ ¼ ��
PðrÞ
rn

: (87)

Here we have normalized the (ordinary) polynomial PðrÞ
so that its highest degree coefficient is unity, and its lowest
degree coefficient (a constant term) is nonzero. The Killing
horizons are located at the zeros ri of the numerator PðrÞ.
That is, we have

PðrÞ ¼ XD�1

j¼0

cjr
j þ rD ¼ YD

i¼1

ðr� riÞ: (88)

Furthermore, as is completely standard,

c0¼ð�1ÞDY
D

i¼1

ri; c1¼ð�1ÞD�1
XD
j¼1

YD
i¼1;i�j

ri; . . . (89)

. . . cD�2 ¼
X
i>j

rirj; cD�1 ¼ �XD
j¼1

rj: (90)

In fact these coefficients are easily and explicitly calcu-
lable in terms of the elementary symmetric polynomials
eið�Þ on D variables [28,29]:

cD�i ¼ ð�1ÞDeiðr1; r2; . . . ; rDÞ: (91)

We see that it is the coefficient cn�1 that leads to a 1=r
falloff in �ðrÞ at large r, and so it is this coefficient that is
proportional to the mass of the black hole. (By construction
n 2 f1; . . . ; Dg, otherwise the mass of the black hole will
be zero.) All of the other coefficients (there are D� 1 of
them),

ciðr1; r2; . . . ; rDÞ: 0 � i � D� 1; i � n� 1; (92)

will by construction be mass independent. That is, in
terms of the elementary symmetric polynomials, all the
quantities

eiðr1; r2; . . . ; rDÞ: 1 � i � D; i � D� nþ 1; (93)

will be mass independent. In terms of horizon areas,
Ai ¼ 4�r2i , all D� 1 elementary symmetric polynomials

ei

0
@

ffiffiffiffiffiffiffi
A1

4�

s
;

ffiffiffiffiffiffiffi
A2

4�

s
; . . . ;

ffiffiffiffiffiffiffi
AD

4�

s 1
A: 1 � i � D; (94)

for i � D� nþ 1, will be mass independent. Of course
not all the ri need be physical (real and positive), so not all
the Ai need be real. Since there are D� 1 of these mass-
independent quantities, it might sometimes be possible to
eliminate all the unphysical (virtual) horizons ri, and re-
duce the situation to one of dealing with a smaller number
of real mass-independent quantities determined solely in
terms of physical horizon areas. With N virtual horizons
one will generally have D� N � 1 mass-independent
quantities constructible in terms of physical horizons.
Whether or not this can successfully be achieved in prac-
tice depends very much on the precise details of the poly-
nomial PðrÞ. For example, as we have seen in the previous
sections:
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(i) Schwarzschild–de Sitter spacetimes correspond to
D ¼ 3 and N ¼ 1.
There are two mass-independent quantities [one triv-
ial, Eq. (13); one nontrivial, Eq. (19)], but only one
that depends solely on the physical horizons
[Eq. (21) or equivalently (22)].

(ii) Schwarzschild–anti-de Sitter spacetimes corre-
spond to D ¼ 3 and N ¼ 2.
There are two mass-independent quantities [one
trivial, Eq. (29); one nontrivial, Eq. (30)], but none
that depend solely on the physical horizon.

(iii) Reissner-Nordström–de Sitter spacetimes corre-
spond to D ¼ 4 and N ¼ 1.
There are three mass-independent quantities [one
trivial, Eq. (54); two nontrivial, Eqs. (56) and (59)],
but only two that depend solely on the physical
horizons [any two of Eqs. (57), (61), and (62)—or
the equivalently (64)].

(iv) Reissner-Nordström–anti-de Sitter spacetimes cor-
respond to D ¼ 4 and N ¼ 2.
There are three mass-independent quantities [one
trivial, Eq. (74); two nontrivial, Eqs. (75) and (77)],
but only one that depends solely on the physical
horizons [any one of the equivalent Eqs. (84) and
(85) or (86)].

But now we see that the key points of the preceding
explicit discussion continue to hold in greater generality—
whenever the quasilocal mass mðrÞ is any generic Laurent
polynomial. Generalizations to higher dimensional space-
times with hyperspherical symmetry are immediate and
straightforward. Generalizations to rotating black holes
[30–34], and more complicated symmetries, are not quite
as straightforward—but as long as the location of the
horizons is determined by the roots of some Laurent poly-
nomial we can expect similar results to hold. For instance,
it is quite sufficient if, in terms of some natural r coordinate
easily related to the horizon area, the norm of the horizon
generating Killing vector is some entire function multi-
plied by a Laurent polynomial.

VIII. DISCUSSION

Generically, products of horizon areas may or may not
be independent of the mass of the black hole. This depends
on the precise form of the quasilocal mass, on whether one
takes the product only over physical horizons, or whether
one includes unphysical virtual horizons in the product. In
spherical symmetry, as long as the quasilocal mass is a
Laurent polynomial with D ¼ Dmax �Dmin , there will be
D horizons from which one can construct D� 1 mass-
independent quantities in terms of the elementary symmet-
ric polynomials built out of the horizon radii. If N of these
horizons are ‘‘virtual’’ (negative or complex radius), then
by algebraically eliminating the virtual horizons there will
generally be D� N � 1 (quite complicated) mass-
independent quantities constructible solely in terms of

the physical horizon radii (and hence constructible in
terms of the physical horizon areas). We have explicitly
checked these results for validity by investigating the
situation for Schwarzschild–(anti)-de Sitter and Reissner-
Nordström–(anti)-de Sitter spacetimes.
As we have seen above, with regard to string-inspired

area products the general situation is much more compli-
cated than currently envisaged. The conjectured area quan-
tization generally fails because certain parameters are not
integers [23]. To quote the authors of [35], ‘‘we will refer to
them as the numbers of branes, antibranes, and strings
because (as will be seen) they reduce to those numbers in
certain limits where these concepts are well defined.’’
Furthermore, inspection of known exact solutions demon-
strates that the conjectured mass independence often fails
once a cosmological constant is added.
In contrast, for the general relativity inspired area

bounds are not dependent on explicit exact solutions and
at least partially survive the introduction of a cosmological
constant [15,19]. There seems some hope of yet further
progress along these lines. Similarly the Ansorg–Hennig
area product theorems [1–3] are not dependent on explicit
exact solutions—both the underlying framework and mo-
tivation is rather different—as are the required tools.
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APPENDIX: CUBIC POLYNOMIAL EQUATIONS

Consider a cubic polynomial equation in reduced form,
with coefficients conveniently chosen to be

x3 � 3p2xþ 2q ¼ 0; p > 0: (A1)

Then the exact roots are given by a form of Viète’s trigo-
nometric solution

x ¼ 2p sin

�
1

3
sin�1

�
q

p3

�
þ �

2�

3

�
; � 2 f0;�1g: (A2)

If jqj< p3 there are three real roots.
On the other hand, if we have

x3 þ 3p2x� 2q ¼ 0; p > 0; (A3)

then there is only one real root. It is given by a hyperbolic
form of Viète’s solution

x ¼ 2p sinh

�
1

3
sinh�1

�
q

p3

��
: (A4)

In terms of Cardano’s formulas one can explicitly rewrite
this as

x¼p

8<
:
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þq2

p6

s
þ q

p3

3
51=3

�
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þq2

p6

s
� q

p3

3
51=3

9=
;:
(A5)
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