
On three dimensions as the preferred dimensionality of space via the
Brandenberger-Vafa mechanism

Brian Greene,1,* Daniel Kabat,1,2,† and Stefanos Marnerides1,‡

1Institute for Strings, Cosmology and Astroparticle Physics and Department of Physics,
Columbia University, New York, New York 10027, USA

2Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, New York 10468, USA
(Received 19 January 2013; published 30 August 2013)

In previous work it was shown that, in accord with the Brandenberger-Vafa mechanism, three is the

maximum number of spatial dimensions that can grow large cosmologically from an initial thermal

fluctuation. Here we complement that work by considering the possibility of successive fluctuations.

Suppose an initial fluctuation causes at least one dimension to grow, and suppose successive fluctuations

occur on time scales of order �01=2. If the string coupling is sufficiently large, we show that such

fluctuations are likely to push a three-dimensional subspace to a large volume where winding modes

annihilate. In this setting, three is the preferred number of large dimensions. Although encouraging, a

more careful study of the dynamics and statistics of fluctuations is needed to assess the likelihood of our

assumptions.

DOI: 10.1103/PhysRevD.88.043527 PACS numbers: 98.80.Cq, 11.25.�w

I. INTRODUCTION

The Brandenberger-Vafa (BV) mechanism [1] is one of
the few proposals within string cosmology for a mecha-
nism that yields dynamical cosmological growth of three
spatial dimensions. The idea that the most basic property
of our Universe could follow from the dimensionality of
fundamental strings is very appealing. For reviews, see
Refs. [2–4], and for numerical simulations in support of
the scenario, see Ref. [5].

A closer examination of string gas dynamics, how-
ever, reveals certain obstacles. To set the stage for the
present work, it was found in Refs. [6,7] that—assuming
validity of the lowest-order dilaton gravity equations of
motion—the dilaton can quickly roll to weak coupling,
leaving the Universe trapped in the Hagedorn phase.
Moreover, it was found that—assuming the string gas
could be treated as homogeneous—there was no sharp
dimension dependence in the string annihilation rate. So
given these assumptions, the dynamics did not single out
three dimensions as special.

By relaxing the assumption of homogeneity, it was shown
in Ref. [8] that the mechanism can indeed operate if one
takes into account the fact that when winding strings are
dilute enough (their mean separation is large compared to
their characteristic quantum thickness), they behave semi-
classically and their annihilation rates are highly suppressed
in more than three large spatial dimensions. The conclusion
of Ref. [8] was that if the string gas fluctuates out of the
Hagedorn regime to a radiation regime in d effective spatial
dimensions, then any remaining winding modes are indeed

dilute enough that they generically freeze out for d > 3 and
annihilate for d ¼ 3.1 Therefore, three dimensions is the
maximum number of spatial dimensions that can grow large
cosmologically due to an initial thermal fluctuation.
In the present work, we would like to examine whether

three dimensions is also the minimum number of large
dimensions that can result from a thermal fluctuation. A
priori, it seems easier for one or two spatial dimensions to
decompactify via the BV mechanism, since it seems more
likely that winding modes will find each other in this lower-
dimensional subspace. If the BV mechanism is indeed the
reason the Universe has three cosmologically large dimen-
sions, we should address the question of why we do not
observe an effectively lower-dimensional universe.
Answers to this question often turn to anthropic argu-

ments. However, in the original proposal of Brandenberger
and Vafa, the authors argued that successive thermal fluc-
tuations in the Hagedorn phase would eventually cause the
maximum number of dimensions to decompactify. Here we
would like to examine this possibility in more detail. We
postulate an initial fluctuation that causes one or two
dimensions to grow large, and investigate the likelihood
of subsequent fluctuations causing a total of three dimen-
sions to decompactify. Thus, in contrast to our previous
work [8], we allow for multiple thermal fluctuations. We
also relax the assumption of isotropy made in Ref. [8].
Besides addressing the question of how many dimensions
decompactify, our results will shed light on rapid thermal
fluctuations as a possible mechanism for overcoming the
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1This assumes the thermal fluctuation takes place while the
string coupling is still large enough for string interactions to be
effective. It also raises a serious issue, noted but not addressed in
Ref. [8] or the present work, of whether a dilute string gas can
evolve to give a homogeneous universe.
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obstacle to the BV mechanism pointed out in Refs. [6,7],
namely the dilaton rolling to weak coupling.

Essential to our discussion is the fact that, while there
might be a window of opportunity for three dimensions to
decompactify once one or two dimensions have grown large,
there can be no such window for more than three dimensions.
That is, anisotropic expansion of one or two dimensions will
never favor the eventual decompactification of more than
three dimensions. To see this, consider the case of d > 3
isotropic large dimensions, where the equilibrium state is
radiation in d dimensions and the winding modes want to
annihilate. The annihilation rate of these winding modes
depends on the size R of the large dimensions in two ways
[8]. First, there is an enhancement �R2 reflecting the fact
that longer strings are more likely to annihilate.2 Second,
with �x� ffiffiffiffiffiffiffiffiffiffiffi

logR
p

the characteristic quantum thickness of a
string of length R, the amplitude has an impact parameter
suppression� exp ð�ðb=�xÞ2Þ in the d� 3 large directions
transverse to string collisions. This exponential suppression
was put forward in Ref. [8] as essential to the BV mecha-
nism, in the sense that windingmodes will freeze out if d>3.
Now imagine we let some of these dimensions shrink while
others grow. We do this to effect anisotropy; however, we
preserve the total volume (and energy) so the equilibrium
state does not change. This will only further (and exponen-
tially) suppress the annihilation of winding modes around the
smaller dimensions, by increasing the impact parameters in
the larger dimensions. So strings winding the smaller dimen-
sions are even less likely to annihilate than in the isotropic
case studied in Ref. [8]. Since the isotropic case already
singled out d � 3, we conclude that only d � 3 dimensions
can decompactify as a result of anisotropic fluctuations.

Hence, studying anisotropic fluctuations within a three-
dimensional subspace accommodates the relevant cases for
decompactification. Given an initial thermal fluctuation
that causes some number of dimensions to grow, our goal
is to study the likelihood of subsequent fluctuations caus-
ing three dimensions to decompactify. To keep the inves-
tigation tractable we will only consider one degree of
anisotropy, namely between one large and two small di-
mensions, or between one small and two large dimensions.

An outline of this paper is as follows: In Sec. II we set up
the dynamical equations and discuss the possible equilib-
rium phases of the system. In Sec. III we give our proce-
dure for choosing initial conditions and sampling thermal
fluctuations. In Sec. IV we present our numerical results,
and in Sec. V we discuss their implications for the
Brandenberger-Vafa mechanism.

II. DYNAMICS

The general setup will follow the lines of Ref. [8], which
the reader may refer to for more details. The difference is

that here we are considering two (logarithmic) scale fac-
tors, � and �, respectively, for the d1 < 3 dimensions
initially unwound and growing, and for the d2 ¼ 3� d1
dimensions subsequently expanding after a fluctuation, but
wrapped with winding modes.
We work in type-IIA string theory, on a flat toroidal

background with the metric (in �0 ¼ 1 units)

ds2 ¼ �dt2 þ e2�ðtÞ
Xd1
i¼1

dx2i þ e2�ðtÞ
X3

i¼d1þ1

dx2i

0 � xi � 2�:

(1)

All other dimensions are held fixed at the self-dual radius.
We also have the homogeneous shifted dilaton field ’ðtÞ ¼
2�ðtÞ � d1�ðtÞ � d2�ðtÞ. When the metric and dilaton are
coupled to matter, the equations of motion are

€’ ¼ 1

2
ð _’2 þ d1 _�

2 þ d2 _�2Þ; €� ¼ _’ _�þ 1

8�2
e’P�;

€� ¼ _’ _�þ 1

8�2
e’P�: (2)

Here P�, P� are the pressures along the d1, d2 dimensions,
respectively. Note that we do not consider a potential for
the dilaton. There is also the Hamiltonian constraint (or
Friedmann equation)

E ¼ ð2�Þ2e�’ð _’2 � d1 _�
2 � d2 _�2Þ; (3)

where E is the total energy in matter. We take matter to
consist of
(i) Winding modes, with W denoting the winding num-

ber of strings wound with positive orientation. For
simplicity, we assume this winding number is carried
by W individual strings, each having a single unit of
positive winding. This is a conservative assumption,
since taking multiply wound strings into account
would lead to a larger annihilation rate.3 Also note
that since we are working in a compact space, the net
winding number must vanish, which means there is
an equal number of strings wound with the opposite
orientation. Since the d1 dimensions are assumed to
be unwound to begin with, the winding modes only
wrap the dimensions d2. These winding modes
evolve according to

_W ¼ ��WðW2 � hWi2Þ: (4)

Here hWi denotes the equilibrium average winding,
and �W is an interaction rate we specify below. The
contribution to the energy fromwinding and antiwind-
ing modes is E ¼ 2d2We�, and their contribution to
the (off-equilibrium) pressure is P� ¼ �2We�.

(ii) Radiation, or pure Kaluza-Klein modes, with K�

and K� denoting the momentum numbers of strings

2In the T-dual picture, these strings carry more momentum and
are more likely to interact. 3See for example Eq. (30) in Ref. [6].
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with positive momentum along the d1 and d2 di-
mensions, respectively. We assume this momentum
is carried by individual strings that each have one
unit of positive Kaluza-Klein momentum; the net
momentum vanishes, so there must be an equal
number of strings with negative momentum. These
momentum modes evolve according to

_K� ¼ ��K�
ðK2

� � hK�i2Þ;
_K� ¼ ��K�

ðK2
� � hK�i2Þ:

(5)

The energy in these modes is E ¼ 2d1K�e
�� þ

2d2K�e
��, and their contributions to the pressures

are P� ¼ 2K�e
��, P� ¼ 2K�e

��.
(iii) String oscillator modes, which we model as pres-

sureless matter.

A. Equilibrium phases

In this subsection, we review the possible equilibrium
phases of a string gas. This information will be important
in the sequel, when we study fluctuations and the approach
to equilibrium. A point of terminology: in the remainder of
this paper, when we refer to the Universe as being in one of
these possible phases, we do not mean that the Universe is
actually in thermal equilibrium. Rather, we are using these
names as a convenient shorthand to indicate what the
equilibrium state of the Universe would be, given its
energy density.

In the d-dimensional isotropic case, the string gas has
two possible equilibrium thermodynamic phases. In the
Hagedorn phase, massive and massless modes are in ther-
mal equilibrium, the pressure vanishes, and the energy in
matter is conserved. At lower energy densities, the equi-
librium state of the Universe is radiation dominated. This
occurs when the energy density in d dimensions satisfies

�d ¼ E

Vd

< �H ¼ cdT
dþ1
H ; (6)

with TH the Hagedorn temperature and cd the Stefan-
Boltzmann constant in d dimensions. This can be alterna-
tively expressed in terms of temperatures. In a volume Vd

with energy E, a radiation gas has temperature Td ¼
ð E
cdVd

Þ 1
dþ1. The condition (6) can be then expressed as

Td < TH: (7)

That is, the Universe is radiation dominated when the
would-be radiation temperature falls below the Hagedorn
temperature.

In the anisotropic case there is an additional possibility.
Recall that we have three large dimensions, with d1 of
them larger than the remaining d2 ¼ 3� d1. Besides the
Hagedorn phase, the system could be found in either a
three-dimensional or a d1-dimensional radiation phase.
To fix the equilibrium phase of the Universe we generalize
the condition (7). Given the energy of the system and the
three-dimensional and d1-dimensional volumes, the lower

of the two temperatures Td1 ¼ ð E
cd1Vd1

Þ 1
d1þ1 and T3 ¼ ð E

c3V3
Þ14

determines the equilibrium phase. If neither of these
temperatures is lower than TH, then the system is in the
Hagedorn phase. For brevity, we will refer to these
equilibrium phases as Rd1 , R3 and H .

In equilibrium in Rd1 the energy is entirely carried

by the massless Kaluza-Klein modes K�. Treating these
modes as a collection of one-dimensional gasses, the
equilibrium values are [6]

hK�i ¼ E

2d1
e�;

Rd1 :

hK�i ¼ hWi ¼ 0:

(8)

These values account for all of the available energy; see
below Eq. (5). They correspond to pressures

R d1 : hP�i ¼ E

d1
; hP�i ¼ 0: (9)

In equilibrium in R3, the energy is split between K� and
K�, E ¼ 2d1K�e

�� þ 2d2K�e
��. Recalling that d ¼ 3 ¼

d1 þ d2, the equilibrium values are

hK�i ¼ E

6
e�;

R3:

hK�i ¼ E

6
e�; hWi ¼ 0;

(10)

corresponding to pressures

R3: hP�i ¼ hP�i ¼ E

3
: (11)

Finally, in the Hagedorn phase the equilibrium values
are [6]

hK�i ¼ 1

12

ffiffiffiffi
E

�

s
e�;

H :

hK�i ¼ 1

12

ffiffiffiffi
E

�

s
e�; hWi ¼ 1

12

ffiffiffiffi
E

�

s
e��

(12)

with pressures (due to the lack of winding around d1)

H : hP�i ¼ 1

6

ffiffiffiffi
E

�

s
; hP�i ¼ 0: (13)

We also recall the off-equilibrium interaction rates [6].
In the radiation phases, for strings with a single unit of
momentum or winding, the rates are

�K�
¼ 1

�
e�2�þ’; �K�

¼ 1

�
e�2�þ’; �W ¼ 1

�
e2�þ’:

(14)
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In the Hagedorn phase, these rates get multiplied by a
factor 16�E=9, reflecting the enhancement due to highly
excited oscillator modes.4

III. FLUCTUATIONS, INITIAL CONDITIONS
AND PROCEDURE

We are interested in the likelihood of decompactifying
three dimensions as a result of successive fluctuations. To
this end, we consider the following scenario: The first fluc-
tuation occurs at time t ¼ 0 and takes the Universe to a state
in which d1 < 3 dimensions are expanding and free from
winding. The initial size of these dimensions is �0 > 0, and
their initial expansion rate is _�0 > 0. For simplicity we treat
all other dimensions as fixed in size, with vanishing expan-
sion rates. Then, at time tf, some number of dimensions

d2 ¼ 3� d1 fluctuate to a size �ðtfÞ and begin expanding at
a rate _�ðtfÞ> 0. We assume that 0<�ðtfÞ<�ðtfÞ. This
models an energy fluctuation with energy flowing from
matter to gravitation. We are interested in the likelihood
that all three dimensions will decompactify—that is, that
the winding modes wrapping the d2 dimensions will anni-
hilate and that all three dimensions will begin to expand.
We will study this as a function of the initial conditions, the
fluctuation time tf and the anisotropy parameter

r � R�

R�

ðtfÞ ¼ e�ðtfÞ��ðtfÞ: (15)

Depending on the energy density, the Universe could
start out at t ¼ 0 with any one of the three possible
equilibrium phases R3, Rd1 , or H . If the Universe starts

withR3 as its equilibrium phase, then there is no need for a
subsequent fluctuation: there will be few or no winding
strings present—from Eq. (10) we have hWi ¼ 0—so the
initial conditions will most likely directly lead to three-
dimensional decompactification. Another possibility is that
at time t ¼ 0 the Universe could start with Rd1 as its

equilibrium phase. In this case it is quite possible that the
strings winding around the d2 dimensions will eventually
annihilate. This would allow the Universe to relax to
equilibrium in the phase Rd1 . But from Eqs. (8) and (9),

note that in equilibrium in Rd1 we have hK�i ¼ hWi ¼ 0,

which means the pressure in the d2 dimensions vanishes.
So even though the d2 dimensions can shed their winding,
it seems unlikely that these dimensions will begin to ex-
pand. Instead, we expect them to remain small and un-
wound. This leads us to make a conservative assumption,
that if the Universe finds itself with Rd1 as its equilibrium

phase, it will never become effectively three dimensional.
This assumption could be lifted through a more careful
study of fluctuations, which might show some probability
of decompactification even starting from Rd1 . As we do

not attempt such a study here, we employ the conservative

assumption that a universe which begins in Rd1 will never

end up with three large dimensions.
Thus, in order to obtain three large dimensions from

successive fluctuations, at time t ¼ 0 the system should
find itself with H as its equilibrium phase. Given �0, this
puts a lower bound on the energy at t ¼ 0,

E � cd1Vd1T
d1þ1
H : (16)

At fixed volume, this essentially constrains the initial value
of the dilaton, as we will see shortly.
One might worry that starting in H at t ¼ 0 leads to a

further restriction when we require that the d1 dimensions
are initially unwound. The issue is that in the Hagedorn
phase the equilibrium winding number does not vanish,
unless the ratio E=e� is small enough that no winding is
energetically allowed. In practice this is not a concern. As
we will see below, in order for the eventual decompactifi-
cation of three dimensions to take place, the initial value of
�0 must be large enough, and the initial energy low enough,
that initial conditions which allow decompactification of
three dimensions are consistent with the condition that the
d1 dimensions start out unwound. Another way to see this
is to assume the contrary as follows: Suppose we start deep
in the Hagedorn phase where the d1 dimensions are wound.
Then, when the d2 dimensions fluctuate, it is unlikely that
they will be able to push the system out ofH and intoR3.
Thus, if the d1 dimensions start out wound, fluctuations can
occur but will most likely just leave the Universe trapped in
the Hagedorn phase.
At this point, we review our procedure for fixing initial

conditions. The maximum value of j _’j consistent with the
supergravity approximation is j _’j ¼ 1. Orienting time so
the Universe is rolling to weak coupling, we set _’0 ¼ �1.
This defines our initial time slice; the equations of motion
then guarantee that j _’ðtÞj< 1 and _’ðtÞ< 0 for all t. To
explore the dependence on ’0, we will scan over a range of
values specified below, consistent with the Universe start-
ing in the Hagedorn phase. Given _’0 and’0, the expansion
rate _�0 is chosen at random. The total energy in the
Universe vanishes by the Hamiltonian constraint, so we
assume the relevant probability distribution for _�0 is given
by the microcanonical ensemble. This distribution turns
out to have a Gaussian form. To see this, note that

probð _�0Þ � exp ðSÞ

¼ exp ðE=THÞ / exp

�
�
�
4�2d1e

�’0

TH

�
_�2
0

�
; (17)

where we use the Hagedorn equation of state to determine
the entropy, S ¼ E=TH, and we use the Hamiltonian con-
straint [Eq. (3)] to determine the energy available in matter.
Finally, we make a choice for �0, which controls the size of
the dimensions d1. In practice wewill test two values, �0 ¼
3 and �0 ¼ 5. Note that via the constraint (3), the quantities
_’0, ’0, _�0 are sufficient to determine the energy in matter4This follows from Eqs. (19), (28), (29) in Ref. [6].
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at t ¼ 0. Given the energy in matter and a choice for �0, the
initial Kaluza-Klein momentum in the large dimensions
K�ðt ¼ 0Þ is set to its equilibrium value.

We then evolve the system to time tf using the equations

of motion (2), (4), and (5). During this time, we hold � ¼ 0
fixed at the self-dual radius. At time tf we effect a fluctua-

tion for the dimensions d2. To model a fluctuation, we draw
energy from the bath of heavy oscillator modes and redis-
tribute that energy to the other matter and metric modes,
i.e. to the expansion rates. We specify the size of the
fluctuation, that is the value of �ðtfÞ, using the anisotropy

parameter r defined in Eq. (15). In practice we will scan
over the range 0:1< r < 1. Then, using _’ðtfÞ, ’ðtfÞ and
_�ðtfÞ, we evaluate the energy in matter for _� ¼ 0 and

tentatively determine the equilibrium phase of the
Universe. This allows us to choose the expansion rate
_�ðtfÞ from a Gaussian probability distribution, where

the width of the Gaussian is determined as follows:
In the Hagedorn phase we have a result similar to Eq. (17),

probð _�Þ�expðSÞ¼expðE=THÞ/exp

�
�
�
4�2d2e

�’

TH

�
_�2

�
;

(18)

and we read off the variance

�2
H

¼ THe
’

8�2d2
: (19)

In the radiation phase R3, on the other hand, the matter
entropy is

S ¼ dþ 1

d
cdVdT

d ¼ dþ 1

d
ðcdVdÞ 1

dþ1E
d

dþ1: (20)

Using Eq. (3) to determine the available energy and
expanding in powers of _�, we have

probð _�Þ � exp ðSÞ / exp ½� _�2=2�2
R3

�; (21)

where the variance is

�2
R3

¼ 1

2d2

�
_’2

cdVd

� 1
dþ1

�
e’

4�2

� d
dþ1
: (22)

Once _�ðtfÞ is chosen, we recalculate the energy

available to matter. We still need to determine the
values of K�ðtfÞ and WðtfÞ. These are chosen from a

uniform distribution. We randomly select K�ðtfÞ in the

range ðKself-dual; KequilibriumÞ and WðtfÞ in the range

(max f0:5; hWig, Wself-dual). Note that the values at the
self-dual radius (� ¼ 0) set a lower bound on K� and an
upper bound on W. Also, the value 0.5 is our cutoff value
for rounding down to no winding: we do not allow the
fluctuation to result in vanishing winding, as our goal is
to test whether the winding modes will annihilate as a
consequence of interactions.

In summary, the values ’0, _’0, �0, K�ðt ¼ 0Þ and �ðtfÞ
(or r) are fixed, and we randomly choose _�0, _�ðtfÞ, K�ðtfÞ
andWðtfÞ from the distributions given above. For t > tf we

solve the equations of motion until the winding modes
either freeze out or annihilate completely. In practice,
when we numerically integrate the equations of motion,
the winding modes are considered annihilated when
W < 0:5 and frozen when �WW < 0:1 _�. [This is the
relevant comparison of interaction rate and expansion
rate, appropriate for the Boltzmann equation (4). The use
of _� here reflects the fact that the winding modes collide in
the d1 dimensions.] This lies at the heart of our test of the
BV mechanism: the dimensions d1 are unwound and free
to expand, and we test whether the winding modes wrap-
ping the remaining d2 dimensions can stay in equilibrium
as they compete with the expansion rate _� of the d1 larger
dimensions.
A note is in order regarding fluctuations of the scale

factors. Given the Hagedorn equation of state S ¼ E=TH,
we assume the scale factors can fluctuate randomly with a
uniform distribution, since there is no cost in entropy. This is
true in the thermodynamic limit. However, the (equilibrium)
entropy receives corrections at large radii, given by [9,10]

�S ¼ log

�
1�X

i

�ð2diÞ�1ð�iEÞ2di�1e��iE

�
;

�i ¼ T�1
H

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2R2
i

s � (23)

for each set of di dimensions with radius Ri. These correc-
tions are negligible when compared to the leading term,
typically by many orders of magnitude. The probability
distribution resulting from this correction as a function of R
at constant matter energy is very flat in the Hagedorn phase.
There is a mild dip around �iE ¼ 2di � 1, but this lies
outside the Hagedorn phase except when di ¼ 1. We ignore
these corrections and adopt a flat distribution for scale
factor fluctuations.

IV. RESULTS

For the scale factor �0 associated with the initial size of
the Universe, we consider two possible values, �0 ¼ 3 and
�0 ¼ 5. We will see that the results only mildly depend on
the choice of �0. As values of �0 larger than 5 are in a sense
‘‘too large,’’ since they correspond to radii far larger than
the string scale, we trust that these two values provide a
good test of the Brandenberger-Vafa mechanism.
Once �0 is chosen, the condition (16) that the system

starts in H at t ¼ 0 translates to the following condition
on the value of ’0:

’0 & �d1�0 � log ½ð2�Þd1�2cd1T
d1þ1
H �: (24)

[We are using the fact that _’0 ¼ �1, while the Hubble
rates in Eq. (3) are much smaller than 1.] The above is not a
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severe constraint, since it is consistent with the prerequisite
of weak coupling, although it constrains the case d1 ¼ 2
more than d1 ¼ 1, since it pushes us to weaker values for
the coupling. The condition that the d1 dimensions start out
unwound, hWi< 0:5, translates to

’0 * �2�0 � log ½9=��: (25)

Taken together, Eqs. (24) and (25) fix the range of dilaton
values we want to test. What happens outside this range?
At stronger values of the coupling, corresponding to less
initial energy, the system is found in Rd1 at t ¼ 0. As

discussed in the paragraph below Eq. (15), we make the
conservative assumption that in this case additional dimen-
sions will never decompactify, even if they shed their
winding. On the other hand, at weaker values of the cou-
pling the system is trapped forever in the Hagedorn phase,
with all dimensions wound.
For the fluctuation time tf we consider three possible

values, tf ¼ 1, 10, 100 in string units (�0 ¼ 1). This turns

out to be the most decisive parameter, with tf ¼ 1 giving

the largest window for decompactification of three
dimensions.

FIG. 1 (color online). Number of cases decompactifying (out of 100) as a function of ’0 and r, for �0 ¼ 3, 5 and tf ¼ 1, 10, 100,
when d1 ¼ 1.
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To summarize the initial conditions, we fix �0 2 f3; 5g
and tf 2 f1; 10; 100g. We then scan over 0< r < 1 and

the range of ’0 dictated by Eqs. (24) and (25). For each
choice of initial conditions we perform 100 integrations
of the equations of motion to sample values of _�0, _�ðtfÞ,
K�ðtfÞ and WðtfÞ from the distributions mentioned

above.
Our results are shown in Figs. 1 and 2, where we

plot the number of cases for which the winding modes

annihilate as a function of ’0 and r. The dependence on
’0 and r is as expected, with strong coupling (large ’0)
and large fluctuations (large r) more likely to decompac-
tify. The dependence on �0 is rather mild. The constraints
(24) and (25) push us to weaker coupling as �0 is in-
creased, but the enhancement in the annihilation ampli-

tude �e2�ðtfÞ ¼ r2e2�ðtfÞ makes up for this suppression. A
striking feature is the dependence of the plots on tf. The

reason decompactification becomes unlikely at large tf is

FIG. 2 (color online). Number of cases decompactifying (out of 100) as a function of ’0 and r, for �0 ¼ 3, 5 and tf ¼ 1, 10, 100,
when d1 ¼ 2.
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the rolling of the dilaton to weak coupling. This sup-
presses the rates in Eq. (14) and makes it impossible for
wound strings to annihilate. Note that this leads to a
degeneracy, in that a large value for tf can be compen-

sated by starting with a stronger coupling or a smaller
value of _’.

In all cases, the decisive factor for decompactification

is the energy density of the Universe. This is shown in

Figs. 3 and 4. On these graphs we show contour plots for

the number of cases decompactifying. We also show the

contour (thick black line) corresponding to the energy

density that separates an equilibrium phase H from an

equilibrium phase R3. We also show the contour

(thin red line) for the energy density below which
more than 90% of the cases result in three dimensions
decompactifying.
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FIG. 3 (color online). Contours of constant probability of decompactification for d1 ¼ 1. The thick black line is the energy density
separating the equilibrium radiation and equilibrium Hagedorn phases. The thin red line is the energy density below which more than
90% of the cases decompactify.
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The main lesson is that a fluctuation is quite likely
to make three dimensions decompactify provided the
fluctuation is large enough to push the equilibrium phase
of the Universe well into R3. As in Ref. [8], a small
fluctuation may leave the Universe trapped in H ,
although what we mean by this here is that the winding
modes freeze out while the d1 dimensions keep growing.
Note that there is a narrow region—near the critical
energy density separating H and R3—where it is pos-
sible that hWi is nonzero after the fluctuation, but drops
to zero as the Universe expands. If this happens while
interactions are still efficient, the winding modes will

annihilate. This is responsible for the spiky ridge seen in
Fig. 1.5 This discussion also makes it clear that the
contours of constant decompactification probability track
the contours of constant energy density. To understand
this, note that energy density is the key parameter which
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FIG. 4 (color online). Same as Fig. 3, but for d1 ¼ 2.

5The ridge lies on the H side of the divide between H and
R3, because on theH side, string interaction rates are enhanced
by the factor 16�E=9 discussed below Eq. (14). A more refined
treatment of the interaction rates of excited strings would pre-
sumably smooth out the ridge to some extent.
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determines whether the Universe has Hagedorn or radia-
tion as its equilibrium phase.

Since energy density is the most important parameter, in
Table I we give the range of energy densities at time tf that

lead to three dimensions decompactifying. We also express
our results as a function of d1, �0 and tf by giving the

percentage of cases that decompactify three dimensions in
Table II.

V. DISCUSSION

In this paper we studied a model in which successive
thermal fluctuations are able to decompactify a total of
three dimensions. Although these dimensions are initially
anisotropic, it was argued in Ref. [11] that string gas
cosmology will eventually lead to isotropization. So,
roughly speaking, our results support the BV mechanism
as providing a candidate stringy origin of the Universe we
observe. However, a more refined statement is that in our
model the probability of decompactifying three dimensions
depends on several parameters, in particular on the fluctua-
tion time tf and the energy density EðtfÞ. We now discuss

the implications of these results for the BV mechanism.
We found that three large dimensions can arise provided

that scale factor fluctuations in the Hagedorn phase occur

frequently, on a time scale tf �
ffiffiffiffiffi
�0p
. These frequent fluc-

tuations are necessary so that the dilaton does not have
time to roll to weak coupling. It seems reasonable to take

tf �
ffiffiffiffiffi
�0p
, since

ffiffiffiffiffi
�0p

is the natural time scale of the system

in the Hagedorn phase.

Assuming tf �
ffiffiffiffiffi
�0p
, the energy density EðtfÞ is basically

fixed by the initial value of the dilaton. To address the

dependence on this quantity, consider two successive fluc-

tuations—the first at time t ¼ 0, the second at time t�ffiffiffiffiffi
�0p
. The initial value of the dilaton ’0 determines the

subsequent possibilities. First, there is a relatively narrow
range towards strong coupling where the equilibrium phase
at t ¼ 0 is Rd1 . In this case we do not expect additional

dimensions to decompactify. So other than invoking an-
thropic arguments, we see no way to argue for a three-
dimensional outcome. But if the initial coupling is not too
strong, then we start in H and the following possibilities
remain: One possible outcome, which fortunately occupies
the smallest volume in the space of initial conditions, is that
the system lands in the part ofR3 where thewindingmodes
wrapping the d2 smaller dimensions cannot annihilate.
In that case, we again expect only d1 dimensions to grow
large. But for most initial conditions, the Universe either
ends up in the part ofR3 where a total of three dimensions
decompactify or remains stuck in the Hagedorn phase.
This latter possibility, of staying in the Hagedorn phase,

may seem discouraging. But in fact it could work in favor
of the BV mechanism, because roughly speaking it brings
us back to square one. As time goes by, the scale factors
may evolve slightly, but if fluctuations occur frequently
enough, this evolution is inconsequential. The key point is
that even if the d1 dimensions are unwound and experience
positive pressure, when the system is in equilibrium inH ,
their growth over many string times is tiny. This is because

the energy in radiation (� ffiffiffiffi
E

p
) is much smaller than the

energy in matter (�E), and furthermore the matter energy
is very nearly independent of �. This nearly constant large
energy keeps the velocity of the dilaton large, but also
results in large ‘‘dilaton friction’’ and a negligible change
in �. This can be seen by writing the equations of motion in
the form

d

dt
ðe�’ _’Þ ¼ � 1

8�2
E;

d

dt
ðe�’ _�Þ ¼ 1

48�2
ffiffiffiffi
�

p ffiffiffiffi
E

p
:

(26)

In our numerical solutions, even for tf ¼ 100, the most that

� changed was by one part in a hundred, while the energy
remained constant to one part in a few thousand. Thus, the
d1 dimensions can ‘‘hover’’ in the Hagedorn phase for a

TABLE II. Percentage of cases yielding three-dimensional
decompactification, showing the dependence on d1, �0, tf.

d1 ¼ 1
tf ¼ 1 tf ¼ 10 tf ¼ 100

�0 ¼ 3 82 53 20

�0 ¼ 5 65 47 17

d1 ¼ 2
tf ¼ 1 tf ¼ 10 tf ¼ 100

�0 ¼ 3 70 26 1

�0 ¼ 5 43 13 0.1

TABLE I. The ranges of energy densities at time tf that lead to three-dimensional decom-
pactification.

d1 ¼ 1
tf ¼ 1 tf ¼ 10 tf ¼ 100

�0 ¼ 3 ð1:5� 65Þ � 10�9 ð1:5� 15Þ � 10�9 ð1:5� 2:8Þ � 10�9

�0 ¼ 5 ð2:4� 640Þ � 10�11 ð2:4� 195Þ � 10�11 ð2:4� 7:1Þ � 10�11

d1 ¼ 2
tf ¼ 1 tf ¼ 10 tf ¼ 100

�0 ¼ 3 ð1:4� 6:5Þ � 10�8 ð1:4� 3:1Þ � 10�8 0

�0 ¼ 5 ð2:3� 10Þ � 10�9 ð2:3� 3:9Þ � 10�9 0
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long time, which allows additional fluctuations to take
place. Of course, during this time the dilaton is rolling
monotonically towards weak coupling [6,7], so if too much
time goes by before another fluctuation takes place, the
string coupling will become so small that the winding
modes are unable to annihilate. But with a fluctuation

time scale tf �
ffiffiffiffiffi
�0p
, this may not be a significant concern.

To summarize, within our model we find that there is a
considerable window in which scale factor fluctuations
favor the eventual decompactification of three dimensions,

provided such fluctuations occur on time scales � ffiffiffiffiffi
�0p
.

We conclude with a few issues which must be addressed
in order to reach a definitive conclusion regarding the
robustness of the BV mechanism:

(i) We found that the BV mechanism can operate pro-
vided there are fluctuations into a regime where
winding strings are dilute. This raises the crucial
issue of whether a dilute string gas in the early

Universe can evolve towards a homogeneous cos-
mology at late times. Studying this requires going
beyond our mini-superspace approximation, in
which we only kept the homogeneous modes of the
metric and dilaton.

(ii) We found that the BV mechanism can operate
provided that fluctuations in the scale factors occur

on time scales of order
ffiffiffiffiffi
�0p
. It seems reasonable to

assume tf �
ffiffiffiffiffi
�0p

in the Hagedorn phase. But this

assumption should be validated, for example, by
deriving the statistics of fluctuations from a study
of the stochastic evolution of scale factors coupled
to a hot string gas.

ACKNOWLEDGMENTS

The work of D. K. was supported in part by NSF Grants
No. PHY-0855582 and No. PHY-1214410, and by PSC-
CUNY grants.

[1] R. H. Brandenberger and C. Vafa, Nucl. Phys. B316, 391
(1989).

[2] T. Battefeld and S. Watson, Rev. Mod. Phys. 78, 435
(2006).

[3] R. H. Brandenberger, arXiv:0808.0746.
[4] R. H. Brandenberger, Classical Quantum Gravity 28,

204005 (2011).
[5] M. Sakellariadou, Nucl. Phys. B468, 319 (1996).
[6] R. Easther, B. R. Greene, M.G. Jackson, and D.N. Kabat,

J. Cosmol. Astropart. Phys. 02 (2005) 009.

[7] R. Danos, A. R. Frey, and A. Mazumdar, Phys. Rev. D 70,
106010 (2004).

[8] B. Greene, D. Kabat, and S. Marnerides, Phys. Rev. D 82,
043528 (2010).

[9] N. Deo, S. Jain, and C.-I. Tan, Phys. Lett. B 220, 125
(1989).

[10] B. A. Bassett, M. Borunda, M. Serone, and S. Tsujikawa,
Phys. Rev. D 67, 123506 (2003).

[11] S. Watson and R.H. Brandenberger, Phys. Rev. D 67,
043510 (2003).

ON THREE DIMENSIONS AS THE PREFERRED . . . PHYSICAL REVIEW D 88, 043527 (2013)

043527-11

http://dx.doi.org/10.1016/0550-3213(89)90037-0
http://dx.doi.org/10.1016/0550-3213(89)90037-0
http://dx.doi.org/10.1103/RevModPhys.78.435
http://dx.doi.org/10.1103/RevModPhys.78.435
http://arXiv.org/abs/0808.0746
http://dx.doi.org/10.1088/0264-9381/28/20/204005
http://dx.doi.org/10.1088/0264-9381/28/20/204005
http://dx.doi.org/10.1016/0550-3213(96)00123-X
http://dx.doi.org/10.1088/1475-7516/2005/02/009
http://dx.doi.org/10.1103/PhysRevD.70.106010
http://dx.doi.org/10.1103/PhysRevD.70.106010
http://dx.doi.org/10.1103/PhysRevD.82.043528
http://dx.doi.org/10.1103/PhysRevD.82.043528
http://dx.doi.org/10.1016/0370-2693(89)90024-5
http://dx.doi.org/10.1016/0370-2693(89)90024-5
http://dx.doi.org/10.1103/PhysRevD.67.123506
http://dx.doi.org/10.1103/PhysRevD.67.043510
http://dx.doi.org/10.1103/PhysRevD.67.043510

