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Gravito-electromagnetic resonances in Minkowski space
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We consider the interaction between gravitational and electromagnetic radiation propagating on a
Minkowski background and look into the effects of the former upon the latter. Not surprisingly, the
coupling between these two sources leads to gravitationally driven electromagnetic waves. At the second
perturbative level, the driving force appears as the superposition of two waves, the properties of which are
decided by the initial conditions. We find that the Weyl-Maxwell interaction typically leads to electro-
magnetic beatlike signals and, in some cases, to the resonant amplification of the driven electromagnetic
wave. For physically reasonable initial conditions, we show that these resonances imply a linear (in time)
growth for the amplitude of the electromagnetic signal, with the overall amplification also depending on
the strength of the driving gravity wave. Finally, we provide order-of-magnitude estimates of the achieved
amplification by applying our analysis to astrophysical environments where both gravitational and

electromagnetic waves are expected to coexist.

DOI: 10.1103/PhysRevD.88.044006

I. INTRODUCTION

A typical outcome of wave-wave interactions is a forced
vibration, which in some cases may lead to resonances.
The latter can in principle facilitate a very efficient energy
transfer between the two interacting sources and lead to the
substantial amplification of the driven wave. Resonances
between gravitational and electromagnetic waves have
been studied in the past, primarily as a possible means
of gravity-wave detection (e.g. see Ref. [1]). Certain non-
linear aspects of the Weyl-Maxwell coupling were recently
investigated by employing covariant techniques, also used
here, where the gravitational-wave distortions are moni-
tored through the transverse part of shear perturbations [2].
Part of that study assumed a Minkowski background, in
which case the gravito-electromagnetic interaction occurs
in physical environments where the gravitational field is
relatively weak. The analysis, which considered the effects
of the Weyl field on the Maxwell field and took place at the
second perturbative level, showed that gravitational waves
could drive and, in principle, resonantly amplify electro-
magnetic signals. Also, the nonlinear nature of the cou-
pling meant that the resonant frequency was determined by
those of the originally interacting waves and by their
interaction angle.

Resonances occur when the driving and the driven waves
oscillate in tune. The most spectacular cases are the so-
called undamped resonances, where according to the *“stan-
dard picture” the amplitude of the driven wave diverges.
Nevertheless, when physically reasonable/conservative ini-
tial conditions are involved, there is no divergence. Instead,
the amplitude of the driven wave grows linearly in time (e.g.
see Ref. [3]). Here, we continue and extend the analysis of
Ref. [2] along these lines. We show, in particular, that the
typical outcome of the Weyl-Maxwell resonances identified
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in Ref. [2] is a linear (in time) growth of the amplitude of the
gravitationally driven electromagnetic signal. This means
that the longer the interaction lasts, the stronger the ampli-
fication. Not surprisingly, the overall effect is also propor-
tional to the strength of the driving gravity wave. An
additional result is that the aforementioned resonances are
typically preceded by a characteristic phase, during which
the amplitude of the driven electromagnetic wave varies
periodically. Such periodic variations are known as ‘“‘beats”
and in our case occur close to the resonant frequency. More
specifically, as the system approaches the point of reso-
nance, there is a series of beatlike signals with progressively
increasing duration and amplitude.

The linear (in time) growth of the gravitationally driven
electromagnetic wave at the resonant frequency makes it
easier to estimate its amplification and the amount of
energy transfer from the Weyl field to the Maxwell field.
The decisive factors are the amplitude of the driving gravi-
tational wave at the beginning of the interaction, its fre-
quency, and the duration of the gravito-electromagnetic
resonance. The longer the latter lasts, the stronger the
overall effect. Also, the efficiency of the amplification is
determined by the product of the initial amplitude and the
frequency of the gravitational wave. The larger the ampli-
tude and the higher the frequency, the better. Here, we
have applied our results to gravitational radiation with
a frequency much lower than that of its original electro-
magnetic counterpart, a condition that is expected to
hold in most, if not all, astrophysical situations. The non-
linear interaction terms in the wave equation of the new
(the driven) electromagnetic signal allow for the occur-
rence of resonances even in this case.

Assuming a Minkowski background means confining
ourselves to environments where gravity is relatively
weak. Nevertheless, to maximize the possibility of efficient
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resonances, we need both gravitational and electromagnetic
waves to coexist in relative abundance. The vicinity of
compact stars appears to fulfill these requirements.
Inspiraling systems of neutron stars and black holes, as
well as supernova explosions and spinning neutron stars,
are probably the best candidates, as they are expected to
produce high-frequency gravity waves (e.g. see Ref. [4]).
There, it seems feasible to amplify electromagnetic signals
by a few orders of magnitude, provided that the resonant
coupling between the Weyl and the Maxwell fields holds for
several seconds, or maybe for a few minutes. If so, the
mechanism discussed here could provide an additional way
of “extracting” highly energetic electromagnetic signals
from sources like supernova explosions, for example, which
are also expected to produce strong gravitational waves.

II. THE GRAVITO-ELECTROMAGNETIC
INTERACTION

Consider an empty and static Minkowski spacetime; we
allow for the propagation of linear gravitational and electro-
magnetic radiation. Our aim is to study the interaction
between these two sources at the second perturbative level,
and in particular to examine how the former affects the latter.

A. Gravitational and electromagnetic waves
on Minkowski space

Electromagnetic waves are described by the source-free
version of Maxwell’s equations. On a Minkowski back-
ground, these lead to a pair of formalistically identical
plane-wave equations for the components of the electro-
magnetic field. In the framework of the 1 + 3 covariant
formalism, the long-range gravitational field is monitored
by the Weyl pert of the spacetime curvature. Gravitational
radiation, in particular, is described by the transverse com-
ponents of the electric and magnetic Weyl tensors (E,;, and
H,,, respectively—see Sec. 1.3.6 in Ref. [5] for further
discussion). However, the high symmetry of the Minkowski
space ensures that gravitational-wave perturbations can be
described solely by the transverse part of the shear tensor
(o,—see Sec. IVA below). This gravitationally induced
shear also obeys a simple plane-wave propagation equation.
All these mean that, to linear order, gravitational and elec-
tromagnetic waves propagate according to'

o = Csin(kt + ¢) and E(,,) =Csin(nt+9), (1)

respectively (see Ref. [2] for the details). In the above, k and n
are the (physical) wave numbers of the gravitational and the
original electromagnetic signals, respectively, while ¢ and 9
are the associated phases. It goes without saying that an
expression exactly analogous to Eq. (1b) monitors the linear
evolution of the magnetic part of the Maxwell field. We may

"We use geometrized units, with ¢ = 1 = 877G, throughout
this manuscript.
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therefore monitor the propagation of the electromagnetic
waves by simply following that of its electric component.
Evaluating expressions (1a) and (1b) at t = ¢, = 0 gives
C=o/sin® and C= EY/sind, respectively. Then,
the linear solutions of Eq. (1) recast into
o®
=0 gin(kt + 9) and

T~ sin 9
~(n) ) ()
E =" gin(nr+ 9),
(n) sin O ( )

with sin 4, sind # 0 by default. Also, taking the time
derivatives of the above leads to the auxiliary relations

(k)

o
Oy = sinoﬁ cos (kt + 9) and

- i ®
E, = ~cos (nt + 9),

(n) sin O ( )

where the overdots indicate differentiation with respect
to the observers’ proper time. Note that we employ
observers living along worldlines tangent to the time-
like 4-velocity field u,, with u,u® = —1. Thus, o) =

u*Vv,o () and E" = u*V,E™  where V, represents the
covariant derivative operator, by construction.”

B. Gravitationally driven electromagnetic waves

The interaction between gravitational and electromag-
netic radiation affects the propagation of both signals.
Gravity waves, in particular, can modify the amplitude,
the wavelength, the polarization, and the direction of elec-
tromagnetic radiation. In the literature, one can find a
number of studies addressing this issue from a variety of
perspectives (e.g. Refs. [6-8]). Here, we will consider the
effects of the Weyl on the Maxwell field and look into the
resonant amplification of the latter source by the former.
Assuming that the original waves were both monochro-
matic, the electric component (E) of the electromagnetic
signal that emerges from the interaction propagates accord-
ing to the second-order equation

Eq + CEg = F(n + 2K)sin[(n + k)t + § + 9]
— F(n —2k)sin[(n — k) + 9 — 9], @)

with F = Eg') a'g)k) /2sin 9 sin . Also, an exactly analo-
gous expression for its magnetic counterpart (see Ref. [2]
for the details). Note that £, namely the wave number of the

ZAssuming that u, is the observers’ 4-velocity vector, the
symmetric tensor h,, = g,, + u,u, (with g,, being the space-
time metric) projects into the three-dimensional space of these
observers. Then, D, = 1,”V, defines the three-dimensional
covariant derivative operator, and the symmetric and trace-free
tensor o,, = D(yu, — (Du./3)h,, is the shear associated with
the u, congruence. Also, E, = F,,u® defines the electric field
vector, as measured in the u, frame, with F,, representing the
antisymmetric electromagnetic (Faraday) tensor.
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gravitationally induced electromagnetic radiation, depends
on those of the interacting waves, and it is given by

€2 = k2 + n? + 2kncos ¢, 5)

where ¢ represents the interaction angle. According to
Eq. (4), the new electromagnetic signal performs a forced
oscillation. Also, the driving agent can be written as the
superposition of two plane waves, the characteristics of
which depend on those of the originally interacting
sources. Not surprisingly, within our adopted perturbative
scheme, both the frequency and the phase of the external
“force’ are linear combinations (sums and differences—
namely n = k and & = ) of their first-order counterparts.
The outcome of the (second order) gravito-
electromagnetic interaction described above follows from
the solution of Eq. (4). The latter can be solved analyti-
cally, giving [2]
. Fy .
E(¢ = Cysin(£1) + Cycos (€1) + Yo R— sin (mt + w,)
1

F
2 5 sin (myt + wy), (6)

+
2
€ —mj

with Cy, being the integration constants,

EE)") O'E)k)(n + 2k)
2sindsind 7
mi, =n*k and w1,2=1§i19.

Fl,2 == i

The above, together with their magnetic analogues, moni-
tor the evolution of the gravitationally driven electromag-
netic radiation, on a Minkowski background, at the second
perturbative level. Equation (6) shows that the coupling
between the Weyl and Maxwell fields can lead to the
resonant amplification of the latter. This happens when
{ — my,, or equivalently [see expression (7b) above]
when € — n = k. Going back to Eq. (5), the latter implies
that cos ¢ = =1, and subsequently ¢ = 0, 7. In other
words, within our framework, resonances take place
when the original gravitational and electromagnetic waves
propagate in the same, or in the opposite, directions.’
The possibility of resonances, as a result of the gravito-
electromagnetic interaction discussed here, is not surprising.
After all, we are dealing with forced oscillations, and they
are known to provide the natural physical stage for reso-
nances to occur. Before turning our full attention to the
resonant case, however, it is worth looking at a characteristic

3In our analysis, we have dropped highly inhomogeneous
“backreaction” terms from the right-hand side of Eq. (4) and
its magnetic analogue (see Ref. [2] for the details). This has
allowed for analytical solutions monitoring the gravito-
electromagnetic interaction at second order. Keeping the afore-
mentioned terms is unlikely to affect the occurrence of the
resonances themselves, but it is likely to modify the setting
under which these will occur.
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transition phase that takes place as our system approaches
the point of resonance.

C. Gravito-electromagnetic beats

The mechanical analogue of the Weyl-Maxwell interac-
tion, as described in Egs. (4) and (6), is a harmonic oscil-
lator with two external forces of periodic behavior.
Resonances in the system occur within a considerable
range of the external frequencies (m,,). This opens the
possibility of characteristic signals, which appear close to
the resonant frequency and are known as ‘“‘beats”. Beats
correspond to periodic variations in the amplitude, but at a
pace slower than the internal frequency of the system.
Following Ref. [3], we will demonstrate the occurrence
of beats by rewriting Eq. (6) in the more convenient form

Eq = Acos({t + ¢) + Bj cos I:g + (myt + wl)]

+ B, cos I:g + (myt + wz)], (8)
where now
A= =C+ G,
)
Fi Gy
B ,=——5—"—5-, and tangp = ——.
’ €2 - m%z Cz

Expression (8), which represents a linear superposition of
three harmonic oscillations with different amplitudes and
frequencies, can be recast into the complex form

E(g) = ﬂeiet + Bleimlt + Bzei’"zl, (10)

with A = Ae’® and By, = B ,e“®277/2 The time
variation of the amplitude becomes evident when we
rewrite the last relation as

Eg = (A + B’ + Byeiel)elll, (11)

where €, = m;, — €. We also recall that m;, =n * k
and €2 = n? + k*> + 2nkcos ¢, with n and k representing
the wave numbers of the original electromagnetic and
gravitational waves, respectively, while ¢ is their interac-
tion angle.

Let us assume, primarily for the sake of simplicity,
that the wavelength of the electromagnetic signal is shorter
than that of its gravitational counterpart, namely that
n > k. Then, keeping up to k/n-order terms in the
right-hand side of expression (5), the latter reduces to
€ = n+ kcos ¢. This translates into €; = k(1 — cos ¢)
and €, = —k(1 + cos ¢), recasting Eq. (11) into

E((’) — [ﬂ 4 B]eik(lfcos dt 4 B2efik(l+cos qS)t]eih’ (12)

which is the linear superposition of two simpler beats.
Changing the interaction angle (¢) between the original
two waves while keeping the rest of the initial features fixed
affects the shape of the beat (see Figs. 1 and 2). Modifying
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w1=n, wp=n /2, n=10, k=0.5
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wy=m, wgzn/Z, n=10, k=0.1
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FIG. 1. The gravito-electromagnetic beat, when n > k and ¢ = 7r/4, as a linear superposition of two simpler beats. Comparing the
left to the right panel shows that the duration and the amplitude of the beat both increase at the same rate as the difference (n — k)
between the two wave numbers grows.

w1=r, wp=n/2, n=10, k=0.1 w1=n, we=n/2, n=10, k=1
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FIG. 2. The two extremal cases for the interaction angle (¢) between the original gravitational and electromagnetic waves (with
n > k). In the left panel, where the two signals are perpendicular (i.e. ¢ = 77/2), their coupling leads to a double-beat behavior. In the

right panel, the two wavefronts propagate along the same direction (i.e. ¢ = 0, ), and the driven oscillation appears as a single beat.

the wave frequencies, on the other hand, changes the dura-
tion and the amplitude of the beat. The larger the value of
the wave-number difference (i.e. the value of n — k), in
particular, the longer the duration and the larger the ampli-
tude of the beat. Moreover, the rate of increase in the
duration of the beat matches that in the amplitude
(see Fig. 1). Thus, in the extreme case where n > k and
n = k — n, we should expect a single beat with an ampli-
tude that grows linearly in time (see Sec. III C below).

III. GRAVITO-ELECTROMAGNETIC
RESONANCES

Following Eq. (6), when € — m, ,, the amplitude of the
gravitationally driven electromagnetic signal diverges.
This is probably the most common and best-known inter-
pretation of resonances found in many physics textbooks
(with some exceptions—e.g. see Ref. [3]). What is less
known is that the outcome of the above described wave-
wave interaction also depends on the initial conditions.

A. Setting the initial conditions

Let us take a closer look at the implications of Eq. (6).
In doing so, it helps to evaluate the integration constants.
Taking the time derivative of Eq. (6) leads to

Eg) = €C) cos (£1) — €C, sin (1)
mF
£ — m%

myFy
m COS (mzt + CL)Q).
2

cos (mt + w,)

+ (13)

Our next step is to demand that Ege) = E(()”) and E((f) = Ef)")
at the onset of the gravito-electromagnetic interaction
(i.e. when t = ty = 0). Put another way, we assume that
the transition from the free electromagnetic wave (prior to
the interaction) to the driven one (after the interaction) is
smooth.* Under this assumption, expressions (6) and (13)
combine to give

myF

GET) 14

COS W Cos Wy

(e —md)
and

*Setting Eg) = EE)”) is the obvious choice. Otherwise, there
would have been a discontinuity in the “position” of the electric
field. It is not necessary to assume that E(()() = E‘(("), however, since
discontinuities in the “velocity” are generally permitted. Allowing
for an “impulse” at the onset of the interaction between the Weyl
and the Maxwell fields, for example, can change the value of Ege)
and may thus alter the whole situation considerably.
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~ Fl . F2 .
C, = Eg”) —————sinw| — 5—— sin w,. (15)
0 —m? 0 —m3
Finally, substituting the above back into Eq. (6) and then employing some lengthy but fairly straightforward algebra, we
arrive at

) £
Eq = Ef)") cos(€t) + % sin(€1) +

Ficosw,[{sin(m,t) —m,;sin({1)
¢ [ € —m?

Frcosw, [ €sin(m,t) — m,sin(€1) cos (my1) — cos(€r)
4 [ €2 —m% €2—m% ]

where F),, m;, and w;, are given in Eq. (7). Clearly, an exactly analogous relation dictates the propagation of the
magnetic component of the gravitationally induced electromagnetic wave.

Comparing expression (16) to Eq. (6) in Sec. IIB, we notice that the amplitude of the gravitationally driven
electromagnetic wave does not necessarily diverge when ¢ — m, ,. Instead, we are facing an indeterminate situation
(of the 0/0 type), which is the consequence of our adopted initial conditions (see also Footnote 4). Following Ref. [3], we
will bypass the problem of the aforementioned indeterminacy by appealing to 1’Hopital’s rule.

cos(m 1) — cos (€t)]

+F1 Sinwl[
] 0 —m3

]+F2sinw2[ (16)

B. Linearly growing resonances

Of the two possible resonances mentioned in the previous section, let us consider the case where € — m; = k + n. This
occurs when ¢ — 0, namely when the original gravitational and electromagnetic waves propagate in the same direction.
Then, Eq. (16) is replaced by

~(n)

- Ficosw € sin (mt) — m, sin (€1)
_ ) 0 1 1. 1 1
E,n—FE = FE.’ cos(mt) + — sin (mt) + lim
€) (my) 0 ( 1 ) m, ( 1 ) m €—~m1|: €2 — m% ]
. . [cos(myt) — cos (€1) F, cos w, [my sin (myt) — m, sin (m, 1)
+ F; sin w; lim 5 > + 5 3
t—m, €7 — my m my — m;
. cos t) — cos t
+ F, sin wzl: (mz g 5 (my )]. 17)
my — my
Applying 1’Hopital’s rule, the above recasts into
~(n) .
. Ficosw E F,cosw F{sinw
_ () 1 1 0 1 1 1 1 .
Epn— E =|E,  ———t]cos H)+|—+ t)sin t
© = E(my) ( 0 o, ) (m,1) (ml 2 o ) (my1)
F, cos my sin (myt) — m, sin (mt . cos (mot) — cos (m;t
) wz[ p sin ( 23 5 ( 1)]+F251nw2[ ( 23 2( 1)]. (18)
m my — mj my — mj

Accordingly, at the € — m; limit, the electric (as well as the magnetic) component of the gravitationally induced
electromagnetic signal increases linearly in time.

The same linear growth also occurs when € — m,, which corresponds to € — n — k and ¢ — 7 (i.e. to waves
propagating in the opposite direction). Then, after employing 1’Hopital’s rule once again, Eq. (16) becomes

(1) .
_(zm) Frcosw, ) (EO Fycosw, F,sinw, ) )
En—E =|E,  ——=t])cos(myt) +|— + + t)sin (m,t
© (m») ( 0 2, (myt) s 2l 2, (my1)
Ficosw|[m,sin(mt) — m; sin (m,t . cos (m t) — cos (myt
5 1[ 2 sin ( 13 é ( 2)]+F1s1na)1[ ( 13 2( 2)] (19)
ny ms — mj m; — mj

C. The typical n > k case

Earlier, in Sec. I C, we considered the n > k case and found that the result of the Meyl-Maxwell coupling was an
electromagnetic beat with a duration and an amplitude that increased (at the same rate) as the wave-number difference
n — k grew larger. Based on this, we argued that at the n >> k limit, there should be a single beat (instead of a series of
beats) with an amplitude that increases linearly in time. Next, we will take a closer look at this claim.
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In most realistic situations—in astrophysics, for example—
the wavelength of the electromagnetic signal is much smaller
than that of its gravitational counterpart. This translates into
n >> k, in which case we have m; = n + k=~n and m, =
n — k=n. At the same limit, Eq. (5) implies that € = n,
irrespective of the interaction angle (¢) between the original
waves. In other words, when n >> k, the wave number of the
driving force on the right-hand side of Eq. (4) and that of the
driven electromagnetic signal on the left essentially coincide.
Moreover, at the n >> k limit, expression (7a) reduces to

PHYSICAL REVIEW D 88, 044006 (2013)

Eg') a'g()n

H12 = i [(w; + @2)/2Tsin[(w; — @2)/2)

(20)

since 28 = w; + w, and 29 = w, — w, [see Eq. (7c)].

Taking all of the above into account and substituting
Eq. (20) into the right-hand side of Eq. (18), we find that
when n > k, the gravitationally driven electric field is
given by

7(n) .
- Ficosw E Fcosw F|sinw
Ep— E,) = E(")—;t)cos t +(L+ l ! ! 1t)sin t
© (n) ( 0 n (1) n 2n? 2n (2
Fycosw, . my sin (myt) — my sin (m, 1) ) ) cos (myt) — cos (m,1)
+———= lim 5 5 + F,sinw, lim 5 5 , (2D
n my—m; miy — mj my—m; my — mj

with m;, m, = n. Once again, we need to apply I’Hopital’s rule. Then, using Eq. (20) and inserting the initial condition

()

Ey’ = nEg’) cot[(w; + w,)/2] [see Eq. (3b)], we arrive at

=(n 1 =(n
Eq — Eqy = EY >(1 + Eagkh) cos (nt) — EY )[2

given that w; + w, = 2¢9. The latter is always finite
[i.e. sind # 0—see Eq. (2b)], which guarantees that
cot 9} does not diverge. Note that the same result can be
obtained from Eq. (19) at the n > k limit, namely when
m, — m; = n. Also, an expression exactly analogous to
Eq. (22) monitors the evolution of the magnetic component
of the Maxwell field.

Equation (22) describes the resonant growth of the
electromagnetic wave that emerges from the interac-
tion between its original counterpart and gravitational
radiation of a much lower frequency. The result, which
holds at the second perturbative level and applies to
physical environments where gravity is weak, shows
linear (in time) growth for the amplitude of the gravita-
tionally driven electromagnetic signal. Note that, strictly
speaking, the linearity seen in Eq. (22) stems from our
initial conditions. These demand a smooth transition
from the free to the driven phase of our electromagnetic
signal, in accord with the conventional interpretation of
wave-wave resonances (see Ref. [3] and also Sec. IITA
here).

IV. GRAVITO-ELECTROMAGNETIC
AMPLIFICATION

According to expression (22), the input from the gravita-
tionally induced shear is fixed at the onset of the interac-
tion. This means that the longer the resonance, the more
efficient the absorption of gravity-wave energy and the
stronger the increase of the electromagnetic signal. In
what follows, we will take a closer (and more practical)
look at this possibility.

1 a'g‘)

= 1
=0 — cot 19(1 +3 ol t)] sin (nt), (22)
n

|
A. Gravitationally induced shear

Gravitational waves are traveling ripples in the
spacetime fabric, and their propagation is monitored by
the long-range sector of the gravitational field. The latter is
described by the electric (E,;) and magnetic (H,,) com-
ponents of the Weyl (or conformal curvature) tensor, which
obey propagation and constraint equations analogous to
Maxwell’s formulas (e.g. see Ref. [5]). On a Minkowski
background, the transverse parts of the aforementioned
Weyl tensors are directly related to the transverse compo-
nent of the shear by means of the linear expressions

E,, = —o0, and H, = curloy, (23)

where curlo,;, = Scd(aDCO'd b by definition [2]. The for-
mer of the above ensures that Weyl curvature distortions
induce shear anisotropies. Together, Eqgs. (23a) and (23b)
imply that we can monitor the propagation of gravitational
radiation simply by following that of the shear.
Alternatively, one can relate the shear to the transverse-
traceless (T'T) part of the metric perturbation (f),;,). More
specifically, on a Minkowski background, the perturbed met-
ricis gup = Nap + Hap (With 1, = diag[—1, 1, 1, 1]), and
the distortion in the worldline congruence of observers with
4-velocity u® = 6% is given by Vyu, = 0),,/2. Then, the
transverse-traceless component of the last relation leads to

1.
Tap = 5 Dap» 24)
which describes the gravitationally induced shear in terms of

metric fluctuations. This result translates into the simpler
approximate relation
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o~ by, (25)

with ) and » representing the amplitude and the fre-
quency of the perturbation, respectively. As expected,
the higher the amplitude and the frequency of the gravi-
tational wave, the stronger the associated shear distor-
tion. Next, we will use the above expression to estimate
the gravitationally induced shear and the resulting elec-
tromagnetic amplification.

B. Estimating the amplification

The energy density (p) stored in electromagnetic
radiation is proportional to the squared amplitude of
the Maxwell field. In other words, we may write
p ~ E?. According to Egs. (1) and (22), the amplitudes
of the free and the gravitationally driven electric fields
(E, and E, respectively) are related by E ~ E(1 +
oot/2), where o is the gravitoshear at the beginning
of the Weyl-Maxwell coupling. Then, in line with
Eq. (25), the overall increase in the energy density of
electromagnetic wave is measured by the dimensionless
ratio

~£ ~ (1 + l0'01‘)2 ~ (1 + 1f)()l/()l‘)z, (26)
Po 2 2

where the zero suffix indicates the onset of the
gravito-electromagnetic  interaction.  Consequently,
when oyt > 1—or equivalently, for vyt > 1—there
can be a significant energy transfer from gravitational
to electromagnetic radiation. Also, the larger the ampli-
tude and the higher the frequency of the driving gravi-
tational wave, the stronger the amplification effect. Note
that the amplitude and the frequency dependencies are
decided at the beginning of the gravito-electromagnetic
coupling. This means that, within the framework of our
analysis, the overall amplification is unaffected by any
decay in the strength of the gravitational wave, which
may occur during the interaction. Therefore, the longer
the resonant coupling between the Weyl and the
Maxwell fields lasts, the stronger the residual electro-
magnetic signal.

In order to operate efficiently, the mechanism described
so far “prefers” environments where although gravity is
weak, there is a relative abundance of gravitational waves
with appreciable strength. The vicinity of compact stellar
objects probably provides the most promising possibility.
Given that the amplification effect seen in Eq. (26) is
increasing with frequency, the best astrophysical candi-
dates are probably inspiraling systems of neutron stars
and black holes, as well as supernovae or spinning neutron
stars. There, the expected gravity-wave frequencies are
relatively high, varying between ~10 Hz and ~1 kHz
(e.g. see Ref. [4]). Consequently, for gravitational radiation
with amplitude ~1073 at the beginning of the interaction,
the amplification factor (f)y») on the right-hand side of
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expression (26) is of order unity.’ Then, provided the
resonant coupling between the Weyl and the Maxwell
fields holds for a few seconds, the energy density of the
electromagnetic signal will grow by roughly 2 orders of
magnitude. If the interaction lasts longer, say for a few
minutes, the corresponding increase should range between
3 and 4 orders of magnitude.

The theoretical analysis of the previous sections and the
rough numerical estimates obtained here open the possi-
bility of an efficient energy transfer from the gravitational
to the electromagnetic sector. Additional insight requires
more detailed modeling of the Weyl-Maxwell coupling
around strongly gravitating sources such as those men-
tioned above. This will undoubtedly increase the complex-
ity of the problem and thus make it necessary to abandon
the strictly analytical treatment and engage numerical
methods as well.

V. DISCUSSION

Over the years, there has been considerable work on the
interaction between gravitational and -electromagnetic
waves and on the possibility of an energy transfer between
them. Here, we have considered the effects of the Weyl
field on the Maxwell field on a Minkowski background,
which corresponds to physical environments where gravity
is weak. The aim was to look for analytical solutions that
describe gravito-electromagnetic resonances, and then in-
vestigate their potential implications. In doing so, we used
the 1 + 3 covariant approach to general relativity, within
the second-order approximation. Our starting point was
two linear plane waves, the electromagnetic and the gravi-
tational, propagating freely on a Minkowski background.
Assuming that both waves are monochromatic, we allowed
them to interact at the second perturbative level. This
induced a new electromagnetic signal, the wave equation
of which corresponds to a mechanical system of a driving
oscillator with two external forces (determined by the
originally interacting waves). Finding the solutions is a
well-defined problem of initial conditions, and the most
characteristic phenomena are beats and resonances. Here,
we found both, and provided the corresponding analytical
solutions (together with their frequency range) in
closed-form expressions. These could potentially lead to
detectable gravity-wave imprints in the electromagnetic
spectrum.

Initially, the gravito-electromagnetic resonances appear
in their familiar (textbook) form, namely as driven
oscillations with diverging amplitude. Nevertheless, under

>Following Ref. [9], we can obtain an order-of-magnitude
estimate of the gravitational-wave amplitude. Assuming a viri-
alized system of mass M and size R, the amplitude of the emitted
wave at a distance r is ) ~ M?/Rr. Then, setting R = aR, and
r = BR,, where R; is the effective Schwarzschild radius of the
source, gives ) ~ 1/a 8. Consequently, for & ~ 10 and 8 ~ 102,
we obtain ) ~ 1073
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physically reasonable/conservative initial conditions, this
translates into amplitudes that increase linearly in time. We
found that these resonances can occur for a fairly wide
range of initial conditions. In fact, the resonant behavior is
recovered even when the gravitational-wave frequency is
considerably smaller than that of its original electromag-
netic counterpart. This condition is expected to hold for
most gravitating sources, since the formation of an event
horizon limits the gravity-wave frequency up to ~10* Hz.
This value is much smaller than the lowest radio waves
observed from various astrophysical sources. The charac-
teristic timescale of the aforementioned linear increase of
the electromagnetic wave is determined by the product of
the amplitude and the frequency of the driving gravita-
tional radiation. For example, in the favorable scenario
where the gravitational radiation is in the kHz band and
the interaction occurs within a few Schwarzschild radii of
the gravitating source, the energy density of the electro-
magnetic radiation increases by 2 orders of magnitude
within a few seconds. Also, the linear growth phase is
preceded by a characteristic series of beatlike electromag-
netic signals. It is therefore conceivable that, when com-
bined, these effects could lead to an indirect observation of
gravitational waves and/or to an electromagnetic follow-up
in a future gravity-wave detection incident.

The typical candidates for gravito-electromagnetic
resonances are astrophysical systems in advanced stages
of gravitational collapse. Neutron star and black hole
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binaries, supernovae and spinning neutron stars are proba-
bly the most promising, as they produce high-frequency
gravity waves. Also, the predicted energy flux of the
gravitational sector is several orders of magnitude above
the electromagnetic one. For instance, just before merging,
binary systems of several solar masses emit close to
10°* erg/ sec in the form of gravitational radiation. The
maximum electromagnetic luminosity during a supernova
explosion, on the other hand, is roughly 10*® erg/ sec. We
therefore expect the gravitational radiation to dominate
and anticipate an abundance of energy in the form of
gravity waves. Hence, the interaction discussed here opens
the possibility for an efficient transfer of this energy sur-
plus from the gravitational to the electromagnetic sector.
Demonstrating that such an energy transfer can readily
occur in nature and calculating its magnitude requires
more detailed theoretical models. One would also need to
go beyond the analytical limits of this study and involve
numerical techniques and codes to deal with the increased
complexity of the problem. These will be the next steps of
our research effort.
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