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Intrigued by the holographic principle, Padmanabhan recently proposed a novel idea, saying that our

cosmic space is emergent as cosmic time progresses. In particular, the expansion rate of the Universe is

related to the difference between the surface degrees of freedom on the holographic horizon and the bulk

degrees of freedom inside. In this note, we generalize this interesting paradigm to brane world, scalar-

tensor gravity, and f(R) theory, respectively, and find that in the cosmological setting the Friedmann

equations can be successfully derived.
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I. INTRODUCTION

The tight link between a gravitational system and a
thermodynamical system was discovered in 1970s [1]. A
thermodynamical description of the Einstein equation was
originally proposed by Jacobson [2]. In this scenario the
Einstein equation becomes an equation of state and can be
derived from a fundamental thermodynamical relation,
namely Clausius relation �Q ¼ TdS, which connects
heat, entropy, and temperature for all the local Rindler
causal horizons. Recently, this scenario has been demon-
strated in many gravity theories and cosmological models
[3–15]. In this context, the dynamical equations of the
gravitational field can be derived from the Clausius
relation. Furthermore, the viewpoint that gravity is not a
fundamental interaction has been developed in the paper
by Verlinde [16]. Gravity is explained as an entropic force
that is caused by the change of the information associated
with the position of matter. In [17], Padmanabhan also
argued that the equipartition law of energy for the horizon
degrees of freedom can lead to Newton’s law of gravity
through the thermodynamical relation S ¼ E

2T , where E is

the active gravitational mass producing the gravitational
acceleration in spacetime [18].

Very recently, Padmanabhan presented a novel way to
view the cosmic space as an emergent phenomenon in a
cosmological setting [19]. The main idea is attributing the
expansion of our Universe to the difference between the
surface degrees of freedom on the holographic horizon and
the bulk degrees of freedom in bulk. In this paradigm the
dynamical equation of a Friedmann-Robertson-Walker
(FRW) universe can be successfully derived. After that,
this setup has been generalized to the cosmology in
Gauss-Bonnet gravity and more general Lovelock gravity

in [20,21]. Further discussions by Padmanabhan on its
applications in the cosmology can be found in [22].
We may briefly summarize the idea proposed by

Padmanabhan as follows. For a pure de Sitter universe
with Hubble parameter H, the holographic principle can
be described by the relation

Nsur ¼ Nbulk; (1)

where Nsur denotes the number of the degrees of freedom
on the holographic screen with Hubble radius 1=H, namely

Nsur ¼ 4�
L2
pH

2 with L
2
p ¼ G, while Nbulk ¼ 2jEj

T is the number

of the degrees of freedom in bulk, where jEj ¼ jMj ¼
j�þ 3pjV is the Komar mass. The horizon temperature is
determined by T ¼ H

2� . The above equation is the so-called

holographic equipartition. Since the real world is not
purely but asymptotically de Sitter, one may propose that
the expansion rate of the cosmic volume is related to the
difference of these two degrees of freedom as

dV

dt
¼ L2

pðNsur � NbulkÞ: (2)

As shown in [19], Eq. (2) shows that it is very necessary for
the existence of the cosmological constant to drive the
expansion of the Universe toward holographic equiparti-
tion.1 Substituting the cosmic volume V ¼ 4�

3H3 and the

number of the degrees of freedom into the above equation,
we obtain the standard dynamical Friedmann equation in
general relativity,

€a

a
¼ � 4�G

3
ð�þ 3pÞ: (3)

In addition, making use of the continuity equation,
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1We remark that using the Hubble horizon, one can find that
Eq. (2) is consistent with the Raychaudhuri’s equation in the
FRW universe. We thank the anonymous referee for raising this
issue with us.
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_�þ 3Hð�þ pÞ ¼ 0; (4)

and integrating Eq. (3), one can obtain the Friedmann
equation,

H2 ¼ 8�G

3
�; (5)

where the integration constant has been set to zero.
In this paper, we will examine this interesting proposal

in other gravitational theories. We intend to generalize this
paradigm to the brane world, scalar-tensor gravity and f(R)
gravity. The key issue is how to find the correct result for
the Komar mass in these modified gravity theories since it
plays an essential role in this approach. Our strategy is to
introduce a total effective energy-momentum tensor such
that the equations of motion have the same form as the one
in standard general relativity. As a result, we can derive the
Komar mass in a similar way as that in general relativity.

Our paper is organized as follows. In Sec. II, we treat the
expansion of the cosmic space as an emergent process and
derive the Friedmann equations in the context of the brane
world, while in Secs. III and IV, we intend to derive the
Friedmann equations in scalar-tensor theory and f(R)
gravity, respectively. Our conclusion and discussion are
given in the last section. We shall set the constants
ℏ ¼ c ¼ kB ¼ 1 in this paper.

II. DYNAMICAL FRIEDMANN EQUATIONS AS AN
EMERGENCE OF THE COSMIC SPACE IN THE

BRANE WORLD

In this section, we consider how this paradigm can
deduce the equation of motion of our Universe in the
context of the brane world. First of all, we introduce the
metric of the background as

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2ðd�2 þ sin 2�d�2Þ

�
;

(6)

where k ¼ 1, 0, �1 corresponds to a closed, a flat, and an
open universe, respectively. Without loss of generality, we
may only consider the spatially flat FRW universe without
cosmological constant embedded in a Randall-Sundrum
model. In a brane world, the key difference is to determine
the Komar mass in terms of Tab. In Ref. [23] the Komar
mass for a brane world has been derived as

M ¼
Z
�
dV

�
�þ 3Pþ 2�2

�
þ 3�P

�

�

¼ 4�

3H3

�
�þ 3Pþ 2�2

�
þ 3�P

�

�
; (7)

where we have identified the Hubble horizon as the radius
of the holographic screen and � is the brane tension which
is tuned with the five-dimensional cosmological constant

by ��� �5

8�G4
. Furthermore, it is worth noting that we

have used the total effective energy-momentum tensor for
the brane world. Substituting Eq. (7) into Eq. (2), we have

dV

dt
¼ L2

p

�
A

G
��2M

T

�

¼ 4�

H2
þ 16�2G

3H4

�
�þ 3Pþ 2�2

�
þ 3�P

�

�
: (8)

Simplifying the above equation leads to the standard
dynamical Friedmann equation in brane cosmology,

€a

a
¼ � 4�G

3

�
�þ 3Pþ 2�2

�
þ 3�P

�

�
: (9)

Moreover, using the continuity equation _�þ 3Hð�þ
PÞ ¼ 0, one can easily derive the other Friedmann
equation,

H2 ¼ 8�G

3
�

�
1þ �

2�

�
: (10)

III. DYNAMICAL FRIEDMANNEQUATIONS AS AN
EMERGENCE OF THE COSMIC SPACE IN

SCALAR-TENSOR GRAVITY

Now we in turn consider the emergence of the cosmic
space in scalar-tensor gravity. The equation of motion in
scalar-tensor gravity can be written as [24]

G�	 ¼ R�	 � 1

2
Rg�	

¼ 8�G

fð�Þ
�
r��r	�� 1

2
g�	ðr�Þ2 � g�	Vð�Þ

� g�	r2fð�Þ þ r�r	fð�Þ þ TðmÞ
�	

�
; (11)

and

r2�� V 0ð�Þ þ 1

2
f0ð�ÞR ¼ 0; (12)

where G�	 and TðmÞ
�	 denote the Einstein tensor and the

energy-momentum tensor of matter, respectively, while R
is the Ricci curvature scalar. fð�Þ is a generic function of a
scalar field �. Here we only consider the flat universe. For
convenience, we can define an energy-momentum tensor
for the scalar field,

Tð�Þ
�	 ¼ r��r	�� 1

2
g�	ðr�Þ2 � g�	Vð�Þ

� g�	r2fð�Þ þ r�r	fð�Þ: (13)

Moreover, we assume the energy-momentum tensor Tð�Þ
�	

has the same form as that of a perfect fluid,

T�	 ¼ ð�þ PÞu�u	 þ Pg�	: (14)

It is worthwhile to stress that such an assumption is com-
patible with the hypothesis of homogeneity and isotropy of
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the Universe. Then, correspondingly, we can find the
energy density as well as the pressure of the scalar field as

�ð�Þ ¼ 1

2
ð _�Þ2 þ V � 3H _f; (15)

Pð�Þ ¼ 1

2
ð _�Þ2 � V þ 2H _fþ €f: (16)

Taking the ordinary matter into account, we can further
define a total effective energy-momentum tensor as

TðtÞ
�	¼

�
�ðmÞþPðmÞþ�ð�ÞþPð�Þ

fð�Þ
�
u�u	þ

�
PðmÞþPð�Þ

fð�Þ
�
g�	

¼
�
�ðmÞþPðmÞþð _�Þ2�H _fþ €f

fð�Þ
�
u�u	

þ
�
PðmÞþ1

2ð _�Þ2�Vþ2H _fþ €f

fð�Þ
�
g�	: (17)

As a result, the equation of motion in scalar-tensor theory
can be rewritten as a compact form,

G�	 ¼ 8�GTðtÞ
�	: (18)

Now we consider deriving the dynamic Friedmann equa-
tions in scalar-tensor theory from an emergent point of
view. Because of the above equation, we should still adopt
the assumptions Nsur ¼ A

G ¼ 4�
GH2 and T ¼ H

2� in scalar-

tensor theory.2 Next, the key step is to find out the effective
Komar mass in scalar-tensor theory. Since the equation of
motion for scalar-tensor gravity has the same form as the
one in standard general relativity, we argue that the Komar
mass in scalar-tensor cosmology can still be evaluated as

M ¼ 2
Z
�
dV

�
TðtÞ
�	 � 1

2
TðtÞg�	

�
u�u	

¼ V

�
�ðmÞ þ 3PðmÞ

fð�Þ þ 2ð _�Þ2 � 2V þ 3H _fþ 3 €f

fð�Þ
�
:

(19)

As a consequence, the expansion rate of the Universe in
scalar-tensor cosmology can be obtained from Eq. (2) as

€a

a
¼ � 4�G

3

�
�ðmÞ þ 3PðmÞ

fð�Þ þ 2ð _�Þ2 � 2V þ 3H _fþ 3 €f

fð�Þ
�
:

(20)

Using the effective energy density in Eq. (15) and pressure
density in Eq. (16), we can write this equation in the
familiar form,

€a

a
¼ � 4�G

3

�
�ðmÞ þ 3PðmÞ

fð�Þ þ �ð�Þ þ 3Pð�Þ

fð�Þ
�
: (21)

Moreover, due to the Bianchi identity, r�G�	 ¼ 0, we

have the conservational relation of the total effective

energy-momentum tensor r�TðtÞ
�	 ¼ 0, which gives the

continuity equation as

d

dt

�
�ð�Þ þ �ðmÞ

fð�Þ
�
þ 3H

�
�ðmÞ þ PðmÞ þ �ð�Þ þ Pð�Þ

fð�Þ
�
¼ 0:

(22)

Making use of the above continuity equation and integrat-
ing Eq. (20), we can finally obtain the other Friedmann
equation as

H2 ¼ 8�G

3

�
�ðmÞ þ �ð�Þ

fð�Þ
�
: (23)

Here we have also set the integration constant to vanish.

IV. DYNAMICAL FRIEDMANN EQUATIONS AS
AN EMERGENCE OF THE COSMIC SPACE

IN fðRÞ THEORY

In the last section, using the same tactics, we consider
the emergence of the cosmic space in fðRÞ theory con-
cisely. In the literature [24–31], the equation of motion in f
(R) gravity is given by

G�	 ¼ R�	 � 1

2
Rg�	

¼ 8�G

�
TðmÞ
�	

f0ðRÞ þ
fðRÞg�	

16�Gf0ðRÞ �
Rf0ðRÞg�	

16�Gf0ðRÞ
þ 1

8�Gf0ðRÞ ðr�r	 � g�	hÞf0ðRÞ
�
; (24)

where TðmÞ
�	 is the energy-momentum tensor of matter and

f0 � dfðRÞ
dR . In the cosmological setting, f(R) is an arbitrary

function of Ricci scalar curvature R with R ¼ 6ð _H þ
2H2 þ k

a2
Þ. Here we only consider the flat universe with

k ¼ 0. For simplicity, we may define a total effective
energy-momentum tensor for both ordinary matter and
effective curvature fluid, which reads as [24]

TðtÞ
�	¼

�
�ðmÞ

f0
þPðmÞ

f0
þ�ðcÞþPðcÞ

�
u�u	þ

�
PðmÞ

f0
þPðcÞ

�
g�	;

(25)

where

�ðcÞ ¼ Rf0 � f� 6H _Rf00

16�Gf0

and

PðcÞ ¼
_R2f000 þ 2H _Rf00 þ €Rf00 � 1

2 ðRf0 � fÞ
8�Gf0

:

As a result, the equation of motion in f(R) theory can also
be written as a compact form, as in Eq. (18). In a parallel

2Theoretically, one expects that such assumptions should be
supported by the thermodynamics of black holes in scalar-tensor
gravity. Such subtleties have previously been analyzed in [24].
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way, we obtain the Komar mass in f(R) theory and then
plug it into Eq. (2), such that the dynamical equation in
fðRÞ cosmology can be obtained as

€a

a
¼ � 4�G

3

�
�ðmÞ þ 3PðmÞ

f0
þ �ðcÞ þ 3PðcÞ

�
; (26)

where we have used the assumptions Nsur ¼ A
G ¼ 4�

GH2 and

T ¼ H
2� in fðRÞ theory. Moreover, due to the Bianchi

identity, we get the continuity equation as

d

dt

�
�ðcÞþ�ðmÞ

f0

�
þ3H

�
�ðmÞþPðmÞ

f0
þ�ðcÞþPðcÞ

�
¼0: (27)

Making use of the above continuity equation and integrat-
ing Eq. (26), we can finally obtain the other Friedmann
equation as

H2 ¼ 8�G

3

�
�ðmÞ

f0
þ �ðcÞ

�
: (28)

Here we have also set the integration constant to vanish.
The above cosmological equations in f(R) theory are con-
sistent with the results in the literature [24].3 At the end of
this section, we would like to present a remark on the area-
entropy relation in scalar-tensor gravity theory as well as in
fðRÞ theory. Once all the contributions due to the scalar
field or the curvature fluid are absorbed into the total
effective energy-momentum tensor, we may think of
them as some effective matter, such that the Einstein field
equations take the same form as the standard one. As a
result, the geometrical part in the field equation becomes
the usual Einstein tensor. Then, due to the purely geomet-
rical nature of the area-entropy relation, one would expect
that it should be preserved as usual, namely S ¼ A

4G ,

though the total effective energy-momentum tensor may

provide important corrections to the size and shape of the
horizon.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have applied the idea of treating the
cosmic space as an emergent process to brane cosmology,
scalar-tensor cosmology, and f(R) gravity. We found
that the corresponding cosmological equations in these
theories can be obtained such that the holographic nature
of this idea has been further examined in a more general
setting.
One of the key strategies employed in our paper is to

define the corresponding total effective energy-momentum
tensor such that the equation of motion in these theories
can be written as the one in standard general relativity.
Such strategies are expected to be applicable to other
modified theories. For example, we may consider a gravity
theory with a Gauss-Bonnet invariant. We leave this for
further investigation.
We also expect this paradigm can be further improved to

be consistent with the thermodynamics of black holes
when the corrections due to the quantum effects of gravity
are taken into account. For instance, it is well known that
such quantum gravity effects may contribute a logarithmic
correction to the entropy of black holes. Correspondingly,
it is reasonable to conjecture that the number of degrees of
freedom on the holographic screen is not exactly propor-
tional to one fourth of the area of the horizon, but contain-
ing extra corrections like a logarithmic term. How to take
into account such extra contributions and consider their
impact on the modification of Friedmann equations should
be an interesting issue in the future.
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