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We present a method for calculating the maximum elastic quadrupolar deformations of relativistic stars,

generalizing the previous Newtonian Cowling approximation integral given by Ushomirsky et al. [Mon. Not.

R. Astron. Soc. 319, 902 (2000)]. (We also present a method for Newtonian gravity with no-Cowling

approximation.) We apply these methods to the m ¼ 2 quadrupoles most relevant for gravitational radiation

in three cases: crustal deformations, deformations of crystalline cores of hadron-quark hybrid stars, and

deformations of entirely crystalline color superconducting quark stars. In all cases, we find suppressions of

the quadrupole due to relativity compared to the Newtonian Cowling approximation, particularly for

compact stars. For the crust these suppressions are up to a factor of �6, for hybrid stars they are up to

�4, and for solid quark stars they are at most �2, with slight enhancements instead for low mass stars.

We also explore ranges of masses and equations of state more than in previous work and find that for some

parameters the maximum quadrupoles can still be very large. Even with the relativistic suppressions, we find

that 1:4M� stars can sustain crustal quadrupoles of a few� 1039 g cm2 for the SLy equation of state or close

to 1040 g cm2 for equations of state that produce less compact stars. Solid quark stars of 1:4M� can sustain

quadrupoles of around 1044 g cm2. Hybrid stars typically do not have solid cores at 1:4M�, but the most

massive ones (� 2M�) can sustain quadrupoles of a few� 1041 g cm2 for typical microphysical parameters

and a few� 1042 g cm2 for extreme ones. All of these quadrupoles assume a breaking strain of 10�1 and

can be divided by 1045 g cm2 to yield the fiducial ‘‘ellipticities’’ quoted elsewhere.
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I. INTRODUCTION

Shortly after the discovery of pulsars and the realization
that they are rotating neutron stars, deformations of rotat-
ing neutron stars were proposed as sources of continuous
gravitational radiation [1–4]; see Ref. [5] for an early
review. Searches for such radiation are an ongoing concern
of the LIGO and Virgo gravitational wave detectors [6–8];
see Refs. [9–11] for recent reviews. It is thus of great
interest to know the maximum quadrupolar deformation
that a neutron star could sustain, in order to motivate
further searches and help interpret upper limits or detec-
tions. In the case of elastic (as opposed to magnetic)
deformations, the main factor influencing the answer is
whether the neutron star contains particles more exotic
than neutrons [9,12]. However, the structure of the star
also plays an important role.

While there are relativistic calculations of the quadrupole
deformations due to magnetic fields (e.g., Refs. [13–17]), all
the computations involving elastic deformations have used
Newtonian gravity. Moreover, all but two of these compu-
tations have used the integral expression obtained in the
Cowling approximation (i.e., neglecting the self-gravity of
the perturbation) by Ushomirsky, Cutler, and Bildsten
(UCB) [18]; see Refs. [12,19–21]. Haskell, Jones, and
Andersson (HJA) [22] dropped the Cowling approximation
using a somewhat different formalism than UCB’s; there is a
further application of their results in Ref. [23].

We improve these treatments by generalizing the UCB
integral to relativistic gravity with no-Cowling approxima-
tion. We also provide a similar generalization for the
Newtonian no-Cowling case, as a warm-up. In addition
to providing a simpler formalism for performing compu-
tations than the more general Newtonian gravity treatment
in HJA, the integrals we obtain allow us to verify that a
maximal uniform strain continues to yield the maximum
quadrupole deformation in the Newtonian and relativistic
no-Cowling cases. (UCB showed this to be true for an
arbitrary equation of state in the Newtonian Cowling
approximation case; we are able to verify that it is true in
the more general cases for each background stellar model
we consider.)
We then apply our calculation to the standard case of

quadrupoles supported by shearing the lattice of nuclei in
the crust, as well as the cases where the quadrupole is
supported by the hadron-quark mixed phase lattice in the
core, or a crystalline color superconducting phase through-
out a solid strange quark star. For the crustal quadrupoles,
we calculate the shear modulus following HJA, using the
equation of state (EOS) and composition results of
Douchin and Haensel [24] and the effective shear modulus
calculated by Ogata and Ichimaru [25]. (There are recent
improvements to the Ogata and Ichimaru result [26–28],
but these only reduce their shear modulus by <10%.) For
the hadron-quark mixed phase, we use our recent calcu-
lations of the EOS and shear modulus [29] for a variety of
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parameters. (We also consider the range of surface tensions
for which the mixed phase is favored.) For crystalline
quark matter, we use the shear modulus calculated by
Mannarelli, Rajagopal, and Sharma [30] and the EOS
given by Kurkela, Romatschke, and Vuorinen [31].

In all cases, we use a breaking strain of 0.1, comparable
to that calculated by Horowitz and Kadau [32] using
molecular dynamics simulations. (Hoffman and Heyl
[33] have recently obtained very similar values over
more of parameter space.) This result is directly applicable
to the crustal lattice, at least for the outer crust, above
neutron drip (though see Chugunov and Horowitz [34]
for caveats). We also feel justified in applying it to the
inner crust, as well as to the mixed phase and crystalline
quark matter, since the primary source of the high breaking
strain appears to be the system’s large pressure. But one
can apply our results to any breaking strain using the linear
scaling of the maximum quadrupole with breaking strain.

In our general relativistic calculation, we use the rela-
tivistic theory of elasticity given by Carter and Quintana
[35] and placed in a more modern guise by Karlovini and
Samuelsson [36]. However, all we need from it is the
relativistic form of the elastic stress-energy tensor, which
can be obtained by simple covariance arguments, as noted
by Schumaker and Thorne [37]. We also use the standard
Thorne and Campolattaro [38] Regge-Wheeler gauge [39]
formalism for perturbations of static relativistic stars,
following Hinderer’s recent calculation [40] of the quad-
rupole moment of a tidally deformed relativistic star (first
discussed in Flanagan and Hinderer [41]), and the classic
calculation by Ipser [42].

Even though we are interested in the gravitational
radiation emitted by rotating stars, it is sufficient for us
to calculate the static quadrupole deformation. As dis-
cussed by Ipser [42], and then proven for more general
situations by Thorne [43], this static quadrupole (obtained
from the asymptotic form of the metric) can be inserted
into the quadrupole formula to obtain the emitted gravita-
tional radiation in the fully relativistic, slow-motion limit.
(This approximation has uncontrolled remainders of order
ð!=!KÞ2, where ! and !K are the star’s angular velocity
and its maximum—i.e., Kepler—angular velocity, respec-
tively. This ratio is& 10�2 for the pulsars for which LIGO
has been able to beat the spin-down limit [6].)

We shall generally show the gravitational constantG and
speed of light c explicitly, though we shall takeG ¼ c ¼ 1
in most of Sec. III, only restoring them in our final
expressions. The relativistic calculation was aided by use
of the computer algebra system MAPLE and the associated
tensor manipulation package GRTENSORII [44]. We used
MATHEMATICA 7 to perform numerical computations.

The paper is structured as follows. In Sec. II, we review
UCB’s formalism and extend it by introducing a Green
function to compute the maximum Newtonian quadrupole
deformation without making the Cowling approximation.

In Sec. III, we further generalize to the fully relativistic
case and compare the various approximations for the maxi-
mum quadrupole. In Sec. IV, we show the maximum
quadrupoles for three different cases: first, crustal quadru-
poles, then hadron-quark hybrid quadrupoles, and finally
solid strange quark star quadrupoles. We also describe the
modifications to our formalism needed to treat solid
strange quark stars. We discuss all these results in Sec. V
and summarize and conclude in Sec. VI. In the appendix,
we show that the mixed phase is favored by global energy
arguments even for surface tensions large enough that it is
disfavored by local energy arguments.

II. NEWTONIAN CALCULATION OF THE
MAXIMUM QUADRUPOLE

We first demonstrate how to compute the maximum
Newtonian quadrupole without making the Cowling ap-
proximation. This provides a warm-up before we tackle the
full relativistic case and also allows us to verify some of
the statements made by UCB and HJA. We use the basic
formalism of UCB, modeling the star as nonrotating, with
the stress-energy tensor of a perfect fluid plus shear terms,
and treating the shear contributions as a first-order pertur-
bation of hydrostatic equilibrium. This perturbative treat-
ment should be quite a good approximation: The maximum
shear stress to energy density ratio we consider in the
crustal and hybrid star cases is & 0:05% (and the maxi-
mum shear stress to pressure ratio is & 0:3%). (Here we
have taken the shear stress to be � ��max , which is good up
to factors of order unity.) And even in the case of solid
strange quark stars, the maximum shear stress to energy
density ratio is still only at most�0:2%. [We have already
discussed the effects of rotation in the relativistic case,
above; UCB note at the beginning of their Sec. IV that
rotation also only modifies the perturbative Newtonian
results for the static deformations we and they consider
at the Oð½!=!K�2Þ level.]
It is convenient to start by writing the quadrupole moment

in terms of the surface value of the perturbation to the star’s
Newtonian potential. We start from UCB’s definition of

Q22 :¼
Z 1

0
��ðrÞr4dr (1)

[where the (Eulerian) density perturbation �� and all
similar perturbed quantities have only an l ¼ m ¼ 2
spherical harmonic component]. [Note that this quadrupole
moment differs by an overall constant from the one defined
by Thorne [43]—e.g., his Eq. (5.27a).] We then recall that
the perturbed Poisson equation for the l ¼ 2 part of the
perturbed gravitational potential is

ð�2��ÞðrÞ :¼ 1

r2
½r2��0ðrÞ�0 � 6

r2
��ðrÞ ¼ 4�G�� (2)

(�2 is the l ¼ 2 radial part of the Laplacian), with bound-
ary conditions of
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��ð0Þ ¼ 0; R��0ðRÞ ¼ �3��ðRÞ; (3)

where R is the radial coordinate of the star’s surface.
[See, e.g., Eqs. (2.15) and (2.16) in Ref. [45]—their �22

is our ��. Note also that the primes denote derivatives
with respect to r. Additionally, we shall continue to be
inconsistent with our inclusion of the functional depen-
dence of quantities—e.g., �� depends upon r, even though
we do not always indicate this explicitly. We will even-
tually stop displaying ��’s explicit functional dependence
on r, for instance.] If we now substitute Eq. (2) into Eq. (1)
and integrate by parts using the boundary conditions (3),
we obtain

Q22 ¼ � 5R3

4�G
��ðRÞ: (4)

This sort of expression is more commonly seen in the
relativistic case, where it is necessary to obtain the quad-
rupole in this manner by looking at the perturbation’s
asymptotic behavior—see the discussion in Sec. III.

We now wish to obtain an equation for �� in terms of
the shear stresses. We follow UCB in decomposing the
perturbed stress tensor as [see their Eqs. (59) and (61)]

��ab ¼ ��pYlmgab þ trrYlmðr̂ar̂b � eab=2Þ
þ tr?fab þ t�ð�ab þ Ylmeab=2Þ: (5)

Here �p is the (Eulerian) pressure perturbation; Ylm is a
spherical harmonic; r̂a is the radial unit vector; trr, tr?, and
t� are the components of the shear stresses; and gab
denotes the metric of flat, 3-dimensional Euclidean space.
(Following UCB, we will generally write out l and m
explicitly, even though we only consider l ¼ m ¼ 2
here.) Also [Eq. (40) in UCB],

eab :¼ gab � r̂ar̂b; (6a)

fab :¼ 2rr̂ðarbÞYlm=�; (6b)

� :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
¼ ffiffiffi

6
p

; (6c)

�ab :¼ r2rarbYlm=�
2 þ fab=�: (6d)

(We have corrected the dropped factor of ��1 multiplying
fab in UCB’s definition of �ab—this was also noticed by
HJA.) We also have

tab ¼ 2��ab; (7)

where � is the shear modulus and �ab is the strain tensor.
(This is a factor-of-2 correction to the expression in UCB,
as noted in Ref. [12].) Now, a convenient expression can
be obtained from the perturbed equation of hydrostatic
equilibrium,

ra��ab ¼ ��gðrÞr̂b þ �rb�� (8)

(ra denotes the flat-space covariant derivative), by
substituting for �� using the Poisson equation (2) and
projecting along r̂b, yielding

�2��

4�G
þ �

gðrÞ��
0 ¼ r̂bra��ab

gðrÞ
¼ 1

gðrÞ
�
��p0 þ t0rr þ 3

r
trr � �

r
tr?

�
:

(9)

We then project Eq. (8) alongrbYlm to express �p in terms
of the shear stresses trr, tr?, and t�, along with � and ��,
giving

�p ¼ ����� trr
2
þ r

�
t0r? þ 3

�
tr? þ

�
1

�2
� 1

2

�
t�: (10)

Substituting this into Eq. (9), we thus obtain

�2��� 4�G

gðrÞ �
0�� ¼ 4�G

gðrÞ
�
3

2
t0rr � 4

�
t0r? � r

�
t00r?

�
�
1

�2
� 1

2

�
t0� þ 3

r
trr � �

r
tr?

�
:

(11)

We now wish to obtain an integral expression for Q22

that generalizes UCB’s Eq. (64) to the case where we do
not make the Cowling approximation. We shall do this by
obtaining the Green function for the left-hand side of
Eq. (11) and then integrating by parts. We will be able to
discard all of the boundary terms, since the stresses vanish
at the star’s surface (we assume that the shear modulus
vanishes there) and the integrand vanishes at the star’s
center. We can obtain the Green function using the stan-
dard Sturm–Liouville expression in terms of the solutions
of the homogeneous equation (e.g., Eq. (10.103) in Arfken
and Weber [46]). We obtain the appropriate solution to the
homogeneous equation numerically for a given back-
ground stellar model (EOS and mass). The equation for
the Green function is [multiplying the left-hand side of
Eq. (11) by r2 to improve its regularity]

ðLNGÞðr; �rÞ :¼ @

@r

�
r2

@

@r
Gðr; �rÞ

�
�

�
6þ 4�Gr2

gðrÞ �0
�

�Gðr; �rÞ ¼ �ðr� �rÞ (12)

[�ðr� �rÞ is the Dirac delta function], with boundary
conditions (at the star’s center and surface) of

Gð0; �rÞ ¼ 0; R@1GðR; �rÞ ¼ �3GðR; �rÞ; (13)

where @1 denotes a partial derivative taken with respect to
the first ‘‘slot’’ of the function.
If we then write [using Eq. (4), the factor of r2 from the

Green function equation (12), and the prefactor on the
right-hand side of Eq. (11)]

GNðrÞ :¼ �5R3r2GðR; rÞ=gðrÞ; (14)

we have
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QN
22¼

Z R

0
GNðrÞ

�
3

2
t0rr� 4

�
t0r?� r

�
t00r?�

�
1

�2
�1

2

�
t0�

þ3

r
trr��

r
tr?

�
dr

¼�
Z R

0

��
3

2
G0

NðrÞ�
3

r
GNðrÞ

�
trrþ

�
r

�
G00

NðrÞ�
2

�
G0

NðrÞ

þ�

r
GNðrÞ

�
tr?þ

�
1

2
� 1

�2

�
G0

NðrÞt�
�
dr: (15)

We have freely integrated by parts in obtaining the second
expression, noting that the boundary terms are zero since
GNðrÞ vanishes sufficiently rapidly as r ! 0 and the stresses
are zero at the surface of the star (since we assume that the
shear modulus vanishes at the star’s surface).1 This reduces
to UCB’s Eq. (64) if we take the Cowling approximation

GNðrÞ ! r4=gðrÞ; (16)

corresponding to dropping the second term on the left-hand
side of Eq. (11).

To obtain an analogue of the expression for the
maximum quadrupole given in Eq. (5) of Owen [12], we
note that UCB’s argument about maximum uniform strain
leading to the maximum quadrupole still holds here for
the stars we consider, since the coefficients of the stress
components in the integrand are all uniformly positive.
(We have checked this numerically for each background
stellar model we consider.) The strain tensor components are

�rr ¼ ð32�=15Þ1=2 ��max ; (17a)

�r? ¼ ð3=2Þ1=2�rr; (17b)

�� ¼ 3�rr (17c)

in the case where the star is maximally (and uniformly)
strained—see Eqs. (67) in UCB. The breaking strain ��max

is given by the von Mises expression,

�ab�
ab ¼ 2 ��2

max : (18)

It thus corresponds to assuming that the lattice yields when
it has stored a certain maximum energy density. We then
have

jQmax ;N
22 j
��max

¼
ffiffiffiffiffiffiffiffiffi
32�

15

s Z R

0
�ðrÞ½rG00

NðrÞ þ 3G0
NðrÞ�dr: (19)

This reduces to Eq. (5) in Owen [12] if we use the Cowling
approximation (16).

Note that there is no direct contribution from �0 to G00
N

in the no-Cowling case, despite what one might expect

from Eq. (12): Writing �GðrÞ :¼ GðR; rÞ for notational
simplicity, the �0 contribution from

�G00ðrÞ ¼ ð2=rÞ �G0ðrÞ þ ½6=r2 þ 4�G�0ðrÞ=gðrÞ� �GðrÞ (20)

is exactly canceled by one from

g00ðrÞ ¼ 6GmðrÞ=r4 � 8�G�ðrÞ=rþ 4�G�0ðrÞ (21)

in

G00
NðrÞ ¼ �5R3r2½ �G00ðrÞ=gðrÞ � �GðrÞg00ðrÞ=fgðrÞg2

þ fterms with no�0g�: (22)

However, there is a direct contribution from �0 to G00
N

(via g00) if we make the Cowling approximation
[Eq. (16)]. We shall see that this leads to a significant
difference in the resulting contributions to the quadrupole
moment from regions of the star surrounding a sudden
change in density (e.g., near the crust-core interface, which
will be relevant for the quadrupoles supported by crustal
elasticity considered by UCB and others).
Numerically, we computeGN using the standard expres-

sion for the Green function in terms of the two independent
solutions to the homogeneous equation (see, e.g.,
Eq. (10.103) in Arfken and Weber [46]). Since we are
solely interested in the Green function evaluated at the
star’s surface, we can eliminate one of the homogeneous
solutions using the boundary conditions there and only
consider the homogeneous solution that is regular at the
origin, which we call F. In terms of F, the Green function
is given by

GðR; rÞ ¼ � FðrÞ
3RFðRÞ þ R2F0ðRÞ : (23)

We thus solve LNF ¼ 0 [with the operator LN given by
Eq. (12)] with the boundary conditions Fðr0Þ ¼ 1 and
F0ðr0Þ ¼ 2=r0, where r0 is the small inner radius used in
the solution of the Oppenheimer-Volkov (OV) equations,
as discussed at the end of Sec. III. [These boundary con-
ditions come from regularity at the origin, which implies
that FðrÞ ¼ Oðr2Þ there.]
Our Green function method for obtaining the maximum

quadrupole numerically may seem more complicated than
existing methods because it introduces extra steps. However,
this method is ideal for showing that maximum stress gives
the maximum quadrupole and for seeing how much stresses
at different radii contribute to the total quadrupole. It also
appears to be the simplest way of dealing with any potential
distributional contributions from the derivatives of the shear
modulus, since they are automatically taken care of by the
integration by parts.

1We shall treat the case where the stresses do not vanish at the
surface of the star when we consider solid strange quark stars in
Sec. IVC. Also, note that HJA claim that UCB’s expression does
not include distributional contributions due to sudden changes in
the shear modulus. This is not the case—these are included due
to UCB’s integration by parts (cf. the definition of the distribu-
tional derivative). All that the UCB derivation requires is, e.g.,
that the shear modulus vanish outside of the crust, not that it do
so continuously.
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III. GENERAL RELATIVISTIC CALCULATION
OF THE MAXIMUM QUADRUPOLE

Here we compute the maximum quadrupole moment in
general relativity, using the Regge-Wheeler gauge [39]
relativistic stellar perturbation theory developed by
Thorne and Campolattaro [38], as in the similar calculation
of the tidal Love number of a relativistic star by Hinderer
[40]. We start by writing down the line element corre-
sponding to a static, even-parity, l ¼ 2 first-order
perturbation of a static, spherical, relativistic star in the
Regge-Wheeler gauge (cf. Eq. (14) in Hinderer [40]):

ds2 ¼ �½1þH0ðrÞYlm�fðrÞdt2 þ ½1þH2ðrÞYlm�hðrÞdr2
þ ½1þ KðrÞYlm�r2ðd�2 þ sin 2�d	2Þ: (24)

Here we have used the notation of Wald [47] for the back-
ground, so that f and h are the standard Schwarzschild
functions for the unperturbed star, with f ¼ e2	, where

	0ðrÞ ¼ mðrÞ þ 4�r3p

r½r� 2mðrÞ� ; (25)

with 	ðRÞ ¼ log ð1� 2M=RÞ=2, and

hðrÞ ¼
�
1� 2mðrÞ

r

��1
: (26)

In these expressions,

mðrÞ :¼ 4�
Z r

0
�ð�rÞ�r2d�r: (27)

Also, recall that we write our spherical harmonics in terms
of l and m, following UCB, even though we specialized to
l ¼ m ¼ 2, and that we are now taking G ¼ c ¼ 1.

The metric perturbation is determined byH0,H2, and K,
which here are sourced by the perturbation to the star’s
stress-energy tensor. The appropriate stress-energy tensor
can be obtained directly from the standard Newtonian
expression (5) by simple covariance arguments, as in
Schumaker and Thorne [37], or from the detailed relativ-
istic elasticity theory of Carter and Quintana [35] (see their
Eq. (6.19); this is also given in Eq. (128) of Karlovini and
Samuelsson [36]). All we really need for our purposes is to
note that the shear contribution is trace free with respect to
the background metric, so that we can use the obvious
covariant generalization of the decomposition given by
UCB,2 yielding

�Tab ¼ ½��t̂at̂b þ �pðgab þ t̂at̂bÞ
� trrðr̂ar̂b � qab=2Þ�Ylm � tr?fab
� t�ð~�ab þ h1=2Ylmqab=2Þ; (28)

with the full stress-energy tensor given by

Ta
b ¼ �t̂at̂

b þ pð�a
b þ t̂at̂

bÞ þ �Ta
b: (29)

Here, indices now run over all four spacetime dimensions,
and gab denotes the background (spacetime) metric (which
we use to raise and lower indices). Additionally, we have
introduced the background temporal and radial unit vectors
t̂a and r̂a, qab is the induced metric on the unit 2-sphere,

fab :¼ 2rr̂ðarbÞYlm=�, and ~�ab :¼ r2h1=2rarbYlm=�
2 þ

fab=�. Here, r̂a and ra now have their curved-space
meanings.

Our ~�ab differs from the Newtonian �ab [from UCB,

given in our Eq. (6d)] due to the insertion of h1=2. This

insertion is necessary for ~�ab to be transverse and orthogo-
nal to fab (with respect to the background spacetime
metric). The same logic leads to the introduction of the

factor of h1=2 multiplying qab in the t� term in Eq. (28); it
is there so that the t� term is orthogonal to the trr term. We
have used UCB’s convention for the relative sign between
the perfect fluid and shear portions of the stress-energy
tensor, though we have reversed the overall sign.
(However, we used the UCB convention proper in

Sec. II.) The factor of h1=2 in the coefficient of t� leads
to a factor of h�1 in the strain �� that corresponds to the
von Mises breaking strain (18). We thus replace the
Newtonian Eq. (17c) with

�� ¼ 3�rr=h; (30)

leaving Eqs. (17a) and (17b) unchanged.
One can now obtain an equation for H0 from the per-

turbed Einstein equations, as in Ipser [42]. (The other two
metric functions, H2 and K, can be expressed in terms of
H0; these expressions are given by Ipser.) The concordance
for notation is 
 ¼ 2	, e
 ¼ f, � ¼ 2c , e� ¼ h,

�1 ¼ ���, p1 ¼ ��p, P2 ¼ trr, Q1 ¼ h1=2tr?=�, and
S ¼ h1=2t�=�

2. Additionally, Ipser’sH0 is the negative of
ours. The relevant result is given in Ipser’s Eqs. (27, 28)
and is (in our notation)

H00
0 þ

�
2

r
þ	0 � c 0

�
H0

0 þ P ðrÞH0 ¼ 8�h1=2SðrÞ; (31)

where

P ðrÞ :¼ 2	00 þ 2	0
�
3

r
�	0 � c 0

�
þ 2c 0

r
� �2

r2
h (32)

and

2Of course, this assumes that it is possible to obtain any
symmetric trace free tensor from the detailed relativistic expres-
sion, but—as would be expected (and can easily be seen from the
expressions)—this is indeed the case, at least if one only works
to first order in the perturbation, as we do here. Also, it is
instructive to note that we do not need to know the specifics
of the matter displacements that generate the quadrupoles we
consider, only that there is a trace free contribution to the star’s
stress-energy tensor whose maximum value is given by the
material’s shear modulus and von Mises breaking strain.
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SðrÞ :¼ h1=2ð��þ �p� trrÞ þ 2

�
ð3� r	0Þ tr?

�
þ r

t0r?
�

þ ½r2	00 þ r	0ð5� r	0Þ þ rc 0 � �2h=2þ 1�

� t�
�2

þ r2	0 t
0
�

�2

�
¼: h1=2ð��þ �pÞ þ S½t�ðrÞ: (33)

Here, we have defined c :¼ ð1=2Þ log h and written S½t� for
the contributions from shear stresses. (The ‘‘¼:’’ notation
implies that the quantity being defined is on the right-hand
side of the equality.)

We now wish to eliminate �� and �p in favor of
the shear stresses, as in the Newtonian calculation. We
use the same projections of stress-energy conservation
as in the Newtonian case (projecting onto the quantities
defined by the background spacetime, for simplicity) along
with the OV equations, giving

��þ �p ¼ 1

	0

�
�H0

0

2
ð�þ pÞ � �p0 þ t0rr

þ
�
3

r
þ	0

�
trr � �

r
h1=2tr?

�
(34)

and

�p ¼ �H0

2
ð�þ pÞ � trr

2
þ 1

�h1=2
½ð3þ r	0Þtr? þ rt0r?�

þ h1=2
�
1

�2
� 1

2

�
t�: (35)

Using the second expression to substitute for �p0 in the
first, we have

��þ�p¼ 1

	0

�
H0

2
ð�0 þp0Þþ

�
3

r
þ	0

�
trrþ3

2
t0rr� 1

�h1=2

�
��

�2h

r
þ	0 þ r	00 �c 0½3þ r	0�

�
tr?

þð4þ r½	0 � c 0�Þt0r?þ rt00r?

�

þ
�
1

2
� 1

�2

�
h1=2ðc 0t�þ t0�Þ

�

¼:
H0

2	0 ð�0 þp0ÞþS½��;�p�ðrÞ
	0 : (36)

The equation for H0 thus becomes

ðLGRH0ÞðrÞ :¼ H00
0 þ

�
2

r
þ	0 � c 0

�
H0

0

þ
�
P ðrÞ � 4�h

�0 þ p0

	0

�
H0

¼ 8�h1=2½h1=2S½��;�p�ðrÞ=	0 þ S½t�ðrÞ�: (37)

[P ðrÞ and S½t�ðrÞ are given in Eqs. (32) and (33), respec-

tively.]As expected, this reduces toEq. (11) in theNewtonian
limit [where we have H0 ! 2�� and	0 ! gðrÞ].
We now want to write the equation for H0 in

Sturm–Liouville form in order to obtain its Green function
easily. To do this, we note that the appropriate ‘‘integrating

factor’’ (for the first two terms) is r2ðf=hÞ1=2, which gives

½r2ðf=hÞ1=2H0
0�0 þ r2ðf=hÞ1=2

�
P ðrÞ � 4�h

�0 þ p0

	0

�
H0

¼ 8�r2f1=2½h1=2S½��;�p�ðrÞ=	0 þ S½t�ðrÞ�: (38)

We also need the boundary conditions, which are given by
matching H0 onto a vacuum solution at the surface of the
star. The vacuum solution that is regular at infinity is given
by Eq. (20) in Hinderer [40] with c2 ¼ 0, viz.,

H0ðRÞ¼c1

��
2

C
�1

�
C2=2þ3C�3

1�C
þ6

C

�
1�1

C

�
logð1�CÞ

�
;

(39)

where we have evaluated this at the star’s surface (r ¼ R)
and defined the star’s compactness,

C :¼ 2GM=Rc2 (40)

(now returning to showing factors of G and c explicitly).
We require that H0 and H0

0 be continuous at the star’s

surface. The value of c1 obtained from this matching of
the internal and external solutions gives us the quadrupole
moment. If we use the quadrupole moment amplitude that
reduces to the UCB integral [given in our Eq. (1)] in the
Newtonian limit, we have

Q22 ¼ G2

c4
M3c1
�

: (41)

[This expression comes from inserting a pure l ¼ m ¼ 2
density perturbation into Eq. (2) in Hinderer [40]; contract-
ing the free indices with unit position vectors; performing
the angular integral, for which the expressions in Thorne
[43] are useful; and noting that the result is ð8�=15ÞY22

times our Eq. (1). The given result then follows immedi-
ately from Hinderer’s Eqs. (7, 9, 22); we reverse the overall
sign since we have reversed the UCB sign convention for
the stress-energy tensor.]
We then have a Green function for Q22 of

GGRðR; rÞ ¼
�
2GM

c2

�
3
�
1� 2GM

Rc2

��1

� UðrÞ
c2R2½U0ðRÞH0ðRÞ �UðRÞH0

0ðRÞ�
(42)

(including the overall factor of 8�G=c4 that multiplies the
source). Here, U is given by LGRU ¼ 0 [LGR is given in
Eq. (37)], with boundary conditions Uðr0Þ ¼ 1 and
U0ðr0Þ ¼ 2=r0. [Compare Eq. (10.103) in Arfken and
Weber [46], as well as our Newtonian version above.]
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Additionally, H0ðRÞ and H0
0ðRÞ are given by the boundary

conditions (39) with c1 ! 1. [One obtains this expression
by first computing the Green function for H0ðRÞ following
Arfken andWeber, then dividing through by the quantity in
brackets in Eq. (39) to obtain c1, and finally using Eq. (41)
to obtain Q22. We have also noted that 1=f ! h ! 1=
ð1� 2GM=Rc2Þ at the star’s surface.] We thus define, for
notational simplicity, two relativistic generalizations of
GNðrÞ: One is

GGRðrÞ :¼ r2ðfhÞ1=2GGRðR; rÞ
	0 ; (43)

for the contributions from S½��;�p�, and the other one is

�GGRðrÞ :¼ r2f1=2GGRðR; rÞ; (44)

for the contributions from S½t�.
With these definitions, the integral expression for the

quadrupole in terms of the stresses and the structure of
the background star is

Q22 ¼
Z R

0
½GGRðrÞS½��;�p�ðrÞ þ �GGRðrÞS½t�ðrÞ�dr

¼
Z R

0
ðCrrtrr þ Ct?tr? þ C�t�Þdr; (45)

where

Crr :¼
�
3

r
þ	0

�
GGRðrÞ � 3

2
G0

GRðrÞ � h1=2 �GGRðrÞ; (46a)

Cr? :¼ ��h1=2

r
GGRðrÞ þ 2þ rð	0 þ c 0Þ

�h1=2
G0

GRðrÞ �
r

�h1=2
G00

GRðrÞ þ
4� 2r	0

�
�GGRðrÞ � 2

r

�
�G0
GRðrÞ; (46b)

C� :¼
�
1

�2
� 1

2

�
h1=2G0

GRðrÞ þ
2r	0ð3� r	0Þ þ 2rc 0 � �2hþ 2

�2
�GGRðrÞ � 2r2	0

�2
�G0
GRðrÞ; (46c)

and we have integrated by parts twice to obtain the second
equality in Eq. (45), using the same argument as in our
Newtonian calculation.

We now look at the maximum quadrupole. This is still
given by the uniformly maximally strained case: We have
checked numerically that the coefficients of the three stress
terms are always negative for all the background stars we
consider. We thus have a maximum quadrupole given by
inserting Eqs. (7), (17a), (17b), and (30) into Eq. (45),
yielding

jQmax ;GR
22 j
��max

¼
ffiffiffiffiffiffiffiffiffi
32�

15

s Z R

0
�ðrÞ

��
6

r
ðh1=2 � 1Þ � 2	0

�

�GGRðrÞ þ
�
3� r

h1=2
ð	0 þ c 0Þ

�
G0

GRðrÞ

þ r

h1=2
G00

GRðrÞ þQstress

�
dr; (47)

where

Qstress :¼ 2

�
r	0ðr	0 � 3Þ � rc 0 � 1

h
þ r	0 þ h1=2 þ 1

�

� �GGRðrÞ þ 2r

�
r	0

h
þ 1

�
�G0
GRðrÞ (48)

is the contribution from the stresses’ own gravity. We have
split it off both for ease of notation and because it is
negligible except for the most massive and compact stars,
as illustrated below. The contributions from the density and
pressure perturbations are so much larger due to the factor
of 1=	0 present inGGR [cf. Eqs. (43) and (44)]. It is easy to
see that Eq. (47) reduces to Eq. (19) in the Newtonian limit,

where h ! 1, and we can neglect the contributions involv-
ing 	0, c 0, and Qstress.
We now show how the relations between the different

maximal-strain Q22 Green functions [given by the inte-
grands in Eqs. (19) and (47) without the factors of � (but
with the overall prefactor)] vary with EOS, as well as with
the mass of the star for a given EOS. This gives an
indication of how much difference the various approxima-
tions make in different situations. We start with the unified
SLy EOS [24], obtained by Haensel and Potekhin [48]
(using the table provided by the Ioffe group [49] in
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FIG. 1 (color online). The Q22 integrands (without the factor
of � ��max ) for the SLy EOS and an 0:500M� star with a
compactness of 0.12.
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Ref. [50]), which is a standard choice for making
predictions about crustal quadrupoles (e.g., in Horowitz
[21], HJA, and our Sec. IVA). Here, we illustrate the
changes in the Green functions with mass for stars with
masses ranging from 0:5M� to the EOS’s maximum mass
of 2:05M�; see Figs. 1–3. (All three Green functions agree
extremely closely for stars around the EOS’s minimum
mass of 0:094M�, so we do not show this case, particularly
because such low-mass neutron stars are of unclear astro-
physical relevance.) These stars’ compactness [defined in
Eq. (40)] ranges from 0.12 to 0.6. Note that Fig. 3 has a
different vertical scale than the other two plots, due to the
suppression of the quadrupole for massive, compact stars
(discussed below).

We illustrate the ratios of the various Q22 Green func-
tions to the Newtonian Cowling approximation one for the
maximum mass (2:05M�) hybrid star using the Hy1 EOS

(see Table I in Ref. [29]) in Fig. 4.3 We see the overestimate
of the Newtonian no-Cowling approximation calculation
for perturbations in the core, particularly compared with
the general relativistic (GR) version, and also see the over-
estimate of the Newtonian Cowling approximation version
for crustal perturbations. (We do not make some sort of
similar plot for the solid strange quark star case, since the
expressions for the maximum quadrupole in this case end
up being rather different than the integrated-by-parts ones
presented in the previous sections, as we shall see in
Sec. IVC.)
In all these cases, we compute the stellar background

fully relativistically, using the OV equations and identify-
ing the OV equations’ Schwarzschild radial coordinate
with the Newtonian radial coordinate when necessary.
We have used the enthalpy form of the OVequations given
by Lindblom [56] and implemented the inner boundary
condition by taking the star to have an inner core of radius
r0 ¼ 100 cm, whose mass is given by ð4=3Þ�r30�0, where
�0 is the energy density corresponding to the central
enthalpy that parametrizes the solution. (The spike near
the origin seen in the bottom plot in Fig. 4 is due to this
implementation of the inner boundary condition and has a
negligible effect on the computed maximum quadrupoles.)
In all cases, we have used MATHEMATICA 7’s default
methods to solve the differential equations, find roots,
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FIG. 3 (color online). The Q22 integrands (without the factor
of � ��max ) for the SLy EOS and a maximum mass, 2:05M� star,
with a compactness of 0.60.
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FIG. 2 (color online). The Q22 integrands (without the factor
of � ��max ) for the SLy EOS and a 1:40M� star with a compact-
ness of 0.35.
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FIG. 4 (color online). Ratios of the Q22 integrands with the
Newtonian Cowling approximation integrand for the Hy1 EOS
and a maximum mass, 2:06M� star, with a compactness of 0.49.
Note that the top and bottom plots have completely separate
vertical axis scalings.

3As discussed in Ref. [29], for our low-density EOS, we use
the same combination of the Baym, Pethick, and Sutherland [51]
EOS for nB < 0:001 fm�3 and the Negele and Vautherin [52]
EOS for 0:001 fm�3 < nB < 0:08 fm�3 used by Lattimer and
Prakash [53] (nB is the baryon number density). These were
obtained from the table provided by Kurkela et al. [54] in
Ref. [55]. Bulk quantities of hybrid stars such as the mass and
quadrupole moment (from core deformations) do not depend
much on the precise choice of low-density EOS.
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etc. We have computed as many derivatives as possible
analytically, to aid numerical accuracy, e.g., using the OV
equations to substitute for derivatives of the pressure, and
also using the Green function equations to express second
derivatives of the Green functions in terms of the functions
themselves and their first derivatives.

IV. RESULTS

A. Maximum Q22 for crustal deformations

Here, we consider the maximum quadrupoles from elas-
tic deformations of a nonaccreted crust in three possible
situations, following HJA. In particular, we use the SLy
EOS (as do Horowitz [21] and HJA, though they do not
refer to it by that name) and impose two comparison crustal
thicknesses to ascertain how much this affects the maxi-
mum quadrupole. Here, we use the same rough model for
the crust’s shear modulus used by HJA. We also consider
the more detailed model for the shear modulus obtained
using the crustal composition provided by Douchin and
Haensel [24] (also used by Horowitz [21] and HJA). Here,
the crust’s thickness is fixed to the value given in that work.
In this case, we also consider a different high-density EOS
that yields much less compact stars with larger crusts.

Specifically, the two comparison crustal thicknesses are
given by taking the base of the crust to occur at densities of
2:1� 1014 g cm�3 (thick crust, for comparison with UCB)
or 1:6� 1014 g cm�3 (thin crust, following a suggestion by
Haensel [57]), while Douchin and Haensel place the
bottom of the crust at a density of 1:28� 1014 g cm�3.
For the two comparison cases, we take the shear modulus
to be 1016 cm2 s�2 times the star’s density (in g cm�3). As
illustrated in HJA’s Fig. 2, this is an underestimate of
<50%, except at the very extremes of the density range
considered.4 We plot the quadrupole moment and elliptic-
ity for these two cases for masses between �1:2M�
(around the minimum observed neutron star mass—see
Ref. [58]) and the SLy EOS’s maximum mass of 2:05M�
in Fig. 5.

In addition to the quadrupole moments, we also show the

fiducial ellipticity �fid ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�=15

p
Q22=Izz (e.g., Eq. (2) of

[12]). Here Izz is the star’s principal moment of inertia, for
which we use the fiducial value of Izz ¼ 1038 kgm2 ¼
1045 g cm2 used in the LIGO/Virgo papers rather than the
true value for a given mass and EOS, which can be greater
by a factor of a few. We do this for easy comparison
with the observational papers, since they frequently quote
results in terms of this fiducial ellipticity instead of the
quadrupole moment, which is the quantity truly measured.

Please note that we present these fiducial ellipticities
only for comparison with LIGO/Virgo results, not to give
any indication of the size of the deformation. While the
true ellipticity gives a measure of the size of the deforma-
tion in the Newtonian case (up to ambiguities from the fact
that the true density distribution is nonuniform), it does
not do so in any obvious way in the relativistic case.
Nevertheless, the relativistic shape of the star’s surface
can be obtained from its quadrupole deformation, as shown
in Ref. [59]. However, if one wished to know, for instance,
how much the star is deformed as a function of radius, one
would need to calculate this using a detailed relativistic
theory of elasticity to relate the stresses to the matter
displacements, as in Penner et al. [60].
In the more detailed case, we use the HJA version of the

Ogata and Ichimaru [25] shear modulus, combined with
the Douchin and Haensel [24] results for the crust’s com-
position. This is [correcting a typo in HJA’s Eq. (20)],

�eff ¼ 0:1194

�
4�

3

�
1=3

�
1� Xn

A
nb

�
4=3ðeZÞ2; (49)

where Xn is the fraction of neutrons outside of nuclei, A
and Z are the atomic and proton number of the nuclei,
respectively, nb is the baryon number density, and e is the
fundamental charge.
Since HJA’s study, there have been a few improvements

to the Ogata and Ichimaru result: Horowitz and Hughto
[26] have computed the effects of charge screening, finding
a�7% reduction in the shear modulus. Baiko [28] has also
considered a relativistic model for the electron polarizabil-
ity and arrived at similar conclusions. Indeed, Baiko’s
results suggest that screening will yield an even smaller
correction in the innermost portion of the crust, where the
shear modulus is the largest, and the electrons are the most
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FIG. 5 (color online). The Newtonian Cowling, Newtonian no-
Cowling, and full relativistic (including stress contributions)
values for the maximum quadrupole deformations (and fiducial
ellipticity) due to crustal stresses versus mass for two choices of
crustal thickness. These are computed using the SLy EOS with
the rough HJA recipe for the shear modulus and a breaking strain
of 0.1.

4Note that Fig. 3 in HJA is not in agreement with their Fig. 2.
When we reproduce those figures, we find that the ratio �=� is
considerably closer to 1016 cm2 s�2 over all the density range
than the trace shown in HJA’s Fig. 3, so their approximation is
better than it would appear from that figure.
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relativistic, with a relativity parameter over an order of
magnitude larger than the largest Baiko considers.
(However, the ion charge numbers are also almost always
somewhat greater than the largest Baiko considers, par-
ticularly at the very innermost portion of the crust, which
will tend to increase the effect.)

Baiko [27] has also recently computed quantum
corrections and finds that they reduce the shear modulus
by up to�18% in some regimes. However, in our case, the
reduction will be much smaller, based on the scaling of

�1=6=ðZA2=3Þ given near the end of Baiko’s Sec. VI. Even
though our densities are over 1 order of magnitude greater,
the nuclei we consider are also over 1 order of magnitude
more massive than the 12C composition Baiko considers,
so the quantum mechanical effects end up being reduced
by about an order of magnitude from the number Baiko
quotes. We thus use the same Ogata and Ichimaru result
used by HJA, noting that the resulting quadrupoles might
be reduced by less than 10% due to charge screening and
quantum effects—an error which is small compared to
other uncertainties, such as crust thickness and the compo-
sition of dense matter. Indeed, there is a factor of �2
uncertainty in the shear modulus due to angle averaging
(even disregarding whether the implicit assumption of
a polycrystalline structure for the crust is warranted): As
shown by Hill [61], the Voigt average used by Ogata and
Ichimaru is an upper bound on the true shear modulus of a
polycrystal. A lower bound is given by the Reuss average
(also discussed in Hill [61]), for which the prefactor in
Eq. (49) would be 0.05106.

Note that there would be even further corrections to the
shear modulus due to pasta phases (see Ref. [62]), but such
phases are not present in the Douchin and Haensel model
[24]. We also note that the Douchin and Haensel results
only include the very innermost portion of the outer crust.
However, this lack of coverage has a negligible effect on
the final results for the quadrupoles, since the neglected
region has at most half the radial extent of the inner crust
and the shear modulus in this region is orders of magnitude
below its maximum value at the bottom of the inner crust.
We have checked this explicitly using the detailed calcu-
lations of the outer crust composition due to Rüster,
Hempel, and Schaffner-Bielich [63], available in Ref. [64].

We plot the maximum quadrupole and ellipticity in the
three approximations for the detailed shear modulus model
in Fig. 6. Here, we show these for the SLy EOS proper and
also for a high-density EOS that yields much less compact
stars (and a crust that is �2 times as thick) and thus larger
maximum quadrupoles. For the latter EOS, we have chosen
(for simplicity) the LKR1 hybrid EOS from [29]—the maxi-
mum compactnesses for the two EOSs are 0.60 (SLy) and
0.43 (LKR1). (We show the much larger quadrupoles that
could be supported by the mixed phase in the core for the
LKR1 EOS in Fig. 9, but here just show the crustal quadru-
poles using the Douchin and Haensel model for the crust.)

In all of these crustal results, in addition to the expected
relativistic suppression of the quadrupole (which becomes
quite dramatic for compact, high-mass stars), we also find
that the Newtonian Cowling approximation slightly over-
estimates the quadrupole (by�25%–50%), as observed by
HJA (though they found the overestimate to be consider-
ably greater, around a factor of at least a few). This over-
estimate is due to the cancellation of contributions from
�0 when one drops the Cowling approximation (see the
discussion at the end of Sec. II). The overall decrease in the
maximum crustal quadrupole with mass is due primarily
to the fact that the crust thins by a factor of �4 (SLy) or
�2 (LKR1) in going from a 1M� star to the maximum
mass star, though the quadrupole itself receives even
further suppressions with mass due to relativistic effects
and an increased gravitational field.

B. Maximum Q22 for hybrid stars

Here, we display the maximum quadrupole deforma-
tions as a function of stellar mass for each of the hybrid
EOS parameter sets considered in Ref. [29]. (Please note
that most of the results from Ref. [29] we use or refer to
here were corrected in the erratum to that paper.) We start
by showing these values calculated in the various approx-
imations using the Hy1 EOS (with a surface tension of
� ¼ 80 MeV fm�2; see Table I in Ref. [29]) in Fig. 7 and
then restrict our attention to the relativistic results. (The
relation between the results of the different approximations
is roughly the same for all the hybrid EOSs we consider.)
Here, the maximum quadrupoles increase with mass, since
the volume of mixed phase increases with mass, and this
is more than enough to offset the suppressions due to
relativity and the increased gravitational field.
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FIG. 6 (color online). The Newtonian Cowling, Newtonian
no-Cowling, and full relativistic (including stress contributions)
values for the maximum quadrupole deformations (and fiducial
ellipticity) due to crustal stresses vs mass, for the SLy EOS with
the detailed Douchin and Haensel + Ogata and Ichimaru model
for the shear modulus and a breaking strain of 0.1, plus the
crustal quadrupoles for the LKR1 EOS with the same crustal
model.
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We also show how the maximum relativistic quadrupole
varies with the surface tension for the Hy1 EOS in Fig. 8.
The slightly larger quadrupoles for lower surface tensions
at low masses are expected, due to a slightly larger shear
modulus at low pressures for lower surface tensions—see
Fig. 10 in Ref. [29]. In fact, despite differences of close to
an order of magnitude in the high-pressure shear modulus
for the Hy1 EOS in going from a surface tension of
20 MeV fm�2 to one of 80 MeV fm�2 (see Fig. 10 in
Ref. [29]), the differences in the resulting maximum quad-
rupoles are at most a factor of a few (for large masses). This
is not unexpected; these quantities are dominated by the
portions of the mixed phase further out in the star, where
the shear moduli have a much weaker dependence on the
surface tension. (Additionally, the fact that larger surface
tensions lead to smaller shear moduli at low pressures
helps to minimize the effect, though the maximum

quadrupoles still increase with increasing surface tension
for high masses, as expected.)
Finally, we show the maximum quadrupoles for different

hybrid EOSs in Fig. 9. (Note that these curves start some-
what above the minimum masses for which the mixed
phase is present, since we are mostly interested in the
significantly larger maximum quadrupoles possible for
larger masses.) The considerable differences are due
primarily to the substantial variations in the extent of the
mixed phase in stable stars with EOS parameters as well as
the EOS dependence of the stars’ compactness (see Table I
in Ref. [29]), not to variations in the magnitude of the shear
modulus for a given quark matter fraction (compared in
Fig. 12 in Ref. [29]). In particular, the LKR1 EOS produces
stars with a very large region of mixed phase—up to 72.5%
of the star’s radius—and a (relatively) small maximum
compactness—only 0.433. (Note that our quadrupole curve
for the LKR1 EOS ends slightly short of the EOS’s maxi-
mum mass of 1:955M�, only going to 1:948M�, due to
problems with the numerics.)
Please note that these maximum quadrupoles may all be

overly optimistic. First, as was discussed in Sec. IVA, the
averaging used to obtain the effective shear modulus only
gives an upper bound on the true shear modulus of a poly-
crystal. (We do not quote results for the Reuss lower bound
here, since it is only straightforward to obtain for the three-
dimensional droplet phases. However, we shall note that
preliminary investigations, using the Reuss bound for the
droplet phases and the Voigt bound for the rest, give reduc-
tions in the maximum quadrupoles of up to �5 for lower
masses.)
Second, the relatively large value we have chosen for the

surface tension also increases the maximum quadrupoles,
while recent calculations place the surface tension on the
low side (� 10–30 MeV fm�2)—see Ref. [65] for the
latest results. Nevertheless, as we show in the appendix,
the mixed phase is nevertheless favored by global energy
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no-Cowling, and full relativistic (including stress contributions)
values for the maximum quadrupole deformations (and fiducial
ellipticity) of hybrid stars vs mass, using the Hy1 EOS with a
surface tension of� ¼ 80 MeV fm�2 and a breaking strain of 0.1.
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arguments even for these large surface tensions. The maxi-
mum quadrupoles are also affected by the method of EOS
interpolation and the lattice contributions to the EOS, as is
illustrated in the appendix, though the largest change is
only�40% (at least for the LKR1 and Hy10 EOSs, the two
EOSs that yield the largest quadrupoles).

Note that LIGO’s current upper limits on fiducial
ellipticity in the most interesting cases (the Crab pulsar,
PSR J0537–6910, and Cas A) [6,7] are �10�4, corre-
sponding to a quadrupole moment of �1041 g cm2. The
first hybrid star estimate by Owen [12] was 1 order of
magnitude lower. Thus, our new results here show that
current LIGO upper limits are interesting not only for
quark stars but also for hybrid stars, at least high-mass
ones. Indeed, the most extreme case we consider, the LKR1
EOS with high surface tensions, gives maximum quadru-
poles of a few� 1042 g cm2, which are above and therefore
relevant to the limits set by Virgo for the Vela pulsar [8].

C. Maximum Q22 for crystalline color
superconducting quark stars

Here, we consider stars made of crystalline color super-
conducting quark matter, for which the shear modulus has
been estimated by Mannarelli, Rajagopal, and Sharma
[30].5 [See Eq. (1) in Haskell et al. [23] for the expression
in centimeter-gram-second units.] Such stars have also
been treated (with varying degrees of sophistication) by
Haskell et al. [23], Lin [19], and Knippel and Sedrakian
[20]. However, only Lin considers the case of a solid quark
star, as we will do here, and does so using quite a rough
model. (The others consider crystalline color supercon-
ducting cores in hybrid stars.)

Since strange quark stars have a nonzero surface density—
and solid quark stars have a nonzero surface shear modulus,
with the standard density-independent treatment of the
superconducting gap—we have to make some changes to
our previously obtained expressions in order to treat them.

First, the outer boundary condition changes. The poten-
tial (in the Newtonian case) and metric perturbation (in
the GR case) are no longer continuous at the star’s surface,

due to the presence of �0 in both equations [see Eqs. (12)
and (38)]. As discussed in Hinderer et al. [66] (following
Damour and Nagar [67]), one can obtain the distributional
contribution to the boundary conditions [Eqs. (13) and
(39)] using the usual procedure of integrating the defining
differential equation over ½R� �; Rþ �� and taking the
limit � & 0. In the Newtonian case, this gives [defining
�� as the density immediately inside the star’s surface and
R� to mean evaluation at R� � in the limit � & 0]

��0ðR�Þ ¼
�
4�G

gðRÞ �� � 3

R

�
��ðRÞ; (50)

and in the GR case, we have (with G ¼ 1)

H0
0ðR�Þ ¼ H0

0;oldðRÞ þ
4�h

	0ðRÞ��H0ðRÞ; (51)

whereH0
0;oldðRÞ is computed using Eq. (39). We thus make

the replacement 3RFðRÞ ! ½3� 4�G��R=gðRÞ�RFðRÞ
in the expression for the Newtonian Green function
[Eq. (23)] and the replacement H0

0ðRÞ!H0
0;oldðRÞþ

4�h��H0ðRÞ=	0ðRÞ in the GR case [Eq. (42)]. These
changes in the boundary conditions increase themaximum
quadrupole by a factor of& 2 in the example case consid-
ered below; the largest effect is for the least massive stars
considered.
Second, we would have to keep the boundary terms at

the outer boundary when integrating by parts to obtain the
expressions for the maximum quadrupole, since the shear
modulus no longer vanishes at the star’s surface. However,
since here the shear modulus is smooth, it is numerically
preferable not to perform any integration by parts, thus
avoiding potential problems with large cancellations
between the surface and integrated terms. In this case,
the expressions for the quadrupole assuming the UCB
maximum uniform strain are [cf. Eqs. (19) and (47)]

jQUCBstrain;N
22 j
��max

¼
ffiffiffiffiffiffiffiffiffi
32�

15

s Z R

0
GNðrÞ½r�00ðrÞ��0ðrÞ�dr (52)

and

jQUCB strain;GR
22 j
��max

¼
ffiffiffiffiffiffiffiffiffi
32�

15

s Z R

0
½GGRðrÞIUCB

½��;�p�ðrÞ þ �GGRðrÞIUCB
½t� ðrÞ�dr; (53)

where

IUCB
½��;�p�ðrÞ :¼

�
6

r
ðh1=2 � 1Þ � 2	0 þ r	00 þ	0ð1� rc 0Þ � c 0

h1=2

�
�ðrÞ þ

�
2þ rð	0 � c 0Þ

h1=2
� 3

�
�0ðrÞ þ r�00ðrÞ

h1=2
; (54a)

IUCB
½t� ðrÞ :¼ 2

�
r	0½rð	0 þ 2c 0Þ � 5� � rc 0 � r2	00 � 1

h
þ r	0 þ h1=2

�
�ðrÞ � 2r

�
r	0

h
þ 1

�
�0ðrÞ: (54b)

5This estimate is not angle averaged, but Mannarelli, Rajagopal, and Sharma’s calculation has relatively large uncontrolled
remainders, so we do not worry about the effects of angle averaging here.
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However, these expressions will not actually yield the
maximum quadrupole in this case, due to an important
difference between the cases where the shear modulus
vanishes at the star’s surface and those where it does not.
It is simplest to see this in the Newtonian case for a star
with a constant shear modulus: Since the UCB maxi-
mum strain expression (52) only depends upon deriva-
tives of the shear modulus, it predicts a zero maximum
quadrupole, which seems absurd. One can, however,
make a small adjustment to the form of the maximum
strain one considers to yield a nonzero quadrupole in this
case. This modification will also yield considerably
larger maxima in the realistic case we consider, as
well, where the shear modulus is close to constant—it
decreases by less than a factor of 2 in going from the
star’s center to its surface in the example case we
consider below.

Specifically, in the case of a slowly varying shear
modulus, with �ðrÞ � jr�0ðrÞj, jr2�00ðrÞj, appropriate
for strange quark stars, we want the terms involving �
itself to be largest. The appropriate choice for the strain
in this case is most readily apparent from inspection of
the Newtonian expression for the maximum quadrupole
in terms of the stress tensor components, Eq. (15). We
want the maximum contribution from the undifferenti-
ated terms, which implies that we want trr and�tr? to be
as large as possible. For t�, we note that since �

0ðrÞ< 0,
we also want �t� to be as large as possible. Realizing
that we can freely change the sign of any of the �� that
give the maximum uniform strain [given for the
Newtonian case in Eqs. (17); cf. Eq. (65) in UCB], we
thus reverse the sign of �r? and ��. [The same logic
holds for the more involved GR case, as well, where the
appropriate expression for �� will be the negative of
Eq. (30).]

The resulting expressions for the putative maximum
quadrupole in this case are thus

jQmod strain;N
22 j
��max

¼
ffiffiffiffiffiffiffiffiffi
32�

15

s Z R

0
GNðrÞ

�
12

r
�ðrÞ þ 5�0ðrÞ þ r�00ðrÞ

�
dr

(55)

and

jQmod strain;GR
22 j
��max

¼
ffiffiffiffiffiffiffiffiffi
32�

15

s Z R

0

h
GGRðrÞImod

½��;�p�ðrÞ

þ �GGRðrÞImod
½t� ðrÞ

i
dr; (56)

where

Imod
½��;�p�ðrÞ :¼

�
6

r
ðh1=2þ1Þþ2	0

þ r	00 þ	0ð1� rc 0Þ� c 0

h1=2

�
�ðrÞ

þ
�
2þ rð	0 �c 0Þ

h1=2
þ3

�
�0ðrÞþ r�00ðrÞ

h1=2
;

(57a)

Imod
½t� ðrÞ :¼�2

�
r	0½5� rð	0 þ2c 0Þ�þ rc 0 þ r2	00 þ1

h

� r	0 þh1=2
�
�ðrÞ�2r

�
r	0

h
þ1

�
�0ðrÞ:

(57b)

In principle, these merely give a lower bound on the
maximum quadrupole, unlike the case in which the shear
modulus vanishes below the surface, where there is a firm
argument that the maximum uniform strain maximizes the
quadrupole. However, even if they do not give the absolute
maximum, they should be quite close for cases like the one
we consider here, where the shear modulus varies quite
slowly.
Applying these expressions to a specific case, we use

the strange quark matter EOS calculated by Kurkela,
Romatschke, and Vuorinen (KRV) [31], generating an
EOS for the parameter values of interest using the
MATHEMATICA notebooks available in Ref. [68]. The rele-

vant parameters are the values of the MS renormalization
point,�MS, and the strange quark mass,ms, both at a scale

of 2 GeV, along with the coefficient in the relation be-
tween the renormalization scale and the quark chemical
potential, X, the color superconductivity gap parameter,
� (taken to be independent of density),6 and the minimal
quark chemical potential at which strange quark matter
exists, �q;min . We consider the EOS obtained by choosing

�MS ¼ 355 MeV, ms ¼ 70 MeV, X ¼ 4, � ¼ 10 MeV,
and�q;min ¼ 280 MeV. This parameter set yields a maxi-

mum mass of 2:45M�, with a maximum compactness
of 0.467.

6Note that � enters the KRV EOS through a color flavor
locked pressure term. This is not quite appropriate for the
crystalline color superconducting phase we consider here, since
it assumes that all the quarks pair, while only some of them pair
in the crystalline phase. However, as discussed in Sec. VI B of
Ref. [69], the condensation energy of the crystalline phases is
easily 1=3 to 1=2 that of the color flavor locked phase with zero
strange quark mass, which is the pressure contribution used by
KRV. We have thus not altered this term in our calculations,
since the contribution is already approximate, in that it assumes a
density-independent gap parameter. Moreover, we only consider
a fairly low value of �, while Knippel and Sedrakian [20]
suggest that the crystalline phase might be favored up to � ¼
100 MeV. Our EOS may thus simply correspond to a slightly
larger value of �, which would increase the maximum quadru-
pole, since the shear modulus scales as �2.
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These parameter choices were generally inspired by
those considered in Ref. [68], though with a smaller value
of �, to place us well within the crystalline superconduct-
ing regime. However, as Knippel and Sedrakian [20]
suggest, the crystalline phase could still be favored for
considerably larger �s, up to �100 MeV, for the low-
temperature case relevant for neutron stars. We thus note
that increasing � decreases the maximum mass and in-
creases the maximum quadrupole, though the latter is
increased by considerably less than the naive scaling of
�2 one would expect from the scaling of the shear modu-
lus, likely due to the increased compactness of the stars
with larger �s. In particular, for � ¼ 100 MeV, we have a
maximum mass and compactness of 2:12M� and 0.508,
respectively, and a maximum quadrupole of �3:5�
1045 g cm2 for a 1:4M� star, �20 times that for � ¼
10 MeV. However, one must bear in mind that our pertur-
bative treatment starts to become questionable with such
large gap parameters, for which the maximum shear
stresses are more than 10% of the background’s energy
density. The uncontrolled remainders in the Mannarelli,
Rajagopal, and Sharma [30] calculation of the shear modu-
lus also increase as the gap parameter increases.

We show the quadrupole for a maximally uniformly
strained star in the three approximations (Newtonian
Cowling, Newtonian no-Cowling, and GR) for both the
UCB and modified maximum strain choices for this EOS in
Fig. 10. Here, we have used a breaking strain of 0.1, by the
same high pressure argument as in the mixed phase case.
(While the very outermost portions of the star are at low
pressure, the parts that are at a lower pressure than the
crustal case for which the 0.1 breaking strain was calcu-
lated make negligible contributions to the quadrupole.)

Please note that to obtain the EOS used for this figure,
we made some slight modifications to the KRV EOSCALC

MATHEMATICA notebook so that it would output particle

number densities on a denser mesh for low strange quark
chemical potentials. This then gave an EOS table with
better low-pressure coverage than their default settings
produced. We still needed to perform an extrapolation of
the EOS to zero pressure, where we found that a linear
extrapolation of the energy density and quark chemical
potential in terms of the pressure using the lowest two
entries of the table provided a good fit. (More involved
approaches involving fitting to more points and/or a
quadratic extrapolation produce very similar results.)
Additionally, it is worth pointing out that applying the

KRV results to compact stars pushes their second-order
perturbative calculation toward the edge of its domain of
validity. However, in our case, the smallest value of the
QCD renormalization scale we consider is 1.12 GeV, at
which value the QCD coupling constant is �0:45. Thus,
the uncontrolled remainders in the expansion are sup-
pressed by at least a factor of �0:1. (While Rajagopal
and Shuster [70] find that perturbative QCD calculations
of the color superconducting gap are only reliable at energy
scales of* 105 GeV, the specifics of such calculations are
rather different from the calculation of the EOS we are
considering here, where the gap is taken as an input pa-
rameter.) While it is unreasonable to expect this calculation
to be a truly accurate description of strange quark matter, it
is not clear that any of the alternative descriptions of
strange quark matter are a priori guaranteed to be a better
description of the physics, given the very considerable
uncertainties associated with this phase of matter.

V. DISCUSSION

Previous studies of the tidal and magnetic deformations
of compact stars have found similar relativistic suppres-
sions of quadrupole moments with compactness. In the
tidal case, see the Love number computations in
Refs. [40,66,67,71,72]. In the case of magnetic deforma-
tions, the expected suppressions are seen in, e.g.,
Refs. [13–16]. In fact, since the largest compactness con-
sidered in these latter papers is only 0.48 (in Ref. [13]), one
imagines that they overestimate the maximum quadrupoles
by at least a factor of a few for more compact stars (for a
fixed magnitude of magnetic field).
As was argued by Damour and Nagar [67] in the tidal

case, all these suppressions are primarily related to the
‘‘no-hair’’ property of black holes: The largest relativistic
suppression we find comes from the boundary conditions
[through the H0ðRÞ and H0

0ðRÞ in the Green function’s

denominator—see Eq. (42)], where one matches on to
the external vacuum spacetime. For instance, for the SLy
EOS’s maximum compactness of 0.6,H0ðRÞ andH0

0ðRÞ are
�3:5 and �6 times their Newtonian values (which can be
obtained from the first term of Eq. (21) in Hinderer [40]).
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FIG. 10 (color online). The Newtonian Cowling, Newtonian
no-Cowling, and full relativistic (including stress contributions)
values for the quadrupole deformations (and fiducial ellipticity)
of maximally strained strange quark stars vs mass, using the EOS
discussed in the text with a breaking strain of 0.1. We show these
both for the standard UCB uniform maximum strain and our
modification that yields significantly larger quadrupoles in
this case.
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In fact, these ratios go to infinity in the formal black hole
limit, where the compactness approaches unity, as required
by the no-hair property and discussed by Damour and
Nagar [67] (see their Secs. IV C and VII A, but note that
their definition for the compactness is half of ours). This
implies that the stiffness of spherically symmetric curved
vacuum spacetime suppresses the quadrupole. The quad-
rupole is also suppressed by a larger effective gravitational
acceleration (given by 	0), which appears in the denomi-
nator of GGR, replacing the Newtonian gðrÞ [cf. Eqs. (14)
and (43)]. (But recall that we always compute the back-
ground stellar structure relativistically, so this larger accel-
eration only affects the perturbation equations, and not,
e.g., the thickness of the crust for a given mass and EOS,
which is the same in both the Newtonian and relativistic
calculations of the quadrupole.)

Our results imply that nearly all of the Newtonian com-
putations of quadrupoles due to elastic deformations of
relativistic stars overestimate the quadrupole moment,
often by at least a factor of a few. The only exceptions
we have found are for low-to-mid mass strange quark stars
and for elastic stresses in the cores of neutron stars around
0:5M�. In both of these cases, the Newtonian Cowling
approximation is a slight underestimate for contributions
to the quadrupole, though the Newtonian no-Cowling ver-
sion is still an overestimate. See Fig. 1 for an illustration in
the core case, but note that neutron stars with such low
masses are not known to exist in nature. The overestimate
from performing a Newtonian Cowling approximation cal-
culation can be �6 for massive stars whose quadrupole is
being generated by an elastic deformation near the crust-core
interface, as considered by UCB and others. This is due in
part to the sudden changes in density at that interface entering
directly through g00, as discussed at the end of Sec. II.

However, the calculations by Horowitz [21] for crustal
deformations of very lowmass stars only receive negligible
corrections (of & 5%), since he considers compactnesses
of �0:01. In fact, one makes even smaller errors in using
the Cowling approximation to treat these stars, since the
changes in density in the crust (times 4�Gr2) are much
smaller than the star’s gravitational field there.

No neutron stars with such low masses have ever been
observed (nor is there a compelling mechanism for forming
them). Nevertheless, Horowitz remarks that searches for
gravitational waves from elastically deformed neutron
stars will, ceteris paribus, be biased towards low(er)
mass neutron stars, if one considers deformations gener-
ated by crustal stresses. This is an important point, particu-
larly when considering the astronomical interpretation of
detections (or even upper limits), and the results we present
here make the bias against high-mass stars even stronger.
(This bias also applies to stars containing solid quark
matter, though there it is rather weak. It does not apply to
hybrid stars, however, where it is high-mass stars that can
sustain the largest quadrupoles.)

Of course, one must remember that all of these values
are maxima, assuming a maximally strained star, while
there is no reason, a priori, for a given star to be maximally
strained. Moreover, as UCB and HJA note, these calcula-
tions assume that all the strain goes into the l ¼ m ¼ 2
perturbation, though strain in other modes (e.g., the l ¼ 2,
m ¼ 0 mode due to rotation) can push the lattice closer to
its breaking strain while not increasing the l ¼ m ¼ 2
quadrupole.

VI. CONCLUSIONS AND OUTLOOK

We have presented a method for calculating the
maximum elastic quadrupole deformation of a relativistic
star with a known shear modulus and breaking strain. We
then applied this method to stars whose elastic deforma-
tions are supported by a shear modulus either from the
Coulomb lattice of nuclei in the crust, a hadron–quark
mixed phase in the core, or crystalline superconducting
strange quark matter throughout the star. (In the last case,
we have made the requisite changes to the method so that it
is valid when the star has a nonzero surface density and the
shear modulus does not vanish at the star’s surface.) In all
but the strange quark case, we find that the relativistic
quadrupole is suppressed, compared with the standard,
Newtonian Cowling approximation calculation of the
quadrupole, at least for stars with masses of * 1M�
(corresponding to the observed masses of neutron stars)
and the EOSs we have investigated. These suppressions
can be up to �4 in the hybrid case and �6 in the crustal
case. In the strange quark star case, the Newtonian Cowling
approximation calculation slightly underestimates the
quadrupole (by tens of percent) for low-to-standard mass
stars but is still an overestimate of �2 at higher masses.
These suppressions strengthen the Horowitz [21] argu-

ment that searches for gravitational waves from elastically
deformed neutron stars supported by crustal stresses are
biased towards lower-mass stars. The same argument also
applies to strange quark stars, though there the suppres-
sions with increasing mass are less severe (and the maxi-
mum quadrupoles are all considerably larger). However,
this argument does not apply to quadrupole deformations
of hybrid stars, since the increase in the size of the mixed
phase region with increasing mass dominates the various
suppressions.
Our results also imply that many of the previous calcu-

lations of elastic quadrupoles (e.g., Refs. [18–20,22,23])
will need their results revised downward. (While we find
much larger maximum quadrupoles for solid strange quark
stars than did Lin [19], this is only because we assume a
breaking strain 10 times that assumed by Lin. If we take the
same 10�2 breaking strain as does Lin, then we find a
suppression of a factor of a few, though this is very likely
within the uncertainties of Lin’s calculation, which
assumed a uniform density, incompressible star with a
uniform shear modulus.)
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It is instructive to compare our results with the numbers
quoted in Pitkin’s review [10]. All of these were obtained
by Pitkin using scalings given in the aforementioned pa-
pers, sometimes updating to the Horowitz and Kadau [32]
breaking strain, and provide a good overview of the stan-
dard Newtonian predictions. None of our detailed calcu-
lations for maximum crustal quadrupoles approach the
high values Pitkin obtained using UCB’s fitting formula
(as corrected by Owen [12]). However, our very largest
hybrid star quadrupoles are 1 order of magnitude above
Pitkin’s quoted maximum, even if one only assumes a
breaking strain of 10�2, as does Pitkin. Additionally, our
estimates for maximum solid quark star quadrupoles
(� 1044 g cm2 for 1:4M� stars) are considerably larger
than the ones quoted by Pitkin (based on a different shear
modulus model), even if we reduce them by 1 order of
magnitude due to scaling the breaking strain to Pitkin’s
10�2. In fact, they are in the same range as those Pitkin
quotes for a model for crystalline superconducting hybrid
stars (with an optimistic gap parameter 5 times the one we
used for solid quark stars, leading to a shear modulus
�40 times our shear modulus’s maximum value).

Even with the relativistic suppressions, we obtain maxi-
mumquadrupole deformations of a few� 1042 g cm2 in the
hybrid case for a very stiff hadronic EOS and a few�
1041 g cm2 for more realistic cases. In both situations, the
largest maximum quadrupoles are given by the most mas-
sive stars. These values are proportional to the breaking
strain and assume that the Horowitz and Kadau [32] break-
ing strain of about 0.1 is applicable to the mixed phase.
Such large quadrupole deformations were previously
thought only to be possible for stars containing solid quark
matter (see Refs. [12,19,20,23]) or from crustal deforma-
tions in the very low-mass neutron stars considered by
Horowitz [21]. These large deformations (corresponding
to fiducial ellipticities of a few� 10�3 in the extreme
case and �5� 10�4 in a more realistic case) would be
able to be detected by current LIGO searches for gravita-
tional waves from certain known neutron stars [6–8].
(However, we must note that there is no reason to assume
that such isolated stars are anywhere near maximally
strained, even neglecting the uncertainties in the description
of their interiors.)

The prospects for crustal quadrupoles are now somewhat
less optimistic and definitely favor lower-mass stars.
However, for a canonical 1:4M� neutron star, we find
that the maximum relativistic crustal quadrupole is in
the range �ð1–6Þ � 1039 g cm2 [corresponding to fiducial
ellipticities of �ð1–8Þ � 10�6], depending on the model
used for the crust and the high-density EOS. (Note that the
fully consistent Douchin and Haensel model with its asso-
ciated high-density EOS yields the lowest numbers.
Additionally, there is the possibility of a further reduction
of up to �2 due to the angle averaging procedure used to
obtain the shear modulus.) On the high side, these numbers

are consistent with those given previously for breaking
strains of 0.1 by Horowitz [21,32],7 though they are a factor
of �5 lower than the maximum Pitkin [10] obtained using
scalings of previous results and the maximum value given
by HJA (scaled to this breaking strain). For stars around
2M�, the relativistic suppressions lead to maximum quad-
rupoles that are nearly an order of magnitude smaller than
those for a 1:4M� star in the compact SLy case: �ð1–5Þ �
1038 g cm2 [corresponding to fiducial ellipticities of
�ð1–6Þ � 10�7]; and even in the much less compact
LKR1 case, there is a suppression of �5. Previous
Newtonian studies (see Fig. 3 in Ref. [21]) had only found
suppressions of around a factor of 4, due to the thinning of
the crust and the increase in Newtonian gravity with in-
creasing mass. It will be interesting to consider further
models for the crustal composition and EOS in this case,
particularly the large suite of crustal models including the
pasta phases recently calculated by Newton, Gearheart,
and Li [73]. (See Ref. [74] for order-of-magnitude esti-
mates of the maximum quadrupole for these models,
illustrating the sensitive dependence on the slope of the
symmetry energy.)
One can also compare these maximum elastic quadru-

poles with those generated by an internal magnetic field.
Here, the values depend, of course, upon the equation of
state, compactness, and—perhaps most crucially—magnetic
field topology, as well as the quantity one chooses to use to
measure the magnitude of the magnetic field. But sticking to
order-of-magnitude numbers, and considering a canonical
1:4M� neutron star, Frieben and Rezzolla [16] show that a
toroidal internal field of �1015 G would generate a quadru-
pole of �1039–1040 g cm2, comparable to the maxima we
find for crustal quadrupoles. Similarly, quadrupoles of
�1041–1042 g cm2, around the maxima we find for hybrid
stars, could come from magnetic fields of �1016 G, while
the maximum quadrupoles of �1044 g cm2 we find for
crystalline strange quark stars could also be generated by
magnetic fields of �1017 G, close to the maximum allowed
field strength. (But note that these magnetic deformations are
all computed for ordinary, purely hadronic neutron stars.
Additionally, the quoted maximum elastic quadrupoles in
the hybrid case are attained only for more massive stars than
the 1:4M� stars for which we are quoting the magnetic
deformation results.) The quoted values for magnetic quad-
rupoles come from the fits given in Sec. 7 of Frieben and
Rezzolla [16], except for the final ones, which are obtained
from inspection of their Fig. 5 and Table 3. All these values

7But recall that the results from Horowitz [21] were obtained
using the SLy EOS and crustal composition results, so they are
the same as our Newtonian Cowling approximation SLy predic-
tions, given in Fig. 6, except�7% lower, since Horowitz is using
the Horowitz and Hughto [26] result for the shear modulus. In
the fully relativistic case, one requires a thicker crust than
provided by the pure SLy results to obtain values for the
maximum quadrupole comparable to those given by Horowitz.
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agree in order of magnitude with the predictions for the
twisted torus topology given by Ciolfi, Ferrari, and
Gualtieri [14] and with many other studies for various top-
ologies cited in Frieben and Rezzolla [16]. But note that very
recent calculations by Ciolfi and Rezzolla [17] show that the
magnetic field required to obtain a given quadrupole defor-
mation with the twisted torus topology could be reduced
by about an order of magnitude if the toroidal contribution
dominates.

One would also like to make relativistic calculations of
the maximum energy that could be stored in an elastic
deformation. This would be useful in properly computing
the available energy for magnetar flares, for instance.
(Using Newtonian scalings, Corsi and Owen [75] esti-
mated that the hybrid case was especially interesting com-
pared to existing LIGO upper limits for gravitational wave
emission from such flares.) The basic expressions (at least
in the perfect fluid case) appear to be readily available in
the literature (see, e.g., Refs. [76,77]; Refs. [37,78] give
related results including elasticity). However, one cannot
apply these directly to the crustal and hybrid cases, even in
the Newtonian limit, due to the distributional nature of
the density and pressure perturbations. Specifically, the
sudden change in shear modulus at the phase transitions
gives delta functions in the derivatives of the density and
pressure perturbations. Since the energy expressions in-
volve squares of these derivatives, one would have to
invoke some sort of regularization procedure or apply a
different method. Developing appropriate expressions for
this case will be the subject of future work.

Returning to the quadrupoles, one might also want to
consider the shape of the deformed star, particularly in
the relativistic case—the ellipticity is already only a rough
indicator of the shape of the deformation in the Newtonian
case—as has now been done in Ref. [59]. But the effects of
the star’s magnetic field are surely the most interesting to
consider, from its influence on the lattices that support elastic
deformations, to the changes to the boundary conditions at
the star’s surface from an external magnetic field (particu-
larly for magnetars), to the internal magnetic field’s own
contribution to the star’s deformation. One might also want
to consider the lattice’s full elastic modulus tensor in this
case, instead of simply assuming a polycrystalline structure
and angle averaging to obtain an effective isotropic shear
modulus, as was done here. (And even if one assumes a
polycrystalline structure, one could use more involved,
sharper bounds on the shear modulus than the ones consid-
ered here—seeRef. [79] for a classic review of such bounds.)
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APPENDIX: HADRON-QUARK HYBRID STARS
AND THE BINDING ENERGYARGUMENT

As we mentioned in Sec. II C of Ref. [29], if the surface
tension is large enough, the mixed phase is not locally
favored energetically (i.e., at a fixed baryon density), com-
pared to the individual pure phases. (This was first noted by
Heiselberg, Pethick, and Staubo [80] and later discussed by
Alford et al. [81].) However, as was also noted in Ref. [29],
the entire mixed phase region can still be favored due to
global energy arguments, especially when one considers
the binding energy of the star (for a fixed total baryon
number); one expects the stars with the largest binding
energy (i.e., smallest gravitational mass) for a given total
baryon number to be favored. In this calculation, we al-
ways compare with a purely hadronic star. One would
expect the Maxwell construction case with a sharp inter-
face between the two phases to produce more strongly
bound stars than the purely hadronic case, given the local
energy results presented in Refs. [80,81]. However, at least
for the EOSs we consider, the Maxwell construction stars
with total baryon numbers up to the total baryon number of
the corresponding maximum mass hybrid star only contain
hadronic matter.
Specifically, if we compute the gravitational mass of a

hybrid star with a given total baryon number, we find that
this mass is smaller (corresponding to a larger binding
energy) than that of a purely hadronic star constructed
with the same hadronic EOS parameters as the hybrid
EOS. However, these mass differences are not very large,
only �0:006M� in the most extreme case (the most mas-
sive stars with the LKR1 EOS), and usually considerably
smaller. One thus might be concerned that this conclusion
could be reversed if one includes the contributions of the
lattice to the EOS, viz., the lattice’s energy density and
pressure, and the contributions of the surface tension to the
energy density (through the cell energy). Nevertheless, we
find that this is not the case.
Indeed, we find that the mixed phase is favored by the

binding energy argument for all the EOS parameters we
consider, even for a surface tension as large as � ¼
80 MeV fm�2, more than twice as large as the surface
tensions favored by recent calculations [65] and large
enough that the mixed phase is not locally energetically
favored. In fact, for these surface tensions, the mixed phase
stars with the additions to the EOS from the blobs and
lattice energy are even more strongly favored by the
binding energy argument than those with no additions.
Of course, as we mentioned in Ref. [29], the computations
of the lattice additions to the EOS have some uncertainty,
in particular due to our approximate treatment of charge
screening. However, we do not expect this to change
the qualitative results from the binding energy argument,
since the changes in the binding energy from including the
lattice and blob contributions to the energy are relatively
small (&10%). Moreover, we expect that more accurate
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computations of the cell and lattice energy would reduce
their contributions. Indeed, Christiansen and Glendenning
[82,83] argue that the mixed phase should always be
favored, and any calculation that predicts otherwise must
be incomplete or use inapplicable input parameters.

We now describe the specifics of the binding energy
calculation. We calculate the mass differences by first
computing the total baryon number as a function of mass
for the purely hadronic stars and then using bisection to
locate the hybrid star with a given total baryon number.
However, as noted by Haensel and Prószyński [84], the
standard method of logarithmic interpolation of an EOS
table is insufficiently accurate to allow one to compute the
gravitational masses and baryon numbers with the accu-
racy we need. One must, instead, use a thermodynamically
consistent method of interpolation—i.e., one for which the
first law of thermodynamics is satisfied exactly. And, in-
deed, if we use the standard logarithmic interpolation, we
find that the additions to the EOS have a much larger effect
on the binding energy differences, and the mixed phase is
only favored by the binding energy argument for higher
masses, if at all.

Haensel and Prószyński [84] provide such a thermody-
namically consistent method of interpolation in their
Sec. IIc, which we use to perform the binding energy

calculation. There is an alternative expression for the
baryon number density as a function of radius given in
Eq. (6) of Haensel and Potekhin [48] (also obtained using
the first law of thermodynamics), but we find the Haensel-
Prószyński interpolation to be preferable, in our experi-
ments. Specifically, we have checked that our qualitative
conclusions remain unchanged if we use the EOS output on
a finer mesh of baryon number densities (with half the
spacing of the original mesh) and have found that the
results of the Haensel-Prószyński interpolation are less
sensitive to changes in the mesh on which the EOS table
is output than the Haensel-Potekhin version. We interpret
this as indicating that the Haensel-Prószyński version is
more reliable, at least for our situation. (There is also a
more involved thermodynamically consistent interpolation
method due to Swesty [85], but we have not experimented
with this.)
We show the differences in the final stellar quantities

calculated using the logarithmic and Haensel-Prószyński
interpolation for the case of no EOS additions, as well as
the effects of the EOS additions with the Haensel-
Prószyński interpolation in Table I. (The & 0:5% differ-
ences in the maximummass due to the different methods of
interpolation are in line with the differences found by
Haensel and Prószyński [84], though they find an increase

TABLE I. Properties of stable stars constructed with the EOSs from Ref. [29] (except for the different Hy1 ‘‘flavors’’), showing the
effects of the interpolation and the additions to the EOS. In the ‘‘interpolation’’ column, ‘‘log’’ denotes the standard logarithmic
interpolation of the EOS table (used to obtain the values for stellar quantities given in Table I of Ref. [29], which we repeat here, with
the small corrections from the erratum), while ‘‘HaPr’’ denotes the Haensel-Prószyński thermodynamically consistent interpolation. In
the ‘‘EOS additions’’ column, ‘‘blob + lattice’’ denotes the case where we have included the blob and lattice energy densities and lattice

pressure in the EOS. The other columns are the same as in Table I of Ref. [29]. Explicitly, M
hybrid
min gives the masses of stars that first

contain hybrid matter, R
hybrid
max =R denotes the maximum radius fraction occupied by hybrid matter (i.e., the radius fraction for the

maximum mass star), and Cmax denotes the maximum compactness (2GM=Rc2) of a star. We also give the composition of the rare
phase (‘‘Q’’ stands for quark and ‘‘H’’ for hadronic) and the dimension of the lattice at the center of the maximum mass star. (Note that

is often necessary to locate the maximum mass with more than its given accuracy to obtain R
hybrid
max =R, Cmax , and the dimension of the

densest hybrid phase to their given accuracy, as discussed in the erratum to Ref. [29].)

� (MeV fm�2) Interpolation EOS additions Mmax (M�) M
hybrid
min (M�) R

hybrid
max =R (%) Cmax Densest hybrid phase

– log none 2.057 1.747 57.7 0.484 Q, d ¼ 1:03
Hy1 – HaPr none 2.047 1.743 57.6 0.484 Q, d ¼ 1:05

80 HaPr blobþlattice 2.040 1.742 57.4 0.483 Q, d ¼ 1:03

– log none 1.974 1.377 69.0 0.476 H, d ¼ 1:30
Hy10 – HaPr none 1.963 1.375 69.0 0.476 H, d ¼ 1:24

80 HaPr blobþlattice 1.955 1.375 68.9 0.475 H, d ¼ 1:27

– log none 1.955 1.096 72.5 0.433 H, d ¼ 3:00
LKR1 – HaPr none 1.948 1.098 72.4 0.433 H, d ¼ 3:00

80 HaPr blobþlattice 1.935 1.098 72.3 0.431 H, d ¼ 3:00

– log none 1.986 1.878 44.0 0.500 Q, d ¼ 2:10
Generic – HaPr none 1.974 1.869 43.8 0.500 Q, d ¼ 2:12

80 HaPr blobþlattice 1.971 1.869 43.4 0.499 Q, d ¼ 2:15

– log none 1.974 1.534 65.9 0.515 Q, d ¼ 1:36
Generic0 – HaPr none 1.963 1.528 65.9 0.515 Q, d ¼ 1:36

80 HaPr blobþlattice 1.959 1.528 65.8 0.514 Q, d ¼ 1:38
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in the maximum mass, while we only find decreases.)
Additionally, including the EOS additions and changing
the interpolation also has an effect on the maximum
quadrupoles (at most �40%), illustrated in Fig. 11 for
the two EOSs that yield the largest quadrupoles.

TheEOS additions andHaensel-Prószyński interpolation

both reduce the maximum mass, compared to the plain

logarithmic interpolation results. Thus, EOSs that already

have a low maximum mass (particularly LKR1) with

the logarithmic interpolation and no additions may no

longer be consistent within 1� with observations of

massive neutron stars when using the Haensel-Prószyński

interpolation and including the additions. Indeed, these
EOSs were designed to be compatible with the Demorest
et al. observation of a 1:97� 0:04M� neutron star [86],
so some of them (again, particularly LKR1) are not com-
patible within 1� with the very recent observation of a
2:01� 0:04M� neutron star by Antoniadis et al. [87],
even with no additions and the logarithmic interpolation.
Nevertheless, all of them are still compatible within 2�,
even with the additions and Haensel-Prószyński interpola-
tion. It is also worth pointing out that the Antoniadis et al.
measurement is less clean than the Demorest et al. mea-
surement, as it relies on some modeling of white dwarf
atmospheres, not just geometrical considerations.
Additionally, one can easily obtain 1� compatibility

with the Antoniadis et al.measurement with a slight modi-
fication of the EOS parameters. For instance, for the LKR1
EOS, changing the QCD coupling constant s from 0.6 to
0.625 increases the maximum mass to 2:004M� with the
logarithmic interpolation and no additions and to 1:984M�
with the Haensel-Prószyński interpolation and additions
(with a surface tension of � ¼ 80 MeV fm�2), while
only decreasing the maximum quadrupoles by & 30% for
the largest masses
Finally, we describe exactly how we obtain the lattice

contributions to the EOS. We compute the lattice and cell
energy density [ðEcell þWÞ=�] using Eqs. (2) and (14) in
Ref. [29] and the electrostatic pressure contribution by
multiplying that paper’s Eq. (20) by d=3 to account for
the angle-averaged anisotropy (d is the dimension of the
lattice). We have also experimented with adding in the iso-
tropic contribution to the pressure from changing the cell
energy and blob’s charge, given by �ðEcellþ2WÞ=�. We
found that this addition does not change the qualitative
conclusions and, indeed, makes the mixed phase even more
strongly favored, giving some indication of the robustness of
the calculation.

[1] I. S. Shklovskii, Astron. Zh. 46, 715 (1969) [Sov. Astron.
13, 562 (1970)].

[2] J. P. Ostriker and J. E. Gunn, Astrophys. J. 157, 1395
(1969).

[3] A. Ferrari and R. Ruffini, Astrophys. J. Lett. 158, L71
(1969).

[4] H. J. Melosh, Nature (London) 224, 781 (1969).
[5] W.H. Press and K. S. Thorne, Annu. Rev. Astron.

Astrophys. 10, 335 (1972).
[6] B. P. Abbott et al. (LIGO Scientific Collaboration and

Virgo Collaboration), Astrophys. J. 713, 671 (2010).
[7] J. Abadie et al. (LIGO Scientific Collaboration),

Astrophys. J. 722, 1504 (2010).
[8] J. Abadie et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Astrophys. J. 737, 93 (2011).

[9] B. J. Owen, Classical Quantum Gravity 26, 204014
(2009).

[10] M. Pitkin, Mon. Not. R. Astron. Soc. 415, 1849 (2011).
[11] P. Astone (for the LIGO Scientific Collaboration and

Virgo Collaboration), Classical Quantum Gravity 29,
124011 (2012).

[12] B. J. Owen, Phys. Rev. Lett. 95, 211101 (2005).
[13] K. Ioka and M. Sasaki, Astrophys. J. 600, 296 (2004).
[14] R. Ciolfi, V. Ferrari, and L. Gualtieri, Mon. Not. R. Astron.

Soc. 406, 2540 (2010).
[15] S. Yoshida, K. Kiuchi, and M. Shibata, Phys. Rev. D 86,

044012 (2012).
[16] J. Frieben and L. Rezzolla, Mon. Not. R. Astron. Soc. 427,

3406 (2012).
[17] R. Ciolfi and L. Rezzolla, arXiv:1306.2803.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

M (solar masses)

10-4

10-3

ε fi
d

10 40

10 41

10 42

Q
22

 (
g 

cm
2 )

LKR1, plain, log
LKR1, plain, HaPr
LKR1, full, HaPr
Hy1´, plain, log
Hy1´, plain, HaPr
Hy1´, full, HaPr

FIG. 11 (color online). The full relativistic maximum quadru-
pole deformations (and fiducial ellipticity) of hybrid stars vs
mass, for the LKR1 and Hy10 EOSs from Ref. [29], with a
surface tension of � ¼ 80 MeV fm�2, showing the effects of the
different interpolation methods and EOS additions. Here,
‘‘plain’’ denotes no additions, while ‘‘full’’ denotes both blob
and lattice additions. Similarly, ‘‘log’’ and ‘‘HaPr’’ denote the
standard logarithmic and Haensel-Prószyński interpolation,
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