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We consider the linear perturbations for the single scalar field inflation model interacting with an

additional triad of scalar fields. The background solutions of the three additional scalar fields depend on

spatial coordinates with a constant gradient � and the ensuing evolution preserves the homogeneity of the

cosmological principle. After we discuss the properties of background evolution including an exact

solution for the exponential-type potential, we investigate the linear perturbations of the scalar and tensor

modes in the background of the slow-roll inflation. In our model with small �, the comoving wave number

has a lower bound ��MP to have well-defined initial quantum states. We find that cosmological

quantities, for instance, the power spectrums and spectral indices of the comoving curvature and

isocurvature perturbations, and the running of the spectral indices have small corrections depending on

the lower bound. Similar behaviors happen for the tensor perturbation with the same lower bound.
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I. INTRODUCTION

Inflation [1,2] has been so far very successful to account
for observational data [3,4]. It is based on the simple idea
that the Universe went through a huge accelerating expan-
sion during the early stage of its evolution driven by a
single (multiple) scalar field(s). It provides not only a
spatially flat and homogeneous universe but also a source
for small primordial perturbations that are the origin
of the large-scale structure of our Universe today. Even
though the data are compatible with the single field infla-
tion, there have been considerable interests in multifield
inflation.

From the point of view of cosmological perturbations
[5], multifield inflation exhibits distinctive features of non-
Gaussianity [6,7] and generates isocurvature (entropy)
perturbations in addition to adiabatic perturbations of the
single scalar field model. There exists an extensive amount
of literature on how these aspects are incorporated into the
specific multifield inflationary models [8–10]. In particu-
lar, the presence of isocurvature modes corresponds to
relative perturbations among the various matter fields and
affects the final curvature perturbation at the end of infla-
tion by acting as a source term in the evolution equation for
the curvature perturbation [10].

So far, most analyses have been focused on the time-
dependent backgrounds in which each of the scalar fields is
a function of time only. However, growing interest in this
field motivates one to seek other theoretical possibilities.
One of the alternative approaches is to consider spatially

dependent backgrounds in cosmology [11,12]. It seems
that relatively little attention has been paid to spatially
dependent backgrounds in inflation. This might be due to
the obstacle that is inherent in these solutions in cosmol-
ogy: in general, these configurations are not compatible
with the cosmological principle of homogeneity and iso-
tropy. However, the conflict can be avoided in the nonlinear
sigma models that include a triad of scalar fields,
�aða ¼ 1; 2; 3Þ.1 It is known that by correlating each scalar
field with a spatial coordinate, �a � xa, one can maintain
the isotropy and homogeneity in a wide class of field

theory models whose Lagrangians are functions of X ¼
� 1

2g
�� ~habð�Þ@��a@��

b without the potential for the �a

fields.
The ansatz for scalar fields of a nonlinear sigma model,

�m � xm (i ¼ 1; . . . ; N) with the extra dimension N, first
appeared in the higher dimensional gravity theory and the
solutions of the scalar fields trigger spontaneous compac-
tification of the extra dimensions [13,14]. The compacti-
fied extra space is isomorphic to the target space of scalar
fields. A similar ansatz that breaks the diffeomorphism
invariance was used to give masses to gravitons as a
Higgs mechanism of gravity [15]. Therefore, the
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1Cosmological perturbations with the triad of scalar fields
having solutions �a � xa were considered before in [11,12].
The main interest of the paper [11] was to create statistically
anisotropic and inhomogeneous perturbations with metric per-
turbations. On the other hand, in [12] the authors introduced
SO(3) symmetric scalar fields only without potential for the scalar
fields. The background solution for the triad of the scalar fields is
the samewith ours. They considered linear perturbations and non-
Gaussianity for the model, dubbed as solid inflation. As we see in
(1.1), we additionally considered the inflaton with a potential and
find nontrivial results in the linear scalar perturbations.
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coordinate-dependent ansatz in the nonlinear sigma model
in gravity theories can be considered as a method of con-
structing the massive gravity theories [16]. Recently, the
four scalar fields were combined into de Sitter target space
and used in describing the late-time accelerating universe
[17]. See also [18,19] for related topics.

Motivated by the nonlinear sigma models inherited
from the higher dimensional gravity theories, in this paper,
we consider a nonlinear sigma model with a potential
as an action of matter fields in four-dimensional gravity
theory,

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

M2
P

2
R�1

2
g�� ~hmnð�Þ@��m@��

n�Vð�Þ
�
;

(1.1)

where m, n ¼ 1, 2, 3, 4 and MP denotes the Planck mass,

MP � ð8�GÞ�1=2. Here ~hmn can be considered as an inter-
nal metric of a four-dimensional Riemannian manifold. To
construct an inflationary model, we consider a specific
choice for the internal metric and potential,

~h ab¼fð’Þ�ab; ~ha4¼0; h44¼1; Vð�Þ¼Vð’Þ;
(1.2)

where ’ � �4 and fð’Þ is an arbitrary positive function
of ’2. Then the resulting model can be considered as the
single scalar field model interacting with a triad of scalar
fields �a, where the coupling among the inflaton ’ and the
triad of scalar fields is nonminimal, �fð’ÞX.

We try to describe the cosmological inflation in terms of
the action (1.1). As a background solution with the choice
of (1.2), we apply the ansatz �a � xa for the background
evolution, assuming that other dynamical fields depend on
the cosmic time only. As we discussed previously, the
resulting cosmological evolution becomes homogeneous
and isotropic with the Friedmann-Robertson-Walker
(FRW) metric. For the background evolution, we find an
exact solution describing the power-law inflation and try to
figure out the properties of the slow-roll inflation of our
model. We consider the linearized scalar and tensor per-
turbations for the slow-roll inflation with a small spatial
constant gradient� for the triad of scalar fields.3 The scalar
modes have 2 degrees of freedom, one from’ and the other
from the scalar mode of the triad. They are decoupled from
each other in the minimal coupling ½fð’Þ ¼ 1� and have
the form of the Sasaki-Mukhanov equation [20] in the
spatially flat gauge. We obtain the leading contributions
of � for the power spectrums and spectral indices of the
comoving curvature and isocurvature perturbations.

One interesting feature of our approach is that in the
slow-roll case, the requirement of unitarity for the initial
quantum state imposes a lower bound on the comoving
wave number. The existence of this limit is a consequence
of the nonvanishing aforementioned free parameter � as-
sociated with spatial condensations.
The paper is organized as follows. In Sec. 2, we start

from the action (1.1) with the choice (1.2). Using the ansatz
�a � xa for the triad of scalar fields, we obtain an exact
solution for the power-law inflation and investigate the
properties of the background evolution for the slow-roll
inflation. In Sec. III, we write the perturbed equations for
the scalar and tensor modes and discuss the gauge con-
ditions for the scalar perturbation. In Sec. IV, we describe
the behaviors of the perturbations up to leading order of �
and obtain cosmological quantities. We conclude in Sec. V.

II. BACKGROUND EVOLUTIONS

We start from the action (1.1) with the choice (1.2),

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

P

2
R� 1

2
g��@�’@�’

� 1

2
fð’Þg��@��

a@��
a � Vð’Þ

�
; (2.1)

where �a’s have an SO(3) symmetry.4 This action can be
considered as the single field inflation model with a triad of
scalar fields having noncanonical kinetic terms. We read
the energy-momentum tensor as

T��¼@�’@�’þfð’Þ@��a@��
a

�g��

�
1

2
fð’Þg��@��a@��

a

þ1

2
g��@�’@�’þVð’Þ

�
; (2.2)

and equations of motion of the scalar fields ’ and �a as

@�@
�’� 1

2
f0ð’Þg��@��

a@��
a � V’ ¼ 0;

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
fð’Þg��@��

aÞ ¼ 0;
(2.3)

where V’ � dV=d’.

The potential in (2.1) only depends on the single scalar
field ’. The reason is related with our choice of the
spatially linear background solution for the scalar fields
�a, which can guarantee the cosmological principle of
homogeneity with a SO(3) invariant potential. As we will
see in the next paragraph, the spatially linear solution for
�a in the background FRWmetric cannot be the solution of

2It is to be pointed out that the four fields have all positive
kinetic energy unlike the previously mentioned cases of massive
graviton and de Sitter target space where the scalar field ’ has
a negative kinetic energy.

3The three perturbed modes of the triad of scalar fields are
decomposed into one scalar and two vector modes.

4Our model is also related to the model in [21] in which the
authors introduced the inflation scalar field with a potential and a
twoform field to explain an anisotropic inflation. This twoform
field in four dimensions is dual to a pseudoscalar field.
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the equations of motion (2.3) in the presence of a non-
vanishing potential of �a. Furthermore, the energy-
momentum tensor becomes a function of the spatial
coordinates, which means the breakdown of the cosmo-
logical principle of homogeneity and isotropy. Therefore,
the vanishing of the potential for �a is crucial in this paper.

Now we consider the background evolution in our setup.
The background FRW metric is given by

ds2 ¼ �dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; (2.4)

where aðtÞ is the scale factor. In this paper, we consider an
ansatz for the scalar field �a as

�a ¼ M2
P�x

a; (2.5)

where � is an arbitrary dimensionless constant. Under the
assumption that the scalar field ’ is spatially homogene-
ous, we easily see that the ansatz (2.5) satisfies the equation
of motion for �a in (2.3). Remaining equations of motion
for g�� and ’ are given by

H2¼ �

3M2
P

; _H¼��þp

2M2
P

;

€’þ3H _’þ3M4
p�

2

2a2
f’þV’¼0;

(2.6)

where f’ � df=d’, H � _a=a, and

�¼1

2
_’2þ3M4

p�
2

2a2
fþV; p¼1

2
_’2�M4

p�
2

2a2
f�V: (2.7)

As we see from these background equations, the homoge-
neity of the background evolution is not spoiled though we
take the spatially dependent ansatz for �a in (2.5). The
f-dependent terms in (2.7) are originated from the contri-
butions of �a. Therefore, the equation of state of � fields is
w� ¼ �1=3. For concreteness, we fix the function fð’Þ as

fð’Þ ¼ e2	’=Mp ; (2.8)

where 	 is an arbitrary constant. In the case 	 ¼ 0, i.e.,
fð’Þ ¼ 1, the role of the �2-dependent term in (2.6) is the
same as the curvature constant determining the spatial
curvature in the Friedmann equations. Since we are con-
sidering the positive �2, the background evolution under
the spatial-dependent solution (2.5) corresponds to that
of the open universe. However, our model is different
from the single field inflation model on the background
metric of the open universe. As we will see later, there are
nontrivial roles of �a in the perturbation level.

The main purpose of this work is to investigate the
behaviors of our model (2.1) from the point of view of
linear perturbations. Before we move on to the subject of
the perturbation, we describe the background evolutions
of our model by considering two inflationary scenarios, the
power-law inflation and the slow-roll inflation.

A. Power-law inflation

It is well known that under an exponential-type potential
the single scalar field model has an exact solution describ-
ing the power-law inflation [22]. Comparing with the single
scalar field model, there are �-dependent terms in (2.6),
which originated from the spatially dependent background
solution for �a. As we will see in this subsection, the exact
solution for the power-law inflation in the single scalar field
model can be a solution of the equations of motion in (2.6)
with some deformations by parameters, 	 and �.
As in the case of the single scalar field model, we

consider an exponential-type potential

Vð’Þ ¼ V0e
�
’=MP ; (2.9)

where V0 and 
 are arbitrary constants. We consider an
ansatz that describes the power-law inflation,

aðtÞ¼a0ðMPtÞn; ’ðtÞ¼MP

�
2



lnðMPtÞþ’0

�
; (2.10)

where a0, n, and ’0 are dimensionless constants.
When � ¼ 0, the background equations reduce to those

of the single scalar field model. The constant parameters in
the power-law solution (2.10) are determined as

n ¼ 2


2
; ’0 ¼ 1



ln

�
V0


4

2M4
Pð6� 
2Þ

�
; (2.11)

and a0 becomes a free parameter.
However, in the case of � � 0, all constant parameters

of the power-law solution (2.10) are fixed by

n¼1þ2	



;

a20¼
�2
2

2ð
2þ2
	�2Þ
�


2V0

2M4
Pð6	2þ3
	þ2Þ

�
2	=


;

’0¼ 1



ln

�

2V0

2M4
Pð6	2þ3
	þ2Þ

�
:

(2.12)

The positive definiteness of the right-hand side of the
second condition in (2.12) restricts the value of 
,


 >�	þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ 2

q
or 
 <�	�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ 2

q
: (2.13)

In order to have an accelerating unverse, we also have a

constraint, 	

 > 0, from the first relation in (2.12).

Therefore, there are two possibilities for the parameters,

 and 	, i.e., 
 > 0 & 	 > 0 or 
 < 0 & 	 < 0. In the case

 > 0 & 	 > 0 we have the first relation in (2.13), while in
the 
 < 0 & 	 < 0 case we have the second one in (2.13).
Then the range of n for both cases can be expressed in
terms of 	 as follows:

1< n< 1þ 	2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	4 þ 2	2

q
: (2.14)

In the case 	 ¼ 0, n is fixed to unity. Therefore, there is no
inflation in this case. In this paper, we consider 
 > 0 and
	 > 0 case.
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The power-law solutions in (2.11) and (2.12) are special
solutions of the background equations of (2.6) since we
started from a special ansatz in obtaining the solutions. For
this reason, it is understandable that one cannot obtain the
solution (2.11) by taking � ! 0 in (2.12). That is, these
two solutions satisfy different initial conditions in the
� ! 0 limit. The general solution under the exponential-
type potential (2.9) for the single scalar field model was
obtained in [23].

B. Slow-roll inflation

Next, we consider the slow-roll inflation with a potential
satisfying the slow-roll approximations,

_’ 2=2 � V; €’ � 3H _’: (2.15)

To reflect these approximations, we introduce the slow-roll
parameters,

� � _’2

2M2
PH

2
; � � V’’

3H2
: (2.16)

With the approximations in (2.15), the background equa-
tions of motion of (2.6) reduce to

H2’�2M2
P

2a2
fþ 1

3M2
P

V; 3H _’þ3�2M4
P

2a2
f’þV’’0;

(2.17)

where f’ ¼ 2	
MP

e2	’=MP for the case (2.8). The background

dynamics of ’ is governed by the two papameters � and 	
as well as the shape of potential Vð’Þ.

We can compute the number of e-foldings using the
slow-roll equations of motion of (2.17),

N ¼
Z te

t
Hdt ¼ �

Z ’i

’e

H

_’
d’

’ 1

M2
P

Z ’i

’e

V
3 þ �2M4

Pf

2a2

V’

3 þ �2	M3
P
f

a2

d’; (2.18)

where ’i and ’e are the values of ’ at the initial time and
at the end of inflation, respectively. For a fixed value of �,
the number of e-foldings decreases with increasing 	 since
the 	-dependent term only appears in the denominator in
(2.18). For concreteness, we consider a massive scalar field
with a potential

Vð’Þ ¼ 1

2
m2’2: (2.19)

Then the number of e-foldings in (2.18) is given by

N ’ 1

M2
P

Z ’i

’e

’
2

�
1þ �2M4

Pf

a2m2’2

�

1þ �2	M3
Pf

a2m2’

d’: (2.20)

For a small value of �, we can expand the number of
e-foldings as

N ’ 1

2M2
P

Z ’i

’e

’

�
1�

�
	�MP

’

�
�2M3

Pf

a2m2’
þOð�4Þ

�
d’:

(2.21)

In this limit, the �-dependent term in (2.21) is also small
and the contribution of this term to the number of
e-foldings is negligible and independent of the magnitude
of 	. However, the sign of 	�MP=’ determines the
negative or positive contributions to the number of
e-foldings. Therefore, there is a critical point for the value
of 	 near

	 � MP=’: (2.22)

The scalar field ’ is varying as the cosmic time evolves.
However, it is almost a constant at the early stage of the
inflation, according to our assumption of the slow-roll
inflation. For this reason, the value of 	 in (2.22) can be
the critical point. The behaviors of the e-foldings for the
quadratic potential (2.19) are given graphically in Fig. 1.
One of the well-known properties of the slow-roll in-

flation (� ¼ 0) is that there exists a late-time attractor
behavior, such that the time evolution of the inflaton scalar
field becomes independent of the initial conditions. In our
case (� � 0) in (2.6), the time evolution behavior at the
early time is different from that of the single field case due
to some contributions of the�-dependent terms in (2.6). As
time goes on, however, the contributions become smaller
quickly since those terms are proportional to 1=a2.
Therefore, we have similar attractor behavior in our case
as well.

FIG. 1. Plots of e-foldings for the quadratic potential V ¼
1
2m

2’2 on the parameter space of � and 	. We choose the initial

condition as a0 ¼ 1,’0 ¼ 16MP, and _’0 ¼ 0withm ¼ 10�6MP.
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III. LINEAR PERTURBATIONS

In this section, we discuss the linear perturbations for
our model. We introduce a new gauge-invariant variable in
the scalar perturbation, which is originated from the space-
dependent background solutions of the triad of scalar
fields, �a. After we take the spatially flat gauge which is
convenient in our later analysis for the linear perturbation,
we write the general form of the comoving curvature
perturbation and the isocurvature perturbation. We also
discuss the perturbation for the tensor mode.

A. Scalar mode

In this subsection we consider the linear scalar pertur-
bation for our model (2.1). The linear scalar perturbation of
the metric is given by

ds2 ¼ �ð1þ 2AÞdt2 þ 2a@iBdtdx
i

þ a2½ð1� 2c Þ�ij þ 2@i@jE�dxidxj; (3.1)

where A, B, c , and E are four scalar perturbation modes.
We also consider perturbations of the scalar fields,

’ðt;xÞ¼’ðtÞþ�’ðt;xÞ; �aðt;xÞ¼�aðxÞþ��aðt;xÞ:
(3.2)

Before we write the perturbation equations for scalar
modes, we discuss the contribution of ��i to scalar modes.
At first, we read the ð0; iÞ component of the perturbed
Einstein equation �G0

i ¼ M�2
P �T0

i as

�2@iðHAþ _c Þ¼M�2
P �T0

i

¼M�2
P

�
�@ið _’�’Þ��f� _�iþ�2f

a
@iB

�
:

(3.3)

Taking the curl of both sides of (3.3), we obtain

�ijk@
j��k ¼ 0: (3.4)

From this relation, we see that ��i appearing in the linear
scalar perturbation equations has no contribution to the
perpendicular mode. For this reason, we can set5

��i ¼ 1

k
@iu; (3.5)

where k is the comoving wave number and u is the
perturbed scalar mode. Here we introduce 1=k factor in
order to define the canonical kinetic term for the scalar
mode u in the perturbed Lagrangian. Then we can write

the variation of the ð0; iÞ component of the energy mo-
mentum tensor as

�T0
i ¼ @i�q; (3.6)

where the scalar part of the three momentum �q is given by

�q ¼ � _’�’�M2
p�

k
f _uþM4

p�
2

a
fB: (3.7)

1. Perturbation equations

Inserting the relations for perturbed modes, (3.1), (3.2),
and (3.5) into the Einstein equation, we obtain the linear-
ized perturbed Einstein equations �G�

� ¼ 1
M2

P

�T�
�:

ð0;0Þ: 3HðHAþ _c Þ� 1

a2
r2½c þHða2 _E�aBÞ�¼� ��

2M2
p

;

ð0; iÞ:HAþ _c ¼� �q

2M2
p

;

ði;jÞ: 2
�
€c þ3HðHAþ _c ÞþH _Aþ2 _HAþ 1

2a2
r2D

�
�i

j

� 1

a2
@i@jD¼ 1

M2
P

ð�p�i
jþ�i

jÞ; (3.8)

where

�� ¼ _’ð _�’� _’AÞ þ @V

@’
�’

þM4
p�

2

a2
f

�
r2

�
u

�kM2
p

� E

�
þ 3c þ 3	�’

Mp

�
;

�p ¼ _’� _’� A _’2 � V’�’

�M4
p�

2

3a2
f

�
r2

�
u

�kM2
p

� E

�
þ 3c þ 3	�’

Mp

�
;

D ¼ A� c �Hða2 _E� aBÞ � d

dt
ða2 _E� aBÞ;

�i
j ¼

2M4
P�

2

a2
f

�
@i@j

�
u

�kM2
P

� E

�
� 1

3
r2

�
u

�kM2
P

� E

��
:

(3.9)

From (2.2) and (2.3), we obtain the perturbed equations
for �’ and u without gauge fixing,

� €’þ3H� _’� 1

a2
r2�’

þ2M2
p�

2	

a2
f

� r2u

�kMp

þ3	�’

�
þ@2V

@’2
�’

¼2A €’þ6HA _’þ _’

�
_Aþ3 _cþr2

�
B

a
� _E

��

�2M3
P�

2	

a2
fð3c�r2EÞ; €uþ

�
3Hþ2	 _’

MP

�
_u� 1

a2
r2u

¼�kM2
P

a2

�
a _Bþ2a

�
Hþ	 _’

MP

�
Bþ2	�’

MP

þðA�c�r2EÞ
�
:

(3.10)

5In general, ��i is decomposed as ��i ¼ 1
k @iuþ ��i

? with
the perpendicular mode ��i

? satisfying @i��
i
? ¼ 0 in the linear

perturbation. When we consider the perturbation of the vector
mode, ��i

? can contribute to the perturbed equations. It is well
known that after the inflation the Universe enters into the matter-
dominated era, and vector modes should decay leaving no
detectable imprints. As we discussed in Sec. II, the background
in our model has similar attractor behavior with that of the single
field model. For this reason, the vector modes in our model can
decay as well. We do not consider the perturbation of the vector
mode in this paper.
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Using the relations in (3.7) and (3.9), we can write the
comoving curvature perturbation [24,25] and the isocurva-
ture perturbation for multiple scalar fields [10] as

R � c � H

�þ p
�q; S � H

�
�p

_p
� ��

_�

�
: (3.11)

2. Gauge condition

As we see in (3.5), we have one additional scalar degree
of freedom due to the contribution of ��a. Therefore, we
have 6 degrees of freedom for the scalar perturbation
modes. Eliminating the gauge degrees of freedom and
imposing the constraints of the Einstein equation, we
have 2 physical degrees of freedom. Since we have con-
sidered the spatially dependent background solution for
�a, we have slightly different gauge-invariant quantities
from the well-known multifield models.

Under the change of coordinate,

x� ! x� þ ��; ð�0 ¼ �;�i ¼ �ij@j
Þ; (3.12)

the scalar modes of the perturbed metric (3.1) transform as

A ! A� _�; B ! Bþ �

a
� a _
;

c ! c �H�; E ! E� 
:
(3.13)

The scalar modes of matter fields also transform as

�’!�’���@�’¼�’� _’�;

��a!��a���@��
a¼1

k
�ab@bu��M2

P�
ab@b
;

(3.14)

where we used the background solution �a ¼ �M2
Px

a of
(2.5) in the last step. From (3.14) we can read off the gauge
transformation of the scalar mode u as

u ! u� k�M2
P
: (3.15)

From these transformation rules, we can obtain several
gauge-invariant quantities. For later convenience we define
those quantities,

��Aþ d

dt
ðaðB�a _EÞÞ; �� c þaHðB�a _EÞ;

Q’��’� _’

H
c ; Qu�u��kM2

PE:
(3.16)

The new quantity Qu was introduced due to the spatial
dependence of the background field �a.

To solve the perturbed equations (3.8) and (3.2), we take
the spatially flat gauge (c ¼ 0 and E ¼ 0). In this gauge
the perturbed equations are reduced to

€Q’þ3H _Q’þ
�
k2

a2
þ _’V’

M2
PH

þV’’þ6M2
P�

2	2

a2
f

þ2MP�
2	 _’

a2H
f

�
Q’�2	�kMP

a2
fQuþ2

� _H _’

H
� €’

�
A¼0;

€Quþ
�
3Hþ2	 _’

MP

�
_Quþ

�
k2

a2
þ2�2M2

pf

a2

�
Qu

�2	�kMP

a2
ðQ’þaB _’Þ¼0; (3.17)

where Q’ ¼ �’, Qu ¼ u. The scalar modes and A and B

satisfy the constraints that are given from the first two
equations of (3.8),

3AH2�k2BH

a
¼ 1

2M2
p

ðA _’2� _’ _Q’�V’Q’Þ

þð�kQu�3�2	MpQ’Þ f

2a2
;

2AH¼ _’Q’

M2
p

þ
�
�

k
Qu�

�2M2
pB

a

�
f: (3.18)

The comoving curvature and isocurvature perturbations
of (3.11) are written in the spatially flat gauge as

R ¼ H

�
_’Q’ � �M2

Pfð�M
2
PB

a � _Qu

k Þ
_’2 þ �2M4

P

a2
f

�
;

S ¼ H

2
4 _’ð _Q’ � A _’Þ � V’Q’ þ �2M4

P

3a2
fðkQu

aM2
P

� 3	Q’

MP
Þ

_’ð €’� V’Þ þ �2M4
P

a2
fðH� 	 _’

MP
Þ

�
_’ð _Q’ � A _’Þ þ V’Q’ � �2M4

P

a2
fðkQu

aM2
P

� 3	Q’

MP
Þ

_’ð €’þ V’Þ � 3�2M4
P

a2
fðH � 	 _’

MP
Þ

3
5:

(3.19)

In the case � ¼ 0, the quantities R and S are reduced to
those of the single scalar field [10].

B. Tensor mode

In this subsection, we investigate the linear perturbation
of the tensor mode for our model on the background
described by Eqs. (2.5) and (2.6). Since the tensor mode
is decoupled from the scalar and vector ones in the linear
perturbation theory, we consider the perturbed metric in the
conformal time to describe the tensor perturbation,

ds2 ¼ a2ð�Þð�d�2 þ ð�ij þ hijÞdxidxjÞ; (3.20)

where dt ¼ ad�. The tensor modes hij satisfy the follow-

ing conditions:

@ihij ¼ 0; hii ¼ 0: (3.21)

Since the tensor modes hij have 2 degrees of freedom,

which are identified with the two polarizations of
gravitational waves, we expand the tensor modes as
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hijð�; ~xÞ ¼ 2

MP

X

¼þ;�

~�
ð�; ~xÞ
a

�
ij; (3.22)

where �
ij is the polarization tensor satisfying the orthogo-

nality condition �
ij�
ij

0 ¼ �



0 . Inserting (3.20) and (3.22)

into the action (2.1) on our background and solving the
equation of the motion of ~�
, we see that the Fourier mode
of ~�
 satisfies

�00

ð�; kÞ þ

�
k2 � a00

a

�
�
ð�; kÞ ¼ 0; (3.23)

where 0 � d=d� and �
 satisfies the normalization
condition,

�
�
0�

 ���


�
0

 ¼ i: (3.24)

Using the relations for the background evolution in (2.6),
we obtain a general differential equation for the tensor
mode for our case,

�00

 þ

�
k2 � 1

2
M2

P�
2fþ 1

6M2
P

ð’02 � 4a2VÞ
�
�
 ¼ 0:

(3.25)

IV. PERTURBATIONS IN THE
SLOW-ROLL INFLATION

As we see from the perturbed equations (3.17) and (3.18)
in the spatially flat gauge, the perturbed modes Q’ and Qu

are completely decoupled in the � ! 0 limit. Moreover,
the resulting curvature perturbations, R and S in (3.19),
are independent of Qu. Therefore, in the � ! 0 limit, the
linear perturbation of our model is the same as that of the
single scalar field model. For this reason, in this paper we
only consider the case with nonvanishing �.

When we consider the linear perturbations with non-
vanishing 	 and �, in general the modesQ’ andQu are not

decoupled. However, in this coupled case it is very difficult
to obtain some cosmological quantities, such as power
spectrums and scalar/tensor spectral indices. We leave
this general case for further investigation. In this paper,
we restrict the linear perturbations to the case of the slow-
roll inflation at a small value of � with vanishing 	.
As we will see in this case, the modes Q’ and Qu are

decoupled. However, R and S still have dependence on
both Q’ and Qu.

In this paper, we will not consider the perturbation for
the power-law inflation. The reason is the following. For
the case of � � 0 with 	 ¼ 0, the background equations in
(2.6) have a special solution given in (2.10) and (2.12) for
the exponential-type potential (2.9). In this case, the solu-
tions are reduced to

’ ¼ 2MP



ln

� ffiffiffiffiffiffi
V0

p

t

2MP

�
; aðtÞ ¼ MP�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
2 � 4
p t: (4.1)

The scale factor is a linear function of the cosmic time t,
and so an accelerating universe is not allowed. Presumably,
if we can obtain the general solution like the work for the
single scalar with exponential-type potential in [23], we
may have an inflation era even in the case 	 ¼ 0. However,
it is beyond the range of this paper. Because of this reason,
we do not consider the cosmological perturbation for the
power-law inflation. In this section, we concentrate on the
perturbation for the slow-roll inflation described in Sec. II.

A. Scalar mode

In the slow-roll approximation at a small value of �with
	 ¼ 0, the perturbed equation (3.17) is reduced to

€Q’ þ 3H _Q’ þ
�
k2

a2
þ _’V’

M2
PH

þ V’’

�
Q’ ’ 0;

€Qu þ 3H _Qu þ
�
k2

a2
þ 2�2M2

p

a2

�
Qu ’ 0;

(4.2)

where we keep the leading order in slow-roll parameters of
(2.16). Changing the cosmic time t into the conformal time
� and introducing the Sasaki-Mukhanov variables,

V ¼ aQ’; U ¼ aQu; (4.3)

we obtain the Sasaki-Mukhanov equations from (4.2),

V 00
k þ

�
k21 �

�2
1 � 1

4

�2

�
V k ¼ 0;

U00
k þ

�
k22 �

�2
2 � 1

4

�2

�
Uk ¼ 0:

(4.4)

The parameters in (4.4) are given by

k21 � k2 � �2M2
P

6
; k22 � k2 þ 11�2M2

P

6
;

�1 ’ 3

2
þ 3�� �; �2 ’ 3

2
þ �:

(4.5)

The k1 and k2 can be considered the effective wave vectors
for the V k and Uk modes, respectively. In driving the
Sasaki-Mukhanov equations in (4.4), we used the back-
ground Eqs. (2.17) in the slow-roll approximation of the
Sec. II B. The conformal time � has the following relation:

�¼
Z dt

a
¼� 1

aH
þ
Z �H

a2H
da’� 1

aH

�
1þ�þ �2M2

P

6a2H2

�
;

(4.6)

where the relation

�H ¼ � _H

H2
’ �þ �2M2

P

2a2H2
(4.7)

was used. Here we keep the leading order in the slow-roll
parameters, � and �, and a small gradient constant �. We
will discuss the range of � in our approximation later.
Then, from (4.6), we obtain
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H 2 ’ 1þ 2�

�2
þ �2M2

P

3
; (4.8)

where H ¼ a0=a.
Assuming that the slow-roll parameters are constants,

we have the exact solutions for the equations of (4.4),

V k ¼
ffiffiffiffiffiffiffi��

p ½c1kHð1Þ
�1
ð�k1�Þ þ d1kH

ð2Þ
�1
ð�k1�Þ�e1ðkÞ;

Uk ¼
ffiffiffiffiffiffiffi��

p ½c2kHð1Þ
�1
ð�k2�Þ þ d2kH

ð2Þ
�2
ð�k2�Þ�e2ðkÞ;

(4.9)

whereHðiÞ
� ðzÞ (i ¼ 1, 2) are the first and second kinds of the

Hankel functions, and eiðkÞ’s are independent Gaussian
random variables satisfying

heiðkÞi ¼ 0; heiðkÞejðk0Þi ¼ �ij�ðk� k0Þ: (4.10)

Here, the angled brackets denote ensemble averages.
In order to determine the integration constants cik and

dik, we have to fix the initial vacuum state at k� ! �1. As
we see in (4.4) and (4.9), the two differential equations and
the corresponding solutions have the same forms. Because
the overall normalization of the u mode given in (3.5),V k

and Uk modes have the same normalizations. Therefore,
we can concentrate on the solution of V k only and apply
the result to the case of Uk.

The mode for V k � ~vke1ðkÞ satisfies the normalization

condition, ~vk~v
�0
k � ~v�

k~v
0
k ¼ i which is originated from the

quantization condition of the mode. Because of this nor-
malization, we have the relation between the integration
constants,

jc1kj2 � jd1kj2 ¼ �

4
: (4.11)

We adopt the Bunch-Davies vacuum for the initial pertur-
bation mode at � � 0 by taking the positive energy mode.
Then the initial mode is given by

V kð�Þ ¼ 1ffiffiffiffiffiffiffiffi
2k1

p e�ik1�e1ðkÞ: (4.12)

This mode corresponds to the choice of coefficients,

c1k ¼ e
i�
2 ð�þ1

2Þ
ffiffiffiffi
�

p
2

; d1k ¼ 0: (4.13)

Using the relations (4.12) and (4.13), and adopting
to the case of Uk as well, we have the exact solutions for
V k and Uk,

V kð�Þ ¼
ffiffiffiffi
�

p
2

e
i�
2 ð�1þ1

2Þ
ffiffiffiffiffiffiffi��

p
Hð1Þ

�1
ð�k1�Þe1ðkÞ;

Ukð�Þ ¼
ffiffiffiffi
�

p
2

e
i�
2 ð�2þ1

2Þ
ffiffiffiffiffiffiffi��

p
Hð1Þ

�2
ð�k2�Þe2ðkÞ:

(4.14)

As we see in the initial mode (4.12), the effective wave
number k1 should be real to have a well-defined quantum
state. This means that the square of the effective wave
number k21 should be non-negative. Therefore, the wave
number k should be constrained from (4.5) as

k2 � k2min �
�2M2

P

6
: (4.15)

As we see in (4.4), the initial quantum fluctuation modes
of V k with jkj< jkminj are exponentially growing or
decreasing and so they break the unitary symmetry of
the quantum system in the deep inside of the horizon.
That is, these modes are not allowed as initial quantum
modes. Therefore, there is an observational lower bound
of the comoving wave number in our model. In the large
scale limit k1;2j�j � 1, the modes in (4.14) can be ap-

proximated as

V kð�Þ’e
i�
2 ð�1þ1

2Þ2�1�3
2
�ð�1Þ
�ð32Þ

1ffiffiffiffiffiffiffiffi
2k1

p ð�k1�Þ12��1e1ðkÞ;

Ukð�Þ’e
i�
2 ð�2þ1

2Þ2�2�3
2
�ð�2Þ
�ð32Þ

1ffiffiffiffiffiffiffiffi
2k2

p ð�k2�Þ12��2e2ðkÞ:
(4.16)

In the slow-roll approximation with 	 ¼ 0 and a small
nonvanishing value of �, the leading contributions for
the curvature and isocurvature perturbations in (3.19) are
given by

R ’ Q’ffiffiffiffiffiffi
2�

p
MP

þ �

2k�H
_Qu � �2MP

2
ffiffiffi
2

p
�3=2a2H2

Q’; (4.17)

S’
ffiffiffi
2

p
3

ffiffiffi
�

p
MPH

_Q’� �k

9�a2H2
Qu

þ�2MP

a2H2

�
Q’

3
ffiffiffi
2

p
�3=2

�
ffiffiffi
2

p

9�3=2H
_Q’

�
: (4.18)

From these expressions, we obtain power spectrums forR
and S,

PRðkÞ � k3

2�2
hRR�i ’ k3

4�2�M2
P

�
1� �2M2

P

a2H2�

�
hQ’Q

�
’i;

PSðkÞ � k3

2�2
hSS�i ’ k3�2

2�2�2

�
k2

81a4H4
hQuQ

�
ui

þ 1

9a2H3
ðhQ’

_Q�
’i þ h _Q’Q

�
’iÞ

�
: (4.19)

Using the relations of (4.3) and (4.16), we obtain the power
spectrums at the horizon crossing point (k ¼ aH) as

PR� ’
H2�

8�2M2
P

1

�

�
1þð2�2CÞ�þð6C�8Þ��M2

P

k2
�2

�

�
;

PS� ’
�
H�
18�

�
2 �2

�2k2

�
1þ2C�32��18��73�2M2

P

12k2

�
;

(4.20)

where the subscripted asterisk indicates the value at the
horizon crossing point and C ¼ 2� ln 2� 
 with the
Euler-Mascheroni constant 
 � 0:5772. In the computa-
tions of power spectrums in (4.20), we have used the
relations
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hQ’Q
�
’i� ¼ 1

a2�
hV kV �i� ’ H2�

2k3

�
1þð6C�8Þ�þð2�2CÞ���2M2

P

12k2

�
;

hQ’
_Q�
’iþh _Q’Q

�
’i¼ 1

a3�
ðhV kV 0�

k i�þhV 0
kV

�
ki�Þ�

2H�
a2�

hV kV �
ki� ’

H3�
k3

�
2�����2M2

P

6k2

�
;

hQuQ
�
ui¼ 1

a2�
hUkU�

ki� ’
H2�
2k3

�
1þ2ðC�2Þ��37�2M2

P

12k2

�
:

(4.21)

The expansions of power spectrums in (4.20) are only valid
in the range of �,

M2
P�

2 & �2k2: (4.22)

In � ! 0 limit, the power spectrums PR and PS at the
horizon crossing point in (4.20) become those of the single
field case. Finally, the spectral indices for R and S in the
large scale limit (k1;2j�j � 1) are given by

nR�1�dlnPR

dlnk
’2��6�þ2�2M2

P

�k2
;

nS�1�dlnPR

dlnk
’�2þ4��10�þ67�2M2

P

6k2
:

(4.23)

If we take (4.22) into account, we find the last terms in
nR � 1 and nS � 1 are of the order of � and �2, respec-
tively. These imply that while the curvature perturbation is
nearly scale invariant, the isocurvature perturbation is pro-
portional to the inverse square of the comoving wave
number.

The running of the scalar spectral index is given by

dnR
d ln k

¼ � 4�2M2
P

�k2
þOð�2; ��Þ: (4.24)

The leading term becomes of the order of � from (4.20) and
(4.22). Recent Planck [3] and WMAP nine-year [4] data
show

nR ¼ 0:9603;
dnR
d ln k

¼ �0:0134 ðPlanckÞ; (4.25)

nR¼0:9608;
dnR
dlnk

¼�0:019 ðWMAP�9 yrÞ; (4.26)

with the pivot scale k0 ¼ 0:05 Mpc�1 (Planck) and k0 ¼
0:002 Mpc�1 (WMAP), respectively. Since �2 > 0 and
� > 0, the sign of the running of the spectral index in
(4.24) is consistent with the observations. However, to
give some restriction on the value of � we need more
investigations using a specific potential of the single scalar
field. We leave these issues for future work.

B. Tensor mode

Using the relations (4.7) and (4.8), we obtain

a00

a
¼ðaHÞ2

�
2þ _H

H2

�
’H 2ð2��HÞ’2þ3�

�2
þ�2M2

P

6
:

(4.27)

Then the linearized perturbed equation (3.23) for the tensor
mode, up to the leading order in the slow-roll parameters
and the gradient constant �, can be written as

u00T þ
�
k2T ��2

T � 1
4

�2

�
uT ¼ 0; (4.28)

where

k2T ¼ k2 � �2M2
P

6
; �T ¼ 3

2
þ �: (4.29)

Interestingly, the tensor mode has the same lower bound
of the comoving wave number with that of the scalar mode
in (4.15).
Choosing the initial condition with a positive frequency

mode, just like (4.12) in the initial state of the scalar mode,
we obtain the following solutions in the large scale limit
(kTj�j � 1):

uT ’
ffiffiffiffi
�

p
2

e
i�
2 ð�Tþ1

2Þ
ffiffiffiffiffiffiffi��

p
Hð1Þ

�T
ð�kT�ÞeTðkÞ;

’ eið�Tþ1
2Þ�2 1ffiffiffiffiffiffiffiffi

2kT
p Að�Þð�kT�Þ�1eTðkÞ;

where Að�Þ ¼ 1� � ln ð�k�Þ þ �ð2� 
� ln 2Þ and eTðkÞ
is an independent Gaussian random variable and has the
same properties with those defined in (4.10).
With these solutions, the power spectrum for the tensor

modes hij is obtained as

P TðkÞ ¼ 2P h ¼ 8

a2M2
P

P uT

¼ 2H2�
M2

P�
2

�
1þ ð2C� 4Þ�� �2M2

P

12k2

�
; (4.30)

where we used h
 ¼ 2
aMP

uT and the factor ‘‘2’’ comes from

the two polarization states. We also used the quantities at
the horizon crossing point (k ¼ aH),

ð�kT�Þnj� ’
�
1þ �þ �2M2

P

12k2

�
n
;

huTu�Ti� ’
1

2k

�
1þ ð2C� 4Þ�� �2M2

P

12k2

�
:

(4.31)
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The spectral index for tensor modes and tensor-to-scalar
ratio are given by

nT � 1 � d lnPT

d ln k
’ �2�� 5�2M2

P

6k2
; (4.32)

r � P T

PR
’ 16��

�
1þ ð4� 4CÞ�þ ð2C� 2Þ�þ �2M2

P

k2�

�
:

(4.33)

V. CONCLUSION

In this paper, we studied the cosmological properties of a
multifield inflation model in which we considered the
single field and an additional triad of scalar fields with a
nonminimal coupling that is dependent on the single scalar
field.

As a special background solution, we considered spa-
tially dependent linear profiles for the triad of scalar fields,
while the single scalar field depends on the cosmic time
only. Because of this linear property, all components of the
energy momentum tensor evolve homogeneously and iso-
tropically on the background FRW metric. For this reason,
we can regard the background evolution as that of the
single field inflation in the presence of a matter with an
equation of state w ¼ �1=3, which spreads to the whole
space. However, there appeared one more scalar degree of
freedom from the triad of scalar fields in the perturbation
level. Therefore, our model is different form the single field
inflation model in some cosmological background.

For the exponential-type potential, we found an exact
solution describing the power-law inflation, as in the case
of the single field inflation model. We also investigated the
properties of the background evolution under the assump-
tion of the slow-roll inflation. The background behaviors of
the slow-roll inflation are determined by the two parame-
ters 	 and � that are associated with the nonminimal
coupling and the gradient constant of the triad of scalar
fields, respectively. We have drawn contour lines of the
e-foldings for the quadratic potential on the parameter
space of 	 and � in Fig. 1.

We also investigated the properties of the scalar and
tensor perturbations for the slow-roll inflation with vanish-
ing 	 and small �. In the scalar fluctuations, there are two
physical modes, V k and Uk originating from the scalar
field and the triad of scalar fields, respectively, in the
spatially flat gauge. The two scalar modes are decoupled
from each other and have the form of a Sasaki-Mukhanov
equation in the leading contribution of �. We found that
there exists an observational lower bound of the comoving
wave number, jkminj � �MP, to have a well-defined initial
quantum state for V k with a positive energy eigenvalue.
We also obtained the power spectrums and the correspond-
ing spectral indices for the comoving curvature and iso-
curvature perturbations. If we compare our results for the

power spectrum with those of the single field inflation
model, the �-dependent terms are always proportional to
�2=k2. Because of this reason, the spectral indices for the
curvature and isocurvature perturbations have the contri-
bution of �2=k2 terms as well. As is already well known,
the isocurvature perturbation in the single field inflation
model is vanishing in the large scale. However, the power
spectrum for the isocurvature perturbation is nonvanishing
and has contributions from both V k and Uk modes in our
model. We also implemented the same analysis for the
tensor perturbation. We found the same lower bound of
the comoving wave number in the tensor mode.
In the case of nonvanishing 	, V k and Uk modes are

coupled with each other. Then it is difficult to obtain
analytic solutions, unlike the case of 	 ¼ 0. As we saw in
the analysis of the background evolution, the value of 	
changes the behaviors of the cosmological evolution sig-
nificantly. Therefore, we can expect that the value 	 may
have some important roles in the perturbations as well. We
leave the analysis of the nonvanishing 	 for future work.
One important difference between the single field model

and ours is the existence of the isocurvature perturbation in
our model, which originates from the spatial gradient of the
background solution. One may also test whether the non-
vanishing spatial gradient can be a source of the cosmo-
logical non-Gaussianity. In the solid inflation model [12],
the authors obtained unusually large non-Gaussianity,
fNL � 1=ð�c2sÞ with sound speed cs. Since we are consid-
ering the inflaton field in addition to the triad of the scalar
fields, we can expect that the non-Gaussianity behaviors of
our model are different from that of the solid inflation
model. It will be interesting if we compare the non-
Gaussianity behavior of our model with those of the solid
inflation model and the recent observational data. The
details will be reported elsewhere.
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