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We derive, using the spherical collapse model, a generalized Layzer-Irvine equation which can be used

to describe the gravitational collapse of cold dark matter in a dark energy background. We show that the

usual Layzer-Irvine equation is valid if the dark matter and the dark energy are minimally coupled to each

other and the dark energy distribution is homogeneous, independently of its equation of state. We compute

the corrections to the standard Layzer-Irvine equation which arise in the presence of dark energy

inhomogeneities assuming a minimal coupling between dark matter and dark energy. We show that, in

the case of a dark energy component with a constant equation-of-state parameter consistent with the latest

observational constraints, these corrections are expected to be small, even if the dark energy has a

negligible sound speed. However, we find that, in more general models, the impact of dark energy

perturbations on the dynamics of clusters of galaxies, which will be constrained by ESA’s Euclid mission

with unprecedented precision, might be significant.
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I. INTRODUCTION

The Layzer-Irvine (LI) equation [1,2], also known as
the cosmic energy equation, describes the dynamics of
local dark matter (DM) perturbations in an otherwise ho-
mogeneous and isotropic universe. It has been used in
determinations of the matter density, cluster mass and
size, and the galaxy peculiar velocity field [3–6] and,
more recently, as a crucial test to the accuracy of cosmo-
logical N-body simulations in the nonlinear regime [7,8].

In its original form, the LI equation accounts for the
evolution of the energy of a system of nonrelativistic par-
ticles, interacting only through gravity, until virial equilib-
rium is reached, but it has recently been generalized to
account for a nonminimal interaction between dark matter
and a homogeneous dark energy (DE) component [9–13]
(see also Ref. [14] for a generalization of the LI equation to
modified gravity scenarios and Refs. [15–19] for a few
examples of interacting DE scenarios and a discussion of
associated biases). A deviation from the usual virial relation
in galaxy clusters is expected as a result of such an inter-
action [9–13] and its observational detection would be a key
step in the search for the nature of dark matter and DE.

In quintessence models, DE is characterized by a sound
speed which is equal to the speed of light in vacuum.
Hence, the DE fluctuations associated with the gravita-
tional collapse of matter perturbations are necessarily
very small on cosmological scales [20,21]. However, this
does not have to be the case in more general models
[22–30] and, consequently, it is reasonable to expect that

DE perturbations could play a relevant role in the dynamics
of galaxy clusters.
In this paper, our main goal is to generalize the LI

equation to account for the presence of DE perturbations
in the framework of general relativity, assuming DM and
DE to be minimally coupled to each other. We start in
Sec. II by presenting the standard LI equation. Then, in
Sec. III, we use the spherical collapse model to determine
the evolution of the (peculiar) gravitational and kinetic
energies associated with the cold dark matter (CDM)
inhomogeneities. In Sec. IV we generalize the LI equation
to account for DE perturbations, quantifying the departures
from the standard case in various scenarios consistent with
current data. Finally, we conclude in Sec. V.

II. STANDARD LAYZER-IRVINE EQUATION

Consider a local inhomogeneity associated with N
point-mass CDM particles of mass m½j�, whose trajectories
are given by r½j� ¼ aðtÞx½j� with j ¼ 1; . . . ; N (a is the

scale factor and x½j� represents the comoving position of

the particles). The Hamiltonian for this system can be
written as [31]

E ¼ KþU; (1)

where

K ¼ XN
j¼1

p2
½j�

2m½j�
; (2)

U ¼ �G

2

Z ½�mðrÞ � ��m�½�mðr0Þ � ��m�
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which are, respectively, the total (peculiar) kinetic
and gravitational potential energy, G is the gravitational
constant, p½j� ¼ jp½j�j, p½j� ¼ m½j�v½j�, v½j� ¼ _r½j� �
Hr½j� ¼ a _x½j� is the peculiar velocity of the CDM particles,

v½j� ¼ jv½j�j, a dot represents a total derivative with respect
to the physical time t, and ��m is the average value of the
matter density �m. The classical energy equation is

_E � dE
dt

¼ @E
@t

; (4)

where the partial derivative with respect to the physical
time is computed at fixed particle comoving coordinates
x½j� and comoving momenta p½j�=a ¼ m½j� _x½j�. This way,

one has U / a�1 and K / a�2. Consequently, using
Eq. (4) one finally obtains

_E þHð2KþUÞ ¼ 0; (5)

where H ¼ _a=a. This is the standard LI equation which
is valid throughout the entire process of structure formation
both in the linear and nonlinear regimes. The virial equa-
tion, K ¼ �U=2, holds in the case of relaxed nonlinear

objects with _E ¼ 0.

III. SPHERICAL COLLAPSE MODEL

Consider two homogeneous concentric spherical
patches, whose dynamics are described by the scale factors
a1 (background patch) and a2 (perturbed patch) and
assume that the total mass of CDM particles is conserved
or, equivalently, that CDM and DE are minimally coupled
(the effect of a nonminimal interaction between DM and
DE has been studied in Ref. [13]). The peculiar velocity of
the CDM particles at the (perturbed) position r2½j�, with
respect to the center of the patches, is given by

vpecðr2½j�Þ ¼ �Hr2½j� ¼ a2�Hq½j�; (6)

where q½j� ¼ r2½j�=a2 represents the comoving position of

the CDM particles, �H � H2 �H1 and the subscripts 1
and 2 refer to the background and perturbed patches,
respectively. The total (peculiar) kinetic energy asso-
ciated with the spherical inhomogeneity of comoving
size q ¼ jqj can be computed as

K
M

� 1

2
hv2

peci ¼ 1

2

Rq
0 v

2
pecðq0Þq02dq0Rq
0 q

02dq0
(7)

¼ 3

10
ða2�HÞ2q2; (8)

where

M ¼ 4�

3
�m2r

3
2 ¼

4�

3
�m1r

3
1; (9)

r1 ¼ a1q and r2 ¼ a2q. The total mass M is conserved
and, consequently, �m1 / a�3

1 and �m2 / a�3
2 . The density

perturbation of the CDM component and its time
derivative are

� � �m2 � �m1

�m1

¼
�
a1
a2

�
3 � 1; (10)

_� ¼ �3

�
a1
a2

�
3
�H: (11)

Therefore, specifying initial conditions for a1, a2, H1

and H2 is enough to define the initial values of � and _�

[note that �H ¼ � _�=ð3ð�þ 1ÞÞ].
The unperturbed matter density is given by

�m1 ¼ 3H2
1�m1

8�G
; (12)

where �m ¼ �m=�c is the fractional matter density
parameter and �c � 3H2=ð8�GÞ is the critical density.
In this paper we shall use time units with 8�G�m1i=3¼1
(or, equivalently, H2

1i�m1i ¼ 1, where the subscript ‘‘i’’
represents some early initial time deep in the matter-
dominated era). By also making the choice of scale factor
normalization, a1i ¼ 1, one obtains

M ¼ 4�

3
�m1iq

3 ¼ 4�

3
�m2iða2iqÞ3 ¼ q3

2G
; (13)

with 8�G�m1=3 ¼ a�3
1 . On the other hand, the perturbed

mass density can be written as

�m2 ¼ 3H2
2�m2

8�G
¼ �m1

�
a1
a2

�
3
; (14)

so that 8�G�m2i=3 ¼ H2
2i�m2i ¼ a�3

2i and 8�G�m2=
3 ¼ a�3

2 .

The (peculiar) gravitational energy of the CDM particles
may be computed using Eq. (3). The result is given by

U ¼ UA þUB þUC; (15)

where

UA ¼ � 3

5

GM2þ
r2

; (16)

UB ¼ � 3

2

GM2�
r1

�
1�

�
r2
r1

�
2
�
�

�
Mþ
M�

�
�
r2
r1

�
3
�
; (17)

UC ¼ � 3

5

GM2�
r1

�
1�

�
r2
r1

�
5
�
; (18)

with

Mþ ¼ 4�

3
�þr32; M� ¼ 4�

3
��r31; (19)

�þ ¼ �m2 � �m1 and �� ¼ ��m1.
By defining U ¼ UA þUB þUC with

E ¼ G

q5
E; K ¼ G

q5
K; UA;B;C ¼ G

q5
UA;B;C; (20)

one obtains
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UA ¼ � 3

20
a�1
2

�
1�

�
a2
a1

�
3
�
2
; (21)

UB ¼ 3

8
a�1
1

�
1�

�
a2
a1

�
2
�
; (22)

UC ¼ � 3

20
a�1
1

�
1�

�
a2
a1

�
5
�
; (23)

K ¼ 3

20
ða2�HÞ2: (24)

By taking the derivative with respect to time one finds

_UA¼ 3

20

H2

a2

�
1�

�
a2
a1

�
3
�
�
�
1þ

�
a2
a1

�
3
�
5�6

H1

H2

��
; (25)

_UB ¼ � 3

8

H1

a1

�
1�

�
a2
a1

�
2
�
3� 2

H2

H1

��
; (26)

_UC ¼ 3

20

H1

a1

�
1�

�
a2
a1

�
5
�
6� 5

H2

H1

��
; (27)

_K ¼ 3

10
�HðH2

2 �H1H2 þ _H2 � _H1Þa22: (28)

IV. GENERALIZED LAYZER-IRVINE EQUATION

The results obtained in the previous section using the
spherical collapse model may be combined in a generalized
LI equation which takes into account the role of inhomo-
geneities in the DE component. By summing Eqs. (25)–(28)
and using Eqs. (21)–(24), one finally obtains

_EþH1ð2K þUÞ ¼ 3

10
�H�fa22; (29)

where �f ¼ f2 � f1 and

f ¼ _H þH2 þ 1

2
a�3: (30)

By using Eqs. (10), (11), and (29) may also be written as

_EþH1ðð1þ �Þ2K þUÞ ¼ 0; (31)

with

� ¼ � 1

H1

�f

�H
: (32)

A. Homogeneous dark energy

Let us start by assuming that the DE component is
roughly homogeneous so that only the CDM component
is perturbed. The derivative of the Hubble parameter with
respect to cosmic time can be written as

_H ¼ €a

a
�H2; (33)

where the acceleration is given by the Raychaudhury
equation

€a

a
¼ � 4�G

3
½ð1þ 3wÞ�w þ �m�; (34)

where �w is the DE density and pw ¼ w�w is the DE
pressure (w is the DE equation-of-state parameter).
Remembering that our choice of time units and scale factor
normalization implies that 8�G�m=3 ¼ a�3 in both the
background and perturbed patches (1 and 2, respectively),
one obtains

f ¼ _H þH2 þ 1

2
a�3 ¼ €a

a
þ 4�G�m

3

¼ � 4�G

3
½ð1þ 3wÞ�w�: (35)

If the DE is homogeneous then �w1 ¼ �w2 and, conse-
quently, �f ¼ 0. This implies that the usual form of the LI
equation is valid in this case, regardless of the particular
form of the DE equation of state, thus confirming the result
obtained in Ref. [13].

B. Inhomogeneous dark energy

We shall now consider the possibility that the DE
density is inhomogeneous (�w1 � �w2). For simplicity,
we start by assuming that the DE is characterized by a
time-independent w (see Refs. [32,33] for a discussion of
quintessence and tachyon DE models with a constant
equation-of-state parameter). In this case

�f ¼ � 4�G

3
�w1ð1þ 3wÞ�w ¼ �H2

1

2
�w1ð1þ 3wÞ�w;

(36)

with �w � ð�w2 � �w1Þ=�w1 � 0. If w ¼ �1=3 then
�f ¼ 0 and, consequently, the standard LI equation
is again recovered. However, in general, Eq. (36) leads to
a time-dependent correction to the standard LI equation
with

� ¼ 1

2

H1

�H
�w1ð1þ 3wÞ�w; (37)

where

�H

H1

¼ H2

H1

� 1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m1�m2

�m2�m1

s
� 1

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m1

�m2

ð1þ �Þ
s

� 1: (38)

Note that �m2 ! 1 in the � ! 0 and � ! 1 limits.
In this paper we shall consider models with a negligible

sound speed (cs ¼ 0), for which the impact of DE
perturbations is expected to be maximum (excluding

GENERALIZED LAYZER-IRVINE EQUATION: THE ROLE . . . PHYSICAL REVIEW D 88, 043514 (2013)

043514-3



models with imaginary sound speeds). In these models the
DE component remains comoving with the CDM [28], thus

collapsing along with it so that �w1 / a�3ðwþ1Þ
1 and �w2 /

a�3ðwþ1Þ
2 . Using Eq. (10), one finds

�w ¼
�
a1
a2

�
3ðwþ1Þ � 1 ¼ ð�þ 1Þwþ1 � 1: (39)

Expanding around w��1, one obtains

�w � ð1þ wÞ ln ð�þ 1Þ: (40)

As expected, using Eqs. (37), (38), and (40), we find that
� ! 0 in the w ! �1, � ! 0 and � ! 1 limits
(in the later case, assuming that w<�0:5). Note that in
both the � ! 0 and � ! 1 limits the scale factor a2,
describing the dynamics of the perturbed patch, becomes
very small and the energy density of the DE component
becomes negligible compared to that of the DM. The fact
that the corrections to the standard LI equation vanish
in the low and high density perturbation limits implies
that the largest corrections to the standard LI equation
are expected to occur for objects which are only mildly
nonlinear, such as clusters of galaxies.

In order to better quantify the modifications to the
standard LI equation which arise in the presence of DE
perturbations, we show in Fig. 1 the evolution of � with
t=tcI (tcI is the perturbation collapsing time in Model I) for
three different models. For the background evolution of the
various models we consider a fixed value of the DE
equation-of-state parameter (w ¼ �0:95) compatible
with the latest observational data [34] and assume that tc
coincides with the present age of the Universe t0, with
�w10 ¼ 0:7 (also in agreement with Ref. [34]). Model I
(solid line) has a fixed value of w ¼ �0:95 in the back-
ground and perturbed regions and, in this case, the value of
� is never very large (� is always smaller than 0.04). For
other choices of w close to �1 the results would scale
roughly with wþ 1.

In Models II and III we consider the possibility that the
value of w inside the collapsing region becomes different
from the background value. In Models II (dashed line)
and III (dot-dashed line) we include a sharp transition
(at t ¼ 0:4tcI) of the value of the DE equation-of-state
parameter in the perturbed region from w2 ¼ �0:95 to
w2 ¼ �0:8 (Model II) or to w2 ¼ �0:6 (Model III). As
expected, the perturbation collapsing time is not the same
for all the models, being a decreasing function of w2. In
Models II and III the corrections to the standard LI equa-
tion can be much larger than in Model I, thus reflecting a
significant impact of the DE perturbations on the dynamics
of large cosmological structures. Although the modeling of
the role of DE perturbations in the formation and evolution
of realistic cosmological structures is outside the scope of
the present paper, the maximum variation of � obtained
for each model, using the spherical collapse model, is

expected to constitute a conservative upper limit to the
magnitude of the effect of DE perturbations on the dynam-
ics of collapsed objects such as clusters of galaxies.
Although, for simplicity, we have considered a constant

DE equation-of-state parameter (or a step-like variation)
our main results do hold for a variable equation-of-state
parameter (in particular, the results of Secs. III and IVA are
valid for an arbitrary evolution of the equation-of-state
parameter). We have used a step-like variation of the
equation-of-state parameter as a simple model for DE
mutation in nonlinear regions. However, we have verified
that a smoother evolution of the equation-of-state parame-
ter produces a similar qualitative behavior, with the cor-
rections to the standard LI equations becoming
increasingly large as the DE equation-of-state parameter
moves away from �1.

V. CONCLUSIONS

In this paper we generalized (in the framework of the
spherical collapse model) the standard Layzer-Irvine
equation to account for DE perturbations. We have
quantified the corrections with respect to the standard
case, showing that these are expected to be small for
models with a constant DE equation-of-state parameter
consistent with the latest observational data, even if the
DE has a negligible sound speed. Still, we have shown
that much larger corrections may be expected in models
with a substantial variation of the DE equation-of-state
parameter between the perturbed and background re-
gions. Although our results were obtained in the context

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

t/t
cI

α

FIG. 1. Evolution of the parameter � with t=tcI for three
different models (tcI is the perturbation collapsing time in model
I). In all models the background value of the DE equation-of-
state parameter is fixed at w1 ¼ �0:95. In Model I (solid line)
w2 ¼ �0:95 in the perturbed region at all times, while in Models
II (dashed line) and III (dot-dashed line) there is a sharp
transition from w2 ¼ �0:95 to w2 ¼ �0:8 (Model II) or to
w2 ¼ �0:6 (Model III) at t ¼ 0:4tcI.
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of the spherical collapse model, they allow us to esti-
mate the maximum impact that DE perturbations can
have on the dynamics of clusters of galaxies, which will
be probed by ESA’s Euclid mission [35] with unprece-
dented precision. This work also provides an important
tool which may be used to test the accuracy of a new
generation of N-body and hydrodynamical codes incor-
porating DE perturbations.
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