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A recent number of analyses of cosmological data have shown indications for the presence of extra

radiation beyond the standard model at the equality and nucleosynthesis epochs, which has been usually

interpreted as an effective number of neutrinos, Neff > 3:046. In this work we establish the theoretical

basis for a particle physics-motivated model (bound dark matter, BDM) which explains the need for extra

radiation. The BDM model describes dark matter particles which are relativistic at a scale below a < ac;

these particles acquire mass with an initial velocity, vc, at scales a > ac due to nonperturbative methods

(as protons and neutrons do) and this process is described by a time-dependent equation of state,!BDMðaÞ.
Owing to this behavior the amount of extra radiation changes as a function of the scale factor, and this

implies that the extra relativistic degrees of freedom Nex may also vary as a function of the scale factor.

This is favored by data on the cosmic microwave background and big bang nucleosynthesis (BBN)

epochs. We compute the range of values of the BDMmodel parameters, xc ¼ acvc, that explain the values

obtained for the 4He at BBN and Neff at equality. Combining different analyses, we compute the values

xc ¼ 4:13ðþ3:65
�4:13Þ � 10�5 and vc ¼ 0:37þ0:18

�0:17. We conclude that we can account for the apparent extra

neutrino degrees of freedom Nex using a phase transition in the dark matter with a time-dependent

equation of state without introducing extra relativistic particles.
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I. INTRODUCTION

In recent years, precision measurements have revealed
an incredible amount of information used to describe the
Universe, among other things, the fluctuations in the cos-
mic microwave background (CMB) radiation [1,2], type Ia
supernova [3], large-scale structure, and the baryon acous-
tic oscillations (BAO) [4].

Cosmological observations are systematically consistent
with the standard model of cold dark matter (CDM) with a
cosmological constant driving an accelerated expansion of
the universe. Nevertheless, there are few unresolved issues,
aside from the nature of dark matter (DM) and energy, that
could be evidence of physics beyond the paradigm of CDM.
These include the large amount of substructure and the
incompatible cuspy energy density profile for the galaxy
DM halo predicted by the CDM framework. Another
problem is the amount of radiation in the Universe and,
therefore, the expansion rate of the early Universe.

One of the fundamental observables that describe the
Universe is the redshift of equivalence, zeq, the moment

when the energy densities of matter and radiation were
equal. This equality epoch is relevant in structure forma-
tion and it also affects the early integrated Sachs-Wolfe
(ISW) effect, which constrains the value of the matter-
radiation equality. The ISW effect receive more CMB
photons the later the equality epoch is. The early ISW
effect is actually a direct constraint via the ratio from
the first and third peak of the CMB spectrum [5], and
therefore we can compute the amount of radiation at
equality if we know the amount of matter in the Universe
and vice versa.

The radiation energy density at the equality epoch is
given by photons and neutrinos. The standard model
neutrino species contributes N� ¼ 3:046 degrees of free-
dom [6]. However, recent analyses of the Planck [1] data,
WMAP [2], Atacama Cosmology Telescope [7], the South
Pole Telescope [8], the Sloan Digital Sky Survey (SDSS)
data release 7 (DR7) [9,10], and several other analyses
[11,12] have reported indications that the effective degrees
of freedom, Neff � N� þ Nex, could be greater than the
expected Neff >N�. The value of Neff obtained before the
Planck data was reported had an Nex > 0 at 1� and was
consistent with Nex ¼ 0 at 2� ¼ 0. However, the new
Planck data has an Nex ¼ 0 at 1� but the central value
hints at a small amount of extra relativistic degrees of
freedom. It is worth noticing that there is a tension between
the values of the Hubble constant Ho (in units of
km s�1 Mpc�1)—with Ho ¼ 67:3� 1:2 for Planck [1],
Ho ¼ 70:0� 2:2 for WMAP9 [2] and Ho ¼ 74:8� 3:1
for Cepheidsþ SNeIa [3]—and the value of Neff depends
strongly on this value. The larger the value of Ho the
greater the amount of relativistic degrees of freedom that
are required. In order to have a wider scope we present our
results using different sets of data. This means that the
amount of radiation prior to the epoch of decoupling seems
to be more than the expected (�̂r > �r), where �̂r ¼ �r þ
�ex and �ex identifies an extra relativistic component.
Additionally, recent studies find a somewhat higher 4He

abundance of Yp > 0:25 [2,13,14], also suggesting a novel

radiation during the big bang nucleosynthesis (BBN)
epoch. In both cases the extra relativistic component is
parametrized as extra neutrino degrees of freedom as a
function of the neutrino temperature. The value of Neff
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obtained from data analysis gives a larger value at BBN
than that at equality. In a CDM scenario, extra relativistic
particles give a constant contribution to Neff .

Constraints on Neff >N� can be interpreted as the
existence of radiation energy beyond the standard model.
In the literature there are different proposals that attempt to
explain the extra radiation, some of which propose the
existence of new particles—for instance sterile neutrinos
[15,16]—or that the radiation is a relativistic product of a
massive relic particle [17–19]. We also know that Neff

cannot be accounted for by statistical effects alone [11].
Here we are going to propose a different interpretation of

the extra radiation: we shall see that a model named bound
dark matter (BDM) [20], where the DM particles go
through a phase transition, can well explain the need for
an extra component without introducing new particles
(besides the DM particle).

The theoretical motivation behind BDM is the existence
of a new asymptotic free dark gauge group [20], e.g., an
SUðNcÞ [similar to the QCD SU(3) gauge group], whose
particles interact with the standard model particles only
through gravity. The fundamental particles in this dark
gauge group are massless at high energies but at low en-
ergies they form neutral massive particles—similar to neu-
trons and protons in QCD—due to a phase transition scale at
Ec. Our BDM particle is the lightest fermionic bound
particle. The mass of the neutral bound states is due to the
binding energy of the gauge interaction and is related to the
phase transition scaleEc withm ¼ OðEcÞ; in QCD themass
of neutrons and protons is much larger than that of the sum
of the constituent quark masses, with m ’ 5 and the QCD
condensation scale EQCD ’ 200 MeV, cf., Ref. [21].

The condensation or phase-transition scale is defined as
the energy when the coupling constant becomes
strong, gðEcÞ � 1, with Ec ¼ Ei exp ½�8�2=ð�0g

2
i Þ� (see

Refs. [20,22–24]), where �0 is the one-loop beta function
that counts the number of elementary particles under the
group and gi is the coupling constant at the energy Ei. The
Ec parameter is closely related to the mass of our DM
particle, and its value is not yet known and we require
observational evidence to determine it. A similar situation
takes place with the masses for all the standard model
particles, which depend on the value of the Yukawa constant
and are determined by experiment. We expect this transition
to be between theMeVand eV scales, i.e., between the BBN
and matter-radiation equality epochs. If Ec � MeV, then
BDM would reduce to CDM, and for Ec � Eeq ¼ OðeVÞ
there would be no DM to account for structure formation.

We expect that the BDM model describes relativistic
particles at the BBN epoch, and below Ec these particles go
through a phase transition between radiation and matter
described by a time-dependent equation of state (EoS).
This particular behavior allows us to understand the incon-
sistency in the number of degrees of freedom of neutrinos
at the equality and BBN epochs by predicting that the

amount of extra radiation changes as a function of the
scale factor. If this extra radiation is written in terms of
the neutrino radiation this means that the neutrino relativ-
istic degrees of freedom will also be a function of the scale
factor. However, since we expect that the BDM phase
transition takes place at energy scales Ec � Eeq, the

amount of extra degrees of freedom for BDM is small in
accordance with recent Planck data (see Fig. 1). We also
expect that the transition of the BDM particles influences
the CMB power spectrum by changing the time when
matter-radiation equality holds. Furthermore, BDM can
reduce the amount of substructure predicted by CDM
[20] and have a DM with a core galaxy profile
[20,25,26], thus avoiding the CDM problems.
The paper is organized as follows. In Sec. II we present

the theoretical framework to compute the matter-radiation
equality for the standard CDM and BDM scenario. Current
observational evidence also suggests extra radiation at the
BBN epoch, and we explore the possibility that the BDM
particles also account for such an excess in Sec. III. We
compute the range of values of the free parameters of the
BDM model using published values of Neff in Sec. IV.
Finally, our conclusions are discussed in Sec. V.

II. FRAMEWORK

The growth of structure formation and cosmological
observational data show that the scale factor at matter-
radiation equality may be different (larger) than that of
the standard CDM scenario with no extra particles. This
can be achieved by having extra relativistic particles in a
CDM model or by having a time-dependent EoS for DM,
as in our BDM model. We will present here a novel and
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FIG. 1. Plot of the extra relativistic degrees of freedom,
NexðaÞ, as a function of the scale factor using data from
Planck. The BDM particles goes through a transition at a ¼
ac, which is expected to be smaller than the equality ac < aeq.

Before this moment the BDM particles behaves as pure radia-
tion. After the transition the amount of radiation given by the
BDM particles is given by Eq. (12). This means that the extra
degrees of freedom remain constant before the transition, and
afterwards decrease as a function of the scale factor, cf., Eq. (11).
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simple way to compute the epoch of matter-radiation
equality, which is also valid when the EoS of DM is time
dependent, as is the case for the BDM model.

A. CDM scenario

First let us present the standard CDM scenario, where
DM is given by a massive particle with vanishing disper-
sion velocity at scales relevant for structure formation. In
this scenario we have a nonrelativistic energy density given
by the baryons (b) and CDM, �m ¼ �b þ �CDM, and the
relativistic particles at energies below the neutrino decou-
pling are the photons (�) and neutrinos (�) with an energy
density given by

�r ¼ ð1þ �NeffÞ��; (1)

where we use the relation T� ¼ ð4=11Þ1=3T� derived

from the entropy conservation across the electron-positron

annihilation and � � ð7=8Þð4=11Þ4=3 ’ 0:227. If we have
extra degrees of freedom it is common to parametrize them
using Neff � N� þ Nex, where N� ¼ 3:046 is the neutrino
degrees of freedom and Nex accounts for the amount of
extra radiation. In the CDM framework considering no
extra radiation the equality epoch is (aeq=ao ¼ �ro=�mo).

It is clear that if we have more relativistic degrees of
freedom the equality epoch âeq (with âeq=ao ¼ �̂ro=�mo)

will change to

âeq

aeq
¼ �̂ro

�ro

¼ 1þ �Neff

1þ �N�

¼ 1þ �Nex

1þ �N�

; (2)

where �̂r ¼ �r þ �Nex�� is the relativistic energy density

including the extra radiation. Clearly, if the measurements
give a larger scale factor at equality, âeq � aeq, we would

then have extra degrees of freedom, Nex � 0 (Neff � N�),
and the equality holds for Nex ¼ 0.

Before presenting the second scenario where DM is
given by BDM instead of CDM, let us determine the value
of the full EoS given by the total energy density (�tot) and
pressure (Ptot), !tot � Ptot=�tot. For simplicity we will
assume that the contribution of dark energy (DE) at
matter-radiation equality is negligible and we do not
expect it to play a significant role in our analysis. Of course
different DE models, such as early DE, could also be
studied. The equation of state, !tot, of a fluid consisting
of relativistic and matter (cold) particles as function of the
scale factor is

!tot ¼ �r=3

�r þ �m

¼ 1

3

aeq
aeq þ a

; (3)

!̂tot ¼ �̂r=3

�̂r þ �m

¼ 1

3

âeq

âeq þ a
: (4)

Notice that !tot ¼ 1=6 at equality (a ¼ aeq) and !̂tot ¼
1=6 at a ¼ âeq. We propose to use this alternative criterion

to define the equality between the matter and radiation
epoch, which is very useful as the particles do not have a
constant EoS at this time. This is the case for our BDM
model where the particles are in transition between
!bdm ¼ 1=3 and !bdm ¼ 0.

B. BDM scenario

Let us now present the second scenario, where we use
our BDM model as DM. The particles of the BDM model
go through a nonperturbative phase transition at a ¼ ac
when �BDMðacÞ ¼ �c � E4

c. At this time the particles ac-
quire mass through nonperturbative phenomena, similar to
protons and neutrons in QCD. Below the scale a < ac
(or �BDM >�c) they are relativistic (!BDM ¼ 1=3) mass-
less particles. Above the scale a > ac the EoS of BDM is
time dependent and goes from the values !BDMðacÞ 	 1=3
to !BDM ’ 0 for a � ac.
For simplicity we will take these particles to have an

average momentum hj �pj2i and average energy hEi so that
the pressure becomes P ¼ nhj �pj2i=3hEi and the energy
density � ¼ hEin, with n the particle number density.
The EoS for BDM then becomes

!BDM ¼ hj �pj2i
3hEi2 ¼

v2
BDM

3
¼ 1

3

�
vcac
a

�
2
; (5)

where vBDM is the average velocity of the BDM particles,
and we have taken into account that in a Friedmann-
Robertson-Walker background the velocity redshifts with
the scale factor as

vBDMðaÞ ¼ vc

�
ac
a

�
: (6)

The last equation contains two free parameters: the
scale factor at the transition ac and the velocity of the
dark particle at that moment, vc. The quantity vc, with
0 	 vc 	 1, gives the initial speed of the particles after the
BDM phase transition, reflecting the fact that the BDM
particle mass has a nonperturbative origin and the resulting
velocity may be suppressed in comparison with the speed
of light, vBDMðacÞ ¼ vc < 1. This is one of the main
differences between BDM particles and a standard relativ-
istic particle with a (perturbative) mass m which becomes
nonrelativistic at ! ¼ T=m (e.g., at a ¼ ac) with v ¼ 1.
Clearly our BDM reduces to standard CDM when ac ! 0
(with v ! 0); therefore, !BDM ! 0 and BDM particles
become cold for a � ac, and again we have v ! 0 and
!BDM ! 0. On the other hand, BDM reduces to a standard
particle becoming nonrelativistic at ac if vc ¼ 1.
Using Eq. (5), we can integrate _� ¼ �3Hð�þ PÞ to

obtain an analytic form for �BDMðaÞ which describes the
transition of a radiative fluid to matter-like particles. Thus,
it allows one to easily compute the evolution of the expan-
sion rate and cosmological distances,
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�BDM ¼ �c

�
a

ac

��4
; w ¼ 1=3; for a < ac;

�BDM ¼ �CDMfðaÞ; for a � ac;

fðaÞ � exp

�
3

2
!BDMðaÞ

�
1� a2

a2o

��
;

(7)

with �CDM � �CDMoða=aoÞ�3, where �BDMo ¼ �CDMo ¼
�DMo is the DM density today, and

�c � E4
c ’ �BDMo

�
ac
ao

��3
ev

2
c=2; (8)

where we have used the fact that fðacÞ � fja¼ac ’
exp ½v2

c=2� since !BDMðacÞ ¼ v2
c=3, and we have taken

ac � ao; fðacÞ is now only a function of vc.
It is naive to think that the matter-radiation ratio at early

ages can be computed by a simple extrapolation of today’s
values because we are proposing a DM phase transition
with a time-dependent !BDM. Hence, we cannot say that
matter-radiation equality is when �r ¼ �m, but instead we
define equality when the total EoS is !tot ¼ 1=6, as dis-
cussed in Eq. (3), which overcomes the fact that !BDM is a
function of a. Therefore, in the case of the BDM we have

!totðaÞ ¼ �r=3þ!BDM�BDM

�r þ �b þ �BDM

¼
1=3þ a

aeq

�BDMo

�mo
!BDMðaÞfðaÞ

1þ a
aeq

ð1þ �BDMo

�mo
ðfðaÞ � 1ÞÞ ; (9)

where we have used �mo ¼ �bo þ �BDMo�, have again
neglected DE, and �xo is today’s density parameter of
the x fluid. We see that !tot is a function of a and xc
through fða; xcÞ and !BDM, and this equation has to be
solved numerically. We can rewrite Eq. (9) as

a

aeq
¼ ð1� 3!totÞ=3!tot

1þ �BDMo

�mo
½fð1� !BDM

!tot
Þ � 1� : (10)

By defining matter-radiation equality for BDM at ~aeq
when !tot ¼ 1=6, which is also valid for the limiting
case of the standard model, we notice that the quantity
ð1� 3!totðaeqÞÞ=3!totðaeqÞ ¼ 1. Also, it is interesting to

note that ~aeq > aeq can be obtained without introducing

extra relativistic particles, due to the time-dependent EoS
of BDM particles. Notice that in Eq. (10) !BDM and fðaÞ
depend on ac and vc only through the combination xc ¼
vcac. In the limit xc ! 0 we have !BDM ¼ 0, f ¼ 1, and
~aeq ¼ aeq, as in the standard CDM scenario with no extra

degrees of freedom.
The connection between BDM and extra relativistic

degrees of freedom at an arbitrary scale factor a is easily
achieved by using Eqs. (2) and (10), which yields

~NexðaÞ ¼ 1þ �N�

�

�
a

aeq

3!totðaÞ
1� 3!totðaÞ � 1

�
; (11)

and at equality we have !tot ¼ 1=6 and ~Nexð~aeqÞ ¼
ð~aeq=aeq � 1Þð1þ �N�Þ=�. Equation (11) should be

interpreted as giving an apparent number of extra relativ-
istic particles ~Nex at equality, even though we have not
introduced extra particles; this is due to the effect of a
time-dependent EoS for DM, i.e., for BDM. The Nex

without the tilde is for the CDM scenario and is constant
by assumption. Because the BDM particles behave as
radiation before the epoch of the transition, a < ac, the
apparent number of extra relativistic neutrinos must remain
constant. After the transition [Eq. (11)] it is a function of
the scale factor. This behavior is show in Fig. 1.
We can rearrange elements of the last equation and

extract the contribution of the BDM particles to the cosmic
radiation, �exðaÞ ¼ �NexðaÞ��ðaÞ, as a function of the

scale factor,

�exðaÞ ¼ 3!tot

1� 3!tot

�
�CDM � �BDM

�
1�!BDM

!tot

��
: (12)

We expect the phase transition to be ac < aeq, and

therefore our BDM would only be able to account for a
small amount of Nex. We plot in Fig. 2 the value of ~aeq=aeq
and Nex as a function of xc. The largest amount of Nex as a
function of vc is given at vc ¼ 1, and since xc ¼ vcac if
we set vc ¼ 1 in Fig. 2 we have the upper level
xa=aeqjvc¼1 ¼ ac=aeq. For example, if ac=aeq ¼ 1 we

have a maximum amount of extra relativistic degrees of
freedom Nex ¼ 6:15, for ac=aeq ¼ 0:2 it reduces to Nex ¼
0:37, while for ac=aeq ¼ 0:1 we find Nex ¼ 0:09. The

moment of the transition xc can be determined by CMB
observations by the amount of matter,�m, and the equality
epoch, zeq, and in Fig. 3 we show the 68% and 95% C.L.’s

of xc using Planck data.

FIG. 2 (color online). Plot ofNex and ~aeq=aeq as a function of xc
[see Eqs. (10) and (11)] using Planck data, cf., Table II. The
colored region represent two-dimensional (68%, 95%) contours
marginalized over�mo. The thick line represents the central value
obtained with the data. We expect ac � aeq and therefore our

BDM would only be able to account for a small amount of Nex.
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III. BBN

In the previous section we considered the observational
result that extra radiation beyond the standard model is im-
printed in the CMB [2]. Now, we explore the possibility that
the BDM particles account for such an excess during BBN.
The BDM particles can change the prediction of BBN for the
abundance of the light elements, such as helium and deute-
rium, by changing the radiation density at that epoch, thereby
increasing the expansion rate during this stage of theUniverse.

The 4He is very sensitive to the competition between the
weak interaction rates and the expansion rate which, during
the radiation-dominated evolution, is fixed by the energy
density in relativistic particles. As a result, 4He abundance
tests the standard model and provides one of the strongest
constraints on xc ¼ acvc.

At the BBN epoch, before e� decoupling, the standard
model of particle physics establishes that the energy
density consists of an equilibrium mixture of photons,
relativistic e� pairs, neutrinos, and antineutrinos. With
all chemical potentials set to zero the energy densities
are related by thermal equilibrium so that the total radia-
tion density may be written in terms of the photon density
as �BBN

r ¼ �� þ �e� þ �� ¼ 43��=8, �
BBN
ex ¼ 7

8N
BBN
ex ��,

and one has T� ¼ T� at BBN.

It is convenient to define the nonstandard expansion rate
S to account for the extra contribution to the standard
model energy density for the standard CDM considering
extra radiation,

S2 ¼
�
Ĥ

H

�
2 ¼ �̂r

�r

��������BBN
¼ 1þ 7

43
NBBN

ex : (13)

This extra component is modeled just like an additional
neutrino, though we emphasize that the extra need may not

be for additional flavors of active or sterile neutrinos, it is
just additional relativistic degrees of freedom.
The following simple fits to the 4He mass fraction

are quite accurate and take into account the nonstandard
expansion [27,28]:

Yp ¼ 0:2485þ 0:0016½ð	10 � 6Þ þ 100ðS� 1Þ�; (14)

where 	10 ¼ 273:9�bh
2 is the baryon-to-photon ratio.

The last equation is the connection between the neutral
hydrogen, the BDM model, and the extra relativistic de-
grees of freedom at the time of BBN, NBBN

ex . If S � 1
(NBBN

ex > 0), it is an indication of new physics beyond the
standard model.
Using the values of �m and zeq, we can determine the

value of NexðzeqÞ at equality [cf., Eq. (2)] and with Yp we

constrainNBBN
ex at BBN [cf., Eq. (13)]. From Table I we can

see that the central values for Planck?, i.e., �m ¼ 0:305,
zeq ¼ 3365, and Yp ¼ 0:26, give NexðzeqÞ ¼ 0:14 at equal-

ity and NBBN
ex ¼ 0:90 at BBN. Clearly the values of Nex

at equality and BBN are quite different and in a CDM
scenario one should have a constant Nex, i.e., N

BBN
ex ¼

NexðzeqÞ ¼ NexðaoÞ, if the particles are still relativistic at

equality and/or at present time. However, the value of
NBBN

ex is very sensitive to Yp, and NBBN
ex ¼ NexðzeqÞ ¼

0:14 requires Yp ¼ 0:2505.

Let us now study the constraints on BDM from BBN.
Since we expect that the phase transition of BDM takes
place after BBN, the BDM particles are relativistic during
the nucleosynthesis epoch. Using Eqs. (7) and (8) we have
for a < ac

�BDM ¼ �c

�
a

ac

��4 ’ �BDMo

ac
ao

�
a

ao

��4
ev

2
c=2: (15)

Therefore, the nonstandard expansion rate becomes

S2 ¼
� ~H
H

�
2 ¼ ~�r

�r

¼ 1þ 8

43

�BDM

��

: (16)

From Eqs. (13), (15), and (16) and using the fact

that at BBN �� ¼ ��oðT�;BBN=T�oÞ4 with T�;BBN=T�o ¼
ðao=aÞðgo=gBBNÞ1=3, go=gBBN ¼ 4=11 is the ratio of the
degrees of freedom of the relativistic components in ther-
mal equilibrium with the photons at present time (go ¼ 2)
and just after neutrino decoupling (gBBN ¼ 11=2) and
before eþe� annihilation. Therefore, we have

NBBN
ex ¼ 8

7

�BDM

��

¼ 1þ �N�

�

�BDMo

�mo

ac
aeq

ev
2
c=2; (17)

where we have also used �mo=�ro ¼ ao=aeq and �ro ¼
ð1þ �N�Þ��o. The BDM particles are relativistic above

Ec, i.e., for a < ac the number of Nexða 	 acÞ ¼ NexðacÞ
remains constant, as seen in Fig. 1. This includes the time
of BBN, so BDM must have NBBN

ex ¼ NexðacÞ.

FIG. 3 (color online). In the left panel we show the marginal-
ized two-dimensional (68%, 95%) contour in the xc-zeq plane

using Planck results, cf., Table II. The C.L. are trimmed with,
respectively, the 1� and 2� errors of zeq. The dependance on xc
is due to the 1� (dashed) and 2� (dotted) limits on �m. The
point is the central value. In the right panel a similar two-
dimensional contour is seen for the xc-�mo plane where the
C.L.’s are trimmed with, respectively, the 1� and 2� errors of
�mo, and the dependance on xc is due to the 1� (dashed) and 2�
(dotted) limits on zeq.
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IV. RESULTS

In this section we compute the values of the BDM
parameters xc and vc from current cosmological data. We
use the published values of Neff to determine xc and vc at
equality and BBN. From Eqs. (10) and (11), with aeq �
ao, we see that �BDMo and Nex are determined only by the
value of xc ¼ acvc and the amount of DM at present time
�BDMo. On the other hand, at BBN the amount of Yp given

in Eq. (17) depends on �BDMo, xc, and also on vc.
Therefore, we can constrain xc and vc using the value of
Neff at these different epochs.

We see from Table I that the WMAP9, ACT, and SPT
results have at 1� an Nex > 0, but the Planck data has an
Nex ¼ 0 at 1�. However, the central value of Nex hints at a
small amount of extra relativistic degrees of freedom and
its value is highly dependent onHo [1]. For larger values of
Ho more relativistic degrees of freedom are required, and
therefore we present our results using different sets of data.
An Nex > 0 implies the need for extra relativistic particles
for a CDM cosmology or a nonvanishing value of xc in
BDM. A small value of Nex requires a very small xc, and
for Nex 	 0:07 xc will be constrained to be less than
xc < 2� 10�5 (for vc ¼ 1 we get ac=aeq < 0:09) and if

Neff ’ N� then xc � 10�5, as can be seen in Fig. 2. From
Eq. (10) and Fig. 4 we see that we can get the same xc with
a combination of different values of�m and aeq. Hence, we

use the results with the strongest constraints on �m,
namely, we use results from the combined data analysis
of CMB, BAO, and Ho when available, cf., Table I.

Using the relation between Nex and xc in Eq. (11) at the
equality epoch and the Planck? results, the cosmological
observations give

xc ¼ 4:13þ3:65
�4:13 � 10�5: (18)

Figure 3 shows the 68% and 95% C.L.’s of xc using Planck
data. The moment of the transition xc can be determined by

CMB observations by the amount of matter, �m, and the
equality epoch, zeq. The contours lie on the expected linear

correlation between�m and ac given by Eq. (3), for which
we take the value shown in Table I.
We now constrain from BBN the value of xc ¼ acvc and

vc using Eqs. (17) and (14), which gives

xc
vc

ev
2
c=2 ¼ 4:17þ6:86

�4:17 � 10�5: (19)

If we take the previous result for xc [Eq. (18)] at equal-
ity we can determine the value of vc. Notice that the

FIG. 4 (color online). In this plot we show the degeneracy
between �mo and zeq; in other words, different values of �mo

and zeq can give the same xc. The black line represents xc ¼
4:13� 10�5 while the dotted green line represents the �1� of
xc. The small (big) dotted circle represents the 1�ð2�Þ C.L.
between zeq and �mo. The color gradient represents the different

values that one gets with different combinations of �mo and zeq,

ranging from xc > 10�8 (blue) to xc < 10�4 (black). The black
dot represents the central value.

TABLE I. We present previous results of different surveys where the effective degrees of freedom of the neutrino Neff and/or the
primordial helium Yp were considered to be free parameters. The center dots refers to the fixed values of Yp ¼ 0:24 and/or Neff ¼
3:046. We also show the derived value NBBN

eff assuming that the extra radiation was in thermal equilibrium with the photons.

�m zeq Neff Yp

Plancka 0:308� 0:010 3366� 39 
 
 
 
 
 

PlanckaþNeff 0:304� 0:011 3354� 42 3:30� 0:27 
 
 

PlanckaþYp 0:306� 0:011 3373� 40 
 
 
 0:267� 0:020
Planck?

aþNeff þ Yp 0:305� 0:011 3365� 53 3:19þ0:54
�0:43 0:260þ0:034

�0:029

PlanckbþNeff 0:296� 0:010 3329� 38 3:52� 0:24 
 
 

WMAP9c 0:287þ0:009

�0:009 3318� 55 3:55þ0:49
�0:48 0:278þ0:034

�0:032

ACTd 0:29� 0:01 3312� 78 3:50� 0:42 0:255þ0:01
�0:11

SPTe 0:28� 0:02 3267� 81 3:86� 0:42 0:296þ0:30
�0:30

aThis results considered PlanckþWMAP9 PolarizationðWPÞ þ high-l Planck temperature ðhighLÞ þ BAO combined data [1].
bThis results considered PlanckþWPþ highLþ BAOþ HST combined data [1].
cThis results considered WMAP9þ ACTþ SPTþ BAOþ HST combined data [2].
dTakes into account ACTþWMAP7þ SPTþ BAOþ HST [7].
eCombined data of SPTþWMAP7þ BAOþ HST [8].
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dependence on vc in Eq. (19) is given by the quantity

gðvcÞ � ev
2
c=2=vc, which has a lower limit e1=2 ¼ 1:64 	

gðvc ¼ 1Þ since the velocity must be between 0 	 vc 	 1.
Therefore, the central value of Eq. (19) gives an upper
value of xc < 2:7� 10�4 for vc ¼ 1, which is an order of
magnitude larger than xc in Eq. (18). However, we expect
to have vc < 1 if the BDM mass is due to nonperturbative
physics, as is suggested for BDM.

The consistency of BDM requires that the apparent
number of extra degrees of freedom at BBN is the same
as at the time of the BDM at the transition ac, since BDM
particles are relativistic for a 	 ac. At a fixed value of xc
we have that ~NexðacÞ and NBBN

ex in Eqs. (11) and (17) are
only functions of vc. In Fig. 5 we plot the values of ~NexðacÞ
and NBBN

ex as functions of vc, and the result for vc at
~NexðacÞ ¼ NBBN

ex is shown in Table II for the different
data. The extra radiation due to the BDM particles changes
the amount of neutral hydrogen produced at the BBN
epoch.

The value of Yp can be predicted for the BDM model

assuming that the apparent number of extra degrees of
freedom evolves as in Eq. (11). By replacing ~NexðacÞ in
Eq. (17) we are able to constrain the value of vc and
Yp simultaneously knowing only the moment of equality.

Therefore, BDM relates the amount of neutral hydrogen
produced at BBN with the equality epoch, and vice
versa. In this case, taking Planck? data (zeq ¼ 3365) gives

an NBBN
ex ¼ 1:92 and vc ¼ 0:53, and BDM requires an

Yp ¼ 0:272 (within 1� C.L.); see Fig. 5. We would like

to emphasize that the value of Yp and NBBN
ex is quite

sensitive to xc, and, for example, if we take xc ¼ 10�5

then we get Yp ¼ 0:256 and NBBN
ex ¼ 0:62.

In Table II we summarize the constraints on the BDM
parameters xc and vc obtained directly from the Neff and

4He using different previous results, such as Planck?,
WMAP9, ACT, and SPT. We also show the derived
parameters, such as the moment, 1þ zc ¼ a�1

c , the energy

of the BDM particles, Ec ¼ �1=4
c [cf., Eq. (8)], and the

energy of the Universe E � �1=4, with � the total energy
density, the last two quantities being at the moment of the
transition. Notice that with Eq. (19) and the constraint on xc
[cf., Eq. (18)] we are able to derive the constraints of the

FIG. 5. Plot of the extra relativistic degrees of freedom as a
function of vc. The thick line is ~NexðacÞ evaluated at the time of
the transition [Eq. (11)]. The dashed line is NBBN

ex [Eq. (17)]. The
dotted line is the extra relativistic degree of freedom correspond-
ing to the reported value of Yp, cf., Eq. (13). The first line is

derived from the extra radiation at the time of equality that
makes !tot ¼ 1=6. The second line is from the constraints of the
nonstandard expansion rate at the BBN epoch. In all cases we
assume a fixed value for xc ¼ 4:13� 10�5. The BDM model
predicts a value for Yp ¼ 0:272, which is within the 1� error of

the reported Yp ¼ 0:26; see the discussion in Secs. III and V for

more details.

TABLE II. We present the constraints on xc and vc as dis-
cussed in Secs. II and III using different results for Neff and Yp

(cf., Table I). We also present the moment (zc) and the energy
when the transition happens (Ec). Notice that in some cases the
transition zc < zeq; however, we do not expect these cases to be

valid in order to account for structure formation. We present the
minimum value for zc and Ec for the Planck? data because no
extra radiation is contained at 1�, and therefore the moment of
the transition should be consistent with xc ! 0 at 1�.

Planck?
a WMAP9 ACT SPT

xc � 105 4:13þ3:65
�4:13 6:64þ2:46

�3:54 6:34þ2:56
�4:16 8:25þ2:92

�4:07

NBBN
ex 0:9þ1:5

�0:9 2:4þ1:6
�1:4 0:6þ1:8

�0:6 4:2þ1:6
�1:5

vc 0:37þ0:18
�0:17 0:54þ0:09

�0:10 0:26þ0:13
�0:14 0:64þ0:09

�0:10

zc � 24217 15060þ2�104

�1�104
15781þ3�104

�6�103
6313þ104

�3�103

Ec [eV] � 3:89 2:75þ2:12�1:77 2:38þ3:49
�1:03 1:32þ2:60

�0:55

EðacÞ [eV] � 9:01 5:93þ5:77
�3:9 6:17þ9:87

�2:34 2:65þ6:32
�1:13

aThese results consider PlanckþWPþ highLþ BAO com-
bined data [1].

FIG. 6 (color online). In this plot we show the range of values
valid for xc and vc given the constraints of

4He and zeq and using

(a) WMAP9 (left panel) and (b) Planck? (right panel) data
(cf., Table II). The purple and blue regions represent the C.L.
(68% and 96%) obtained with Neff (cf., Sec. IV) and

4He data,
respectively. The orange region is where the results of both
analyses overlap. Notice that we cannot constrain the value of
vc using only the Neff data.
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central value of xc ¼ 4:13� 10�5, vc ¼ 0:37. However, at
1� the Planck data have thatNex ¼ 0, and therefore xc ¼ 0
is valid at 1�. Hence, the moment of the transition would
only be constrained to zc � 6445 and the energy of the
Universe to EðacÞ � 2:65 eV. In Fig. 6 we show the range
of values at 1� and 2� (68% and 95% C.L. region) that are
valid for xc and vc by combining the two pieces of evidence
for extra radiation: the one stemming from the equality
epoch and the other from the amount of primordial 4He.

V. CONCLUSION

Cosmological observations suggest the existence of
extra radiation, Neff >N�, in order to explain CMB and
4He measurements. Motivated by this lack of radiation in
the standard CDM framework we have considered the
BDM model, which may explain the need for an extra
relativistic component without introducing new particles.

The BDM particles behave as radiation for scales
a < ac, while for a > ac these particles become nonrela-
tivistic due to a phase transition in which the particles
acquire a mass due to nonperturbative methods when vc <
1, similarly to protons and neutrons. We expect this phase
transition to be between BBN [E ¼ OðMeVÞ] and the
matter-radiation equality [E ¼ OðeVÞ]. If E � MeV
then our BDM will be indistinguishable from CDM, and
for E< eV BDM would not be able to account for struc-
ture formation. The evolution of the BDM energy density
during this process is described by a time-dependent EoS,
!BDMðaÞ. The amount of radiation due to the transition of
the BDM particles changes as a function of the scale factor
�exðaÞ, cf., Eq. (12). If this extra radiation is modeled as
neutrino radiation this means that the neutrino relativistic
degrees of freedom will also be a function of the scale
factor NexðaÞ.

Since we have a time-dependent EoS we cannot simply
use �r ¼ �m to determine the matter-radiation equality.
Instead, we define equality when the total EoS is !tot ¼
1=6, which overcomes the fact that!BDM is a function of a
and is also valid in the limiting case of the standard model.
We conclude that the apparent number of relativistic par-
ticles, Nex, is explained by a time-dependent EoS of the
DM without introducing new particles, cf., Sec. II. For a
phase transition ac � aeq the amount of apparent extra

relativistic degrees of freedom in our BDMmodel is small,
and for Nex 	 0:07 one requires ac=aeq 	 0:09 if vc ¼ 1.

The BDM particles also change the prediction of BBN for
the abundance of the light elements, such as helium, by
changing the radiation density, thereby increasing the
expansion rate of the early Universe. Incidentally, obser-
vation also shows an excess during BBN which can be
explained by the BDM particles.
We computed the range of values for the transition

epoch xc ¼ acvc and vc using cosmological data, which
predict extra radiation; Table II summarizes the results.
Using the latest result from Planck?, we concluded that the
order of the transition should be xc ¼ 4:13ðþ3:65

�4:13Þ � 10�5

in order to explain the evidence of extra radiation at matter-
radiation equality aeq. Using the 4He results of BBN we

obtained equivalent constraints for NBBN
ex ¼ 0:9þ1:5

�0:9. By

combining both previous results we were able to constrain
the velocity vc ¼ 0:37þ0:18

�0:17, and therefore zc > 24217 and

EðacÞ � 9:01. However, if the value of Neff becomes close
to N�, i.e., Neff ’ N�, then xc � 10�5 and zc � 105.
The BDM model is also able to explain the inconsis-

tency between the apparent extra degrees of freedom at the
equality and BBN epochs,NexðaeqÞ � NBBN

ex , and to predict

the amount of 4He given the moment of equality zeq, and

vice versa. From the assumption that equality occurs when
!tot ¼ 1=6 we were able to compute how ~Nex is dependent
of the scale factor [Eq. (11)]. Combining this equation with
the one obtained from BBN NBBN

ex , Eq. (17), we were able
to predict that the amount of 4He is consistent with zeq ¼
3365 and xc ¼ 4:13� 10�5 should be Yp ¼ 0:272, which

is conciliable within the 1� error of the reported Yp ¼
0:26, but a slightly smaller xc ¼ 10�5 gives NBBN

ex ¼ 0:62
and Yp ¼ 0:256.

We conclude that we can account for the apparent extra
Nex at the equality and BBN epochs using only the BDM
particles, which have a time-dependent EoS!BDMðaÞ, with
no need to introduce extra relativistic particles. However,
further analysis will provide us with a better understanding
of dark matter and the possibility that the dark matter mass
is due to nonperturbative physics.
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