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We consider general relativistic homogeneous gravitational collapses for dust and radiation. We show

that replacing the density profile with an effective density justified by some quantum gravity framework

leads to the avoidance of the final singularity. The effective density acts on the collapsing cloud by

introducing an isotropic pressure, which is negligible at the beginning of the collapse and becomes

negative and dominant in the strong-field regime. Event horizons never form and therefore the outcome of

the collapse is not a black hole, in the sense that there are no regions causally disconnected from future

null infinity. Apparent horizons form when the mass of the object exceeds a critical value, disappear when

the matter density approaches an upper bound and gravity becomes very weak (asymptotic-freedom

regime), form again after the bounce as a consequence of the decrease in the matter density, and eventually

disappear when the density becomes too low and the matter is radiated away. The possibility of detecting

radiation coming from the high-density region of a collapsing astrophysical object in which classically

there would be the creation of a singularity could open a new window to experimentally test theories of

quantum gravity.
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I. INTRODUCTION

The search for a theory of quantum gravity is surely one
of the most important open issues in contemporary theo-
retical high energy physics and a very active research field.
The key problem is the complete absence of experimental
data capable of testing the validity of the large number of
different models that have been proposed so far. Up to now,
we have no observational evidence of any quantum gravity
phenomenon. The natural energy scale of quantum gravity
is the Planck mass MPl � 1019 GeV, which is definitively
too high to be reached in particle colliders on Earth, even in
the foreseeable future.

In the literature, there are a few proposals that try to
catch observational signatures of quantum gravity effects.
The most promising approach is likely the study of some
primordial features in the cosmic microwave background
radiation; they are supposed to have been generated during
inflation and may encode some details about quantum
gravity [1]. Another proposal concerns the possibility of
the existence of large extra dimensions; in these models,
gravity could become strong at energies much lower than
MPl, and possibly accessible in future colliders [2].
However, these scenarios encounter serious problems
when they have to explain the cosmology of the early
Universe. A third idea is to detect photons from very
distant sources and check if there is a delay in the arrival
time of photons with different energies, as a consequence
of Planck-scale-suppressed corrections to the standard dis-
persion relation [3]. It is not really clear if this is actually a

test of quantum gravity or of the structure of the spacetime,
and as of now all the data are consistent with the normal
dispersion relation of special relativity.
This paper is the first study of a program whose aim is to

investigate the possibility of observing quantum gravity-
related phenomena in the gravitational collapse of very
massive stars. General relativistic equations for gravita-
tional collapse can describe the final stages of the life of a
star when its dense core implodes under its own gravity. In
the standard picture, if the neutron degeneracy pressure
threshold is passed, there is nothing capable of halting the
collapse, and the final product is a spacetime singularity,
where the matter density diverges, predictability is lost,
and standard physics breaks down. Depending on the for-
mation of trapped surfaces, the singularity may either be
hidden behind a horizon—and in this case the outcome of
the collapse would be a black hole—or be naked, and thus
be visible to distant observers. The weak cosmic censor-
ship conjecture asserts that singularities formed from
gravitational collapse must be hidden within black holes
[4]. Although some examples are known in which naked
singularities can form from regular initial data, their stabil-
ity and genericity are not well understood at present; see,
e.g., Ref. [5] for some early results, and Ref. [6] for a recent
review. We know that a black hole in which the central
singularity is replaced by a finite distribution of exotic
matter can in principle lose its horizon [7], a result that
suggests how the behavior of matter fields in the last stages
of collapse is important for the horizon structure and hints
toward a possible resolution of the central singularity.
For some references on the possibility of observationally
testing the existence of singularities, see, e.g., Ref. [8]
and references therein. For all these reasons, it has now
become of crucial importance to understand if we can
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observationally test the strong-field regime where the
classical relativistic framework might fail. Our strategy is
to investigate how quantum effects can affect the formation
of the singularity and of the trapped surfaces in order to see
if the properties of the radiation emitted during the collapse
in the ultra-dense region close to the classical singularity
can reach distant observers and possibly carry information
about the quantum gravity regime.

If we understand the singularity as a regime where the
classical description breaks down and Planck-scale effects
arise, then the classical formation of a naked singularity
suggests that these effects might propagate and influence
the outside universe. The singularity would presumably be
resolved within a theory of quantum gravity [9,10] and the
existence of solutions where the classical singularity is
naked would then indicate that spacetime regions of
extremely high density occurring at the core of the collapse
might be causally connected to the outside universe, thus
bringing hints of new physics from catastrophic astrophys-
ical events. Since we do not yet have any theory of quan-
tum gravity, most attempts reduce to the study of some
effective theory that describes quantum gravity at a semi-
classical level by the introduction of an appropriate modi-
fication of Einstein gravity in the strong-field regime.
Attempts to reformulate classical models within a quantum
gravity approach have been successfully applied to
cosmology [11], where the big bang singularity can be
resolved and replaced by a bounce. In the context of
gravitational collapse, loop quantum gravity (LQG) has
been used to show how the singularity appearing at the
end of the collapse can be removed [12]. It can be shown
that quantum corrections to Einstein’s equations can be put
in a semiclassical framework where effective quantities
take the place of the classical ones. Such an approach
was used in Ref. [13], where LQG corrections to the
collapse of a scalar field were considered. Here, we will
implement a similar strategy for the collapse of both a
cloud of non interacting particles (dust) and a perfect fluid
with a linear equation of state that describes radiation. The
treatment is completely classical and the quantum correc-
tions appear in the form taken by the effective density and
effective pressure of the system.

The Oppenheimer-Snyder (OS) marginally bound col-
lapse of a dust sphere is the simplest case of gravitational
collapse [14]. Although the model is extremely simple, it
can give some insights into the behavior of classical gravity
in the strong-field regime. In this model, the singularity
that forms at the end of the collapse is always hidden
behind a horizon. It is known that the introduction of
pressures in dust collapse can halt the process and cause
a bounce. In the classical picture, in order to have a
physically viable model, the pressure profile must satisfy
certain assumptions, like the weak energy condition. On
the other hand, we can study the case of collapse with
pressures that lead to a bounce, neglecting the weak energy

condition, if we are willing to reinterpret the ‘‘exotic’’
matter content on the right-hand side of Einstein’s equa-
tions as a semiclassical limit coming from an effective
theory of quantum gravity inducing corrections in the
small-scale/strong-gravity regime.
In this scenario, there is a new scale introduced in the

evolution. It is governed by the value of the classical
critical density �cr, which is a parameter a posteriori
related to the Planck-scale regime to be introduced from
external considerations (such as LQG) and we can retrieve
the classical solution in the limit of �cr going to infinity.
In our simplest quantum-gravity-inspired gravitational col-
lapse, the physical matter density reaches its maximum
value �cr at the critical time tcr < ts, where ts is the time at
which the singularity was reached in the classical case.
At tcr, the gravitational force is turned off (the effective
density vanishes) and we are in a regime of asymptotic
freedom. At this time, we have a bounce and the collapsing
object starts expanding. As we consider the simplest case
of homogeneous density and pressure, at the bounce the
gravitational force is switched off everywhere and there is
no apparent horizon. The latter forms again after the
bounce and eventually disappears forever. So, an event
horizon never forms, in the sense that there are no regions
causally disconnected from future null infinity. The col-
lapse cannot form a black hole, but only a temporary
apparent horizon that can mimic a black hole for a time
much shorter than the whole process of collapse and
expansion.
The paper is organized as follows. In Sec. II, we

briefly summarize the classical framework for relativistic
collapse: in Sec. II A, we review the basic equations of the
OS homogeneous dust model, while Sec. II B is for the
Friedmann-Robertson-Walker (FRW) radiation collapse
model. In Sec. III, we present our quantum-inspired gravi-
tational collapse toy model and we show how the effective
density coming from quantum corrections can resolve the
formation of the singularity. Finally, Sec. IV is devoted to a
brief summary and future perspectives.

II. GRAVITATIONAL COLLAPSE

The most general spherically symmetric metric describ-
ing a collapsing cloud of matter in comoving coordinates is
given by

ds2 ¼ �e2�dt2 þ R02

G
dr2 þ R2d�2; (1)

where d�2 represents the line element on the unit
two-sphere and �, R, and G are functions of t and r. The
energy-momentum tensor is given by

T
�
� ¼ diagf�ðr; tÞ; prðr; tÞ; p�ðr; tÞ; p�ðr; tÞg; (2)

and Einstein’s equations relate the metric functions to the
matter content,
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pr ¼ � _F

R2 _R
; (3)

� ¼ F0

R2R0 ; (4)

�0 ¼ 2
p� � pr

�þ pr

R0

R
� p0

r

�þ pr

; (5)

_G ¼ 2
�0

R0 _RG; (6)

where the 0 denotes a derivative with respect to r, and
the _ denotes a derivative with respect to t. The function
Fðr; tÞ, which is proportional to the amount of matter
enclosed within the shell labeled by r at the time t, is
called the Misner-Sharp mass, and is given by

F ¼ Rð1�Gþ e�2� _R2Þ: (7)

The whole system has a gauge degree of freedom that
can be fixed by setting the scale at a certain time. In the
case of collapse, the usual prescription is that the area
radius Rðr; tÞ is set equal to the comoving radius r at the
initial time ti ¼ 0, Rðr; 0Þ ¼ r. We can then introduce a
scale function a,

Rðr; tÞ ¼ raðr; tÞ; (8)

that will go from 1, at the initial time, to 0, at the time of the
formation of the singularity. The condition to describe
collapse is thus given by _a < 0. The regularity of the
energy density at the initial time, as seen from Eq. (4),
requires that Fðr;tÞ¼ r3Mðr;tÞ, withMðr;tÞ¼P1

n¼0Mnr
n.

In order to have a physically realistic collapse, one
typically requires some conditions for the matter model.
Usually the assumptions are the following.

(1) The regularity of the initial data for density and
pressure.

(2) The absence of cusps at the center for the energy
density [which implies that M0ð0; tÞ ¼ 0].

(3) The energy density does not increase from the center
outwards at any given time.

(4) The weak energy condition (� � 0, �þ pr � 0,
and �þ p� � 0).

We know that the energy conditions are averaged classical
inequalities that do not take into consideration the micro-
scopic properties of the matter and are likely to be violated
in the semiclassical quantum regime [15].

A. Classical dust model

Let us now consider the simplest case of dust collapse,
known as Lemaı̂tre-Tolman-Bondi model, where pr ¼
p� ¼ 0 [16]. In the Lemaı̂tre-Tolman-Bondi model, from
Eq. (3) one immediately gets thatM ¼ MðrÞ and the cloud
can be matched to a Schwarzschild exterior with total mass
2MT ¼ FðrbÞ at the boundary rb [17]. From Eq. (5), one

can choose the time gauge in such a way that � ¼ 0. Then
Eq. (6) implies G ¼ 1þ fðrÞ, which in the marginally
bound case (representing particles that fall from infinity
with zero initial velocity) simply becomes G ¼ 1. The
metric is then given by

ds2 ¼ �dt2 þ R02dr2 þ R2d�2: (9)

The Misner-Sharp mass, Eq. (7), takes the form of an
equation of motion,

_a ¼ �
ffiffiffiffiffi
M

a

s
; (10)

with the minus sign chosen in order to describe a collapse.
The integration of Eq. (10) is straightforward and gives

aðr; tÞ ¼
�
1� 3

2

ffiffiffiffiffi
M

p
t

�
2=3

: (11)

Then the remaining Einstein’s equation, Eq. (4), is
written as

� ¼ 3Mþ rM0

a2ðaþ ra0Þ ; (12)

which completely solves the system.
The model has a strong-curvature singularity for a ! 0,

as can be seen from the divergence of the Kretschmann
scalar,

R����R
���� ¼ 12

€a2a2 þ _a4

a4
: (13)

The singularity is achieved along the curve tsðrÞ ¼ 2=3
ffiffiffiffiffi
M

p
and the central line r ¼ 0 is regular for a � 0. The central
singularity tsð0Þ can be visible to faraway observers
depending on the matter profile MðrÞ [18]. In the present
work, we restrict our attention to the simplest case, the OS
dust collapse, where the choice of MðrÞ ¼ M0 causes the
density to be homogeneous and the final outcome is a black
hole. In the OS model, the metric takes the form

ds2 ¼ �dt2 þ a2ðdr2 þ r2d�2Þ; (14)

which is the time reversal of the FRW cosmological
scenario. We then get

�ðtÞ ¼ 3M0

a3
; (15)

M0 ¼ a _a2; (16)

aðtÞ ¼
�
1� 3

2

ffiffiffiffiffiffiffi
M0

p
t

�
2=3

; (17)

and all the shells become singular at the same comoving
time ts ¼ 2=3

ffiffiffiffiffiffiffi
M0

p
. Here, the apparent horizon forms at the

boundary at a time antecedent to the formation of the
singularity, thus leaving the region where Planck-scale
effects arise hidden from faraway observers.
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B. Classical radiation model

We turn now to the classical FRW solution describing
the collapse of a homogeneous perfect fluid, where pr ¼
p� ¼ pðtÞ, and consider the case of radiation where the
equation of state relating the pressure to the density is

� ¼ 3p: (18)

The isotropy and homogeneity of the pressure implies that
Eq. (6) must give G ¼ 1þ fðrÞ, in analogy with the dust
case. Again, we will consider here the marginally bound
solution with f ¼ 0. Unlike in the dust scenario, the pres-
ence of the homogeneous pressure indicates that the mass
profile is not constant throughout the collapse, i.e.,M must
depend on t, and therefore the matching with the exterior
must be done with the Vaidya solution [19]. The equation
of state together with Einstein’s equations (3) and (4)
implies that the mass profile must satisfy the following
differential equation:

dM

da
¼ �M

a
; (19)

which gives M ¼ M0

a . Then the energy density becomes

� ¼ 3M0

a4
(20)

and

M0 ¼ a2 _a2: (21)

Finally, the integration of the equation of motion (10) gives

aðtÞ ¼ ð1� 2
ffiffiffiffiffiffiffi
M0

p
tÞ1=2: (22)

Once again, the metric is given by Eq. (14), and the
singularity occurs at the same time ts ¼ 1=2

ffiffiffiffiffiffiffi
M0

p
for

each shell. Like in the dust model, the final outcome is a
black hole.

III. QUANTUM-INSPIRED COLLAPSE

The above system of Einstein’s equations for dust
or radiation collapse is closed once a free function is
specified—typically the mass profile M or the density
profile �. In the case of the OS model, we have chosen
the mass profileM ¼ M0, while for the radiation model we
have specified the equation of state (18). Therefore an
effective model of quantum gravitational collapse can be
given by a well-motivated choice of the free function that
replaces the classical choice, while introducing a scale
factor in the form of a critical density �cr that can be
related to the Planck scale. We can then interpret the model
as a modification to the standard dust or radiation collapse
scenario induced by quantum corrections in the strong-
field limit. To this aim, we can rewrite the right-hand
side of Einstein’s equations as dustþ corrections or
radiationþ corrections, and the newly introduced parame-
ter �cr indicates the scale at which the corrections become

relevant. Typically, we will have the correction becoming
important at high densities, so one can write

�corr ¼ �1�
2 þ �2�

3 þ oð�3Þ; (23)

where the parameters�i ¼ �ið�crÞ that determine the scale
of the quantum corrections will go as an inverse power of
�cr and in general will be determined from the quantum
theory. In this way, we can write T�� ¼ Tclass

�� þ Tcorr
�� ,

where, for dust, we obviously have pclass ¼ 0. We can
then move the correction Tcorr

�� to the left-hand side of

Einstein’s equations, thus reinterpreting the model as a
dust or radiation solution in some effective theory of
gravity that accounts for corrections in the strong-field
limit. This procedure is completely equivalent to replacing
Newton’s constant for classical gravity GN with a variable
coupling functionGð�Þ derived from the effective quantum
theory.
We expect that quantum effects become relevant towards

the formation of the singularity, as they are supposed to
‘‘smear’’ the singularity, thus avoiding the breakdown of
predictability that occurs in the classical case. In general,
the system of Einstein’s equations for perfect fluid
collapse, when the equation of state is not specified, leaves
the freedom to choose one free function. It is not difficult to
show that a suitable choice of the mass profile can
drastically change the structure underlying the formation
of the horizon and singularity (see, for example, Ref. [20]).
In order to study how the inclusion of quantum effects in
the form of an effective theory affects the formation of the
singularity at the end of the collapse, we assume that at first
order the corrections due to quantum gravity take the form
given by Eq. (23) and thus we guess an effective energy
density profile as a function of the dust and radiation
energy densities [as written in Eqs. (15) and (20), respec-
tively] as �eff ¼ �þ �corr and take this as the free function
for the system.
Following Ref. [13], we consider here an effective the-

ory of gravity where the corrections to the energy density
(23) take the form

�eff ¼ �

�
1� �

�cr

�
�
; � � 1; (24)

and the effective density specified by this equation will
play the role of the free function in the effective model for
collapse. In the following, we will consider the cases
� ¼ 1 and 2. The case � ¼ 1 corresponds to the choice
of �1 ¼ �1=�cr and �i ¼ 0 for i > 1. The case � ¼ 2
corresponds to the choices �1 ¼ �2=�cr, �2 ¼ 1=�2

cr, and
�i ¼ 0 for i > 2. In the weak-field limit, for large �cr,
quantum corrections become negligible, and in the limit
of infinite �cr we recover the classical dust and radiation
cases. For low densities (i.e., close to the initial time), the
effective energy density approaches that of the classical
models.
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A. Quantum-inspired dust model

Let us note that the scale function a that appears in
Eq. (15) must now be determined from the integration of
the new equation of motion coming from Eq. (23) that
replaces Eq. (16). This now becomes

_a2 ¼ M0

a
þ �1

3M2
0

a4
þ �2

9M3
0

a7
þ � � � : (25)

Here, we will consider an effective density of the form
given in Eq. (24), as suggested by first-order corrections
coming from LQG, and integrate for the cases � ¼ 1 and 2.
We then proceed to solve Einstein’s equations for the
effective theory where the density �, the pressure p, and
the Misner-Sharp mass M are replaced by the correspond-
ing effective quantities (namely �eff , peff , and Meff).
Equation (15) then becomes

�eff ¼ 3Meff

a3
; (26)

where the new effective mass MeffðtÞ is again given by
MeffðtÞ ¼ a _a2 and is not constant (the fact that Meff is a
function of t induces the presence of the effective pressure
peff). We then obtain the differential equation for the scale
function aðtÞ from Eqs. (24) and (26),

_a2 ¼ M0

a3�þ1
ða3 � a3crÞ�; with a3cr ¼ 3M0

�cr

; (27)

where we have introduced the critical scale acr. Let us note
that, for acr ! 0, we recover the dust solution with
�eff ¼ � and aðtÞ given by Eq. (17). Once solved with
the initial condition að1Þ ¼ 1, Eq. (27) gives

tðaÞ ¼ 2

3
ffiffiffiffiffiffiffi
M0

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a3cr

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3 � a3cr

q �
for � ¼ 1; (28)

tðaÞ ¼ 2

3
ffiffiffiffiffiffiffi
M0

p ð1� a3=2Þ � a3=2cr

3
ffiffiffiffiffiffiffi
M0

p ln
ða3=2 � a3=2cr Þð1þ a3=2cr Þ
ða3=2 þ a3=2cr Þð1� a3=2cr Þ

for �¼ 2: (29)

The metric for the effective model is still described by the
usual form given by Eq. (14).

The effective energy density for the toy model studied
here is homogeneous. This causes the effective dynamics
of the system to be equivalent to that of the collapse of a
homogeneous perfect fluid where the pressure, coming
from Einstein’s equation (3), is given by

peffðtÞ ¼ � _Meff

a2 _a
: (30)

The effective pressure that describes the quantum correc-
tions in the semiclassical theory is then homogeneous as
well. From

Meff ¼ M0

�
1� �

�cr

�
�
; (31)

we see that the effective pressure becomes

peff ¼ ��
�2

�cr

�
1� �

�cr

�
��1

: (32)

The effective pressure is always negative and, in the case
� ¼ 1, approaches the limiting case of p ¼ �� as the
density approaches �cr. On the other hand, in the case
� > 1, the pressure goes to zero as � ! �cr (as expected,
it becomes zero in the limit of �cr going to infinity). The
fact that the effective pressure becomes negative in the
strong-field regime is what causes the bounce of the new
density. At the initial time, the new density is equal to the
density in the classical case, while the effective pressure is
very small, although not zero (being zero in the limit of �cr

going to infinity). From these considerations, it is easy to
verify that the weak energy condition is satisfied at the
beginning of collapse, and it is violated as the quantum
gravity regime is approached.
It is worth noting that the scale function aðtÞ behaves

differently for the models with � ¼ 1 and � ¼ 2. In the
first case, a reaches the minimum value acr in a finite time
tcr, and then grows indefinitely, thus originating a gravita-
tional bounce. On the other hand, in the case � ¼ 2, the
minimum at acr is reached only as t ! 1 and therefore
there is no bounce but an indefinite collapse that slows
down until it stops asymptotically (see the right panel in
Fig. 1). The different behavior of a for different values of �
is also reflected in a different behavior for the apparent
horizon. In the case � ¼ 1 the apparent horizon curve
rahðtÞ diverges for t approaching tcr, while in the case
� ¼ 2 it diverges for t ! 1.
We will now concentrate on the case � ¼ 1. The scale

function has the form

aðtÞ ¼
�
a3cr þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a3cr

q
� 3

ffiffiffiffiffiffiffi
M0

p
2

t

�
2
�
1=3

; (33)

and it reaches a minimum at the time

tcr ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a3cr

p
3

ffiffiffiffiffiffiffi
M0

p < ts; (34)

at which �eff vanishes, and then increases for t > tcr (see
the right panel in Fig. 1). The fact that the time of the
bounce tcr occurs before the classical time of the singular-
ity is due to the choice of the integration constant in
Eq. (33), which for collapse is chosen in order to have
að0Þ ¼ 1. In standard cosmological models, the constant is
chosen in such a way that ts ¼ tcr and leads to an initial
condition a3ð0Þ ¼ 1þ a3cr > 1 for the effective model. Of
course, the metric is invariant under time translations, so
the crucial point here is that once an initial time ti is fixed
in such a way that the metric coefficients take the same
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numerical values in the classical and quantum case then
the interval �ts ¼ jts � tij is greater than the interval
�tcr ¼ jtcr � tij. The effective density reaches a maximum

at the time tmax ¼ tsð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a3cr

p � ffiffiffiffiffiffi
a3cr

p Þ and then decreases,
becoming zero at the critical time tcr.

Contrary to the classical dust case, where � diverges at
the time ts ¼ 2=3

ffiffiffiffiffiffiffi
M0

p
, in our case we can see that the new

density � ¼ 3M0=a
3 tends to the maximum value �cr as t

goes to tcr and then decreases (see the left panel in Fig. 1).
Also, the velocity of the collapsing shells _a tends to zero as
t goes to tcr, unlike the classical case where the velocity is
finite at tcr and diverges when we approach the singularity.

In this model, the strong-curvature singularity is
removed: the Kretschmann scalar is still given by
Eq. (15), but with the new scale function a it never
diverges. Furthermore, the fact that we are dealing with a
homogeneous perfect fluid for which the area radius is
Rðr; tÞ ¼ raðtÞ, together with the positivity of the scale
function a, ensures that there are no shell-crossing

singularities in the spacetime, which is therefore every-
where regular until t ¼ tcr and can be prolonged for t > tcr.
The effective mass of the collapsing perfect fluid cloud
is given by Eq. (31). We can see that Meff decreases,
becoming zero in the limit of t going to tcr (see the left
panel in Fig. 2). Therefore the matching with the exterior
spacetime must be done with the Vaidya solution describ-
ing outgoing radiation. Further, from the fact that
�effðtcrÞ ¼ MeffðtcrÞ ¼ 0, at t ¼ tcr the spacetime is flat.
This happens because in our model gravity becomes
weaker and weaker as � approaches �cr and is turned off
when � ¼ �cr. The bounce occurs at t ¼ tcr and then the
collapse changes into an expansion. At lower densities, we
recover Einstein’s gravity, but now the model describes an
expanding cloud with _a > 0.
The collapsing matter is usually required to satisfy the

weak energy condition, which in the case of a perfect fluid
reads �þ p � 0. For the effective theory described here, it
is easy to check that �eff þ peff � 0 is satisfied in the
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M0 ¼ 1 and �cr ¼ 3000. See the text for details.
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FIG. 2. Dust collapse models. Left panel: The mass profile M ¼ M0 (solid line) and Meff for � ¼ 1 (dashed line). At t ¼ tcr, the
effective mass vanishes and thus the spacetime is flat; we are in a regime of asymptotic freedom. Right panel: In order to investigate the
breakdown of the weak energy condition, we plot � for the classical dust case (solid line) and �eff þ peff for � ¼ 1 (dashed line). Here,
M0 ¼ 1 and �cr ¼ 3000. See the text for details.
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weak-field regime, close to the initial time, while it is
violated due to the negative pressures as we approach the
critical density �cr (see the right panel in Fig. 2).

In general relativity, under common assumptions like
matter-energy conditions and cosmic censorship, the
appearance of an apparent horizon is related to the exis-
tence of an event horizon. This is not the case here, because
of the unconventional properties of our effective matter.
Despite that, it is convenient to study the apparent
horizon of the spacetime and to compare the results with
the scenario of the standard picture. The condition for
the formation of trapped surfaces is given by the require-
ment that the surface Rðr; tÞ ¼ const is null; that is,
g��ð@�RÞð@�RÞ ¼ 0. For the metric in Eq. (1), this means

G� e�2� _R2 ¼ 0; (35)

and, from the definition of the Misner-Sharp mass (7),
we can write it as

1� F

R
¼ 0: (36)

In the dust case, the condition for the absence of
trapped surfaces at the initial time reduces to r2M0 < 1,
while in the model presented here we must require

r2M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a3cr

p
< 1. In the classical OS case, the

apparent-horizon curve is given by

tahðrÞ ¼ ts � 2

3
r3M0: (37)

In our model, the central singularity is avoided. What
happens to the formation of trapped surfaces? The equation
for the apparent horizon becomes

rahðtÞ ¼ a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ða3 � a3crÞ

p : (38)

It is not difficult to check that rah has a minimum for

t ¼ tmin ¼ ts
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a3cr

q
�

ffiffiffiffiffiffiffiffiffi
3a3cr

q �
: (39)

Therefore there exists a minimum radius

rmin ¼ rahðtmin Þ ¼ 24=3
ffiffiffiffiffiffiffiffiffiffi
acr
3M0

s
; (40)

for which, if the boundary is taken as rb < rmin, no trapped
surfaces form during the whole process of collapse and
bounce (see Fig. 3).

The existence of a minimum radius implies that in the
quantum-modified scenario there exists a minimal mass
Mmin below which an apparent horizon never forms. In
fact, considering the boundary condition for dust collapse
2MT ¼ r3bM0, where MT is the total mass in the exterior

spacetime, if we take the boundary rb ¼ rmin, we can
evaluate Mmin as

Mmin ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffi
a3cr

27M0

s
: (41)

From the above equation, we see that, if the critical density
is taken of the order of the Planck density, then Mmin must
be very small.
In the more general case for larger collapsing objects, an

apparent horizon forms at a time t a little bit later than the
classical case. However, when the density � approaches the
critical density �cr, gravity becomes more and more weak
(it is turned off completely when � ¼ �cr, which occurs at
the time t ¼ tcr) and the spacetime reduces to the flat
Minkowski case. The apparent horizon thus disappears
(rah diverges) and the bounce is ‘‘immediately’’ visible to
distant observers. Let us notice, however, that our model
assumes a homogeneous density and therefore at the criti-
cal time tcr gravity is turned off everywhere. In a more
realistic scenario, where the density is higher at the center,
the bounce may still be hidden behind a horizon produced
by the matter at larger radii and lower densities. After the
bounce, the collapse is reversed into an expansion and
the matter density starts decreasing. As the asymptotic-
freedom regime is left, gravity becomes strong again and a
new apparent horizon forms. However, we are now in an
expanding phase, and when the matter density becomes too
low, the apparent horizon disappears forever. Since we are
considering the marginally bound case, where collapse has
zero velocity at spatial infinity, in the expanding phase the
cloud will return to its initial configuration, but with posi-
tive velocity, and continue to expand until all the matter is
radiated to infinity.

B. Quantum-inspired radiation model

Following what we did for the dust case, we turn now to
the radiation collapse model, where the new scale function
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r a
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FIG. 3. The apparent horizon curve rahðtÞ for the classical dust
model (solid line) and the semiclassical model for � ¼ 1 (dashed
line). If the boundary of the cloud is taken smaller than rmin

(dashed-dotted line) there are never trapped surfaces forming in
the quantum-inspired model. At the time of the bounce, when
� ¼ �cr and gravity is turned off, the spacetime is flat, and there
is no horizon. This is a regime of asymptotic freedom.
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a that appears in Eq. (20) has to be determined from the
integration of the new equation of motion,

_a2 ¼ M0

a2
þ �1

3M2
0

a6
þ �2

9M3
0

a10
þ � � � : (42)

The effective density is again taken to be of the form given
in Eq. (26) and the equation of motion becomes

_a2 ¼ M0

a4�þ2
ða4 � a4crÞ�; with a4cr ¼ 3M0

�cr

: (43)

Solving the above equation in the two cases � ¼ 1 and 2,
with the initial condition að0Þ ¼ 1, we obtain

tðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a4cr

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 � a4cr

p
2

ffiffiffiffiffiffiffi
M0

p ; for � ¼ 1; (44)

tðaÞ ¼ 1� a2

2
ffiffiffiffiffiffiffi
M0

p � a2cr
2

ffiffiffiffiffiffiffi
M0

p
�
tanh�1

�
1

a2cr

�
� tanh�1

�
a2

a2cr

��
;

for � ¼ 2: (45)

Once again, the two cases are substantially different since
the scale function aðtÞ reaches its minimum value acr in a
finite time tcr for � ¼ 1, while it needs an infinite time
when � ¼ 2 (see the right panel in Fig. 4).
The effective pressure is still given by Eq. (30), where

now we have the effective mass given by

Meff ¼ M0

a

�
1� �

�cr

�
�
: (46)

The effective mass goes to zero as t approaches tcr, while
the new mass for the radiation fluid, given by M0=a,
reaches a maximum value (see the left panel in Fig. 5).
Evaluating the effective pressure, we find
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FIG. 4. Radiation collapse models. Left panel: The density � in the classical model (solid line), the density � in the quantum-
inspired collapse model with � ¼ 1 (dashed line), and the effective density �eff in the quantum-inspired collapse model with � ¼ 1
(dashed-dotted line). Right panel: Plot of aðtÞ in the classical case (solid line) and in the semiclassical models with � ¼ 1 (dashed line)
and � ¼ 2 (dotted-dashed line). Near the initial time, the semiclassical model has a behavior close to the classical radiation. a either
reaches a minimum at t ¼ tcr and then grows for t > tcr (� ¼ 1), or approaches asymptotically a minimum value (� ¼ 2). Here,
M0 ¼ 1 and �cr ¼ 3000. See the text for details.
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FIG. 5. Radiation collapse models. Left panel: The mass profile MðtÞ ¼ M0=a for classical radiation (solid line) and for the
semiclassical model (dashed line), together with the effective mass profile Meff (dotted-dashed line). At t ¼ tcr, in the semiclassical
modelMðtÞ reaches a maximum, while the effective mass vanishes: the spacetime is flat and we are in a regime of asymptotic freedom.
Right panel: �þ p for the classical radiation case (solid line) and �eff þ peff for � ¼ 1 (dashed line). In the latter case, the weak
energy condition does not hold in the strong-field limit. Here, M0 ¼ 1 and �cr ¼ 3000. See the text for details.
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peff ¼ �

3

�
1� 5�

�

�cr

��
1� �

�cr

�
��1

: (47)

In the strong-field region, the effective pressure becomes
negative. In the case � ¼ 1, we see that peff becomes
negative when the density reaches the value �cr=5, and it
tends to�4�=3 in the limit of � ! �cr. In the case � ¼ 2,
it becomes negative when the density is �cr=10, and then
goes back to zero when � approaches �cr. The weak energy
condition for the effective dynamics is given by �eff þ peff

and it is violated in the strong-field regime (see the right
panel in Fig. 5).

We will now focus on the case � ¼ 1, for which the
scale function becomes

aðtÞ ¼
h
a4cr þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a4cr

q
� 2

ffiffiffiffiffiffiffi
M0

p
t
�
2
i
1=4

: (48)

a reaches a minimum at tcr < ts, where _a vanishes. At the
critical time, the effective density goes to zero, while the
new density reaches its maximum value �cr (left panel in
Fig. 4). Therefore the collapse is halted, originating a
bounce.

Once again, an interesting question is what happens to
the trapped surfaces in this context. In the classical case,
one must choose the boundary such that rb < 1=

ffiffiffiffiffiffiffi
M0

p
in order to avoid trapped surfaces at the initial time.

In the semiclassical model, the condition becomes rb <

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ð1� a4crÞ

p
. The formation of trapped surfaces for the

classical FRW radiation model is described by the time
curve

tahðrÞ ¼ ts � r2
ffiffiffiffiffiffiffi
M0

p
2

; (49)

and the apparent horizon forms at the boundary of the
cloud before the formation of the central singularity. In
our quantum-inspired model, the apparent horizon curve is

rahðtÞ ¼ a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0ða4 � a4crÞ

p : (50)

Like in the dust case, we can verify that there exists a
minimum value rmin , obtained as t goes to

tmin ¼ ts
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a4cr

q
� ffiffiffi

2
p

a2cr
�

(51)

and it is given by

rmin ¼ rahðtminÞ ¼ 33=4
acrffiffiffiffiffiffiffiffiffiffi
2M0

p : (52)

Therefore, if the boundary is taken so that rb < rmin , no
trapped surfaces form during the whole process of collapse
and bounce (see Fig. 6). The existence of a minimum
radius implies that there is a minimal mass Mmin below
which no apparent horizon can form. In the general case,
like for the dust model, an apparent horizon forms at a time
a little bit later than the classical prediction. It then

disappears when the density approaches the critical value
�cr and the gravitational force is turned off (rah diverges).
At the critical time, there is no horizon and the spacetime is
flat. After the bounce, the density decreases and a new
apparent horizon forms. The latter eventually disappears
when the density becomes too low.

IV. CONCLUDING REMARKS

Spacetime singularities, as obtained from exact
solutions of Einstein’s equations, are presumably the result
of the breakdown of general relativity and they are sup-
posed to be removed by quantum gravity corrections. So
far, given the lack of a complete theory for quantum
gravity, we do not really know how the issue of the for-
mation of singularities is affected by quantum effects. It
sounds plausible that singularities are bound to disappear
once one treats the strong-field regime within a suitable
quantum gravitational framework. Toy models like the one
discussed in the present paper may suggest possible
scenarios. Classical singularities in general relativity can
either be covered by a horizon or be naked. The issue of
whether naked singularities can occur in a physically real-
istic scenario is still an open problem. Nevertheless, an
analysis that takes into account quantum effects when the
gravitational field becomes sufficiently strong not only
affects the formation of the singularity, but it also has an
impact on the structure of trapped surfaces.
The main result of our work is that in our model the

outcome of the gravitational collapse is not a black hole, in
the sense of a region causally disconnected from future null
infinity. While we have not explicitly verified if outgoing
null geodesics launched from any point of the spacetime
can propagate to null infinity, our results strongly suggest
that this is indeed always the case. So there is no event
horizon in these spacetimes and, in principle, the region
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FIG. 6. The apparent horizon curve rahðtÞ for the classical
radiation model (solid line) and the semiclassical model for
� ¼ 1 (dashed line). If the boundary of the cloud is taken smaller
that rmin (dashed-dotted line) there are no trapped surfaces form-
ing in the quantum-inspired model. At the time of the bounce,
when � ¼ �cr and gravity is turned off, the spacetime is flat and
there is no horizon. This is a regime of asymptotic freedom.
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where Planck-scale effects become important could be
visible to distant observers.

In our specific toy model with � ¼ 1, we found that a
homogeneous collapsing object reaches a critical density.
At this point, gravity is turned off and the apparent horizon
disappears. After the bounce, gravity becomes strong again
and a new apparent horizon forms. The picture does not
seem to depend on the matter equation of state, and indeed
we found the same result for dust and radiation. The case
� ¼ 2 is qualitatively similar to the � ¼ 1 model for
t � tcr, with tcr ! 1; here there is no bounce and the
asymptotic-freedom regime where gravity becomes
weaker and weaker lasts for an infinite time, but gravity
is never turned off, as the critical density is reached only in
an infinite time.

Classical singularities arising in astrophysical scenarios
and not covered by any horizon suggest the possibility of
observing regions where Planck-scale physics produces
detectable effects. This, in turn, may allow for the identi-
fication of a signature of quantum gravity and open the
possibility of experimentally testing theories of quantum
gravity via astrophysical observations. The long sought
signature of quantum gravity, which has eluded any
laboratory-based hunt, might then be found in catastrophic
astrophysical events.
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