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The future apparent horizon of a black hole develops large stress energy due to quantum effects, unless

the outgoing modes are in a thermal density matrix at the local Hawking temperature. It is shown for

generic pure states that the deviation from thermality is so small that infalling observers will see no drama

on their way to the stretched horizon, providing a derivation of black hole complementarity after the Page

time. Atypical pure states, and atypical observers, may of course see surprises, but that is not surprising.
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I. INTRODUCTION

In the usual analysis of Hawking radiation, the problem
is analyzed in either the Hartle-Hawking vacuum [1] or the
Unruh vacuum [2]. The former case is appropriate for
eternal black holes, supported by a thermal flux of radia-
tion from past infinity. The latter case is not supported by
such a flux, and it better models the evaporation of a black
hole formed in a dynamical process. Here backreaction
effects are expected to modify the spectrum of the
Hawking radiation after a substantial fraction of the initial
mass is lost. Each of these vacua involve exterior modes
entangled with interior modes, as described in [2].
Correlation functions of local operators outside the black
hole horizon may therefore be viewed as expectation val-
ues in a density matrix where at least the outgoing modes in
the infinite future are in a finely tuned thermal density
matrix. The most obvious attempt to modify this situation
by placing such modes in their asymptotic vacuum leads to
the Boulware vacuum [3], which produces a singular
renormalized stress energy tensor on the future horizon
(as well as the past horizon). This leads to violations of the
equivalence principle for infalling observers.

In the present work our goal is to study in more detail
deformations of the Unruh and Hartle-Hawking vacuum
states to test the robustness of the principle of black hole
complementarity [4]. Generic deformations, in particular
those toward pure states, lead to time-dependent fluctua-
tions in the radiation. Such fluctuations typically lead to
divergent energy densities for a freely falling observer on
either the past horizon, the future horizon, or both.

We begin by establishing that the so-called in-modes
may be taken to be in an arbitrary pure state tensored with
either the Hartle-Hawking or Unruh vacua. This provides

us with multiparameter deformations of these vacua with
finite stress energy on the future horizon. This provides
evidence in favor of the black hole complementarity hy-
pothesis, by giving examples of smooth deformations of
the vacuum states. Moreover, each of these in-modes has a
component outgoing at future infinity, caused by scattering
off the gravitational potential. They provide examples of
outgoing fluxes which do not lead to firewalls on or near
the horizon.
This situation of course is not satisfactory, because these

in-modes may be traced back to the selection of a non-
vacuum state at past infinity. Moreover, we find that any
attempt to treat similar excitations of the out-modes in the
Schwarzschild background does indeed lead to divergent
energies as seen by a freely falling observer near the
horizon. Thus, at first sight, it seems out-modes must be
locked into a purely thermal density matrix to avoid drama
for an infalling observer. A finite perturbation at any
frequency leads to infinite local energy densities for infal-
ling observers at the event horizon.
The above discussion refers to a calculation that neglects

backreaction of the emitted radiation on the geometry.
To improve on this situation, we model the effect of
backreaction using the outgoing Vaidya metric [5]. This
provides a fully time-dependent metric when a null fluid is
emitted from a black hole. We still find that freely falling
observers see an UV divergent energy density as they
approach the stretched horizon, even with backreaction
included.
Lloyd [6] has pointed out that random pure states can

lead to effects that mimic averaging over ensembles in
statistical mechanics (see also later work by Page [7] where
it was emphasized that information does not begin to
emerge from a black hole until a time of order M3, which
we refer to as the Page time). In fact, there is a sense in
which the convergence is much more rapid. If a reduced
density matrix is constructed by tracing over a Hilbert
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subspace of dimension eN , the error in the density matrix is

of order e�N=2. If one instead computes fluctuations in a
statistical ensemble, the finite size effects are typically

much larger, of order 1=
ffiffiffiffi
N

p
. We use this observation to

show that an observer falling into a generic pure state black
hole will not see any drama up to the stretched horizon. If
the black hole is projected into an outgoing mode eigen-
state, infallers can indeed see mild drama as they approach
the stretched horizon, as noted in the previous paragraph,
but projections are either nongeneric or impractical. These
results provide a derivation of black hole complementarity
for black holes older than the Page time.

It should be emphasized that we take care to use local
unitary effective field theory only outside the stretched
horizon, where it has a conventional interpretation. One
may also try to build effective field theory on patches of
spacetime inside the horizon; however, the interpretation
there is much more problematic. Inside the horizon physi-
cal observables are inherently imprecise, and there is much
room to hide highly nonlocal physics [8]. An exact funda-
mental description may predict nonlocal physics inside the
horizon that is not captured by an approximate local
unitary effective field theory in that region. Conversely,
applying local effective field theory across the horizon will
predict effects that are not realized in the fundamental
unitary description.

II. NONROTATING BLACK HOLE
EVAPORATION IN 3+1 DIMENSIONS:

PROBLEMS AND SOLUTIONS

A. Mode expansions and vacua

In this section we consider a massless conformally
coupled scalar field. Issues of backreaction will be ignored,
and reexamined in the following section. The metric in
Schwarzschild coordinates takes the form

ds2 ¼ �
�
1� 2M

r

�
dt2 þ dr2

1� 2M
r

þ r2d�2 þ r2sin 2�d�2:

In these coordinates, a complete set of modes in the ex-
terior region may be obtained by separating variables in the
equation of motion and defining the tortoise radial coor-
dinate

r� ¼ rþ 2M log

�
r

2M
� 1

�
:

The angular and time dependence may be handled straight-
forwardly, and the radial equation can be mapped into a
scattering problem with a steplike potential separating the
behavior at r ! 1 from the region r ! 2M [9]. This leads
to a natural decomposition into independent modes that we
refer to as ingoing and outgoing [10]:

uinðxÞ ¼ ð4�!Þ�1=2e�i!tRin
l ð!; rÞYlmð�;�Þ

uoutðxÞ ¼ ð4�!Þ�1=2e�i!tRout
l ð!; rÞYlmð�;�Þ

(1)

with

Rout
l ð!; rÞ �

�
r�1ei!r� þ Aout

l ð!Þr�1e�i!r� ; r ! 2M

Blð!Þr�1ei!r� ; r ! 1

Rin
l ð!; rÞ �

�
Blð!Þr�1e�i!r� ; r ! 2M

r�1e�i!r� þ Ain
l ð!Þr�1ei!r� ; r ! 1:

Scattering off the gravitational field leads to ‘‘grey body’’
factors, so a mode that is purely outgoing near infinity
contains an ingoing component near the horizon, and like-
wise a mode that is purely ingoing near the horizon con-
tains an outgoing component near infinity.
The Unruh vacuum is defined by requiring the modes

incoming at past null infinity to be purely positive fre-
quency with respect to t, while those outgoing from the
past horizon are positive frequency with respect to the
appropriate Kruskal coordinate. This vacuum corresponds
to an evaporating black hole with no incoming flux at past
infinity, but a thermal outgoing flux at future null infinity.
The Hartle-Hawking vacuum is defined in a similar way,

except the condition at past null infinity is replaced by the
condition that infalling modes on the future horizon are
positive frequency with respect to the appropriate Kruskal
coordinate. This corresponds to an eternal black hole with
balancing ingoing and outgoing thermal fluxes at infinity.
It is also worth mentioning the Boulware vacuum where

t is used to define positive frequency throughout the ex-
terior region. This vacuum leads to singular quantum cor-
rections at the horizon.

B. Fluctuations

In the following we will mostly be interested in the
Unruh vacuum, which describes an evaporating black
hole. An important set of early results in this direction
developed an understanding of renormalization in this
curved background [11], which led to explicit computa-
tions of the one-loop corrections to h�2i and hT��i for a
massless scalar field in the Schwarzschild background, in
the Unruh, Hartle-Hawking and Boulware vacua [12]. In
both the Unruh and Hartle-Hawking vacua, these correc-
tions were found to be mild, leading to the expectation that
backreaction near the horizon should be negligible. We
will discuss these computations in more detail in the
following subsection.
For the moment, let us study the behavior of the indi-

vidual modes (1) near the past and future horizons. For
both the ingoing and outgoing modes, the mode functions
are finite as r ! 2M but oscillate more and more rapidly
with r as the horizon is approached. Fixed frequency
oscillations appear with respect to the time coordinate t.
This is illustrated in Fig. 1.
The stress energy tensor for a massless conformally

coupled scalar field in a Ricci flat background is
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T�� ¼ 2

3
@��@��� 1

6
g��@��@��� 1

3
�;���

þ 1

12
g���h�:

To study the behavior of this quantity near the horizon,
we must first contract indices with some suitably defined
basis vectors. Near the future horizon, we choose a
velocity 4-vector corresponding to a timelike radial in-
going geodesic,

u� ¼
0
@ k

1� 2M
r

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 1þ 2M

r

s
; 0; 0

1
A; (2)

in a ðt; r; �; �Þ basis. The result for an ingoing mode is
shown in Fig. 2. The answer is finite on the horizon, and
independent of time.
If we perform the same computation for an ingoing mode

on the past horizon and instead choose an outgoing radial
timelike geodesic, we find a double pole as r ! 2M and a
divergent result. The result is again independent of time.
The outgoing modes produce a stress tensor that is

singular on both the past and future horizons, with rapid
oscillations combined with double pole terms as r ! 2M.
Now the stretched horizon is placed at a value of r such that
the redshift to infinity is a constant, such that

�UV ¼ M2
pl

M

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r

q ; (3)

where �UV will be the ultraviolet cutoff scale for the
stretched horizon theory, which may be taken to be some
energy below the Planck scale. The double pole indicates
that the infalling observer sees a large energy density,

�� T4 1

ð1� 2M
r Þ2

¼ �4
UV: (4)

As we will see in the next subsection, if we sum over
modes to compute the correct one-loop contributions to the
vacuum expectation values of these quantities, and cor-
rectly renormalize [11,12], there are delicate cancellations
that remove the future horizon divergence, in the case of
the Unruh vacuum, and for both horizons in the case of the
Hartle-Hawking vacuum. It will then be our goal to model
time-dependent pure state corrections to these results.

C. Correlators

Let us begin by studying the simplest quantity built out
of the scalar field that receives quantum corrections and
can become potentially divergent on the horizon h�2i. As
we saw in the previous subsection, the modes themselves
are finite on the horizon, but derivative operators such as
T�� may become singular. Following [12] we can construct

h�2i by applying a point-splitting regularization to the
tree-level propagator in the appropriate vacuum state, and
then applying a local counterterm subtraction procedure.
For the Unruh vacuum jUi, this yields

hUj�2jUi ¼ 1

16�2

Z 1

0

d!

!

�X1
l¼0

ð2l þ 1Þ

�
�
coth

�!

�
jRout

l ð!; rÞj2 þ jRin
l ð!; rÞj2

�

� 4!2

1 � 2M
r

�
� 4M2

48�2r4ð1 � 2M
r Þ

; (5)

where � ¼ 1
4M is the surface gravity at the horizon. The first

term corresponds to the outgoing modes, the second cor-
responds to the ingoing modes, and the last two terms

FIG. 2 (color online). The expectation value of an ingoing
fluctuation contracted with the velocity of an infalling time-
like geodesic near the future horizon. Here we set M ¼ 1 and
! ¼ 1.

FIG. 1 (color online). Scalar mode fluctuation near the hori-
zon. Here we set M ¼ 1 and ! ¼ 1.
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correspond to the counterterm contributions. The appear-
ance of the coth �!

� factor is a consequence of the thermal-

ity of the outgoing modes. In the Hartle-Hawking vacuum,
such a factor also appears in front of the ingoing term.

The sum over angular momenta of the outgoing term
yields only a partial cancellation of the r ! 2M pole, while
the sum for the ingoing term is finite in this limit. Only
after integrating over frequency is the r ! 2M pole can-
celed. This requires a delicate exact cancellation between
the counterterms and the thermal outgoing modes.

It is worth noting that any finite excitation of the Unruh
vacuum by ingoing modes preserves the finiteness of h�2i.
Thus there is an easily accessible collection of modifica-
tions of the Unruh vacuum obtained by tensoring in essen-
tially arbitrary infalling pure states that leads to finite stress
energy near the horizon.

However, to have a successful theory of the stretched
horizon, this is necessary, but not sufficient. If the Unruh
vacuum is to be replaced by a pure state built out of
stretched horizon modes, and exterior modes, and the
Hawking radiation is to be produced by unitary evolution,
then the stretched horizon must also be capable of emitting
outgoing modes in a manner that deviates from exact
thermality. We turn to this question in the next subsection
and examine whether backreaction ameliorates the
problem.

D. Outgoing Vaidya metric

In the above we have seen that a single classical out-
going mode of definite frequency induces an infinite stress
energy on the global horizon after taking into account the
effects of renormalization. Let us now see if this diver-
gence survives if we also include gravitational backreac-
tion. This kind of problem has been studied extensively in
the literature, for example, in the study of neutrino emis-
sion during stellar core collapse [13,14] in the limit of
spherical symmetry. The emission of massless matter, in
a so-called null fluid, may be studied analytically using the
outgoing Vaidya metric [5]

ds2 ¼ �
�
1� 2MðuÞ

r

�
du2 � 2dudrþ r2d�2;

with stress energy tensor

T�� ¼ � 1

4�r2
dM

du
k�k�;

where k� is a null vector directed radially outward,
normalized as in [14]. Some properties of the solution
are illustrated in Fig. 3.

An infalling observer will measure an energy density in
his reference frame,

�in ¼ T��U�U�;

where U� is the velocity 4-vector of the infalling observer.
This is obtained by solving the equation for a timelike

geodesic in these coordinates. For a purely radial motion,
the components of the velocity are

U� ¼
�
du

d�
;
dr

d�
;
d�

d�
;
d�

d�

�

¼
0
@ 1

V þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 1� 2MðuÞ

r

q ; V; 0; 0

1
A:

The energy density seen by the infalling observer is
then [14]

�in ¼ � 1

4�r2
dM

du

1�
V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 1� 2MðuÞ

r

q �
2
: (6)

To model the process of interest to us, let us consider the
solution corresponding to the emission of energy M2

pl=M

over a time M=M2
pl measured at infinity. Inserting these

values into (6), and taking V < 0 corresponding to an
infalling observer, we find that near the apparent horizon
the energy density becomes

�in ¼ 1

4�

M8
pl

M4

V2�
1� 2MðuÞ

r

�
2
: (7)

Using formula (3) this expression may be rewritten

�in ¼ V2

4�
�4

UV: (8)

This shows that the UV divergence persists when the
gravitational backreaction due to the outflow of energy is
taken into account. This provides strong evidence that even
with backreaction included, any time dependence of the
outgoing radiation will lead infalling observers to effec-
tively see a firewall as they approach the stretched horizon.

u

r=2M(u)

singularity

FIG. 3. The Penrose diagram for the outgoing Vaidya metric.
The lower dashed line shows the apparent horizon below the
global horizon. The upper dot-dashed line indicates where the
metric is geodesically incomplete and may be patched onto a
variety of interior solutions. The dotted timelike line shows the
position of the stretched horizon.
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E. Near-horizon observables

We saw in the previous subsections that, while we are
free to modify the infalling modes at will, delicate cancel-
lations are needed with the outgoing modes to yield a finite
renormalized h�2i at the horizon. Obtaining finite stress
energy involves even further cancellations. As we saw in
Sec. II B even a single outgoing mode generates singular
contributions to the stress energy.

To formulate these issues more sharply, let us consider a
freely falling infalling observer, who is capable of measur-
ing with a UV cutoff�UV. We model the stretched horizon
theory by a surface that emits quanta of energy M2

pl=M

every M units of time t. If the infaller falls in after a finite
fraction of the black hole lifetimeM3, the infaller crosses a
substantial fraction of the outgoing Hawking radiation, of
order ð MMpl

Þ2 particles. Since a freely falling observer will hit
the singularity in proper time less than of order M, the
infaller sees M

Mpl
outgoing modes per unit Planck time.

Therefore, a freely falling observer cannot resolve individ-
ual Hawking modes, and his local operators will involve
linear combinations of at least M=Mpl outgoing modes. If

the infaller makes one local measurement every time
1=�UV in her rest frame, then the subspace of the Hilbert
space accessible in her lifetime M will have dimension

nin ¼ eM=�UV � eM=Mpl .
Let us denote the subspace of the Hilbert space corre-

sponding to this outgoing radiation as A, and the subspace
corresponding to the stretched horizon degrees of freedom
as B. The rest of the outgoing radiation we denote by the
Hilbert subspace C. According to the postulates of
black hole complementarity, the combined Hilbert space
A� B� C undergoes local unitary evolution, mapping a
pure state to a pure state. We expect that the dimension of A
will have an upper bound of order nin, while the dimension

of B and C will be of order eM
2=M2

pl , assuming we are not
too close to the endpoint of evaporation [15]. As time
passes the dimensions of these Hilbert subspaces will shift,
but the combined dimension will remain constant.

We wish to compute the expectation value of the stress
energy tensor seen by an infalling observer in a generic
pure state emitted after scrambling on the stretched hori-
zon. As we have seen above, the infalling modes may be
placed in an arbitrary pure state, leading to finite correc-
tions to the expectation value. We therefore focus our
attention on the contribution due to the outgoing modes.

Now fluctuations in the stress energy tensor can only
become large in the limit that r ! 2MðuÞ, which follows
from the r ! 2M divergent terms in (5) as shown in [12].
The modes relevant for determining whether the infaller
sees a large effect are those emitted within 	u�MðuÞ, so
even though these modes free stream from the stretched
horizon, they were in relatively recent causal contact
with the stretched horizon degrees of freedom. This im-
plies that in this period of time the A� B subsystem

evolves unitarily on its own, so that 	SA ¼ �	SB and
	EA ¼ �	EB. Thus, the effective temperatures of these
systems are the same,

1

T
¼ @SA

@EA

¼ @SB
@EB

:

However, to within small corrections in the temperature,
one can consider a time period just before the emission of
A from the stretched horizon, and likewise argue that

1

T
¼ @SC

@EC

¼ @SB
@EB

:

Thus, all subsystems are at the same effective temperature
T ¼ M2

pl=MðuÞ to within negligible corrections, so the

evolution on A� B� C may be treated in an adiabatic
approximation.
In quantum field theory, local operators are constructed

to model the action of real detectors, and likewise local
operators may be used to prepare initial states of interest.
The resulting correlators of the local fields may be inter-
preted as probability amplitudes and used to predict the
outcomes of experiments. As is typical in quantum me-
chanics, the outcome of a particular measurement is deter-
mined probabilistically, which effectively leads to a
version of averaging that mimics the averaging in statisti-
cal mechanics [6]. One of the key points of that work is that
expectation values in a random pure state converge much
more rapidly than the ensemble averages used in ordinary
statistical mechanics. It was found that fluctuations in an
expectation value are typically suppressed by a factor
1=

ffiffiffi
n

p
where n is the dimension of the Hilbert subspace

that is averaged over in selecting a random pure state. This
comes from integrating over a shell in the space Cn. This is
to be contrasted with the usual suppression of fluctuation

from ensemble averages which are of the order 1=
ffiffiffiffi
N

p
where N is the number of degrees of freedom in the system
averaged over (typically n� eN).
Unfortunately, it is difficult to make these ideas precise

in a completely general context. For example, a pure state
which is an eigenstate of some particular operator that
commutes with the Hamiltonian will remain in that eigen-
state for all time, and any effective measurements that
commute with this operator will only produce that eigen-
value. This makes the definition of a complex pure state a
rather basis-dependent question.
We can make these statements rather more precise in the

context of measurements of the evaporation of a black
hole. The natural basis for an observer far from the black
hole is indeed the outgoing modes discussed above.
However, such modes are highly unnatural from the view-
point of a freely falling observer near the horizon.
Applying this to the case at hand, any operator corre-

sponding to the detector of a freely infalling observer will
average over the subspace B� C. Since the operator is
local, it will not probe the subspaces B and C. One may
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therefore compute the expectation value by tracing over
the Hilbert subspaces B and C to produce the reduced
density matrix �A. At late times, the modes A will be
maximally entangled with the earlier radiation C [16].
By the arguments of [6] this density matrix will agree
with the canonical ensemble at temperature T up to cor-

rections of order e�SC=2.
Let us briefly review this computation in more detail [6].

Let us assume we have a pure state on a product Hilbert
space A� C described by the density matrix �AC with total
energy E. We define

�A ¼ TrC�AC ¼ X
i

pðEiÞ�Ei
:

Here Ei are the energy eigenvalues of the subspace A, i
labels the energy eigenstates, pðEiÞ is the probability of
occupation of energy eigenstate Ei, and �Ei

is a density

matrix on the subspace of A corresponding to eigenstates
with energy Ei. Computing this for a typical pure state, one
finds

�A ¼ 1

n

X
i

eSAðEiÞþSCðE�EiÞ�Ei

�
1�O

�
1

eSCðE�EiÞ=2

��
;

where we have assumed SC � SA, and defined n as
the total dimension of the Hilbert space A� C. The ex-
ponential may be approximated using SCðE� EiÞ �
SCðEÞ � Ei=T, with 1=T ¼ @SC=@E, leading to the ca-
nonical ensemble expression, up to small corrections,

�A ¼ 1

N

X
i

e�Ei=TþSAðEiÞ�Ei

�
1�O

�
1

eSCðEÞ=2

��
;

with 1=N ¼ eSCðEÞ=n.
This density matrix may then be used to estimate

hT��iU�U� � e�SC=2

ð1� 2MðuÞ
r Þ2 ; (9)

as r ! 2MðuÞ by viewing the correction as a classical
contribution to the emitted energy in the outgoing Vaidya
solution (7). While this still becomes singular very close to
the global horizon, this is safely behind the stretched
horizon, and in that region we do not trust conventional
effective field theory. We conclude that infalling observers
see no drama in their approach to the stretched horizon for
a generic pure state.

F. EPR paradox in the black hole setting

The above argument suggests that the infalling observer
sees smooth stress energy all the way up to the stretched
horizon, beyond which it is difficult to make model-
independent statements. However, we run into an apparent
paradox if we suppose that an external observer far from
the black hole projects it onto an eigenstate of the outgoing
modes. In this case, the model of Sec. II D should provide

an accurate estimate of the stress energy, and we expect the
infalling observer to see a firewall.
The resolution is very similar to that of the original

EPR paradox. Suppose the infalling observer is initially
spacelike separated from the outside observer. His
measurements are unaffected by the outside observer’s
measurements. But, nevertheless, the measurements can
be correlated via the nonlocality of ordinary quantum
mechanics. Effectively, the density matrix �A corresponds
to a trace over macroscopic superpositions of the states of
the outside observer. Only in a generic superposition is the
correlator hT��iU�U� finite.

A measurement in the state projected by the outside
observer hT��OM2iU�U� is expected to be large, where

the operator OM2 represents the measurement of the

outside observer on M2

M2
pl

Hawking particles. However, the

unnaturally large value for this correlator only appears as a
puzzle to the outside observer if he is able to accelerate
away from the black hole and compare notes with the
distant observer. It has no local significance to the infaller,
except in the atypical situation when the black hole is
prepared in such an eigenstate from the beginning.
However, here we may rely on the fact that the likelihood

of such an eigenstate is of order e�M2=M2
pl .

Another variant on this process involves an observer who
stays outside the black hole for a long time to precisely
measure its state, and then falls in. Perhaps not surprisingly,
such an observer can predict the emission of nonthermal
Hawking particles and choose to fall into the horizon to
measure them. Such an observer will similarly see a large
effect of order (8) near the stretched horizon. However, the
practicality of these measurements seems unlikely. Such an
observer would need energy and entropy with which to
store all these data, comparable to those of the black hole
he is reconstructing. This process would be well approxi-
mated by the collision of two black holes of similar mass. In
such a collision, Planck-scale curvatures are not produced
in the vicinity of the apparent horizon(s), but there is,
nevertheless, a substantial fraction of the initial Bondi
energy radiated in terms of gravitational radiation. It is
interesting to note that gravitational effects show a tendency
to smooth out would-be curvature or stress energy singu-
larities. We conclude that, just as atypical pure states can
give surprising answers, we may also have atypical observ-
ers who are surprised by their measurements.
Finally, one can try to imagine that a single Hawking

particle plays the role of the observer, to parallel the argu-
ments of [17], who instead conclude a firewall exists at the
horizon. Related arguments have been made in [18,19] in
the context of the fuzzball scenario. The arguments made
in these works have already been rebutted in [20], and in
the present work we extend and strengthen this approach.
In the case of a single Hawking particle the ‘‘observer’’
only has access to a 1-dimensional subspace of the Hilbert
space, so once again it is appropriate to trace over the other
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subspaces. For an infalling Hawking particle, we reproduce
(9) with the velocity U� replaced by a normalized null
vector. For an outgoing Hawking particle we get a negli-
gible result. We conclude, therefore, that neither Hawking
particles nor infalling observers see drama near the
stretched horizon of a black hole in a generic pure state.
However, it is possible to choose a special pure state, or
even a special observer, where this conclusion does not
hold.

III. DISCUSSION

To extend these considerations to an observer falling
across the horizon, one would need to account for the fact
that the mapping from the fundamental unitary description
to the effective description is no longer local. The rules of
unitary and locality in the bulk must then be given up.
Some early work which found that local effective field
theory does not predict its own demise when horizons are
present appeared in [21,22]. Rather, we expect that local
unitary effective field theories [23] are capable of approxi-
mately describing the measurements that may be carried
out by an infalling observer. However, these will disagree
with the exact answers of a unitary nonlocal holographic
description of the same measurements [8]. Related ideas
have been considered more recently in the context of the
firewall scenario using a quantum computational model in

[24]. Evidence for such a scenario has been provided using
the AdS/CFT framework in [25]. This scenario has a
chance of working because the finite lifetime of an infal-
ling observer limits the measurement operations that may
be carried out; thus, the effective field theory in a region
inside the horizon need not give exact answers.
From the viewpoint of evolution of the stretched horizon

theory, an infalling observer’s degrees of freedom evolve
for a time of order the scrambling time, before being
reemitted in the Hawking radiation. The scrambling time,
measured at infinity, thus provides a time scale at which the
evolution of these degrees of freedom qualitatively
changes. It is tempting to match this delay time with the
proper time that the infaller takes to hit the singularity. We
hope to return to this question using more specific models
of the stretched horizon theory in future work, though
progress has already been made [8,25].
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