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Doubts have been expressed on the universality of holographic/string-inspired quantization rules for

the horizon areas of stationary black holes, or the products of their radii, already in 4-dimensional general

relativity. Realistic black holes are not stationary but time-dependent. We produce three examples of

4-dimensional general-relativistic spacetimes containing dynamical black holes for at least part of the

time, and we show that the quantization rules (even counting virtual horizons) cannot hold, except

possibly at isolated instants of time, and do not seem to be universal.

DOI: 10.1103/PhysRevD.88.044011 PACS numbers: 04.70.�s, 04.70.Bw

I. INTRODUCTION

Recently, there has been some excitement in the
research community working on the holographic princi-
ple and stringy/supergravity black holes following the
observation that the products of Killing horizon areas
for certain multihorizon black holes are independent of
the black hole mass and depend only on the quantized
charges (supergravity and extradimensional black holes
with angular momentum and electric and magnetic
charges were considered) [1–9]. Older results on black
holes far from extremality [1,2,10] induce one to take into
account both outer and inner black hole horizons when
studying the quantization of black hole entropies and
horizon areas. Expressions for products of the horizon
areas of black holes in four and higher dimensions have
been hypothesized or suggested [3–6] and then questioned
in more recent work [9].

This literature is inspired by the holographic principle
and string theories (although the results are not, strictly
speaking, derived from string theories), and it stems from
the underlying idea that quantized products of areas
depending on combinations of integers must carry the
signature of some specific microphysics. This feature
would not be too surprising if the area A of a horizon is
related to its entropy S through the famous Bekenstein–
Hawking formula S ¼ A=4 (in units in which c ¼ ℏ ¼ 1)
and corresponds to a statistical mechanics based on micro-
scopic models counting microstates determined by quan-
tum gravity (see, e.g., Ref. [11]). When there are outer (þ )
and inner (� ) horizons, the quantization rules recurrent in
the literature are

A� ¼ 8�l2pl

� ffiffiffiffiffiffi
N1

p � ffiffiffiffiffiffi
N2

p �
; N1; N2 2 N; (1)

or

AþA� ¼ ð8�l2plÞ2N; N 2 N; (2)

where lpl is the Planck length [1,2,10]. N1;2 are integers

for supersymmetric extremal black holes but are related to
the numbers of branes, antibranes, and strings in less
simple situations [12]. A weaker rule states that the
product of horizon areas is independent of the black
hole mass and depends only on the quantized charges.
Rules of the type (2) are found for Einstein–Maxwell
black holes in 5 and 6 dimensions, asymptotically flat
[1,4–6,8,10], or asymptotically de Sitter or anti-de Sitter,
and also for black holes in D ¼ 3 and D � 6 dimensions
[9], and it seems to apply also to black rings and black
strings in higher dimensions [6] (asymptotically de Sitter
and anti-de Sitter black holes in general relativity and
other theories of gravity, in various dimensions, are dis-
cussed in Ref. [9]).
A word of caution against the temptation of regarding

these rules as universal for all types of black holes
endowed with multiple horizons [3] has been voiced
by Visser [13,14]. Visser considered black holes in
4-dimensional general relativity and found that, in these
situations, products of areas do not give mass-
independent quantities, nor are they related in a simple
way to integers. Rather, it is quadratic combinations
of the various horizon radii (with the dimensions of
an area, which can be referred to as ‘‘generalized areas’’)
which generate mass-independent quantities and
are, presumably, the best candidates to be quantized
[13,14], although no evidence has been presented thus
far that these generalized areas have any special physical
significance. Moreover, it is essential to include in
these algebraic combinations also cosmological and
virtual horizons in addition to the black hole horizons
[14]. Virtual horizons correspond to negative or
imaginary roots of the equation locating the horizons
(which, in nonasymptotically flat solutions of the
Einstein equations, provides also cosmological horizons).
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The quantization rules break down also for general
Myers–Perry black holes in dimension D � 6 and for
Kerr–anti-de Sitter black holes with D � 4 unless the
virtual horizons are included in the picture [15].

In this paper we point out a fact which induces even
more caution in discussing the products of horizon areas.
The horizons considered in the literature are Killing
(and event) horizons. Realistic black holes are not
stationary if nothing else because they emit Hawking
radiation and the backreaction due to this effect changes
their masses which become time-dependent, together with
their horizon radii and areas. For astrophysical black
holes, the effect is completely negligible, but the same
cannot be said for quantum black holes. Therefore, a
timelike Killing vector will not be present, and in realistic
situations one should consider not Killing and event
horizons but other kinds of horizons. Dynamical horizons
have received much attention in quantum gravity [16];
at present it seems that apparent horizons (AHs; see
Ref. [17] for reviews) are the best and most versatile
candidates for the notion of time-dependent ‘‘horizon,’’
and it is claimed that thermodynamical laws can be
associated with AHs [18]. In any case, AHs are used as
proxies for event horizons in studies of gravitational
collapse in numerical relativity [19]. AHs coincide with
event horizons in stationary situations, but, in dynamical
situations, they are spacelike or even timelike. In the
following we consider dynamical situations, and we focus
on AHs.

II. TOY MODELS FOR DYNAMICAL
BLACK HOLES

Here we consider three toy models of dynamical black
holes, which are implemented by embedding them in a
Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) cosmo-
logical ‘‘background’’ (we use quotation marks because,
due to the nonlinearity of the Einstein equations, one
cannot split the metric into a background and a deviation
from it in a covariant way). In the first model, a McVittie
spacetime, there are a black hole, a cosmological, and a
virtual horizon. In the second model, a generalized
McVittie solution of the Einstein equations, the
‘‘McVittie no-accretion condition’’ is relaxed to allow
accretion of energy, and then we have either two real
horizons (a black hole and a cosmological horizon) or two
virtual horizons. The third model consists of an electri-
cally charged (but nonaccreting) generalization of the
McVittie spacetime. In this case there is a charge to
quantize, but the behavior of the horizons is the same
as in the uncharged case. Our main point is that, in
dynamical situations, even if combinations of AH radii
which are mass-independent exist, they depend continu-
ously on time and cannot be expressed as combinations of
integers.

A. McVittie spacetime

The McVittie metric [20] describes a black hole em-
bedded in a FLRW universe, which is a truly dynamical
spacetime.1 Limiting ourselves, for simplicity, to a spa-
tially flat FLRW background, the line element can thus be
written in the form [21]

ds2 ¼ �
�
1� 2m

R
�H2ðtÞR2

�
dt2

þ dR2

1� 2m
R

� 2HðtÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

R

q dtdRþ R2d�2
ð2Þ; (3)

where m is a constant related to the mass of the central
inhomogeneity, d�2

ð2Þ ¼ d�2 þ sin 2�d’2 is the metric on

the unit 2-sphere, R is the areal radius, HðtÞ � _aðtÞ=aðtÞ is
the Hubble parameter, aðtÞ is the scale factor of the FLRW
background, and an overdot denotes differentiation with
respect to the comoving time t. The locally static
Schwarzschild–de Sitter–Kottler spacetime corresponds

to aðtÞ ¼ exp ð ffiffiffiffiffiffiffiffiffi
�=3

p
tÞ and H ¼ ffiffiffiffiffiffiffiffiffi

�=3
p

(where �> 0 is
the cosmological constant) and is a special case of the
McVittie metric which can be obtained using a simple
transformation of the time coordinate [22]. Assuming a
perfect fluid stress-energy tensor, the Einstein equations
provide the energy density �ðtÞ and pressure Pðt; RÞ of the
background fluid. Again for simplicity, let us restrict our-
selves to a cosmic fluid which reduces to dust (equation of
state parameter w � P=� ¼ 0) at spatial infinity; then

�ðtÞ ¼ 3

8�
H2ðtÞ; (4)

Pðt; RÞ ¼ �ðtÞ
0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
R

q � 1

1
A: (5)

The inverse metric is

ðg��Þ ¼

�1
1�2m=R

�HRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2m=R

p 0 0

�HRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2m=R

p
�
1� 2m

R �H2R2

�
0 0

0 0 1
R2 0

0 0 0 1
R2sin 2�

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(6)

For any spherically symmetric metric written in terms of
the areal radius R, the AHs are located by solving the
equation rcRrcR ¼ 0 or gRR ¼ 0 [23]. For the
Schwarzschild–de Sitter–Kottler spacetime, which is a
special case of McVittie, this equation coincides with the
horizon condition reported in Ref. [14] but, in the general

1The special case of a de Sitter background admits a timelike
Killing vector and is locally static in the region between the
black hole and the de Sitter cosmological horizons.
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case, the Hubble parameter is time-dependent instead of
constant. This cubic equation,

R3 � R

H2ðtÞ þ
2m

H2ðtÞ ¼ 0; (7)

has three solutions which, under conditions specified
below, correspond to a time-dependent black hole AH
with (proper) radius RBHðtÞ, a cosmological AH with ra-
dius RCðtÞ, and a virtual AH with negative radius RVðtÞ.
The three roots are

RBH ¼ 2H�1ffiffiffi
3

p sin c ; (8)

RC ¼ �RV ¼ H�1

�
cos c � 1ffiffiffi

3
p sin c

�
; (9)

with c ðtÞ given by sin ð3c Þ ¼ 3
ffiffiffi
3

p
mHðtÞ. Here m and H

are both necessarily positive (we only consider expanding
universes), and RV defines the negative root. As discussed
in Ref. [24], the condition for the black hole and cosmo-
logical AHs to exist is 0< sin ð3c Þ< 1, which corre-

sponds to mHðtÞ< 1=ð3 ffiffiffi
3

p Þ (and mHðtÞ> 0, which is
always satisfied). Unlike the Schwarzschild–de Sitter–
Kottler case where the Hubble parameter is a constant,
this inequality will only be satisfied at certain times during
the cosmological expansion and will be violated at other
times. The threshold between these two regimes is the time

at which mHðt�Þ ¼ 1=ð3 ffiffiffi
3

p Þ [for a dust-dominated back-

ground with HðtÞ ¼ 2=ð3tÞ, this critical time is t� ¼
2

ffiffiffi
3

p
m]. At early times t < t�, it is m> 1

3
ffiffi
3

p
HðtÞ , and both

RBHðtÞ and RCðtÞ are complex and therefore unphysical. In
this case all the AHs are virtual. At the critical time t ¼ t�,
it is m ¼ 1

3
ffiffi
3

p
HðtÞ , and the AHs with radii RBHðt�Þ and

RCðt�Þ coincide at a real, physical location. There are
then a single real AH at 1ffiffi

3
p

HðtÞ and one virtual AH. At

‘‘late’’ times t > t�, it is m< 1
3
ffiffi
3

p
HðtÞ , and both RBHðtÞ

and RCðtÞ are real and, therefore, physical—there are two
real and one virtual AHs. The dynamics of the black hole
and cosmological AH radii as functions of comoving time
are pictured in Fig. 1.

The phenomenology of AHs appearing and annihilating
in pairs appears to be rather common for black holes
embedded in cosmological backgrounds, in both general
relativity and alternative theories of gravity [25–27]. The
physical reason why a pair of AHs suddenly appears in the
McVittie spacetime (3) is discussed in Ref. [24]. The same
phenomenology of Fig. 1 is found for generalized McVittie
metrics [28] and in Lemaı̂tre–Tolman–Bondi spacetimes
([29]; see also Ref. [30]) describing black holes embedded
in (spatially flat) FLRW universes.2

The Misner–Sharp–Hernandez mass MMSH [31] of a
sphere of areal radius R (which is defined for spherically
symmetric spacetimes) is [24]

MMSH ¼ mþ 4�G

3
�R3 (10)

and coincides with the Hawking–Hayward quasilocal mass
[32] in spherical symmetry. It is interpreted as the contri-
bution of the black hole mass m (which is constant because
of the ‘‘McVittie condition’’G0

1 ¼ 0, which implies T0
1 ¼ 0

for the stress-energy tensor of the cosmic fluid and forbids
accretion of the latter onto the black hole) and a contribu-
tion due to the energy of the cosmic fluid inside the sphere.
Searching for generalized areas which are independent
of the black hole mass, Visser’s discussion for the
Schwarzschild–de Sitter–Kottler black hole can be repeated
almost without changes. Including the virtual horizon in the
count, it is straightforward to see that the quantities

RVðRBH þ RCÞ þ RBHRC ¼ � 1

H2ðtÞ (11)

and

ðRBH þ RCÞ2 � RBHRC ¼ 1

H2ðtÞ (12)

are independent of the black hole mass m. This situation
can be regarded as a special case of Visser’s discussion [14]
computing mass-independent combinations of AH radii
whenever the Misner–Sharp–Hernandez mass is a Laurent
polynomial of the areal radius R. This is clearly the case of
the McVittie metric; see Eq. (10). In the present case, the
physical mass contained in a sphere is actually given by the
Misner–Sharp–Hernandez notion, but the cosmic fluid
here serves the only purpose of generating a cosmological
background to make the central black hole dynamical, and
it seems that the relevant mass to consider when mass-
independent quantities such as Eqs. (11) and (12) are

0.2 0.4 0.6 0.8
t

1.0

0.5

0.5

1.0

R

FIG. 1. The proper radii of the AHs of a dust-dominated
McVittie metric vs time. The negative radius represents the
virtual horizon. At a critical time a cosmological AH (dashed
curve) appears together with a black hole AH (solid curve), the
former expanding and the latter shrinking.

2In the first case, both decelerating and accelerating FLRW
background universes are considered while in the second case,
by necessity, only a dust-dominated background is considered.
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searched for is the black hole contribution m, not the total
MMSH. In any case, the AH radii identify different spheres
and correspond to different Misner–Sharp–Hernandez

massesMðiÞ
MSH ¼ 2RðiÞ

AH [from Eq. (10)]. Here we stick tom.

Following Ref. [14], we have included the virtual horizon
to obtain the mass-independent quantity (11). Now, when
the AH radii change with time, the combinations (11) and
(12) are not constant but depend on time: therefore, if they
are expressed by combinations of integers at an initial time,
they will not be combinations of integers immediately
afterward. They could only be a combination of integers
at times forming a set of zero measure in any time interval.

B. Generalized (accreting) McVittie spacetime

The McVittie solution of the Einstein equations can be
generalized to allow for the possibility of radial energy
flow onto the central inhomogeneity [28,33]. Among the
class of spherically symmetric solutions of the Einstein
equations thus obtained, there is a late-time attractor for
expanding background universes, which is given by the
line element [34]

ds2 ¼ � ð1� m
2rÞ2

ð1þ m
2rÞ2

dt2 þ a2ðtÞ
�
1þ m

2r

�
4ðdr2 þ r2d�2

ð2ÞÞ

(13)

in isotropic coordinates, where aðtÞ is the scale factor of the
background FLRW universe and m is a constant. In terms
of the areal radius Rðt; rÞ ¼ aðtÞrð1þ m

2rÞ2, the AHs of this
solution of the Einstein equations corresponding to an
expanding FLRW background universe are [34]

RBH ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p
2H

; (14)

RCH ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p
2H

; (15)

where MðtÞ ¼ maðtÞ and H � _a=a is the Hubble parame-
ter of the background FLRW universe [34]. The time
evolution of the radii of the apparent horizons is reported
in Fig. 2 for a dust-dominated FLRW universe with scale

factor aðtÞ ¼ a0t
2=3. These AHs are real when 8MH � 1

and virtual when 8MH > 1 (in which case we label them
RV1 and RV2

), which happens before a critical time t�.
The products of the horizon radii prescribed in Ref. [14]

reduce to

RCHRBH ¼ RV1
RV2

¼ 2M

HðtÞ ¼ 3ma0t
5=3; (16)

which is time-dependent, for both cases in which the
AHs are real or virtual. Following the same reasoning as
in the previous section, we conclude that it cannot be
expressed as a combination of integers. The Misner–
Sharp–Hernandez/Hawking–Hayward mass of the black
hole (when the latter exists) is [34]

MMSH ¼ RBH

2
¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8MH
p
4H

; (17)

it cannot be split in any simple way into a contribution due
to the central inhomogeneity and one due to the cosmic
fluid inside the sphere of radius RBH. It is time-dependent
due to the radial energy flow onto the black hole. The
product (16) can be rewritten as

RCHRBH ¼ RV1
RV2

¼ 2MMSH

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p
2H

1
A

¼ 2MMSHRCH (18)

and depends on the physical black hole mass.

C. Electrically charged McVittie spacetime

Let us consider now the electrically charged, nonaccret-
ing, generalization of the McVittie spacetime. This situ-
ation is physically more interesting because there is
actually a charge which could be quantized. The electri-
cally charged McVittie spacetime is described by the
spherically symmetric line element [35]

ds2 ¼ � ð1� m2

4a2r2
Þ2 þ Q2

4a2r2

½ð1þ m
2arÞ2 � Q2

4a2r2
�2
dt2

þ a2ðtÞ
��

1þ m

2ar

�
2 � Q2

4a2r2

�
2ðdr2 þ r2d�2

ð2ÞÞ
(19)

in isotropic coordinates, where m ¼ const is a mass pa-
rameter, Q is the electric charge of the central inhomoge-
neity, and aðtÞ is the scale factor of the background FLRW
universe, which is chosen here to be spatially flat.

0.1 0.2 0.3 0.4
t

0.4

0.2

0.2

0.4

R

FIG. 2. The radii of the AHs of the generalized (accreting)
McVittie spacetime vs time. There are always either two virtual
AHs (with negative radii) or two real AHs with R � 0
(a cosmological AH, thick solid curve, and a black hole AH,
dashed curve, both appearing at a critical time).
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The areal radius is clearly

Rðt; rÞ ¼ aðtÞr
��

1þ m

2ar

�
2 � Q2

4a2r2

�

¼ arþmþ m2

4ar
� Q2

4ar
; (20)

and the apparent horizons are located by the equation
rcRrcR ¼ 0. After a straightforward calculation, this
equation becomes

H2½ð2arþmÞ2 �Q2�4 � 4ð4a2r2 �m2 þQ2Þ ¼ 0:

(21)

This form is not particularly useful for locating the appar-
ent horizons because it is expressed in terms of the radial
coordinate r; in order to turn it into a more useful expres-
sion involving only the proper (areal) radius R and the
time t, one inverts Eq. (20) and obtains

r ¼ 1

2a

�
R�mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þQ2 � 2mR

q �
(22)

by choosing the positive sign of the square root. Using
Eqs. (22) and (21) becomes

4H2ðtÞR4

�
R�mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þQ2 � 2mR

q �
4

�
�
R�mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þQ2 � 2mR

q �
2 þ ðm2 �Q2Þ ¼ 0

(23)

in terms of R and t. It is complicated to solve this tran-
scendental equation or even to give explicit analytical
criteria for the existence and number of its roots, but it is
clear that, when solutions exist, they depend on time and
generalized areas, and their products will also depend on
time and will not be expressed as simple combinations of
integers times a constant. For illustration, Eq. (23) is solved
numerically for special values of the parameters using the

scale factor aðtÞ ¼ a0t
2=3 of a dust-dominated FLRW

background, and the radii of the real apparent horizons
are plotted in Fig. 3.

The case of a charged McVittie spacetime with jQj ¼ m
can be treated explicitly as the relevant expressions sim-
plify considerably in this case. The areal radius is simply
R ¼ arþm � m, and the equation locating the apparent
horizons becomes

1

16H2
¼ R4ðR�mÞ2 (24)

or

SðRÞ � R2ðR�mÞ ¼ 1

4H
(25)

in an expanding universe. The function SðRÞ is a cubic
with a local maximum of zero value at R ¼ 0 and a
local minimum (of value �4m3=27) at R ¼ 2m=3; in the

physical range m � R<þ1, it is always increasing,
starting from zero at R ¼ m and going to infinity as
R ! þ1. Therefore, for any t > 0 there is one and only
one intersection between the graph of the function SðRÞ
and the horizontal line with ordinate value 1=4H ¼ 3t

8 > 0

[where, as usual, we assume aðtÞ ¼ a0t
2=3 for a dust-

dominated FLRW background], i.e., there is always one
and only one apparent horizon with a radius which in-
creases as the universe expands. (A detailed analysis of
the apparent horizons of the charged McVittie spacetime,
including the extremal case, will be reported elsewhere.)

III. CONCLUSIONS

The cosmological black holes reported here are just toy
models for dynamical black hole horizons; the main point
is that realistic black holes are time-dependent, not sta-
tionary. Therefore, far-reaching conclusions about the
quantization of black hole horizon areas, or of quantities
which are quadratic in the radii of Killing horizons
(generalized areas), may be misleading and may not cor-
respond to realistic, time-dependent, situations. It is inter-
esting to probe the conjecture about mass independence
and generalized area quantization using examples of time-
varying black holes in 4-dimensional general relativity
before approaching higher-dimensional black objects in
supergravity or stringy objects. Exact solutions of the field
equations of Einstein theory describing time-varying black
holes are not easy to find, and we resort to the more well
known cosmological black holes to provide examples
of time-dependent black holes—the cosmological back-
ground is not conceptually essential here. In general,
AHs depend on the spacetime foliation [36], but in the
presence of spherical symmetry, to which we have re-
stricted ourselves, this does not appear to be a significant
problem. For the McVittie metric (as well as for its special

FIG. 3 (color online). The proper radii vs time of the real AHs
of an electrically charged McVittie spacetime with a spatially
flat, dust-dominated, FLRW background.
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Schwarzschild–de Sitter–Kottler static case), there are gen-
eralized areas which are independent of the black hole
mass. However, even if they can be expressed as 8�l2pl
times a combination of integers at some initial time, this
expression changes as time goes by. The corresponding
quantities for the generalized accreting McVittie and the
electrically charged McVittie black holes are mass- and
time-dependent.

Variations on the theme can be contemplated. If only the
black hole and the cosmological AHs are retained and
considered as physical, their area will be zero at all times
0< t < t�; zero is an integer, alright, but this interpretation
entails an entropy suddenly jumping from zero (describing
a naked singularity in a FLRW background) to a value not
reducible to a combination of integers and depending on the
black hole mass. If the cosmological AH is excluded from
the picture, then there remains only the black hole AH, the
area of which is initially zero, then jumps to a positive
value, and then decreases monotonically as time goes by
(see Fig. 1). More complicated black holes with multiple
AHs will lend themselves to the consideration of more

possible combinations of the AH radii, but probably the
most sensible way to proceed is to include all AH radii,
even virtual ones, when searching for quantizable, mass-
independent quantitites, as done in Ref. [14].When realistic
time-dependent horizons are considered, however, the con-
nection between products of areas and combinations of
integers becomes even more speculative, and perhaps it
would be better to put it on a firmer ground or find out its
limits of validity before assuming it as a postulate or a
necessary accessory of the holographic principle. This con-
clusion reinforces that of Visser [13,14] that the black holes
of 4-dimensional general relativity do not seem to reconcile
with the usual quantization rules (1) and (2) and casts
serious doubts on the universality of these expressions.
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