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According to the no-hair theorem, astrophysical black holes are uniquely characterized by their masses

and spins and are described by the Kerr metric. Several parametric spacetimes that deviate from the Kerr

metric have been proposed in order to test this theorem with observations of black holes in both the

electromagnetic and gravitational-wave spectra. Such metrics often contain naked singularities or closed

timelike curves in the vicinity of the compact objects, which can limit the applicability of the metrics to

compact objects that do not spin rapidly, and generally admit only two constants of motion. The existence

of a third constant, however, can facilitate the calculation of observables, because the equations of motion

can be written in first-order form. In this paper, I design a Kerr-like black hole metric which is regular

everywhere outside of the event horizon, possesses three independent constants of motion, and depends

nonlinearly on four free functions that parametrize potential deviations from the Kerr metric. This metric

is generally not a solution to the field equations of any particular gravity theory, but can be mapped to

known four-dimensional black hole solutions of modified theories of gravity for suitable choices of the

deviation functions. I derive expressions for the energy, angular momentum, and epicyclic frequencies of a

particle on a circular equatorial orbit around the black hole and compute the location of the innermost

stable circular orbit. In addition, I write the metric in a Kerr-Schild-like form, which allows for a

straightforward implementation of fully relativistic magnetohydrodynamic simulations of accretion flows

in this metric. The properties of this metric make it a well-suited spacetime for strong-field tests of the

no-hair theorem in the electromagnetic spectrum with black holes of arbitrary spin.
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I. INTRODUCTION

According to the no-hair theorem, isolated and stationary
black holes in general relativity are uniquely characterized
by their massesM and spins J and are described by the Kerr
metric. This metric is the unique stationary, axisymmetric,
asymptotically flat, vacuum solution of the Einstein field
equations which contains an event horizon but no closed
timelike curves in the exterior domain [1,2]. Thanks to the
no-hair theorem, all astrophysical black holes are expected
to be Kerr black holes. While observational evidence sug-
gests the existence of event horizons in astrophysical black
holes (see the discussion in, e.g., Ref. [3]), a proof of the
validity of the no-hair theorem is still lacking.

Astrophysical black holes, however, will not be perfectly
stationary or exist in perfect vacuum because of the pres-
ence of other objects or fields such as stars, accretion disks,
or dark matter, which could alter the Kerr nature of the
black hole. Nonetheless, under the assumption that such
perturbations are so small to be practically unobservable,
one can argue that astrophysical black holes are indeed
described by the Kerr metric. This is the assumption I make
in this paper. This is usually a good approximation for
supermassive black holes in the centers of galaxies and
for stellar-mass black holes in X-ray binaries, which are
typically separated from their respective companion stars
by �1 AU (see, e.g., [4]).

Several model-independent strong-field tests of the no-
hair theorem have been suggested using gravitational-wave
observations of extreme mass-ratio inspirals (EMRIs)
[5–15] and electromagnetic observations of accretion flows
[16–28]. These tests are designed in a phenomenological
approach that encompasses large classes of modified theo-
ries of gravity instead of focusing on any particular gravity
theory. In this approach, the underlying theory is usually
unknown, but it is assumed that particles in this theory
move along geodesics. The goal is, then, to gain insight in
this theory through observations. See Ref. [29] for reviews
of such tests.
Other tests of the no-hair theorem exist that include

the observation of gravitational ringdown radiation of
perturbed black holes after a merger with another object,
which tests whether the end-state of the merger is a Kerr
black hole [30], as well as several weak-field tests in the
electromagnetic spectrum such as those obtained from the
monitoring of close stellar orbits around Sgr A* [31] and
pulsar/black-hole binaries [32].
While it is sufficient for tests in the weak-field regime to

rely on a parametrized post-Newtonian approach (PPN;
e.g., [33]), the model-independent strong-field tests de-
scribed above require a modified spacetime which deviates
from the Kerr metric in parametric form. Several such
parametric frameworks have been created, within which
possible observational signatures of a Kerr-like black hole
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can be explored (e.g., [8,9,13,14,34,35]). These metrics
can deviate slightly to severely from the Kerr metric, and
observables can be studied in terms of one or more free
parameters. All of these metrics reduce to the Kerr metric if
the deviations vanish. Since general relativity has to date
only been marginally tested in the strong-field regime [36],
deviations from the Kerr metric could be either small or
large as long as they are consistent with current weak-field
tests (see [37]).

If a deviation from the Kerr metric is detected, there are
two possible interpretations. Within general relativity, the
object in this case cannot be a black hole, but is instead a
stable stellar configuration or else an exotic object [8,38].
However, if the compact object is known to possess an
event horizon, then the no-hair theorem is falsified and
four-dimensional general relativity is only approximately
valid in the strong-field regime.

Because of the no-hair theorem, all parametrically de-
formed Kerr spacetimes have to violate at least one of the
assumptions of this theorem. These metrics are generally
stationary, axisymmetric, and asymptotically flat. If such a
metric is also Ricci-flat it either does not harbor a black
hole or contains singularities or regions with closed time-
like curves outside of the event horizon. Such pathologies
may also exist, if the metric is not Ricci-flat. The presence
of pathologies in a given metric hampers using the metric
for strong-field tests of the no-hair theorem in both the
gravitational-wave and electromagnetic spectra, because
physical processes in the immediate vicinity of the
black hole at radii comparable to the innermost-stable
circular orbit (ISCO) cannot be modeled properly. Future
gravitational-wave detectors, however, will be most sensi-
tive to EMRIs that occur at radii roughly in the range
between the innermost stable orbit and 10–20M and accre-
tion disks are often modeled to terminate at the ISCO.

For certain applications such as ray-tracing simulations
of the electromagnetic radiation emitted from geometri-
cally thin accretion flows a cutoff radius can be imposed
which acts as an artificial horizon and shields the adverse
effects of the pathological regions from distant observers.
While, in principle, information on an enclosed pathology
will be encoded in the physical boundary conditions of the
cutoff which could still affect the causal past of particles or
observers outside of the cutoff, in practice, any photon that
reaches the cutoff radius can be excluded from the simu-
lation without altering the observed signal (see the discus-
sion in, e.g., Ref. [23]). For rapidly-spinning black holes,
however, the ISCO can be arbitrarily close to the event
horizon. Therefore, such a metric can only be used for
strong-field tests with at most moderately-spinning black
holes as long as the ISCO lies outside of the cutoff radius.
See Ref. [39] for further discussion.

Nonetheless, it is possible to design Kerr-like metrics
that are free of such pathologies outside of the central
object [14,35]. These two metrics parametrize deviations

from the Kerr metric in generic form. While the metric
proposed in Ref. [14] generally describes a black hole, the
metric of Ref. [35] harbors a black hole only for small
perturbations away from the Kerr metric and generally
describes a naked singularity. In this case, however, it is
always possible to choose a cutoff radius between the
surface of the naked singularity and the ISCO, which still
allows for the study of the electromagnetic emission from,
e.g., geometrically thin accretion disks in this metric [39].
The metric of Ref. [14] also admits an approximately (i.e.,
for small deviations from the Kerr metric) conserved third
constant of motion in addition to the two associated with
stationarity and axisymmetry, which is useful for the con-
struction of approximate EMRI waveforms [15]. These
metrics, therefore, can be used for strong-field tests of
the no-hair theorem even for large values of the spin [39].
The structure of these metrics, however, has several

disadvantages. The metric of Ref. [35] depends only on
one set of deviation parameters. In general relativity, sta-
tionary, axisymmetric, asymptotically flat, vacuum metrics
can be written in terms of four independent functions
[40], and one would expect that such metrics in more
general theories of gravity should depend on at least four
independent functions and, thus, on four sets of deviation
parameters. Likewise, it not obvious how to implement
three-dimensional fully relativistic hydrodynamic simula-
tions of accretion flows in the presence of a cutoff [39]. The
metric of Ref. [14] depends only linearly on four sets of
deviation parameters. This may not be the optimal form to
parametrize such deviations, because there is no reason to
believe that they are small.
Such a dependence on the deviation parameters is suffi-

cient for tests of the no-hair theorem with EMRI observa-
tions as long as the deviations are assumed to be small,
because an extension to include large deviations would
require knowledge of the strong-field radiative dynamics
in the underlying theory (e.g., wave emission and polar-
ization, radiation reaction, matter coupling). Strong-field
tests of the no-hair theorem in the electromagnetic spec-
trum, however, are not a priori limited to the study of small
deviations from the Kerr metric, because these are per-
formed in a stationary black hole spacetime, where the
metric serves as a fixed background. Therefore, the dy-
namical properties of the gravity theory are not important
and the underlying field equations do not have to be known.
Electromagnetic tests of the no-hair theorem, then, only

require a suitable accretion flow model, for which addi-
tional assumptions regarding the coupling of matter to
electromagnetic fields in the modified theory have to be
made. The simplest approach is to assume that all electro-
magnetic interactions are governed by the laws of Maxwell
electrodynamics. This is a reasonable choice, given that, at
present, there is no evidence for violations of this theory at
the classical level (see, e.g., [37]). In many geometrically
thin accretion disk models, the disk plasma is constrained
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to move along circular equatorial orbits and photons are
emitted by plasma particles in their respective local rest
frames according to the prescriptions of elementary atomic
physics without any subsequent interactions. The resulting
observed spectra can be modeled using a variety of differ-
ent ray-tracing algorithms (e.g., [41]).

In fully relativistic magnetohydrodynamic simulations
of accretion flows, the dynamics of the flow plasma and
electromagnetic fields are governed by the equations ex-
pressing the conservation of particle number and the stress-
energy of the particles. Such simulations have, so far, only
been performed in general relativity (e.g., [42,43]), where
the flow particles are usually described as a perfect fluid,
but these can likewise be carried out in a suitable Kerr-like
metric. In many numerical calculations involving either
geometrically thin or thick accretion flows, however, a
linear dependence on the deviation parameters cannot be
enforced, because the equations that govern the evolution
of particles and fields such as the geodesic equations are
usually nonlinear. It is, therefore, desirable to generalize
the metrics proposed in Refs. [14,35].

The existence of three constants of motion makes a
metric special, because it allows for the separation of
the geodesic equations (the fourth integral of motion is
trivially provided by the normalization condition of the
4-momentum of the test particle). Otherwise, geodesic
orbits are generally chaotic (see, e.g., Refs. [44,45]). The
Kerr metric possesses such a third constant of motion, the
Carter constant, which is associated with a second-rank
Killing tensor [46]. Brink [10,44,47] investigated the ex-
istence of a third constant of motion in general stationary,
axisymmetric, vacuum spacetimes and showed that for a
certain subclass of these metrics a fourth-rank Killing
tensor exists. In Newtonian gravity and Maxwell electro-
statics, a Carter-like constant exists if the source is axi-
symmetric and only has even multipole moments that have
the same structure as the multipole moments of the Kerr
metric (cf., Ref. [48] and references in Ref. [49]). The
general-relativistic analogue of such a matter configura-
tion, however, does not possess a Carter-like constant [49].

In this paper, I design a new Kerr-like black hole metric
which suffers from no pathologies in the exterior domain,
admits three independent, exact constants of motion, and
depends nonlinearly on four independent deviation func-
tions that measure potential deviations from the Kerr met-
ric in the strong-field regime. This metric is not a solution
to the Einstein field equations or any concrete modified
theory of gravity, but it can serve as a phenomenological
framework for strong-field tests of the no-hair theorem in
general classes of gravity theories.

In order to design a metric with these properties, I care-
fully introduce arbitrary deviations from the contravariant
Kerr metric in a manner that preserves the separability of
the Hamilton-Jacobi equations. From this ansatz, I obtain a
covariant metric which describes a black hole and which is

regular everywhere outside of the event horizon. I further
simplify this metric by requiring that it is asymptotically
flat, possesses the correct Newtonian limit in the nonrela-
tivistic regime, and is consistent with all current weak-field
tests in the PPN formalism.
First I design the metric in Boyer-Lindquist-like

coordinates and derive a Carter-like constant as well as
solutions of the Hamilton-Jacobi equations. By choosing
expansions of the deviation functions in suitable power
series I write the metric in an explicit form and impose
consistency with the current PPN constraints. I then show
that the event horizon of this metric is identical to the Kerr
event horizon.
I proceed to analyze circular equatorial geodesic orbits

in this metric. I derive expressions for the energy, angular
momentum, and orbital frequencies of particles on such
orbits as a function of the mass, spin, and deviation
parameters of the black hole and show that they are
significantly modified with respect to their forms in the
Kerr metric. From the energy I calculate the location of
the ISCO and show that its location is likewise shifted
significantly. I further derive expressions of the principal
null congruences in this metric and find a transformation
of the Boyer-Lindquist-like coordinates to Kerr-Schild-
like coordinates. With this transformation I remove the
coordinate singularity at the event horizon which allows
for a straightforward implementation of fully relativistic
magnetohydrodynamic simulations of accretion flows in
this metric.
Finally, I relate this metric to known four-dimensional,

analytic black hole solutions of modified theories of
gravity. I map the new metric in a form appropriately
linearized in the deviation parameters or the spin to the
black hole solutions in Einstein-Dilaton-Gauss-Bonnet
[50] and Chern-Simons [51] gravity and as well as to the
Kerr-like metric of Ref. [14] written in one of its forms in
Ref. [15]. In the latter case, I find exact recursion relations
between the deviation parameters of both metrics, which I
verify explicitly at the first few nonvanishing orders. I also
point out that the black hole solution [52] in Randall-
Sundrum-type braneworld gravity [53] can be trivially
included by choosing the Kerr-Newman metric as the
starting point of my analysis.
The paper is organized as follows: In Sec. II, I design

the metric. In Sec. III, I calculate the locations of the event
horizon, Killing horizon, and ergosphere and determine
the conditions on the deviations functions so that the ex-
terior domain is regular. I analyze geodesic motion in the
equatorial plane and the location of the ISCO in Sec. IV
and derive the principal null directions and the Kerr-
Schild-like form of the metric in Sec. V. In Sec. VI,
I map the metric to known metrics from the literature.
I formulate my conclusions and discuss astrophysical
applications in Sec. VII. Throughout, I use geometric units,
where G ¼ c ¼ 1, unless I state it explicitly.
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II. DESIGN OFA BLACK HOLE METRIC WITH
THREE CONSTANTS OF MOTION

In this section, I design a new class of stationary,
axisymmetric, asymptotically flat metrics that describe
spinning black holes and that admit three independent
constants of motion. The metric elements depend on the
mass and spin of the black hole as well as on four free
functions that measure potential deviations from the Kerr
metric. This class of metrics includes the Kerr metric as the
special case if all deviations vanish.

My starting point is the Kerr metric gK��, which

in Boyer-Lindquist coordinates is given by the metric
elements

gKtt ¼ �
�
1� 2Mr

�

�
; gKt� ¼ � 2Marsin 2�

�
;

gKrr ¼ �

�
; gK�� ¼ �;

gK�� ¼
�
r2 þ a2 þ 2Ma2rsin 2�

�

�
sin 2�;

(1)

where

� � r2 � 2Mrþ a2; � � r2 þ a2cos 2�: (2)

In contravariant form, the Kerr metric can be written as
(e.g., [54])

g��K
@

@x�
@

@x�
¼ � 1

��

�
ðr2 þ a2Þ @

@t
þ a

@

@�

�
2

þ 1

�sin 2�

�
@

@�
þ asin 2�

@

@t

�
2

þ �

�

�
@

@r

�
2 þ 1

�

�
@

@�

�
2
: (3)

General stationary and axisymmetric metrics admit
two constants of motion, the energy E and axial angular
momentum Lz, and are of Petrov type I. The Kerr metric,
however, is of Petrov type D thanks to the existence of a
third constant of motion, the famous Carter constant QK,
which Carter [46] found by explicitly solving the
Hamilton-Jacobi equations,

� @SK
@�

¼ 1

2
g��K

@SK
@x�

@SK
@x�

: (4)

As Carter [46] showed, for a Hamilton-Jacobi function of
the form

SK � 1

2
�2�� EKtþ LK

z �þ SKr ðrÞ þ SK� ð�Þ; (5)

where � and � are the proper time and the rest mass of a
test particle on a geodesic orbit in this metric, respectively,
the Hamilton-Jacobi equations (4) are separable in all four
coordinates making geodesic motion in the Kerr metric
integrable. I briefly demonstrate the separability of the

Hamilton-Jacobi equations below, as these steps will be
essential for my design of a new class of Kerr-like metrics.
From Eq. (4), one obtains the equation

��2 ¼ � 1

��
½�ðr2 þ a2ÞEK þ aLK

z �2

þ 1

�sin 2�
½LK

z � aEKsin 2��2

þ�

�

�
@SKr
@r

�
2 þ 1

�

�
@SK�
@�

�
2
: (6)

After rearranging terms in this equation one can define a
separation constant CK such that

CK ¼ �r2�2 þ 1

�
½�ðr2 þ a2ÞEK þ aLK

z �2 � �

�
@SKr
@r

�
2

(7)

and

CK ¼ a2�2cos 2�þ 1

sin 2�
½LK

z � aEKsin 2��2 þ
�
@SK�
@�

�
2
:

(8)

From these expressions, it is obvious that the Hamilton-
Jacobi equations are separable and one can define the
Carter constant as

QK � CK � ðLK
z � aEKÞ2: (9)

In the following, I modify the contravariant Kerr metric
in such a manner that the corresponding Hamilton-Jacobi
equations remain separable. I introduce scalar functions
fðrÞ, gð�Þ, AiðrÞ, i ¼ 1, 2, 5, and Ajð�Þ, j ¼ 3, 4, 6, and

rewrite Eq. (3) as

g��
@

@x�
@

@x�
¼ � 1

�~�

�
ðr2 þ a2ÞA1ðrÞ @@tþ aA2ðrÞ @

@�

�
2

þ 1
~�sin 2�

�
A3ð�Þ @

@�
þ asin 2�A4ð�Þ @@t

�
2

þ �
~�
A5ðrÞ

�
@

@r

�
2 þ 1

~�
A6ð�Þ

�
@

@�

�
2
; (10)

where I define

~� � �þ fðrÞ þ gð�Þ: (11)

As in the case of the Kerr metric, I can define a
Hamilton-Jacobi function

S � 1

2
�2�� Etþ Lz�þ SrðrÞ þ S�ð�Þ; (12)

where

@S

@x�
¼ p�; (13)
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@S

@�
¼ 1

2
�2; (14)

with the corresponding Hamilton-Jacobi equations

� @S

@�
¼ 1

2
g��

@S

@x�
@S

@x�
: (15)

Here,

p� � �
dx�

d�
(16)

is the particle’s 4-momentum. From Eq. (15) I obtain the
equation

��2 ¼ � 1

�~�
½�ðr2 þ a2ÞA1ðrÞEþ aA2ðrÞLz�2

þ 1
~�sin 2�

½A3ð�ÞLz � aA4ð�ÞEsin 2��2

þ�
~�
A5ðrÞ

�
@Sr
@r

�
2 þ 1

~�
A6ð�Þ

�
@S�
@�

�
2
: (17)

Substituting the expression (11) for ~� and rearranging
terms I can define a separation constant C such that

C ¼ 1

�
½�ðr2 þ a2ÞA1ðrÞEþ aA2ðrÞLz�2

��2½r2 þ fðrÞ� � �A5ðrÞ
�
@Sr
@r

�
2

(18)

and

C ¼ 1

sin 2�
½A3ð�ÞLz � aA4ð�ÞEsin 2��2

þ�2½a2cos 2�þ gð�Þ� þ A6ð�Þ
�
@S�
@�

�
2
: (19)

It is now clear that this choice of the functions f, g, Ai,
i ¼ 1–6, preserves the integrability of the Hamilton-Jacobi
equations for this metric, because all terms which depend
on either the radius r or the polar angle � can be separated
as in Eqs. (18) and (19), respectively. Defining the Carter-
like constant

Q � C� ðLz � aEÞ2; (20)

I obtain the solutions

SrðrÞ ¼ �
Z

dr
1

�

ffiffiffiffiffiffiffiffiffiffiffi
RðrÞ
A5ðrÞ

s
; (21)

S�ð�Þ ¼ �
Z

d�

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð�Þ
A6ð�Þ

s
; (22)

where

RðrÞ � P2 � �f�2½r2 þ fðrÞ� þ ðLz � aEÞ2 þQg; (23)

�ð�Þ � Qþ ðLz � aEÞ2 ��2½a2cos 2�þ gð�Þ�
� 1

sin 2�
½A3ð�ÞLz � aA4ð�ÞEsin 2��2; (24)

P � ðr2 þ a2ÞA1ðrÞE� aA2ðrÞLz: (25)

From here on I assume that A5ðrÞ> 0 and A6ð�Þ> 0. The
former condition is necessary for the regularity of the
metric as I will show in the next section, while asymptotic
flatness will later require that A6ð�Þ ¼ 1.
Setting the partial derivatives of the Hamilton-Jacobi

function with respect to the constants of motion equal to
zero, I derive the following expressions for the proper time
and the coordinates t and �

� ¼
Z

dr
r2 þ fðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞRðrÞ

p þ
Z

d�
a2cos 2�þ gð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A6ð�Þ�ð�Þp ; (26)

t ¼
Z

dr
1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞRðrÞ

p fa�ðLz � aEÞ

þ ½ðr2 þ a2ÞA1ðrÞE� aA2ðrÞLz�ðr2 þ a2ÞA1ðrÞg
þ

Z
d�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A6ð�Þ�ð�Þp faðaE� LzÞ

þ aA4ð�Þ½A3ð�ÞLz � aA4ð�ÞEsin 2��; (27)

� ¼
Z

dr
1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞRðrÞ

p f�ðLz � aEÞ

þ aA2ðrÞ½ðr2 þ a2ÞA1ðrÞE� aA2ðrÞLz�g
þ

Z
d�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A6ð�Þ�ð�Þp faE� Lz þ A3ð�Þcsc 2ð�Þ

� ½A3ð�ÞLz � aA4ð�ÞEsin 2��g (28)

as well as the integral relation

�
Z drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A5ðrÞRðrÞ
p ¼ �

Z d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A6ð�Þ�ð�Þp : (29)

From the partial derivatives of the Hamilton-Jacobi
function with respect to the proper time and the coordi-
nates, I obtain the relations between the momenta p� and
the constants of motion:

E ¼ �pt; (30)

Lz ¼ p�; (31)

Q ¼ A6ð�Þp2
� � ðLz � aEÞ2 þ�2½a2cos 2�þ gð�Þ�

þ 1

sin 2�
½A3ð�ÞLz � aA4ð�ÞEsin 2��2 (32)

as well as
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pr ¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞp

�
ffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞ

p : (33)

Finally, using relation (16), I find the equations of
motion of a particle with rest mass �:

�~�
dt

d�
¼ �aA4ð�Þ½aA4ð�ÞEsin 2�� A3ð�ÞLz�

þ ðr2 þ a2ÞA1ðrÞ
�

P; (34)

�~�
dr

d�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞRðrÞ

q
; (35)

�~�
d�

d�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A6ð�Þ�ð�Þ

q
; (36)

�~�
d�

d�
¼ �A3ð�Þ

�
aA4ð�ÞE� A3ð�Þ Lz

sin 2�

�
þ aA2ðrÞ

�
P:

(37)

From the contravariant metric specified in Eq. (10),
I obtain the covariant metric

gtt ¼ �
~�½�A3ð�Þ2 � a2A2ðrÞ2sin 2��

½ðr2 þ a2ÞA1ðrÞA3ð�Þ � a2A2ðrÞA4ð�Þsin 2��2 ;

gt� ¼ �a½ðr2 þ a2ÞA1ðrÞA2ðrÞ � �A3ð�ÞA4ð�Þ�~�sin 2�

½ðr2 þ a2ÞA1ðrÞA3ð�Þ � a2A2ðrÞA4ð�Þsin 2��2 ;

grr ¼
~�

�A5ðrÞ ; g�� ¼
~�

A6ð�Þ ;

g�� ¼ ½ðr2 þ a2Þ2A1ðrÞ2 � a2�A4ð�Þ2sin 2��
½ðr2 þ a2ÞA1ðrÞA3ð�Þ � a2A2ðrÞA4ð�Þsin 2��2
� ~�sin 2�: (38)

This metric reduces smoothly to the Kerr metric in
Eq. (1) if all deviation functions vanish. It is written in
Boyer-Lindquist-like coordinates, i.e., in spherical-like
coordinates that reduce to Boyer-Lindquist coordinates in
the Kerr limit.

The choice of the deviation functions in Eq. (10)
may not be the most general one, as one might imagine
introducing deviation functions that depend on both the
radius and the polar angle such that the separability of the
Hamilton-Jacobi equations is still preserved. For massless
particles, Eq. (10) could be multiplied by an arbitrary
analytic function A7ðr; �Þ, which would not spoil the sepa-
rability of the Hamilton-Jacobi equations since � ¼ 0.
However, it is not obvious whether a similar choice can
be made for massive particles. Nonetheless, my choice in
Eq. (10) is the most general one for deviation functions that
depend on either the radius or the polar angle.

Note that the most general stationary, axisymmetric
metric in general relativity can be written in terms of

only four functions of the radius and polar angle, if a minor
technical assumption holds. This assumption is satisfied
in particular for stationary, axisymmetric spacetimes that
are asymptotically flat and vacuum (see discussion in
Ref. [40]). Thus, one might expect that some of the devia-
tion functions fðrÞ þ gð�Þ, AiðrÞ and Ajð�Þ are either trivi-
ally related or equal to unity. Indeed, as I will show below,
requiring that the metric is asymptotically flat reduces the
number of independent deviation functions to four.
In order to obtain an explicit form of this metric, I write

the deviation functions AiðrÞ, i ¼ 1, 2, 5, as a power series
in M=r,

AiðrÞ �
X1
n¼0

�in

�
M

r

�
n
; i ¼ 1; 2; 5; (39)

as well as

fðrÞ � X
n¼0

�n
Mn

rn�2
; (40)

gð�Þ � M2
X1
k;l¼0

	klsin
k�cos l�; (41)

where in the last expression 	00 ¼ 0.
In Boyer-Lindquist-like coordinates, asymptotically flat

metrics must be of the form (e.g., [55], but see discussion
in Ref. [40])

ds2 ¼ �
�
1� 2M

r
þOðr�2Þ

�
dt2

�
�
4Ma

r
sin 2�þOðr�2Þ

�
dtd�

þ ½1þOðr�1Þ�½dr2 þ r2ðd�2 þ sin 2�d�2Þ�: (42)

Expanding the metric given by Eq. (38) in 1=r, it follows
that �10 ¼ �20 ¼ �50 ¼ 1 as well as A3ð�Þ ¼ A4ð�Þ ¼
A6ð�Þ ¼ 1. Further, I set �11 ¼ �21 ¼ �51 ¼ 0, which
defines the parameter M as the mass of the central object.
Otherwise, the mass would have to be rescaled appropri-
ately. This choice also defines the parameter a as the spin
of the central object.
The deviation parameters can be further constrained in

the PPN framework [37]. The general PPN metric can be
written in the form

ds2 ¼ �APPNðrÞdt2 þ BPPNðrÞdr2 þ r2d�; (43)

where

APPNðrÞ � 1� 2M

r
þ 2ð�PPN � 	PPNÞM

2

r2
; (44)

BPPNðrÞ � 1þ 2	PPN

M

r
; (45)

d� � d�2 þ sin 2�d�2: (46)
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In general relativity, �PPN ¼ 	PPN ¼ 1. Comparing this
metric with the expansion of the metric given by Eq. (38)
in 1=r, I obtain the relations

2ð�PPN � 	PPNÞ ¼ �2 � 2�12 þ gð�Þ
M2

; (47)

	PPN ¼ 1; (48)

which implies the equation

�PPN � 1 ¼ 1

2

�
�2 � 2�12 þ gð�Þ

M2

�
: (49)

This quantity is tightly constrained by observations [56]:

j�PPN � 1j � 2:3� 10�4: (50)

In order to avoid any fine-tuning between the parameters �2
and �12 and the function gð�Þ, I will also set �2 ¼ �12 ¼
gð�Þ ¼ 0. Other choices for these parameters that satisfy
Eq. (49) could also be made, such as setting �2 ¼ 2�12 and
gð�Þ ¼ 0, but I will exclude them here for simplicity.

Summarizing these results, the newly designed metric is
given by the elements

gtt ¼ �
~�½�� a2A2ðrÞ2sin 2��

½ðr2 þ a2ÞA1ðrÞ � a2A2ðrÞsin 2��2 ;

gt� ¼ �a½ðr2 þ a2ÞA1ðrÞA2ðrÞ � ��~�sin 2�

½ðr2 þ a2ÞA1ðrÞ � a2A2ðrÞsin 2��2 ;

grr ¼
~�

�A5ðrÞ ; g�� ¼ ~�;

g�� ¼
~�sin 2�½ðr2 þ a2Þ2A1ðrÞ2 � a2�sin 2��
½ðr2 þ a2ÞA1ðrÞ � a2A2ðrÞsin 2��2 ;

(51)

where

A1ðrÞ ¼ 1þ X1
n¼3

�1n

�
M

r

�
n
; (52)

A2ðrÞ ¼ 1þ X1
n¼2

�2n

�
M

r

�
n
; (53)

A5ðrÞ ¼ 1þ X1
n¼2

�5n

�
M

r

�
n
; (54)

~� ¼ r2 þ a2cos 2�þ fðrÞ; (55)

fðrÞ ¼ X1
n¼3

�n
Mn

rn�2
: (56)

This metric is asymptotically flat, has the correct
Newtonian limit, and is consistent with the current PPN
constraints. At lowest order, i.e., truncating the series in
Eqs. (52)–(56) at the first nonvanishing order in the

deviation parameters, this metric depends on four parame-
ters in addition to the mass M and the spin a: �13, �22,
�52, and �3.

III. METRIC PROPERTIES

In this section, I analyze some of the properties of the
newly designed metric and calculate the location of
the event horizon. I likewise determine conditions which
the deviation functions in Eqs. (52)–(57) must satisfy so
that the exterior domain is regular.

A. Event horizon, Killing horizon, and ergosphere

First I find the event horizon. My analysis is similar to
the one in Ref. [39]. For a stationary, axisymmetric,
asymptotically flat metric of the kind given by Eq. (51),
the event horizon, if one exists, is located at a radius

rhor � Hð�Þ: (57)

The function Hð�Þ is a solution of the ordinary differential
equation [39,57],

grr þ g��
�
dH

d�

�
2 ¼ 0; (58)

where, from Eq. (51), grr ¼ 1=grr and g�� ¼ 1=g��.
As shown in Ref. [39], at the poles and in the equatorial

plane this equation reduces to

grr ¼ 0 (59)

due to axi- and reflection symmetry. From the grr and g��
elements of the metric in Eq. (51), it is obvious that

~�> 0; (60)

A5ðrÞ> 0 (61)

at all radii r � rhor, because otherwise the metric signature
would change at some radius outside of the event horizon
which would introduce a singularity at that location (see
the discussion in the next subsection). Therefore, Eq. (59)
reduces to the condition

� ¼ 0 (62)

both at the poles and in the equatorial plane, which means
that at these locations the horizon coincides with the
horizon rþ of a Kerr black hole,

rþ � HK � Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
: (63)

As in Ref. [39], here I use both notations rþ andHK for the
Kerr horizon. While the former is typically used, the latter
is often used in the numerical relativity literature.
For arbitrary angles �, the horizon equation (58) takes

the form
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1
~�

�
�A5ðHÞ þ

�
dH

d�

�
2
�
¼ 0; (64)

which reduces to the equation

�A5ðHÞ þ
�
dH

d�

�
2 ¼ 0 (65)

because ~�> 0. Since also A5ðHÞ> 0, it is obvious that the
Kerr horizon given by Eq. (63) is always a solution of
Eq. (65). Furthermore, should a different solution to the
horizon equation exist, it must lie inside of the radius rþ at
angles 0< �<
=2, 
=2< �< 
, because the second-
term in Eq. (65) is non-negative and A5 > 0, which implies
that a solution for which � � 0 must have �< 0 and,
therefore, r < rþ. From this analysis I conclude that the
event horizon of the metric in Eq. (51) is the Kerr event
horizon.

The Killing horizon of the metric given by Eq. (51) is
located at the roots of the equation

g2t� � gttg�� ¼ �~�2sin 2�

½ðr2 þ a2ÞA1ðrÞ � a2A2ðrÞsin 2��2 ; (66)

which is equivalent to the equation

� ¼ 0 (67)

as long as the denominator of Eq. (66) is nonzero at and
outside of the Killing horizon. I will return to this require-
ment below. Consequently, the Killing horizon coincides
with the event horizon. This suggests that a generalized
version of Hawking’s rigidity theorem [2] may hold for this
metric.

The ergosphere is determined by solving the equation

gtt ¼ 0; (68)

which reduces to the equation

�� a2A2ðrÞ2sin 2� ¼ 0: (69)

The shape of the ergosphere, therefore, depends on the spin
and on the function A2ðrÞ.

At lowest nonvanishing order, Eq. (69) reduces to the
equation

r4�� a2ðr2 þ �22M
2Þ2sin 2� ¼ 0; (70)

which has to be solved numerically. In Fig. 1, I plot the
event horizon and the ergosphere of a black hole with a
spin jaj ¼ 0:9M for several values of the parameter �22 in

the xz-plane, where x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin �, z � r cos �. For

increasing values of the parameter �22, the extent of the
ergosphere increases.

B. Regularity of the exterior domain

Following the analysis in Ref. [39], I analyze the exterior
domain of the metric given by Eq. (51) for the existence
of any singularities or pathological regions, which might

have been introduced by the deviation functions in
Eqs. (52)–(56). Arbitrary deviations from the Kerr metric
can lead to a violation of Lorentzian signature or the
existence of closed timelike curves. In the former case,
the determinant of the metric is no longer negative definite
and, in the latter case, the ð�;�Þ element of the metric is
negative.
The determinant of the metric in Eq. (51) is given by the

expression

det ðg��Þ ¼ �
~�4sin 2�

A5ðrÞ½A1ðrÞðr2 þ a2Þ � a2A2ðrÞsin 2��2 :

(71)

For the determinant to be negative definite, I impose the
requirement

A1ðrÞðr2 þ a2Þ � a2A2ðrÞsin 2� � 0; (72)

in addition to the conditions in Eqs. (60) and (61), which
must be fulfilled everywhere on and outside of the event
horizon.
At the lowest order in the deviation parameters, I can

write these conditions in the following manner:

�13 �
a2rðr2 þ �22M

2Þsin 2�� r3ðr2 þ a2Þ
M3ðr2 þ a2Þ ; (73)

�52 >�
�
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p �
2

M2
; (74)

FIG. 1 (color online). Event horizon and ergosphere in the
xz-plane of a black hole with spin jaj ¼ 0:9M for several values
of the parameter �22. The event horizon coincides with the
horizon of a Kerr black hole and depends only on the spin a.
For increasing values of the parameter �22, the extent of the
ergosphere increases at angles 0< �<
. At the poles, the event
horizon and ergosphere coincide irrespectively of the value of
the parameter �22.
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�3 >�
�
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p �
3

M3
: (75)

In these expressions I replaced the radius with the Kerr
horizon radius rþ and, thereby, obtain a lower bound on the
deviation parameters, which is valid at all radii r � rþ.

In order to exclude the existence of closed timelike
curves in the exterior domain, I derive from the ð�;�Þ
element of the metric the additional requirement

A1ðrÞ2ðr2 þ a2Þ2 � a2�sin 2� > 0 (76)

or, at lowest order,

�13 >�
�
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p �
3

M3
; (77)

on and outside of the horizon, where in the last equation I,
again, inserted the Kerr horizon radius r ¼ rþ. Combining
Eq. (77) with the condition given by Eq. (73), I obtain the
requirement

�22 >�
�
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p �
2

M2
: (78)

Therefore, Eqs. (74), (75), (77), and (78) define the allowed
ranges of the deviation parameters in the lowest-order
metric as a function of the spin. I plot these functions in
Fig. 2. At higher values of the spin, the lower limit on the
deviation functions is more tight than at smaller spin
values. Note, however, that at maximal spin a ¼ �M the
lower limit on all four parameters is�1, which means that
even in this case both positive and negative deviations from
the Kerr metric can be studied. This is different in, e.g., the

metric designed in Ref. [35], where the metric properties
can change drastically for positive deviations larger
than a lower bound that approaches zero in the limit
a ! �M [35,39].
I verified numerically the absence of curvature singular-

ities at the horizon located at r ¼ rþ for a large number of
different values of the spin in the range �1 � a=M � 1
and of the deviation parameters �3, �13, �22, �52 in the
allowed parameter space by evaluating the Kretschmann
scalar,

K � R��	�R
��	� (79)

at polar angles � ¼ 
=2� 5
n=21, n ¼ 0, 1, 2, where
R�

�	� is the Riemann tensor. For this analysis, I chose

equidistant values of the spin in steps of �a ¼ 0:1M and
values of the deviations parameters ranging from �3 to 5
in steps of 1 neglecting any parameter combinations that lie
in the excluded part of the parameter space. In all cases, the
event horizon is the location of a coordinate singularity as
in the Kerr metric. In Sec. V, I will construct an explicit
coordinate transformation that removes the coordinate sin-
gularity at the event horizon, proving that it is indeed the
location of a coordinate singularity. I, therefore, conclude
that the metric in Eq. (51) harbors a black hole with a
regular exterior domain.

IV. KEPLERIAN FREQUENCY, ENERGY,
ANGULAR MOMENTUM

In this section, I derive expressions for the dynamical
frequencies, energy, and axial angular momentum of a
particle on a circular equatorial orbit. My derivation fol-
lows closely the one in Refs. [5,11]. Then I proceed to
calculate the radius of the ISCO.
The geodesic equations,

d2x�

d�2
¼ ���

�	

dx�

d�

dx	

d�
; (80)

where ��
�	 are the Christoffel symbols, can also be written

in the form

d

d�

�
g��

dx�

d�

�
¼ 1

2

@g�	

@x�
dx�

d�

dx	

d�
: (81)

Due to axi- and reflection symmetry, dr=d� ¼ d�=d� ¼
d2r=d�2 ¼ 0 for particles on circular equatorial orbits.
Therefore, the equation that governs particle motion in
the radial direction reduces to the relation

@rgtt _t
2 þ 2@rgt� _t _�þ@rg��

_�2 ¼ 0; (82)

where @r � @=@r and the dot denotes the derivative d=d�.

From this equation, the Keplerian frequency�� � _�= _t ¼
p�=pt as observed at radial infinity can be expressed in the

form

FIG. 2 (color online). Lower bounds on the deviation parame-
ters �13, �22, �52, and �3 of the metric in Eq. (51) at the lowest
nonvanishing order of the deviation parameters. For values of the
deviation parameters greater than these bounds, the event hori-
zon and the exterior domain are regular, i.e., free of curvature
singularities and closed timelike curves.
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�� ¼
�@rgt� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@rgt�Þ2 � @rgtt@rg��

q
@rg��

; (83)

where the upper sign refers to prograde orbits, while the
lower sign refers to retrograde orbits. Comparing this ex-
pression with the metric in Eq. (51), it is obvious that the
Keplerian frequency is independent of the function A5ðrÞ,
because it is independent of the metric element grr.

Equation (83) assumes that @rg�� � 0. At least in the

case of the lowest-order metric, for large negative values of
the deviation parameter �13 near the lower bound given by
Eq. (77), the term @rg�� can be either zero or negative near

but outside of the event horizon; otherwise, it is always
positive. If the term @rg�� vanishes, the Keplerian fre-

quency is simply �� ¼ �@rgtt=2@rgt� from Eq. (82).

In Fig. 3, I illustrate the dependence of the Keplerian
frequency on the three lowest-order deviation parameters
�3, �13, and �22. I plot the Keplerian frequency for a black
hole with mass M ¼ 10M	 and spin a ¼ 0:8M as a func-
tion of the radius for different values of one of these
parameters while setting the other two equal to zero. At a
given radius, the Keplerian frequency increases for
decreasing values of the parameters �3 and �22, while the
Keplerian frequency increases for increasing values of the
parameter �13.
From the equation

p�p� ¼ ��2 (84)

evaluated in the equatorial plane, where p� is given by
Eq. (16), I obtain the effective potential

FIG. 3 (color online). Dependence of the Keplerian frequency �� ¼ c3��=2
GM on the deviation parameters �3, �13, and �22.
Each panel shows the Keplerian frequency �� as a function of radius for a black hole with mass M ¼ 10M	 and spin a ¼ 0:8M for

different values of one deviation parameter while setting the other two equal to zero. At a given radius, the Keplerian frequency
increases for decreasing values of the parameters �3 and �22 and for increasing values of the parameter �13. The dot denotes the
location of the ISCO.

FIG. 4 (color online). Dependence of the energy E of a particle with rest mass � on a circular equatorial orbit around a black hole
with spin a ¼ 0:8M as observed at infinity on the deviation parameters �3, �13, and �22. Each panel shows the energy as a function of
radius for different values of one deviation parameter while setting the other two equal to zero. At a given radius, the energy increases
for decreasing values of the parameters �3 and �22 and for increasing values of the parameter �13. The ISCO is located at the minimum
of the energy and is denoted by a dot.
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VeffðrÞ � 1

2
�2ðgrr _r2 þ g�� _�2Þ

¼ � 1

2
ðgttE2 � 2gt�ELz þ g��L2

z þ�2Þ: (85)

In this expression, I substituted the constants of motion E
and Lz given by Eqs. (30) and (31) for the momentum
components pt and p�. Circular equatorial orbits are

governed by the equations

VeffðrÞ ¼ 0; (86)

dVeffðrÞ
dr

¼ 0: (87)

In terms of the constants of motion, I write the Keplerian
frequency as

�� ¼ p�

pt

¼ � gt�Eþ gttLz

g��Eþ gt�Lz

: (88)

Combining this equation with Eqs. (83) and (86), I can
solve for the energy and axial angular momentum and
obtain the expressions

E

�
¼ � gtt þ gt���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�gtt � 2gt��� � g���
2
�

q ; (89)

FIG. 5 (color online). Dependence of the axial angular momentum Lz about the black-hole spin axis of a particle with rest mass� on
a circular equatorial orbit around a black hole with spin a ¼ 0:8M as observed at infinity on the deviation parameters �3, �13, and �22.
Each panel shows the axial angular momentum as a function of radius for different values of one deviation parameter while setting the
other two equal to zero. At a given radius, the axial angular momentum increases for decreasing values of the parameters �3 and �22

and for increasing values of the parameter �13. The dot denotes the location of the ISCO.

FIG. 6 (color online). Dependence of the ISCO radius on the deviation parameters �3, �13, and �22. Each panel shows contours of
constant ISCO radius as a function of the spin and one deviation parameter while setting the other two equal to zero. At a fixed value of
the spin, the location of the ISCO can either increase or decrease for increasing values of each deviation parameter and, in some cases,
be practically independent of each deviation parameter. In the green shaded region of the central panel, the energy has two local
minima and the ISCO is located at the outer radius where these minima occur. In the red shaded region of the central panel, circular
equatorial orbits do not exist at radii r� 2:5M and the ISCO is located at the outer boundary of this radial interval. The black shaded
region marks the excluded part of the parameter space.
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Lz

�
¼ � gt� þ g����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�gtt � 2gt��� � g���
2
�

q ; (90)

where, again, the upper and lower signs refer to prograde
and retrograde orbits, respectively. These expressions are
likewise independent of the deviation function A5ðrÞ.

In the metric designed in Ref. [35], for extreme values of
the deviation parameters and at certain radii very close to
the ISCO, sign changes can occur in the expressions of the
energy and axial angular momentum so that these quanti-
ties are smooth at these radii; see Ref. [28] for a detailed
discussion. In principle, a similar behavior in these expres-
sions of the metric designed in this paper could arise, if the
discriminant of the square root in the denominator of
Eqs. (89) and (90) has roots. Empirically, by evaluating
these functions for different values of the deviation pa-
rameters, I find that such roots exist at least in the case of
the lowest-order metric. However, the energy and axial
angular momentum are still smooth at these roots and I
have seen no evidence for discontinuities of the first
derivatives of the energy or axial angular momentum
outside of the ISCO. Should these nonetheless exist, then
the opposite sign of the square roots in Eqs. (89) and (90)
has to be chosen at radii smaller than the root of the
discriminant.

In Figs. 4 and 5, I plot the energy and axial angular
momentum versus the radius r for different values of the
lowest-order deviation parameters. As before, on varying
one of these parameters, I set the other two equal to
zero. At a given radius, both the energy and the axial
angular momentum increase for decreasing values of the
parameters �3 and �22 and for increasing values of the
parameter �13.

I calculate the location of the ISCO from the equation

dE

dr
¼ 0: (91)

In Fig. 6, I plot contours of constant ISCO radius versus the
spin for different values of the deviation parameters.
Again, on varying one of these parameters, I set the other
two equal to zero.

The dependence of the ISCO on these parameters is
more complex. As shown in Fig. 6, at a fixed value of the
spin, the location of the ISCO decreases for increasing
values of the parameter �3 for values of the spin a &
0:8M. For values of the spin a * 0:8M, the ISCO radius
increases for increasing values of the parameter �3. At a
spin a 
 0:8M, the ISCO is practically independent of the
parameter �3. The location of the ISCO increases for
increasing values of the parameter �13 except for values
of the spin a * 0:7M and values of the parameter �13

which are very close to the boundary as defined in
Eq. (77), where the ISCO becomes practically independent
of the parameter �13. If the ISCO is located at a radius
rISCO & 3M, it depends only weakly on the parameter �13.

For values of the parameter �13 & �5:7, the energy E
can have two local minima. In this case, stable circular
orbits exist only at and outside of the radius where the
energy has a local maximum between its two local minima,
because the radial epicyclic frequency is imaginary other-
wise (see the discussion below), and the ISCO is located at
the outer radius where the minima occur. For values of the
parameter �13 & �6:2, both the energy and Keplerian
frequency become imaginary in a small range of radii
r� 2:5M and the ISCO simply lies at the outer boundary
of this radial interval even if the energy does not have a
local minimum at this location. In certain cases, the

FIG. 7 (color online). Energy (top) and Keplerian frequency
(bottom) of a particle on a circular equatorial orbit around a
black hole with spin a ¼ 0:4M for several values of the parame-
ter �13; all other deviation parameters are set to zero. For large
negative values of the parameter �13, the energy has a second
local minimum inside of the ISCO radius (labeled by a dot) with
a higher value of the energy than at the ISCO. The Keplerian
frequency decreases at radii just outside of the ISCO and
vanishes approximately at the ISCO radius. For even more
negative values, both the energy and the Keplerian frequency
are imaginary at radii r� 2:5M and circular equatorial orbits no
longer exist. In the latter case, the ISCO lies at the outer
boundary of this radial interval.
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Keplerian frequency vanishes approximately at the ISCO.
I illustrate this behavior of the energy and Keplerian fre-
quency in Fig. 7.

Finally, the ISCO radius is independent of the parameter
�22 if a ¼ 0 and depends only weakly on the parameter
�22 if jaj � 0 or if rISCO & 3M. If a > 0, the location of

the ISCO decreases for increasing values of the parameter
�22, while the location of the ISCO increases for increasing
values of the parameter �22 if a < 0.
In order to derive expressions for the radial and vertical

epicyclic frequencies �r and ��, I write Eq. (86) in the
forms

FIG. 8 (color online). Dependence of the radial epicyclic frequency �r ¼ c3�r=2
GM on the deviation parameters �3, �13, �22,
and �52. Each panel shows the radial epicyclic frequency as a function of radius for a black hole with mass M ¼ 10M	 and spin
a ¼ 0:8M for different values of one deviation parameter while setting the other two equal to zero. At a given radius, the radial
epicyclic frequency increases for increasing values of the parameters �3, �22, and �52 and for decreasing values of the parameter �13.
The ISCO is located at the radius where the radial epicyclic frequency vanishes.

FIG. 9 (color online). Dependence of the vertical epicyclic frequency �� ¼ c3��=2
GM on the deviation parameters �3, �13, and
�22. Each panel shows the vertical epicyclic frequency �r as a function of radius for a black hole with mass M ¼ 10M	 and spin
a ¼ 0:8M for different values of one deviation parameter while setting the other two equal to zero. At a given radius, the vertical
epicyclic frequency increases for increasing values of the parameters �3 and �22 and for decreasing values of the parameter �13.
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1

2

�
dr

dt

�
2 ¼ Veff

grrðptÞ2 � Vr
eff ; (92)

1

2

�
d�

dt

�
2 ¼ Veff

g��ðptÞ2 � V�
eff : (93)

Now I introduce small perturbations �r and �� and take
the derivative of Eqs. (92) and (93) with respect to the
coordinate time, which yields the equations

d2ð�rÞ
dt2

¼ d2Vr
eff

dr2
�r; (94)

d2ð��Þ
dt2

¼ d2V�
eff

d�2
��: (95)

From these expressions, I derive the radial and vertical
epicyclic frequencies as

�2
r ¼ �d2Vr

eff

dr2
; (96)

�2
� ¼ � d2V�

eff

d�2
; (97)

where the second derivatives are evaluated at r ¼ r0. These
expressions are lengthy and I do not write them here
explicitly. Since the metric element grr occurs only in
Eq. (92) and not in Eq. (93), the vertical epicyclic
frequency is independent of the deviation function A5ðrÞ,
while the radial epicyclic frequency depends on all four
deviation functions.

In Figs. 8 and 9, I plot the radial and epicyclic frequen-
cies for a particle on a circular equatorial orbit around a
black hole with mass M ¼ 10M	 and spin a ¼ 0:8M for
different values of the deviation parameters. At a given
radius, both the radial and the vertical epicyclic frequency
increase for increasing values of the parameters �3 and �22

and for decreasing values of the parameter �13. The radial
epicyclic frequency also increases for increasing values of
the parameter �52.

For all values of the deviation parameters in the allowed
part of the parameter space as shown in Fig. 2 up to values
of at least þ10, the radial epicyclic frequency always
vanishes at some radius outside of the event horizon, which
coincides with the ISCO unless the energy E has more than
one local minimum (cf., the green and red shaded regions
in Fig. 6). Circular equatorial orbits are radially unstable
inside of this radius and plunge into the black hole. For
values of parameter �13 in the green shaded region of the
central panel in Fig. 6, the radial epicyclic frequency
vanishes at the radius where the energy has a local maxi-
mum. In this case, the ISCO is located outside of this radius
and the vertical epicyclic frequency has a minimum near
the ISCO radius. I illustrate this property of the radial and
vertical epicyclic frequencies in Fig. 10, where I plot these

frequencies for a black hole with mass M ¼ 10M	 and
spin a ¼ 0:4M for a value of the parameter �13 ¼ �6:2.

V. KERR-SCHILD FORM

In this section, I derive expressions for the principal
null congruences of the metric given in Eq. (51) and
construct a transformation of the Boyer-Lindquist-like co-
ordinates to Kerr-Schild-like coordinates. My derivation is
similar to the corresponding calculations for the Kerr
metric (cf., e.g., Ref. [58]).
For null geodesics, it is convenient to introduce the

parameters

� � Lz

E
; (98)

 � Q

E2
; (99)

so that the functions RðrÞ and �ð�Þ in Eqs. (23) and (25)
can be written in the form (note that � ¼ 0 and A3ð�Þ ¼
A4ð�Þ ¼ A6ð�Þ ¼ 1Þ
RðrÞ
E2

¼ ½ðr2 þ a2ÞA1ðrÞ � aA2ðrÞ��2 � �½ð�� aÞ2 þ �;
(100)

�ð�Þ
E2

¼ þ ð�� aÞ2 � 1

sin 2�
ð�� asin 2�Þ2: (101)

FIG. 10 (color online). Radial and vertical epicyclic frequen-
cies of a particle on a circular equatorial orbit around a black
hole with massM ¼ 10M	 and spin a ¼ 0:4M for a value of the
parameter �13 ¼ �6:2; all other deviation parameters are set to
zero. The black dots marks the location of the ISCO. The radial
epicyclic frequency vanishes at the radius that corresponds to the
local maximum of the energy E (cf., top panel in Fig. 7). The
vertical epicyclic frequency has a local minimum at the ISCO.
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Since from Eq. (22) �ð�Þ � 0,

þ ð�� aÞ2 � 0; (102)

where equality holds if and only if

� ¼ �0 ¼ const; (103)

� ¼ asin 2�: (104)

In this case,

 ¼ �a2cos 4�0: (105)

These expressions for the parameters � and  are identical
to the ones for the Kerr metric.

Using the equations of motion, Eqs. (34)–(37), (104),
and (105), I obtain the photon equations of motion

dt

d�
� ltE

¼ ðr2 þ a2ÞA1ðrÞ
�

ðr2 þ a2ÞA1ðrÞ � a2A2ðrÞsin 2�0
~�

E;

dr

d�
� �lrE

¼ �
ffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞ

q ðr2 þ a2ÞA1ðrÞ � a2A2ðrÞsin 2�0
~�

E;

d�

d�
¼ 0;

d�

d�
� l�E

¼ aA2ðrÞ
�

ðr2 þ a2ÞA1ðrÞ � a2A2ðrÞsin 2�0
~�

E; (106)

where � is an affine parameter.
Accordingly, setting E ¼ 1, the principal null directions

are given by the vectors

l�� ¼ ðlt;�lr; 0; l�Þ: (107)

In order to remove the coordinate singularity of the
metric in Eq. (51) written in Boyer-Lindquist-like coordi-
nates located at the event horizon rþ, I perform a trans-
formation to Kerr-Schild-like coordinates, which can be
defined using either the outgoing (þ lr) or ingoing (� lr)
principal null direction in Eq. (107). Defining the trans-
formations

dtKS � dtBL � lt

lr
drBL; drKS � � 1

lr
drBL;

d�KS � d�BL; d�KS � d�BL � l�

lr
drBL;

(108)

the transformed principal null vectors (setting E ¼ 1) are
given by the expression

l�� ¼ ð0;�1; 0; 0Þ; (109)

which is the form of the principal null directions of the
Kerr metric in standard Kerr-Schild coordinates. Here, the
upper/lower sign refers to the transformation in Eq. (108)
with the upper/lower signs and the subscripts ‘‘KS’’
and ‘‘BL’’ stand for ‘‘Kerr-Schild-like’’ and ‘‘Boyer-
Lindquist-like,’’ respectively. Note, however, that the
transformation of the radius makes this transformation
rather cumbersome in practice and it may not be possible
to perform it explicitly.
For this reason, I define an alternative transformation to

Kerr-Schild-like coordinates, which drops the transforma-
tion of the radius in the transformation in Eq. (108) and
which is given by the relations

dtKS¼dtBL�2MrA1ðrÞ
�

ffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞ

p drBL; drKS¼drBL;

d�KS¼d�BL; d�KS¼d�BL� aA2ðrÞ
�

ffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞ

p drBL:

(110)

In these expressions, I used the definitions of the null
vector in Eq. (107) given by Eq. (106) with a slight
modification of the component lt, where I replaced the
factor ðr2 þ a2Þ=� by 2Mr=� as in McKinney and
Gammie [43]. A transformation to Kerr-Schild-like coor-
dinates can be defined for both of these choices.
The metric in the above Kerr-Schild-like coordinates is

then given by the elements

gKStt ¼ �
~�½�� a2A2ðrÞ2sin 2��

F
;

gKStr ¼
~�ffiffiffiffiffiffiffiffiffiffiffi

A5ðrÞ
p

F
fA1ðrÞ½2Mrþ a2A2ðrÞ2sin 2��

� a2A2ðrÞsin 2�g;

gKSt� ¼ � a~�½ðr2 þ a2ÞA1ðrÞA2ðrÞ ���sin 2�

F
;

gKSrr ¼
~�A1ðrÞ
A5ðrÞF fA1ðrÞ½�þ 4Mrþ a2A2ðrÞ2sin 2��
� 2a2A2ðrÞsin 2�g;

gKSr� ¼ � a~�sin 2�ffiffiffiffiffiffiffiffiffiffiffi
A5ðrÞ

p
F
½ðr2 þ a2ÞA1ðrÞ2A2ðrÞ

þ 2MrA1ðrÞ � a2A2ðrÞsin 2��;
gKS�� ¼ ~�;

gKS�� ¼
~�½ðr2 þ a2Þ2A1ðrÞ2 � a2�sin 2��sin 2�

F
; (111)

where

F � ½ðr2 þ a2ÞA1ðrÞ � a2A2ðrÞsin 2��2: (112)

In the Kerr case, A1ðrÞ ¼ A2ðrÞ ¼ A5ðrÞ ¼ 1, fðrÞ ¼ 0,
and this metric reduces to the Kerr-Schild metric in the
form given in Eq. (4) of McKinney and Gammie [43].
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From the metric elements in Eq. (111) it is clear that the
metric in Kerr-Schild-like coordinates no longer has a
coordinate singularity at the radius rþ given by Eq. (63).
Evaluating the ðr; rÞ and ð�; �Þ elements of the contravar-
iant metric and inserting them into the horizon equa-
tion (58), I obtain an equation that is identical to
Eq. (65). Therefore, the metric in Kerr-Schild-like coordi-
nates still harbors an event horizon at the radius rþ.

The Kerr-Schild-like form of the metric in Eq. (111) is
important for fully relativistic magnetohydrodynamic
simulations of accretion flows in this metric, because these
typically require the presence of an event horizon without
any coordinate singularities at the horizon or in its vicinity
both inside or outside of the horizon (see, e.g, Ref. [43]).
Otherwise, matter in the simulation might get trapped at
the horizon leading to an unphysical matter accumulation.
In particular, the lapse

N � 1ffiffiffiffiffiffiffiffiffiffiffiffi�gttKS
p (113)

has to be positive across the event horizon.
The lapse of the lowest-order metric in Kerr-Schild-like

form is given by the expression

N¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r5ðr3þ�3M
3þa2rcos2�Þ

ðr2þ2Mrþa2Þðr3þ�13M
3Þ2�a2r6sin2�

s
; (114)

which is indeed positive across the horizon in the allowed
part of the parameter space [recall Eq. (60)]. In Fig. 11,
I plot the lapse for a black hole with mass M and spin
a ¼ 0:8M in the equatorial plane for different values of the
parameters �3 and �13.

FIG. 11 (color online). Lapse versus radius for a black hole
with mass M and spin a ¼ 0:8M in the equatorial plane for
different values of the parameters (top) �3 and (bottom) �13. In
each panel, only one parameter is varied, while the other one is
set to zero. The lapse is positive across the radius that marks the
location of the event horizon (vertical dashed line).

FIG. 12 (color online). Element gKSt� of the lowest-order metric
to Oð1=r3Þ versus radius for a black hole with mass M and spin
a ¼ 0:8M in the equatorial plane for different values of the
parameters (top) �13 and (bottom) �22. In each panel, only one
parameter is varied, while the other one is set to zero. This element
indicates the amount of frame-dragging, which depends strongly
on the deviation parameters in the vicinity of the event horizon.
The vertical dashed line marks the location of the event horizon.
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Accretion flows in three-dimensional fully relativistic
magnetohydrodynamic simulations are greatly affected by
the amount of frame-dragging near the black hole, while
the location of the ISCO is only of marginal importance. In
order to assess the amount of frame-dragging of the lowest-
order metric, I expand the ðt; �Þ component of the metric in
Eq. (111) in 1=r and obtain the expression

gKSt� ¼ � 2aMsin 2�

r

�
�
1þ �22M

2r
� 2a2cos 2�� �13M

2

2r2
þO

�
1

r3

��
:

(115)

The leading nonvanishing order of the deviations from the
Kerr metric is of order 1=r2, while the next-order correction
of the Kerr part is only of order 1=r3. Consequently, frame-
dragging can be strongly affected by the presence of non-
Kerr deviations, and positive values of the parameters �22

and �13 enhance the amount of frame-dragging. I illustrate
the dependence of the ðt; �Þ element of the metric in Kerr-
Schild-like form on the parameters �13 and �22 in Fig. 12.

VI. MAPPING TO OTHER METRICS

In this section, I derive the explicit mapping of the
metric given in Eq. (51) to other known metrics from
the literature. In particular, these include known four-
dimensional, analytic black hole solutions in modified
theories of gravity. These metrics can be written as

g�� � gK�� þ h��; (116)

where h�� is the modification of the Kerr part of the metric,

which depends on one or more parameters. I will match
metrics of this form with the metric in Eq. (51), which I
expand to linear order in the deviation parameters.

A. The modified gravity bumpy Kerr metric

The metric designed in Ref. [14] (the ‘‘modified gravity
bumpy Kerr metric’’, hereafter labeled ‘‘MGBK’’) derives
from the most general stationary, axisymmetric metric in
Lewis-Papapetrou form with the additional requirement
that it possesses three independent constants of motion
for small deviations away from the Kerr metric, where
the third, Carter-like constant is quadratic in the momen-
tum. This metric is defined in terms of a coupled set of
integro-differential equations, which (in the deformed Kerr
parametrization of Ref. [14]) are listed in the Appendix.
Note that this metric depends on four deviation functions
as is the case of the metric in Eq. (51), which are denoted
	iðrÞ, i ¼ 1, 3, 4, and �3ð�Þ.
Making an ansatz for the ðt; �Þ component of this metric

in the form of a power series in 1=
ffiffiffiffi
�

p
,

hMGBK
t� ¼ M

XN
n¼2

ht�;nð�Þ
�
Mn

�n=2

�
; (117)

Gair and Yunes [15] solved the set of integro-differential
equations and obtained the remaining metric elements:

hMGBK
tt ¼ � a

M

P2

P1

hMGBK
t� � a

2M

�2�

P1

@hMGBK
t�

@r
þ ðr2 þ a2Þ�̂2�

P1

	1 þ 2a2r2�sin 2�

P1

	1 � a

M

�sin 2�

�

P3

P1

	3 þ 2�

�

P4

P1

	4

� a2

2M

��2sin 2�

P1

d	1

dr
� a

2M

�2ð�̂þ 2a2Mrsin 2�Þsin 2�

P1

d	3

dr
� a2

2M

�2ð�� 4MrÞsin 2�

P1

d	4

dr
;

hMGBK
rr ¼ ��	1

�
; hMGBK

�� ¼ 0;

hMGBK
�� ¼ �ðr2 þ a2Þ2

a2
hMGBK
tt þ �

a2
�	1 � 2ðr2 þ a2Þ

a
hMGBK
t� � 2�2sin 2�

a
	3 þ 2�2

a2
	4; (118)

where

�̂2 � r2 � a2cos 2�; (119)

�3ð�Þ ¼ 0; (120)

	A ¼ X1
n¼0

	A;n

�
M

r

�
n
; A ¼ 1; 3; (121)

	3 ¼ 1

r

X1
n¼0

	3;n

�
M

r

�
n
: (122)

The functions Pi, i ¼ 1–4, are polynomials in r that can be
found in Appendix A of Ref. [14] and the coefficients ht�;n

are given in Ref. [15]. Additional simplifications [15] allow
one to set

	1;0 ¼ 	1;1 ¼ 	3;0 ¼ 	3;2 ¼ 	4;0 ¼ 	4;1 ¼ 0: (123)

Gair and Yunes [15] gave an explicit version of this
metric expanding all metric components in power series
in 1=r,

hMGBK
�� ¼ X

n

h��;n

�
M

r

�
n
; (124)

where the coefficients h��;n are given in Eqs. (27)–(30) of

Ref. [15]. Note that while current PPN constraints were
taken into account in Ref. [15] up to Oð1=rÞ, the htt;2
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coefficient in Eq. (27) of Ref. [15] is likewise tightly
constrained by current PPN experiments (cf., Eq. (44)
and Ref. [37]) and

	1;2 ¼ 	3;1 ¼ 	4;2 ¼ 0 (125)

should be chosen so that htt;2 ¼ 0. In principle, the choice

	1;2 ¼ �2	4;2, 	3;1 ¼ 0 is sufficient so that the htt;2 coef-
ficient complies with the PPN constraints. This choice,
however, would introduce an undesirable finetuning be-
tween the parameters 	1;2 and 	4;2, which was also avoided

in some of the other simplifications in Ref. [15] as listed in
Eq. (123).

With this minor adjustment, I obtain from the metric
elements hMGBK

rr , and hMGBK
�� the mapping

�5n ¼ 	1;n; n � 2; (126)

�n ¼ 0; n � 3; (127)

as well as from the elements hMGBK
tt , hMGBK

t� the mapping

X1
n¼3

�1n

�
M

r

�
n ¼ 1

4ðr2 þ a2Þ� f8aMrhMGBK
t�

þ ½2r4 þ a4 þ a2rð3rþ 4MÞ
þ a2ð�� 2MrÞ cos 2��hMGBK

tt g; (128)

X1
n¼2

�2n

�
M

r

�
n ¼ � 1

2a�
½að�� 4MrÞhMGBK

tt

þ 2ð�� 2MrÞcsc 2�hMGBK
t� �; (129)

where the right-hand side of Eqs. (128) and (129) has to be
expanded in 1=r. Should any terms in this expansion
depend on the polar angle �, the coefficients of these terms
have to be set to zero by an appropriate choice of the
deviation parameters 	k;n, k ¼ 1, 3, 4, n � 2, because
the left-hand side in these equations are functions of radius
only. As I will show below, no such angular terms occur at
least up to order n ¼ 5. Note that the remaining matching
of the metric element hMGBK

�� with the deviation from the

ð�;�Þ element of the metric in Eq. (51) linearized in the
deviation parameters serves here as a consistency check of
the mapping of the deviation parameters in Eqs. (128) and
(129), which may impose additional requirements on cer-
tain of the parameters 	k;n. This is likewise not the case at

least up to Oð1=r5Þ.
The coefficients hMGBK

��;n are given in Ref. [15] up to

Oð1=r5Þ, and up to this order I find for the coefficients of
Eqs. (128) and (129) the explicit relations

�13 � �53

2
¼ 	4;3; �14 � �54

2
¼ �2	4;3 þ 	4;4;

�15 � �55

2
¼ �2	4;4 þ 	4;5; �22 ¼ M

a
	3;3;

�23 � �53

2
¼ �M

a
ð2	3;3 � 	3;4Þ;

�24 � �54

2
¼ a

M
	3;3 �M

a
ð2	3;4 � 	3;5Þ;

�25 � �55

2
¼ a

M
	3;4 �M

a
ð2	3;5 � 	3;6Þ: (130)

These equations suggest a general mapping of the form

�1n � �5n

2
¼ �2	4;n�1 þ 	4;n;

�2n � �5n

2
¼ a

M
	3;n�1 �M

a
ð2	3;n � 	3;nþ1Þ;

(131)

where the first equation holds for n � 3, while the second
equation holds for n � 2 [note Eqs. (123) and (125)].
I have not investigated this mapping at orders n > 5. If
this mapping is valid at all orders n, then, together with
Eqs. (126) and (127), the linearized form of the metric in
Eq. (51) and the metric of Ref. [14] in the above form [15]
are equivalent. Eq. (127) reduces the number of deviation
functions of the metric in Eq. (51) for this mapping to
three, which is in accordance with the choice of Gair and
Yunes [15] to set �3ð�Þ ¼ 0.
Due to the implicit form of some of the elements in the

general metric of Ref. [14] in Eq. (A1) I do not attempt to
map it to the linearized form of the metric in Eq. (51) or in
Eq. (38). Should it turn out that these two metrics cannot be
mapped exactly, then it must be possible to further general-
ize the metric designed in this paper, because the metric in
Eq. (A1) was obtained from the most general stationary,
axisymmetric metric in Lewis-Papapetrou form which ad-
mits three constants of motion for small deviations from
the Kerr metric and because the Carter-like constant in
both metrics is quadratic in the momentum (cf., Eq. (32) in
this paper and Eq. (38) in Ref. [14]).

B. Einstein-Dilaton-Gauss-Bonnet gravity

Static black holes in gravity theories described by
Lagrangians modified from the standard Einstein-Hilbert
form by scalar fields coupled to quadratic curvature invar-
iants were investigated in Ref. [50]. In these solutions, the
relevant component of the metric deformation is given by

hEDGBrr ¼� �3

�M2r2fSðrÞ2

�
�
1þM

r
þ52

3

M2

r2
þ2M3

r3
þ16

5

M4

r4
�368

3

M5

r5

�
;

(132)

where �3 is the coupling constant of this theory and
� ¼ 1=ð16
Þ.
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The mapping is, then, given by the equation

X1
n¼2

�5n

�
M

r

�
n

¼ �3M
2

15�r6ðr� 2MÞ ð1840M
5 � 48M4r� 30M3r2

� 260M2r3 � 15Mr4 � 15r5Þ (133)

and the lowest-order coefficients are:

�52¼��3

�
; �53¼�3�3

�
; �54¼�70�3

3�
: (134)

C. Chern-Simons gravity

Slowly rotating black holes in dynamical Chern-Simons
gravity were analyzed in Ref. [51]. In these solutions, only
the ðt; �Þ component of the metric is modified, which is
given by the expression

hCSt� ¼ 5

8
�CS

a

M

M5

r4
sin 2�

�
1þ 12M

7r
þ 27M2

10r2

�
: (135)

In this case, the mapping is

�24 ¼ 5

8
�CS; (136)

�25 ¼ 15

14
�CS; (137)

�26 ¼ 27

16
�CS: (138)

All other deviation parameters vanish. Note that the metric
to Oða2Þ found in Ref. [59] is not integrable and, thus,
cannot be mapped to the metric in Eq. (51).

D. Braneworld black holes

One class of metrics that cannot be related to the metric
in Eq. (51) via a simple mapping is the rotating black hole
solution in Randall-Sundrum-type braneworld gravity
[53], which was found in Ref. [52]. This metric is given
by the elements [52]

gRS2tt ¼�
�
1�2Mr��

�

�
; gRS2rr ¼�

��
; gRS2�� ¼�;

gRS2�� ¼
�
r2þa2þ2Mr��

�
a2sin2�

�
sin2�;

gRS2tt ¼að2Mr��Þsin2�

�
;

(139)

where

�� � �þ � (140)

and where � is the tidal charge which can be positive or
negative.

This metric is identical to the Kerr-Newman metric
where the tidal charge is simply the square of the electric
charge Qel. Therefore, this metric could be trivially

included in the class of metrics designed in this paper by
starting with the Kerr-Newman metric instead of the Kerr
metric in Eq. (3) and replacing Q2

el ! �.

VII. DISCUSSION

In this paper, I designed a Kerr-like black hole metric
which is regular, admits three independent, exact constants
of motion, and depends on four deviations functions in a
nonlinear manner. This metric contains the Kerr metric as
the special case when all deviations vanish. This metric
does not derive from any particular set of field equations,
but, instead, can be used as a framework for model-
independent strong-field tests of the no-hair theorem with
observations of black holes in the electromagnetic spec-
trum. I showed that the event horizon of this metric is
identical to the event horizon of the Kerr metric in
Boyer-Lindquist coordinates and that the Killing horizon
coincides with the event horizon. I also determined the
range of the deviation parameters for which the event
horizon and the exterior domain are free of pathologies
such as singularities or closed timelike curves.
When expanded to linear order in the deviation parame-

ters, this metric can be related to the Kerr-like metric of
Ref. [14]. I found an explicit general mapping between the
new metric and the metric of Ref. [14] in the form found in
Ref. [15], which holds at least up to the fifth order in an
expansion of the metric elements in 1=r. I likewise mapped
my new metric to known four-dimensional, analytic black
hole solutions in modified theories of gravity.
I showed that the equations of motion for a test particle on

a geodesic orbit in this metric can be written in first-order
form and found the Carter-like constant which is the third
constant of motion along the orbit of the particle in addition
to its energy and axial angular momentum. For particles on
circular equatorial orbits, I derived expressions for its energy,
axial angular momentum, and dynamical frequencies and I
calculated the location of the ISCO. I showed that these
quantities depend significantly on the deviation parameters.
These properties make this metric a well-suited frame-

work for strong-field tests of the no-hair theorem in the
electromagnetic spectrum. Thanks to the existence of an
event horizon and the regularity of the exterior domain,
both geometrically thin and thick accretion flows can be
properly modeled (see the discussion in Refs. [16,39]). The
first-order form of the equations of motion increases the
speed and precision of ray-tracing codes that are used to
model andpredict observational signatures of non-Kerr black
holes, because these otherwise have to solve the second-order
geodesic equations (see Refs. [16,22]). In addition, for tests
of the no-hair theorem in the gravitational-wave spectrum,
the mapping of the metric linearized in the deviations pa-
rameters establishes the connection to themetric of Ref. [14],
for which approximate EMRI were constructed in Ref. [15].
Potential deviations from the Kerr metric should be

observable with several techniques in the electromagnetic
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spectrum including the continuum-fitting and iron line
methods. See Refs. [60] for comprehensive reviews on these
methods. These two methods directly measure the location
of the ISCO. Since the ISCO does not depend on the devia-
tion function A5ðrÞ, this type of deviation would be difficult
to detect with these techniques. Such particular deviations,
however, may be detected with very-long baseline imaging
observations of supermassive black holes (cf., e.g., Ref. [17])
or of quasiperiodic variability (cf., e.g., Ref. [18]).

In order to facilitate fully relativistic magnetohydrody-
namic simulations of accretion flows in the new metric,
I constructed a transformation to Kerr-Schild-like coordi-
nates, which properly removes the coordinate singularity at
the event horizon in Boyer-Lindquist-like coordinates.
I demonstrated that the lapse is positive across the event
horizon and that the amount of frame-dragging near the
black hole depends strongly on the deviation parameters,
which can greatly amplify the amount of frame-dragging
induced by the spin alone. Such accretion flow simulations
are carried out in a stationary black hole background where
the dynamical properties of the gravity theory do not need
to be known. Instead, only the coupling of matter to
electromagnetic fields in the modified theory needs to be
specified. A first step is to assume that such interactions are
governed by the laws of Maxwell electrodynamics.

References [42,43] implemented a general-relativistic
magnetohydrodynamic code that is based on a stationary
black hole metric and several technical assumptions which,
among others, allow for the treatment of the plasma as a

perfect fluid. These assumptions also require that the
exterior domain endowed with the metric is globally
hyperbolic. While this property is not proven here, it seems
plausible that global hyperbolicity holds in the Kerr-like
metric designed in this paper, because the exterior domain
is regular, and, thus, it should be possible to trace any
flow particle outside of the event horizon uniquely
to future infinity (or the horizon) for any set of initial
conditions. Simulations of this nature should, therefore,
also be feasible in this metric and will be explored in detail
in a future paper.
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APPENDIX: GENERAL FORM OF
THE MGBK METRIC

Here I write explicitly the general form of the metric of
Ref. [14], where a slightly different notation was used.
In the notation I use in this paper, the metric is given by
the elements

hMGBK
tt ¼ � a

M

P2

P1

hMGBK
t� � a

2M

�2�

P1

@hMGBK
t�

@r
� 2a2rðr2 þ a2Þ�sin � cos�

�P1

hMGBK
r� þ ðr2 þ a2Þ�̂2�

�P1

I

þ 2a2r2�sin 2�

P1

	1 þ �̂2ðr2 þ a2Þ�
�P1

�3 � a

M

�sin 2�

�

P3

P1

	3 þ 2�

�

P4

P1

	4 � a2

2M

��2sin 2�

P1

d	1

dr

� a

2M

�2ð�þ 2a2Mrsin 2�Þsin 2�

P1

d	3

dr
� a2

2M

�2ð�� 4MrÞsin 2�

P1

d	4

dr
;

hMGBK
rr ¼ � 1

�
I � 1

�
�3;

hMGBK
�� ¼ �ðr2 þ a2Þ2

a2
hMGBK
tt þ �

a2
I � 2ðr2 þ a2Þ

a
hMGBK
t� þ �

a2
�3 � 2�2sin 2�

a
	3 þ 2�2

a2
	4;

@hMGBK
��

@r
¼ 2r

�
hMGBK
�� þ 2a2 sin � cos �

�
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r� þ 2
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r�

@�
þ 2r

�
I � 2r	1 þ 2r

�
�3;

@2hMGBK
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@r2
¼ 8aM sin � cos �

�4
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P1
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r� � 4aMrðr2 þ a2Þ sin � cos �
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where

�3 ¼ �3ð�Þ; (A2)

	i � 	iðrÞ; i ¼ 1; 3; 4; (A3)

are arbitrary functions of the polar angle � and the radius r, respectively, and

I �
Z

dr

�
2a2 sin� cos�

�
hMGBK
r� þ 2r	1 þ �

d	1

dr

�
: (A4)

The function �̂ is given in Eq. (119) and the functions Pj, j ¼ 1–15, are polynomials in r and cos�, given explicitly in
Appendix A of Ref. [14].
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589, 444 (2003).
[43] J. C. McKinney and C. F. Gammie, Astrophys. J. 611, 977

(2004).
[44] J. Brink, Phys. Rev. D 78, 102002 (2008).

REGULAR BLACK HOLE METRIC WITH THREE . . . PHYSICAL REVIEW D 88, 044002 (2013)

044002-21

http://dx.doi.org/10.1103/PhysRev.164.1776
http://dx.doi.org/10.1007/BF01645859
http://dx.doi.org/10.1007/BF01645859
http://dx.doi.org/10.1103/PhysRevLett.26.331
http://dx.doi.org/10.1103/PhysRevLett.26.331
http://dx.doi.org/10.1103/PhysRevLett.34.905
http://dx.doi.org/10.1007/BF01877517
http://dx.doi.org/10.1086/310554
http://dx.doi.org/10.1103/PhysRevD.52.5707
http://dx.doi.org/10.1103/PhysRevD.56.1845
http://dx.doi.org/10.1103/PhysRevD.56.7732
http://dx.doi.org/10.1103/PhysRevD.56.7732
http://dx.doi.org/10.1103/PhysRevD.75.042003
http://dx.doi.org/10.1103/PhysRevD.75.042003
http://dx.doi.org/10.1103/PhysRevD.77.064022
http://dx.doi.org/10.1103/PhysRevD.77.064022
http://dx.doi.org/10.1103/PhysRevD.85.062002
http://dx.doi.org/10.1103/PhysRevD.69.082005
http://dx.doi.org/10.1103/PhysRevD.69.124022
http://dx.doi.org/10.1103/PhysRevD.69.124022
http://dx.doi.org/10.1088/0264-9381/23/12/013
http://dx.doi.org/10.1088/0264-9381/23/12/013
http://dx.doi.org/10.1103/PhysRevD.78.102001
http://dx.doi.org/10.1103/PhysRevD.77.024035
http://dx.doi.org/10.1103/PhysRevD.77.024035
http://dx.doi.org/10.1103/PhysRevLett.103.111101
http://dx.doi.org/10.1103/PhysRevD.81.024030
http://dx.doi.org/10.1103/PhysRevD.81.024030
http://dx.doi.org/10.1103/PhysRevD.83.104027
http://dx.doi.org/10.1103/PhysRevD.83.104027
http://dx.doi.org/10.1103/PhysRevD.84.064016
http://dx.doi.org/10.1088/0004-637X/716/1/187
http://dx.doi.org/10.1088/0004-637X/718/1/446
http://dx.doi.org/10.1088/0004-637X/726/1/11
http://dx.doi.org/10.1016/j.asr.2010.10.019
http://dx.doi.org/10.1016/j.asr.2010.10.019
http://dx.doi.org/10.1103/PhysRevD.83.103003
http://dx.doi.org/10.1103/PhysRevD.85.043002
http://dx.doi.org/10.1088/0004-637X/731/2/121
http://dx.doi.org/10.1088/0004-637X/745/1/1
http://dx.doi.org/10.1088/0004-637X/773/1/57
http://dx.doi.org/10.1088/1475-7516/2012/09/014
http://dx.doi.org/10.1103/PhysRevD.87.023007
http://dx.doi.org/10.1088/0004-637X/761/2/174
http://dx.doi.org/10.1103/PhysRevD.87.023007
http://dx.doi.org/10.1103/PhysRevD.87.023007
http://dx.doi.org/10.1088/0004-637X/754/2/133
http://dx.doi.org/10.1103/PhysRevD.87.124010
http://dx.doi.org/10.1088/1742-6596/283/1/012030
http://dx.doi.org/10.1088/1742-6596/283/1/012030
http://dx.doi.org/10.1155/2012/486750
http://dx.doi.org/10.1155/2012/486750
http://arXiv.org/abs/1212.5575
http://arXiv.org/abs/1304.3473
http://dx.doi.org/10.1088/0264-9381/21/4/003
http://dx.doi.org/10.1088/0264-9381/21/4/003
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://dx.doi.org/10.1103/PhysRevD.73.064030
http://dx.doi.org/10.1103/PhysRevD.76.104044
http://dx.doi.org/10.1086/528847
http://dx.doi.org/10.1103/PhysRevD.81.062002
http://dx.doi.org/10.1103/PhysRevD.81.062002
http://dx.doi.org/10.1088/0264-9381/28/22/225029
http://dx.doi.org/10.1088/0264-9381/28/22/225029
http://dx.doi.org/10.1086/306933
http://dx.doi.org/10.1086/306933
http://dx.doi.org/10.1086/423975
http://dx.doi.org/10.1086/423975
http://dx.doi.org/10.1088/0004-637X/747/1/1
http://dx.doi.org/10.1088/0264-9381/9/11/013
http://dx.doi.org/10.1088/0264-9381/9/11/013
http://dx.doi.org/10.1103/PhysRevD.83.124015
http://dx.doi.org/10.12942/lrr-2008-9
http://dx.doi.org/10.12942/lrr-2006-3
http://dx.doi.org/10.1063/1.2405049
http://dx.doi.org/10.1103/PhysRevD.87.124017
http://dx.doi.org/10.1088/0004-637X/696/2/1616
http://arXiv.org/abs/1303.5057
http://dx.doi.org/10.1086/374594
http://dx.doi.org/10.1086/374594
http://dx.doi.org/10.1086/422244
http://dx.doi.org/10.1086/422244
http://dx.doi.org/10.1103/PhysRevD.78.102002


[45] G. Contopoulos, G. Lukes-Gerakopoulos, and T. A.
Apostolatos, Int. J. Bifurcation Chaos Appl. Sci. Eng.
21, 2261 (2011); G. Lukes-Gerakopoulos, Phys. Rev. D
86, 044013 (2012).

[46] B. Carter, Phys. Rev. 174, 1559 (1968).
[47] J. Brink, Phys. Rev. D 81, 022001 (2010); 81, 022002

(2010); 84, 104015 (2011).
[48] C.M. Will, Phys. Rev. Lett. 102, 061101 (2009).
[49] S. Mirshekari and C.M. Will, Classical Quantum Gravity

27, 235021 (2010).
[50] N. Yunes and L. C. Stein, Phys. Rev. D 83, 104002 (2011).
[51] N. Yunes and F. Pretorius, Phys. Rev. D 79, 084043

(2009).
[52] A. N. Aliev and A. E. Gümrükçüoğlu, Phys. Rev. D 71,
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