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I examine two cosmological scenarios in which the thermodynamic arrow of time points in opposite

directions in the asymptotic past and future. The first scenario, suggested by Aguirre and Gratton, assumes

that the two asymptotic regions are separated by a de Sitter-like bounce, with low-entropy boundary

conditions imposed at the bounce. Such boundary conditions naturally arise from quantum cosmology

with Hartle-Hawking wave function of the universe. The bounce hypersurface breaks de Sitter invariance

and represents the beginning of the universe in this model. The second scenario, proposed by Carroll and

Chen, assumes some generic initial conditions on an infinite spacelike Cauchy surface. They argue that the

resulting spacetime will be nonsingular, apart from black holes that could be formed as the initial data is

evolved, and will exhibit eternal inflation in both time directions. Here I show, assuming the null

convergence condition, that the Cauchy surface in a nonsingular (apart from black holes) universe with

two asymptotically inflating regions must necessarily be compact. I also argue that the size of the universe

at the bounce between the two asymptotic regions cannot much exceed the de Sitter horizon. The

spacetime structure is then very similar to that in the Aguirre-Gratton scenario and does require special

boundary conditions at the bounce. If cosmological singularities are allowed, then an infinite Cauchy

surface with ‘‘random’’ initial data will generally produce inflating regions in both time directions. These

regions, however, will be surrounded by singularities and will have singularities in their past or future.
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I. INTRODUCTION

It has been recently shown [1] that the spacetime of an
inflationary universe is necessarily past incomplete, even
though inflation may be eternal to the future. All past-
directed timelike and null geodesics, except maybe a set
of measure zero, reach the boundary of the inflating region
of spacetime in a finite proper time (finite affine length, in
the null case). Unlike earlier singularity theorems [2,3], the
theorem of Ref. [1] does not rely on Einstein’s equations
and does not assume any energy conditions. To show the
incompleteness of a given geodesic, all it requires is that
the expansion rate averaged along the geodesic is greater
than zero,1

Hav > 0: (1)

In what follows, we refer to the theorem proved in Ref. [1]
as the Borde-Guth-Vilenkin (BGV) theorem.

Even though the BGV theorem is sometimes called a
‘‘singularity theorem,’’ it does not imply the existence of
spacetime singularities. All it says is that an expanding
region of spacetime cannot be extended to the past beyond
some boundaryB. All past-directed timelike and null geo-
desics, except perhaps a set of measure zero, reach this
boundary in a finite proper time (finite affine parameter in
the null case). It follows that inflation alone is not sufficient
to provide a complete description of the universe, and some

new physics is necessary to determine the boundary con-
ditions on B. In this sense, it was concluded in [1] that
inflation must have had some sort of a beginning.2

An important characteristic of the boundary condition
on B can be deduced from the second law of thermody-
namics. The entropy of the presently observable part of the
universe is many orders of magnitude lower than its
maximum value. And the second law tells us that the initial
entropy of our comoving region on B must be lower
still. This suggests that the universe must have originated
in a very special (nonrandom) state of extremely low
entropy [5,6].
The validity of the BGV theorem is not in question, but

its interpretation has generated some controversy. Linde
[7] emphasized that the theorem still allows some geo-
desics (a set of measure zero) to be past eternal. A simple
example is a ‘‘comoving’’ geodesic x ¼ const in de Sitter
space with flat spatial slicing,

ds2 ¼ dt2 � e2Htdx2: (2)

Observers evolving along such geodesics will see inflation
continue from the infinite past. This is true, but all other
past-directed geodesics reach t ¼ �1 in a finite proper
time. The null surface t ¼ �1 plays the role of the bound-
ary B in this example. We say that inflation must have a
beginning in the sense that some physical process has to

1The expansion rate H is defined in terms of a comoving
congruence, and the averaging is performed over proper time
(affine length) along the geodesic; see [1] for details.

2It was shown in [1] that the same conclusion applies to the
‘‘cyclic universe’’ models [4], which also satisfy the average
expansion condition (1).
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enforce the boundary conditions on that surface (or on
some surface in its future).

Susskind [8,9] has pointed out that observers in an eter-
nally inflating universe will predominantly live in the far
future of the boundary surfaceB. As a result, the boundary
conditions onBwill be all but forgotten. The only exception
is the ‘‘persistence of memory’’ effect [10]—the asymmetry
in the distribution of bubbles colliding with our bubble over
the sky. This asymmetry is related to the orientation of the
boundary surface and is potentially observable. Apart from
this effect, observers will not be able to detect any evidence
for the beginning. This point, however, does not contradict
the BGV theorem, which makes no claims about the ob-
servability of the boundary surface.

A number of authors emphasized that the beginning of
inflation does not have to be the beginning of the universe.
The ‘‘emergent universe’’ scenario [11–15] assumes that
the universe approaches a static or oscillating regime in the
asymptotic past. In this case, the average expansion rate is
Hav ¼ 0, so the condition (1) is violated. The problem with
this scenario is that static or oscillating universes are gen-
erally unstable with respect to quantum collapse and there-
fore could not have survived for an infinite time before the
onset of inflation [16–18].

A completely different way to avoid a beginning of the
universe was proposed by Aguirre and Gratton [19–21],
who argued that inflation may be eternal both to the past
and to the future if the thermodynamic arrow of time is
allowed to point in opposite directions in different space-
time regions. This can be illustrated using de Sitter space
with closed spatial foliation as an example,

ds2 ¼ d�2 �H�2cosh 2ðH�Þd�2
3: (3)

The time coordinate � varies monotonically from �1 to
þ1, with the universe contracting at � < 0, bouncing at
� ¼ 0, and reexpanding at � > 0. There is no contradiction
with the BGV theorem, since the eternal expansion of the
universe is preceded by contraction.

Suppose the vacuum that fills this de Sitter space is a
metastable (false) vacuum and that it can decay to one or
more lower-energy vacua through bubble nucleation.
Suppose further that we impose a boundary condition
that the entire universe is in a false vacuum state in the
asymptotic past, � ! �1. Then bubbles nucleating at
� ! �1 will fill the space, the energy in the bubble
walls will thermalize, and the universe will contract to a
big crunch and will never get to the bounce and to the
expanding phase.

Suppose now that the low-entropy boundary condition
of false vacuum is imposed at the bounce surface, � ¼ 0.
More specifically, we can require that the spacetime should
include a spacelike surface B with the following proper-
ties: (i) the entire surface is in the state of a de Sitter false
vacuum of energy density �F; (ii) it has the geometry of a

3-sphere of radius R ¼ ð8�G�F=3Þ�1=2 and zero extrinsic

curvature. Then the metric in the vicinity ofB has the form
of Eq. (3), withB at � ¼ 0. Aguirre and Gratton argue that
with such boundary conditions, the thermodynamic arrow
of time would point away from the bounce surface, that is,
to the future at �> 0 and to the past at � < 0 [see Fig. 1(a)].
Since both the boundary conditions on B and the laws of
physics that govern time evolution are time symmetric, the
evolution at � < 0 is statistically (that is, up to the variation
in random locations of bubble nucleation centers) a time-
reversed version of the evolution at � > 0. In particular,
bubbles formed at � < 0 are expanding in the negative time
direction.
The bounce surface in de Sitter space is defined up to

boost transformations. The surfaces obtained from one
another by such transformations are completely equivalent,
but in the limit of infinite boost the surface becomes null. It
then coincides with the t ¼ �1 surface for the appropri-
ately chosen flat foliation (2). This gives an alternative
version of the Aguirre-Gratton (AG) scenario [19–21],
with the arrows of time indicated in Fig. 1(b).
Even though the spacetime has no boundary in the AG

model, it does include a surface B on which the low-
entropy (vacuum) boundary condition must be enforced
by some unknown mechanism. This Cauchy surface of
minimum entropy plays the role of the beginning of the
universe in this scenario.
Instead of a boundary condition at the bounce, a bidi-

rectional arrow of time can be enforced by imposing some
global conditions on the spacetime. Aguirre [21] suggested
a condition that he called consistent cosmic censorship
(CCC): Past singularities cannot be observed by any physi-
cal observer.3 This generalizes Penrose’s (strong) cosmic
censorship conjecture [24], requiring (roughly speaking)

FIG. 1 (color online). Arrows of time in the Aguirre-Gratton
scenario with a low-entropy boundary condition (a) at the de
Sitter bounce and (b) on the null hypersurface t ¼ �1.

3A similar idea has been proposed by Page [22] in the context
of quantum cosmology. He suggested that the universe is in a
mixed state comprised of bouncing spacetimes with asymptotic
de Sitter regions in both time directions. Page later rejected this
particular proposal on phenomenological grounds [23], but some
version of it may still be used to specify the quantum state of the
universe with a bidirectional arrow of time.
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that observers cannot see past singularities other than the
big bang. Note that future singularities are not excluded:
observers can hit black hole singularities or big crunches
inside anti-de Sitter bubbles. In a universe with a bidirec-
tional arrow of time, black holes and bubbles prior to the
bounce are time-reversed versions of black holes and bub-
bles formed after the bounce. A post-bounce observer will
generally have such prebounce singularities in his chrono-
logical past, but Aguirre argues that physical observers can
observe (that is, gain information about) only events in
their thermodynamic past (that is, after the minimum
entropy hypersurface). The class of spacetimes allowed
by CCC is considerably wider than that specified by the
AG boundary condition.

A more ambitious version of the AG model has been
proposed by Carroll and Chen [25–28]. They suggest that
some ‘‘generic’’ initial conditions are imposed on a space-
like Cauchy surface B and argue that the entropy of any
comoving region on B is less than its maximum value,
simply because the comoving entropy is unbounded from
above. Then the second law requires that, apart from
thermal fluctuations, the entropy grows both to the past
and to the future ofB. Assuming a stable true vacuum with
a positive energy density, Carroll and Chen (CC) argue that
the resulting spacetime will be nonsingular, apart from the
singularities that can be formed in black hole interiors, and
that the universe will exhibit eternal inflation in both time
directions. They call this scenario ‘‘spontaneous inflation.’’
An important difference from the AG model is that CC
claim that the boundary conditions on B do not have to be
special: pretty much any boundary conditions would suf-
fice. Similar ideas have been more recently discussed by
Guth [29].4

In the present paper, I will examine several aspects of
cosmologies with a bidirectional thermodynamic arrow of
time. The assumption that bubbles nucleating prior to the
Cauchy hypersurface B expand in the negative time direc-
tion appears to be somewhat counterintuitive, and I begin
in the next section with a simple (1þ 1)-dimensional
model, which is closely analogous to the AG scenario
and for which explicit quantum states can be constructed.
I conclude that bubbles on opposite sides of a de Sitter
bounce indeed expand in opposite time directions if a
vacuum boundary condition is imposed at the bounce.
Such a boundary condition could originate from quantum
cosmology and I discuss its different versions, resulting
from the tunneling and Hartle-Hawking wave functions of
the universe. In Sec. III, I turn to the CC scenario and show,
with relatively mild assumptions, that the Cauchy surface
in a nonsingular (apart from black holes) universe
with asymptotically inflating regions must necessarily be

compact. In other words, such a universe must be closed. I
also argue that the size of the universe at the bounce
between the two asymptotic inflating regions cannot
much exceed the de Sitter horizon. The resulting spacetime
structure is thus very similar to that in the AG scenario; it
does require low-entropy boundary conditions at the
bounce. The conclusions of the paper are summarized
and discussed in Sec. IV; in particular, I discuss how the
conclusions are modified by allowing cosmological singu-
larities. In this case, an infinite Cauchy surface with
‘‘random’’ initial data will generally produce inflating
regions in both time directions. These regions, however,
will be surrounded by singularities and will have singular-
ities in their past or future.

II. DE SITTER BOUNCE SCENARIO

A. Pair production analogy

To get a better intuitive grasp of the AG scenario, it may
be useful to consider a simple model of pair production in a
(1þ 1)-dimensional de Sitter space with a constant electric
field. The metric can be written as

ds2 ¼ dt2 �H�2cosh 2ðHtÞd�2; (4)

with 0 � �< 2�, and the electric field is

F�� ¼ ��� Effiffiffiffiffiffiffi�g
p : (5)

Here, ��� is an antisymmetric tensor with �01 ¼ 1, and g is
the determinant of the metric tensor. The electric field in
ð1þ 1ÞD is similar to a cosmological constant. Maxwell
equations require that E ¼ const, so

F��F�� ¼ �2E2 ¼ const; (6)

and the energy-momentum tensor has a vacuum form,
T�� / g��.

We shall assume that the electric field is coupled to a
quantum field c of charge e and mass m. Then particle-
antiparticle pairs will be produced by the Schwinger pro-
cess. Pair production in (1þ 1) dimensions is closely
analogous to bubble nucleation, with particles of the pair
playing the role of bubble walls. (In flat spacetime, this
analogy has been recently explored in Refs. [31,32].)
At � > 0, once a pair is created, the positively and nega-
tively charged particles are driven by the electric field in
opposite directions, resulting in a nonzero expectation
value of the electric current j�. The pairs accumulate
with time, but they are also diluted by the expansion of
the universe. With a constant expansion rate H, one can
expect that the current will approach a constant value in the
asymptotic future. (We disregard the backreaction of the
pairs on the electric field.)
The time evolution of the current is described by the

equation

4The idea that inflation would naturally arise from random
initial conditions was first introduced by Linde [30], but he
discussed only the evolution in the forward time direction.
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r�
~j� ¼ 2e�; (7)

where

~j� ¼ ���j�ffiffiffiffiffiffiffi�g
p (8)

and � is the constant pair creation rate per unit length. The
factor 2 is due to the fact that there are two particles in a
pair. Equation (7) can be rewritten as

���@�j� ¼ 2e�
ffiffiffiffiffiffiffi�g

p
; (9)

or, assuming that the current is homogeneous, @1j
� ¼ 0,

@0j1 ¼ 2e�H�1 cosh ðH�Þ: (10)

The time component of the current is j0 ¼ 0, since positive
and negative charges are created in equal numbers.

The boundary condition requiring that no pairs are
present at � ¼ 0 implies

j1ð� ¼ 0Þ ¼ 0: (11)

The solution of Eq. (10) with this boundary condition is

j1 ¼ 2e�H�2 sinh ðH�Þ: (12)

The invariant magnitude of the current can be defined as

J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j�j

�
q

¼ 2e�H�1 tanh ðH�Þ: (13)

The current grows from zero at � ¼ 0 and approaches an
asymptotic constant value J ¼ �=H at � ! �1.

The concept of a particle is not sharply defined in a time-
varying background (see, e.g., [33]), but the ambiguity
disappears in the semiclassical limit of large particle
mass. In our case this corresponds to

m � H: (14)

Pair production in a constant electric field in de Sitter
space has been studied by Garriga [34]. He used both
instanton and Bogoliubov transformation techniques and
found complete agreement between the two methods in the
semiclassical regime. In the large mass limit (14), the pair
production rate is

�� Q

2�
exp

�
� 2�

H2
ðQ� eEÞ

�
; (15)

where

Q ¼ ðm2H2 þ e2E2Þ1=2: (16)

For eE � mH, particle separation in the pairs,
d� 2m=eE, is much smaller than the Hubble distance
H�1, and Eq. (15) reduces to the Schwinger pair produc-
tion rate in flat space [35].

Garriga [34] found the quantum state explicitly, by
finding the mode functions for a charged massive scalar
field in de Sitter space in the presence of an electric field.

He used the coordinates (2), which cover only half of
de Sitter space, so his analysis cannot be directly applied
to our situation. It may also be possible to construct
an explicit time-symmetric quantum state in the
(1þ 1)-dimensional version of the closed de Sitter metric
(3). The choice of the mode functions in [34] corresponds
to the in-vacuum at t ! �1. This appears to be analogous
to imposing the AG boundary condition on the null hyper-
surface t ¼ �1. It would be interesting to check if a
nonsingular quantum state can be constructed by supple-
menting Garriga’s quantum state in the upper half of de
Sitter space with a time-reversed state in the lower half.
Another interesting case is that of massless spin-1=2

particles. The ð1þ 1ÞD universe is then similar to a super-
conducting cosmic string with fermionic charge carriers
[36], and the pair creation rate in Eq. (7) can be found
exactly,

� ¼ eE

2�
: (17)

In fact, ~j� in this case plays the role of axial current, and
Eq. (7) is a statement of axial anomaly [37].
The solution (12) for the current has the property

j1ð��Þ ¼ �j1ð�Þ; (18)

indicating that the number of pairs is unboundedly large in
the asymptotic past. These pairs annihilate during the
contracting phase of the universe, resulting in a state with
no pairs at � ¼ 0. This would require an extreme fine-
tuning if the boundary conditions were set at � ! �1.
However, the state with current growing in both time
directions is naturally obtained if we set the boundary
condition (11) at � ¼ 0. The evolution backwards in time
from � ¼ 0 is then statistically equivalent to the evolution
forward in time. We expect that a similar global structure
would arise in a ð3þ 1ÞD universe with the AG boundary
conditions at the bounce.
We note finally that the boundary condition (11) breaks

the de Sitter symmetry of the spacetime. In the absence of
pair production, all spatial slices obtained by boosting
the slice at � ¼ 0 are equivalent. But if the vacuum is
metastable, the symmetry is spontaneously broken by
pair production.

B. Boundary conditions from quantum cosmology

A low-entropy boundary condition at the bounce
may naturally arise from quantum cosmology, where the
entire universe is treated quantum mechanically and is
described by a wave function c . This wave function is
defined on superspace, which is the space of all
3-geometries and matter field configurations, and satisfies
the Wheeler-DeWitt equation

H c ¼ 0; (19)
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whereH is the Hamiltonian density operator. The form of
the boundary conditions for c (which are not to be con-
fused with the spacetime boundary conditions on B) is a
subject of continuing debate. The two best studied pro-
posals are the tunneling [38–42] and the Hartle-Hawking
[43] proposals; they lead to rather different pictures for the
origin of the universe.

In the semiclassical regime, the wave function can be
represented as a superposition of WKB-type terms,

AeiW: (20)

Here, W is the Hamilton-Jacobi function, describing a
congruence of classical trajectories (histories). A time-
reversed congruence is described by A�e�iW . The tunnel-
ing approach requires that c should include only outgoing
waves at the boundaries of superspace. For a semiclassical
wave function, this means that only terms with trajectories
evolving towards the boundary should be included [42]. In
particular, only expanding universes are allowed in the
limit of large volume. For a bouncing de Sitter-type uni-
verse, the contracting phase is absent, so the universe
nucleates spontaneously at the bounce point.

The instanton describing this nucleation process is the
Euclideanized de Sitter space (a 4-sphere). Its Euclidean
action is SE ¼ �3=8G2�v, where �v is the vacuum energy
density, and the corresponding amplitudes in the tunneling
wave function are suppressed by the factor

exp ð�jSEjÞ ¼ exp

�
� 3

8G2�v

�
: (21)

The dominant contribution to this wave function is
given by histories originating in the highest-energy vac-
uum of the underlying particle theory.5 Furthermore, mid-
isuperspace analysis with the inclusion of linearized
perturbations indicates that all quantum fields at the
bounce are in de Sitter-invariant (Bunch-Davies) vacuum
states [44]. This specifies a very low-entropy state at the
beginning of the universe.

In the Hartle-Hawking approach, the wave function is
real, and for each WKB term (20) there is a complex
conjugate term of the same magnitude. The exponential
suppression factor (21) is replaced in this case by

exp ð�SEÞ ¼ exp

�
þ 3

8G2�v

�
; (22)

so the wave function is dominated by bouncing histories
characterized by the lowest positive vacuum energy den-
sity. Once again, perturbative analysis indicates that the
quantum state at the bounce is the de Sitter-invariant
vacuum state [45]. Apart from the sign in the exponent,

the key difference from the tunneling case is that both
expanding and contracting histories are now represented
in c with equal amplitudes. The simplest interpretation
of this is that the Hartle-Hawking wave function describes
a contracting and reexpanding universe with the AG
boundary conditions at the bounce [46].6

We conclude that quantum cosmology can provide low-
entropy (vacuum) boundary conditions, both for a universe
spontaneously nucleating from ‘‘nothing’’ (with the tun-
neling wave function) and for a contracting and reexpand-
ing universe with a bidirectional arrow of time (with the
Hartle-Hawking wave function). In the former case, the
universe is most likely to begin in the highest-energy
vacuum, while in the latter case the bounce is most likely
to occur in the lowest (positive) energy vacuum.
Before we move on to the next subject, I would like to

comment on some other relevant proposals for the wave
function of the universe. The proposal of Ref. [48] gives a
wave function including both expanding and contracting
branches in a Friedmsnn-Lemaitre-Robinson-Walker
(FLRW) minisuperspace model. However, the behavior
of this wave function in the classically forbidden region
does not correspond to a contracting and bouncing uni-
verse: instead of decaying, it grows away from the turning
point [49]. The physical interpretation of this wave func-
tion is therefore unclear.
Page [23] proposed that the wave function of the uni-

verse is given by a superposition of semiclassical states
describing bouncing cosmologies. The corresponding
spacetimes are assumed to be approximately de Sitter
near the bounce, with all quantum fields in approximately
Bunch-Davies states and with the thermodynamic arrow of
time pointing away from the bounce in both time direc-
tions. The main difference from the Hartle-Hawking wave
function is that the amplitude for the semiclassical varia-
bles (the radius of the universe and the homogeneous
component of the inflaton field) is given by a special
prescription (using DeWitt’s minisuperspace metric),
rather than by the instanton action, as in Eq. (22). By
construction, each semiclassical component of the Page’s
wave function describes a bouncing universe with the AG
boundary conditions at the bounce. The problem with this
prescription is that it is rather ad hoc and is defined only
approximately. It is not clear how it can be made precise or
extended to a more general class of models.

III. SPONTANEOUS INFLATION

A. Topology of the universe

We now turn to the spontaneous inflation scenario of
Carroll and Chen (CC). Its starting point is that some
‘‘generic,’’ regular boundary conditions are specified on a

5If the spectrum of possible values of �v extends all the way to
the Planck scale, �Pl ¼ G�2, the suppression factor (21) be-
comes Oð1Þ, and the universe can originate with a comparable
probability in any of the vacua with �v � �Pl.

6This kind of boundary condition has been discussed in
Ref. [47] in the context of generalized quantum mechanics.
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spacelike Cauchy surface B. This initial state is then
evolved both to the past and to the future of B.
Assuming that the lowest-energy (true) vacuum has a
positive energy density �T > 0, CC argue that the universe
approaches an empty true-vacuum de Sitter configuration
in both time directions. Islands of inflating high-energy
vacua can then form spontaneously by quantum fluctua-
tions. This can occur either through false-vacuum bubble
nucleation [50,51] or through quantum creation of baby
universes by Farhi-Guth-Guven-type tunneling [52].7

The claim that a generic state on the Cauchy surface B
evolves to the true vacuum is far from being obvious. For
example, contracting regions on B may collapse to a
singularity. To avoid this danger, CC introduce an addi-
tional assumption—that the surface B is infinite. They
argue that in this case any contracting region will be
embedded in a larger expanding region, so the contracting
regions will form isolated black holes, which will even-
tually evaporate. (Note that the black holes in the past
of B are time-reversed versions of the usual black holes.)
The resulting spacetime structure is illustrated in Fig. 2.
This argument is not entirely convincing: if contracting
regions are distributed at random and occupy more than
about 30% of the volume on B, they will percolate,
forming an infinite collapsing region, rather than isolated
black holes.

There is also a more serious problem. We will show
that, under rather mild assumptions, a spacetime with an
infinite Cauchy surface envisioned in the CC scenario
does not exist. The proof relies on the Penrose-Hawking
global techniques (for a review see [2,3]). The assump-
tions are: (i) the existence of a global Cauchy surface,
(ii) past null completeness, and (iii) the null convergence
condition.

A global Cauchy surface is a spacelike hypersurface
such that the entire future and past time development can
be determined from the data on that surface. The existence

of a global Cauchy surface is already assumed in the CC
scenario, so this is not an independent assumption. Past
null completeness means that all null geodesics can be
extended to the past without limit. This condition is often
used as a standby for the absence of spacetime singular-
ities. We shall indicate below how it can be relaxed to allow
for the possibility of black hole formation in the CC
scenario. The null convergence condition (NCC) requires
that

R��N
�N� � 0 (23)

for all null vectors N�, where R�� is the Ricci tensor.

Combined with Einstein’s equations, NCC is equivalent
to the null energy condition (NEC), requiring that

T��N
�N� � 0 (24)

for all null N�. NEC is satisfied by all known forms of
classical matter, but it can be violated by quantum effects
(see, e.g. Ref. [59] and references therein). In particular, it
is only marginally satisfied for the vacuum form of the
energy-momentum tensor, T�� ¼ �vg��, and can be vio-

lated by quantum fluctuations during inflation [60,61]. On
the other hand, quantum effects of this kind are only
essential in localized spacetime regions, where high-
energy inflating islands are nucleated. If the key premise
of the CC scenario—that a generic initial state evolves to a
true vacuum in both time directions—is correct, it should
hold even in the absence of high-energy islands, so its
validity can be tested in models where such islands do

FIG. 2 (color online). Spacetime diagram representing the
Carroll-Chen scenario. The Cauchy surface is shown by a blue
curved line. Black hole (and time-reversed black hole) singular-
ities, shown by zigzag lines, are hidden behind horizons (dashed
lines). The arcs represent spacelike future and past infinities of
the inflating regions. High-energy inflating regions are not
shown. Thermodynamic arrows of time are indicated by arrows.
A past-directed null geodesic terminating at a time-reversed
black hole singularity is shown by a dotted line.

7A true vacuum with �T > 0 may be problematic due to the
Boltzmann brain menace. It has been argued in [53–55] that in
such a vacuum a region like our observable part of the universe is
much more likely to arise as a ‘‘thermal’’ de Sitter fluctuation
than as a result of a large quantum jump to a high-energy vacuum
with subsequent inflation. Disembodied brains, deluded to be-
lieve that they are observing a region like ours, will occur with a
still higher probability. In the context of eternal inflation, the
numbers of Boltzmann brains and of normal observers are both
infinite, and their relative abundance depends on how infinities
are regulated, that is, on the choice of measure. The measure
problem still remains unresolved (see, e.g., [56] for a review),
but the phenomenologically favored scale factor and light cone
measures both predict Boltzmann brain dominance in the case of
�T > 0 [57,58]. This difficulty, however, may not be very severe.
As Carroll and Chen point out, the stability condition for the
low-energy vacuum can be relaxed, allowing it to decay by
nucleating anti-de Sitter or Minkowski bubbles. They argue
that the scenario remains essentially unchanged if the bubble
nucleation rate is sufficiently low.
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not form. For example, models where high-energy inflation
is not possible should still yield a spacetime structure
shown in Fig. 2. In what follows, we shall disregard
possible quantum violations of the NCC.8

The starting point of the argument9 is the observation
that the asymptotic de Sitter region to the future of B
necessarily contains past-trapped surfaces. (A past-trapped
surface S is a 2D surface such that both outward and
inward directed systems of null geodesics emanating or-
thogonally from S toward the past are converging at all
points on S.) For example, any spherical surface lying on a
t ¼ const spatial slice in coordinates (2) and having radius
bigger than the de Sitter horizon H�1 is past trapped. With
the assumptions (i)–(iii), it can then be shown that the
Cauchy surface B must be compact. This is a standard
result (see, e.g., Refs. [2,64,65]), so only an outline of the
proof will be given here.

Suppose S is a past-trapped surface. The past light cone
of S, E�ðSÞ, can be defined as the boundary of its past,
E�ðSÞ ¼ _I�ðSÞ. In the vicinity of S, the light cone is
comprised of the two past-directed sheets of null geodesics
emanating from S. The null geodesics on E�ðSÞ converge,
and it follows from NCC and past null completeness that
each of these geodesics comes to a conjugate point [that is,
crosses nearby geodesics on E�ðSÞ] in a finite affine
parameter time. After crossing, the geodesics do not stay
on the light cone and enter its interior. Since this happens to
all geodesics in a finite affine time, the light cone must be
compact. And since E�ðSÞ is a boundary of a set ðI�ðSÞÞ, it
must have no boundary. It must also be achronal, which
means that no two points on E�ðSÞ can be connected by a
timelike curve. [Otherwise, one of these points would be in
the interior of I�ðSÞ.]

Now, the existence of a compact, edgeless, achronal
hypersurface is inconsistent with a noncompact Cauchy
surface. In order to see this, consider a smooth timelike
vector field V�ðxÞ whose integral curves cross the Cauchy
surface B exactly once. (The existence of such a field
follows from the fact that B is a Cauchy surface.) Since
the light cone E�ðSÞ is achronal, the integral curves of V�

can cross it no more than once. Thus they define a con-
tinuous one-to-one map E�ðSÞ ! B. Such a map,
however, is possible only if B is itself compact.

The above proof can be extended to allow for black
holes [66], which are expected to form in the CC scenario,
as the initial data onB is evolved in both time directions. In

this case, we cannot assume that all past-directed null
geodesics can be continued indefinitely, since some of
them will run into (time-reversed) black hole singularities.
(A past-directed null geodesic terminating at a singularity
is shown by a dotted line in Fig. 2.)
We shall assume, however, in keeping with the spirit of

cosmic censorship, that all singularities are enclosed inside
of isolated black hole horizons. Then we can join the light
cone E�ðSÞwith the horizon surfaces at their intersections,
resulting in a new compact, edgeless, achronal hypersur-
face.10 This allows us to conclude, as before, that the
Cauchy surface B must be compact. The details of this
argument will be presented elsewhere [66].
The conclusion is that the universe must be closed in the

CC scenario—which means that the spacetime must con-
tain a closed spacelike hypersurface. For such a universe, it
seems rather unlikely that it will expand forever and ap-
proach an empty true vacuum state in both time directions,
starting from generic initial conditions. We know that a
closed FLRW universe filled with ordinary matter recol-
lapses to a big crunch. The crunch can be avoided in the
presence of a positive vacuum energy density �T if the
universe is expanding fast enough, so that matter density is
diluted below 2�T before the onset of collapse. But then
there is a danger that the universe will collapse to a big
crunch in the opposite time direction. Alternatively, we
could start the universe with a slow expansion rate and
arrange the matter density to be lower than 2�T , so that
gravity of matter is dominated by the repulsive gravity of
the vacuum from the start. But in this case the resulting
spacetime resembles the AG picture of Fig. 1(a), with a
low-entropy boundary condition at the bounce. I will make
these considerations more quantitative in the next subsec-
tion. I will also argue that the size of the universe at the
bounce should not much exceed the de Sitter horizon.
Deviations from FLRW geometry appear to make things

only worse. Suppose we introduce a small density pertur-
bation in the future asymptotic de Sitter region. As we
follow the evolution to the past, the perturbation will grow
and will become Oð1Þ well before we get to the bounce
region, so the universe will collapse to a big crunch. The
same argument, of course, applies to perturbations in the
past asymptotic de Sitter region. It is therefore highly
unlikely for these regions to be connected by a smooth
bounce, unless we impose very special boundary condi-
tions in the bounce region. Replacing small perturbations

8Note also that the theorem based on NCC that we are going to
use below can also be derived using weaker conditions, such as
the integral convergence condition [62], repeated integral con-
vergence condition [63], or the generalized second law [64].
These integral conditions are consistent with some localized
violations of the NCC, although it remains to be checked that
they apply in our context here.

9Here I follow the discussion in Ref. [64], where the compact-
ness of the Cauchy surface is proved using the generalized
second law.

10Here I assume that the past-trapped surface S is not com-
pletely contained inside one of the (time-reversed) black hole
horizons. Otherwise, this configuration would represent an in-
flating universe contained inside of a black hole. Such objects
can exist in an asymptotically flat background, as discussed in
[67] and references therein. But in the presence of a positive
cosmological constant, the black hole exterior region should be
asymptotically de Sitter and should also contain past-trapped
surfaces. Then, following the same argument as above, we
conclude once again that the Cauchy surface must be compact.
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by large deviations from homogeneity and isotropy would
hardly make this more probable.

B. Size at the bounce

To assess the size of the universe at the bounce, let us
first consider a FLRW version of the model,

ds2 ¼ d�2 � a2ð�Þd�2
3: (25)

The scale factor að�Þ satisfies the equation

_a2 þ 1 ¼ 8�G

3
�a2; (26)

where � ¼ �T þ �m, �T > 0 is the true vacuum energy
density, and �m � 0 is the density of matter. Since að�Þ
grows without bound at � ! �1, it must have a minimum
at some finite time ��. At that time, _aða�Þ ¼ 0 and Eq. (26)
gives

amin � að��Þ ¼
�

3

8�G�ð��Þ
�
1=2 � H�1

T ; (27)

where

HT ¼
�
8�G�T

3

�
1=2

(28)

is the expansion rate of the true vacuum.
An additional constraint on amin can be obtained from

the condition €að��Þ> 0. Assuming that the matter pressure

is non-negative, Pm � 0, it is easy to show that amin �
3�1=2H�1

T . Thus, the scale factor at the bounce must be
close to the true vacuum de Sitter horizon H�1

T .
Without assuming FLRW symmetry, a bounce can be

defined as a spacelike hypersurface�, such that _V ¼ 0 and
€V > 0, where V is the volume of � and overdots stand for
derivatives with respect to proper time along the geodesic
congruence orthogonal to �. For example, _V is the deriva-
tive of the volume V as each point of � is moved the same
distance along the congruence. I was not able to derive any
bound on the size of the bounce in this most general case.
Below I give some partial results in that direction.

Let us first consider a time-symmetric bounce, which
can be defined as a spacelike hypersurface B of vanishing
extrinsic curvature. Then the intrinsic scalar curvature ofB
can be found from the Hamiltonian constraint,

ð3ÞR ¼ 16�G�> 16�G�T; (29)

where � ¼ T��u
�u� and u� is a unit vector normal toB. If

B is a 3-sphere of radius amin , then
ð3ÞR ¼ 6a�2

min , and (29)

reduces to Eq. (27).
A bound on the scalar curvature (29) is not generally

sufficient to place an upper bound on the size of the
corresponding spatial section. Such a bound can be derived
for two-dimensional surfaces using the Gauss-Bonnet
theorem,

Z
dAð2ÞR ¼ 4��; (30)

where dA is the area element, � ¼ 2� 2g is the Euler
characteristic, and g is the genus of the surface. For
ð2ÞR> ð2ÞRmin > 0, the surface must have the topology of

a sphere (g ¼ 0), and its total area is bounded by

A < 8�=ð2ÞRmin : (31)

In three dimensions, a bound on the size of the bounce
sectionB can be obtained if the Ricci curvature is bounded
below,

ð3ÞRijn
inj � C> 0; (32)

for an arbitrary unit 3-vector ni in B. The quantity
ð3ÞRijn

inj has the meaning of the average sectional curva-

ture, where the averaging is over 2D sections passing
through the vector ni. Myers theorem [68] states that if
(32) is satisfied, then the geodesic distance d between any

two points in B does not exceed �
ffiffiffiffiffiffiffiffiffi
2=C

p
. Assuming that

C� ð3ÞRmin �G�T , this gives

d & H�1
T : (33)

As of now, a bounce at a very large volume, V � H�3
T ,

cannot in principle be excluded, if large deviations from
homogeneity and isotropy are allowed. This possibility,
however, appears rather remote: a highly inhomogeneous
or anisotropic universe is likely to exhibit singular
behavior. For example, the Kantowski-Sachs metric,

ds2 ¼ dt2 � a2ðtÞdz2 � b2ðtÞd�2
2; (34)

can be thought of as an ellipsoidal universe with two equal
axes, in the limit when the third axis is much larger than the
other two. It has been shown in [22,69] that a bounce with
€b > 0 is impossible in this model, as long as the weak
energy condition is satisfied.

IV. SUMMARYAND DISCUSSION

In this paper, we discussed cosmological scenarios with
a bidirectional arrow of time. The Aguirre-Gratton (AG)
scenario assumes a de Sitter-like bounce with the thermo-
dynamic arrow of time pointing in opposite directions
away from the bounce. I argued that such a scenario may
naturally arise in quantum cosmology with the Hartle-
Hawking wave function of the universe. This choice of
the wave function favors a de Sitter–like bounce in a
vacuum state of the lowest positive energy density. The
tunneling wave function, on the other hand, suggests that
semiclassical spacetime is present only in one time direc-
tion from the bounce and favors the initial vacuum of the
highest energy density.
Even though the spacetime has no boundary in the AG

model, it does include a hypersurface on which the low-
entropy (vacuum) boundary condition must be enforced by
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some mechanism. This surface of minimum entropy plays
the role of the beginning of the universe in this scenario.

We also discussed the proposal of Carroll and Chen, that
generic boundary conditions on a Cauchy surface, with a
stable low-energy de Sitter vacuum, naturally yield a bidi-
rectional time development. They conjecture that, apart
from singularities that could develop in black hole interi-
ors, the resulting spacetime is nonsingular and has eter-
nally inflating asymptotic regions in both time directions.
Here, I argued that the Cauchy surface in a nonsingular
(apart from black holes) universe with asymptotically
inflating regions must necessarily be compact. In other
words, the universe must be closed, with a bounce at
some finite size between the two asymptotic inflating
regions. I also argued that the size of the universe at the
bounce cannot much exceed the horizon, so the overall
structure of spacetime must be very similar to that in the
AG scenario. The bounce in this kind of spacetime is
highly unstable: small perturbations in either asymptotic
region destroy the bounce, replacing it with a singularity.
This scenario therefore requires very special boundary
conditions at the bounce.

This conclusion relies, in an essential way, on the
assumption that the spacetime is nonsingular, apart from
possible black hole singularities. If this assumption is
lifted, then there is no obstruction to having an infinite
Cauchy surface. With generic initial data on this surface,
there will be some regions that will inflate towards the
future and some regions that will inflate towards the past.
However, regions inflating toward the future will have
singularities in their past and vice versa. There will also
be regions with singularities in both time directions; see
Fig. 3. The inflating regions will become sites of eternal
inflation, with the thermodynamic arrow of time pointing
away from the Cauchy surface.

The conditions necessary to produce an inflating region
are somewhat special (low entropy). In the absence of any
theory for the initial conditions on the Cauchy surface, this
may be difficult to quantify, but it appears that the universe
has to be more or less homogeneous and expanding
sufficiently fast on a scale considerably greater than the
horizon [70–72]. Such regions will be relatively rare on the
initial value surface, so we expect inflating regions to be
surrounded by singularities on all sides.

The spacetime structure in Fig. 3 is rather different from
that originally envisioned by Carroll and Chen (Fig. 2), but
it does achieve one of the main goals of their scenario—to
produce an inflating universe with an arrow of time from
time-symmetric initial conditions. It is not clear, however,
that the conditions assumed on the Cauchy surface B can

be regarded as generic. A generic spacelike hypersurface in
this kind of spacetime will itself run into singularities, so
an infinite regular Cauchy surface appears to be rather
special. Note, by the way, that if one is willing to accept
a spacetime besieged by singularities, then the assumption
of an infinite Cauchy surface does not seem to be essential.
A large compact Cauchy surface with generic initial data
will also yield some inflating regions surrounded by
singularities.
It should also be noted that our conclusions rely on the

null convergence condition (NCC). NCC is known to be
violated by quantum fluctuations, but such fluctuations do
not appear to be essential for our discussion here. More
importantly, violations of NCC may occur in the high
curvature regime near classical singularities and may in
fact lead to resolution of the singularities (see, e.g., [73]).
This may significantly modify the global structure of
spacetime [74] and may open new possibilities for
Carroll-Chen-type scenarios.
Personally, however, I am skeptical about the concept of

random (or generic) initial conditions. I do not think it is a
good substitute for a theory of initial conditions, as might
for example be given by quantum cosmology. This concept
also appears to be rather ill-defined (as Carroll and Chen
acknowledge in their paper). If indeed the entropy of the
universe is unbounded from above, then there is no such
thing as a generic (or random, or typical) state.
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FIG. 3 (color online). Spacetime diagram of a singular universe
with an infinite Cauchy surface. The Cauchy surface is shown by a
blue curved line and the singularities by zigzag lines. The arcs
represent spacelike future and past infinities of the inflating
regions. Thermodynamic arrows of time are indicated by arrows.
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