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Neutrinos and dark energy constraints from future galaxy surveys and CMB lensing information
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We explore the possibility of obtaining better constraints from future astronomical data by means of the
Fisher information matrix formalism. In particular, we consider how cosmic microwave background
(CMB) lensing information can improve our parameter error estimation. We consider a massive neutrino
scenario and a time-evolving dark energy equation of state in the A cold dark matter framework. We use
Planck satellite experimental specifications together with the future galaxy survey Euclid in our forecast.
We found improvements in almost all studied parameters considering Planck alone when CMB lensing
information is used. In this case, the improvement with respect to the constraints found without using
CMB lensing is of 93% around the fiducial value for the neutrino parameter. The improvement on one of
the dark energy parameters reaches 4.4%. When Euclid information is included in the analysis, the
improvements on the neutrino parameter constraint are of approximately 128% around its fiducial value.
The addition of Euclid information provides smaller errors on the dark energy parameters as well. For
Euclid alone, the figure of merit is a factor of ~29 higher than that from Planck alone even considering
CMB lensing. Finally, the consideration of a nearly perfect CMB experiment showed that CMB lensing
cannot be neglected, especially in more precise future CMB experiments, since it provided in our case a

six-times-better figure of merit with respect to the unlensed CMB analysis.
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I. INTRODUCTION

The discovery of the accelerated expansion of the
Universe [1,2] can be interpreted by introducing in the
cosmological model a negative pressure component, termed
“dark energy.” The simplest dark energy candidate is a
cosmological constant A, having constant equation of state
Wye = Pge/pae = —1. Together with a pressureless cold
dark matter (CDM) component, this constitutes the standard
ACDM model. Although this “concordance model” is in
very good agreement with a variety of cosmological obser-
vations [3,4], different candidates of dark energy cannot be
discarded yet. Moreover, the basic cosmological constant
scenario has two difficulties known as “fine-tuning” and
cosmic coincidence problems (see, e.g., [5]). To overcome
these problems, alternative candidates for the dark energy
have been proposed, such as the quintessence [6] that allows
the possibility of a time-dependent equation of state [7].
In this paper, we will assume a redshift-dependent equation
of state for the dark energy,

Pye(2)
Wae(2) = =5, (1)
pde(z)
and adopt the well-known Chevalier-Plarsky-Linder
parametrization [7,8]

wae(a) = wo + (1 — a)w,. (@)

*larissa.santos @roma?2.infn.it

1550-7998/2013 /88(4)/043505(9)

043505-1

PACS numbers: 98.80.—k, 98.70.Vc, 98.65.Dx

Cosmological observation can in principle be used to
constrain the neutrinos’ masses. It was shown by neutrino
oscillation experiments that neutrinos have nonzero masses
(see [9] and references therein). However, these experi-
ments can only constrain the neutrinos’ mass-squared dif-
ferences and not their individual values (for a review in
neutrino masses, see de Gouvea [10]). On the other hand,
cosmological probes are most sensitive to the total neutrino
masses, » m,. Using cosmic microwave background
(CMB) radiation data only, from the Planck satellite, an
upper limitto Y m,, of 0.933 eVat 95% C.L. was found [11]:

mV
2, 94h% eV’ )

However, the dark energy equation of state and the
neutrinos’ total mass parameters are degenerated (see,
e.g., [12]). Some work has already been done to constrain
both parameters simultaneously in a few dark energy sce-
narios, such as for models with a constant and time-varying
equations of state [13—16].

Our goal is to forecast the constraint in the total mass of
neutrinos in a time-evolving dark energy model, using the
CMB temperature and polarization power spectrum from
the Planck satellite experimental setup (also including
CMB lensing information), as well as the large-scale matter
distribution that can be observed by the Euclid survey. We
emphasize the usage of Planck CMB polarization informa-
tion since its temperature data has been recently released
[11]. We assume a geometrically flat ACDM model with
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two massive neutrinos with identical mass and one massless
in an inverted hierarchy mass splitting, that being m, =
0.125eV for each massive neutrino. The fiducial parameters
are h>w;,=0.02219, K*w,. = 0.1122, K®w, = 0.0027, h =
0.65, n;, = 0.952. We normalize the CMB power spectra to
COBE. For similar approaches see Joudaki and Kaplinghat
[16], Marsh ef al. [17], Hollenstein et al. [18], Namikawa
et al. [19], Das et al. [20], Hall and Challinor [21], Hamann
et al. [22]. The paper is organized as follows: we give a small
introduction on CMB lensing in Sec. 1. In Sec. 111, we briefly
review the Fisher information matrix formalism for the CMB
(with and without lensing information) and for a galaxy
survey. Finally we present our results in Sec. IV, followed
by our discussion and conclusions in Sec. V.

II. CMB LENSING

A small effect that can be observed in the CMB power
spectrum regards the deflection of photons, during their
travel between the last scattering surface and the observer,
by gravitational potentials W due to clusters of galaxies.
Smith et al. [23] detected the CMB lensing signal for the
first time by cross correlating WMAP data to radio galaxy
counts in the NRAO VLA sky survey (NVSS). Recently,
the detection of the gravitational lensing using CMB
temperature maps alone and the measurement of the power
spectrum of the projected gravitational potential were done
using the Atacama Cosmology Telescope and the South
Pole Telescope [24,25].

The lensing potential is defined as

. X" * - .
Y(h) = —2f dXX : X‘P(Xn; N~ X, 4
0 XX

where y* is the comoving distance and 7y — y is the
conformal time at which the photon was at position yA.

The lensing effect remaps the temperature and polariza-
tion fields as

AT@) _ AT@) _ AT( + d)
T T T ’

[Q +iU](R) = [Q + iU](A + d), (6)

where in the case of the temperature field, the temperature
T of the lensed CMB in a direction f is equal to the
unlensed CMB in a different direction fi’. Both of these
directions, fi and f/, differ by the deflection angle d. To
first order, the deflection angle is simply the lensing
potential gradient, d = V. In the same way, the effect
of lensing in CMB polarization is written in terms of the
Stokes parameters Q(fi) and U(fi) (for a review in CMB
polarization theory, see Lewis and Challinor [26], Cabella
and Kamionkowski [27]).

CMB lensing has important quantitative contributions
that should be taken into account; therefore, a lot of work
has been done to CMB lensing reconstruction techniques
(e.g., Bucher et al. [28], Carvalho and Tereno [29], Hu [30],
Okamoto and Hu [31], Smith et al. [32]). In this paper, we

&)
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use the CAMB software package [33] to obtain the numerical
lensed and unlensed power spectra (CT7, CEE, CBB, CTE and
cdd ' CEd) for our cosmological model with [ < 2749.
We then use these predictions to forecast how CMB lensing
information will help us to constrain our model.

II1. METHOD

We apply the Fisher information matrix formalism to a
Planck-like experiment [34], considering both temperature
and polarization for the lensed and unlensed CMB
spectrum, and to an experiment such as the future Euclid
survey (for a different approach considering Markov Chain
Monte Carlo to forecast the total neutrino mass for an
Euclid-like galaxy or cluster number counts surveys com-
bined with Planck see Audren et al. [35], Cerbolini et al.
[36]). We forecast the dark energy and the massive
neutrino parameters in our fiducial model. In addition,
we check the impact of CMB lensing information on the
constraints of the mentioned parameters in a nearly perfect
CMB experiment.

A. Information from CMB

The Fisher information matrix for the CMB temperature
anisotropy and polarization is given by [37]

aCy _ oCY
Fi=>% 5 l' (Cov; I)XY—I'r (7
T XY

pi Ip;

where C{ is the power in the /th multipole, X stands for TT
(temperature), EE (E-mode polarization), BB (B-mode
polarization), and TE (temperature and E-mode polariza-
tion cross correlation). We will not include primordial
B-modes in the analysis since the measurement of the
primordial CB by Planck is expected to be noise
dominated. Our covariance matrix therefore becomes

= = =
STTTT =TTEE =TTTE
Cov, = 2 = = = 8
OV; =~ | BEerr SEEEE FEETE (8
(2l + l)f sky — — —
STETT STEEE STETE

Explicit expressions for the matrix elements are given in
Appendix A.

For the lensed case we performed a correction in the
covariance matrix elements taking into consideration the
power spectrum of the deflection angle and its cross corre-
lation with temperature and E-polarization, CT? and CE.
We used the same procedure introduced in [38] to obtain
the covariance matrix elements using the new information
of the Cf" power spectrum (see Appendix B).

We also change in this case the unlensed CMB power
spectra, CY, for the lensed ones, C‘f . Note that in this case
we are taking into consideration the B-mode polarization
generated by the CMB gravitational lensing from the
E-mode polarization.

When we include these corrections, the covariance
matrix becomes

043505-2



NEUTRINOS AND DARK ENERGY CONSTRAINTS FROM ...

2

COV[ - (21 + 1)fsky

Errr = (CIT 4+ NTT)?
Epppe = (CFE + NPPY?,
Eqaaq = (CI + Nd)2,

Epppe = (CfB + szp)z,

1_ - ~ -
Erere = E[(ClTE)Z + (CITT + NZTT)(CFE + pr)]’

f TTTT
gTTEE
‘fTTTE
fTTTd
gTTd d

ETTEA
0

gTTEE
'fEEEE
fEETE
‘fEETd
'fEEdd

§EEEd
0

(10)

(1D
(12)

(13)

(14)

1 -
Erara = 5[(@”)2 + (C[T + NIT)(Cd + N¢Y],  (15)

1 -
Epdpd = 5[(Cfd)2 + (Cfd + Ndd)(CFE + NPP)],  (16)

ETTEE = (CITE)Z,
Erraq = (CT9)2,
Epraa = (CF)?,
ErEdd = C?EdCJTdy
éppra = CHCTE,

_ (TdTE
Errea = C1OCTF,

Errre = ézTE(ézTT + N/TT),

Eppre = CITE(CFE + NIPP)
Errra = CT(CIT + NTT)
éraaa = C1Y(C{* + N{19),

Eaapa = Cfd(cfd + Nfd)’

>

EpEpa = CFd(éfE + pr)’

7)
(18)
19)
(20)
21
(22)
(23)
(24)
(25)
(26)
27)

(28)
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Errre €rrra €rrad Errea O T
§eere €eera €Epad €ppea O
Erere €rera €read ErEEa O
Erera €rara €rdda ETdEd 0 ©)
Eredd  €rdaa Edada Eaaga O
&reed €raea Sdaea Epapa 0
0 0 0 0 &pasa J

1 ~ -

Erera = E[CleCzTE + CE(CTT + NTT)], (29)
1. - -

ErEEd = E[(CfE + NPP)CTd + CEICTE],  (30)

1 -
Erdpd = E[Cdele + (C¥ + N{4)CTE]. (31)

In these equations, N/7 and N'? are the Gaussian
random detector noises for temperature and polarization,
respectively, whose expression is written using the window
function, B? = exp[—{(l + 1)62,,,/81n2], and the inverse
square of the detector noise level for temperature and
polarization, wy and wp. The full width half maximum
(FWHM), 6,cum» is used in radians and w = (Qpeumo) 2 is
the weight given to each considered Planck channel [39].
We tested two types of experimental setups that can be
checked in Tables I and II:

NIT = [(wrB?)100 + (WrBD) 143 + (WrB?)ays
+ (wrB})ass] ™! (32)

NPP =[(wpB}) oo + (WpB})1a3 + (WpB7)a17

+ (wpBj)3s3] 7. (33)

TABLE I.  Planck specifications®. We used fy, = 0.65.

Frequency (GHz)  Opeam  07(uK —arc)  op(uK — arc)
100 9.5 6.82 10.9120
143 7.1 6.0016 11.4576
217 5.0/ 13.0944 26.7644
353 5.0/ 40.1016 81.2944

See the Planck mission blue book at http://www.rssd.esa.int/SA/
PLANCK/docs/Bluebook-ESA-SCI(2005)1_V2.pdf.

TABLE II. Nearly perfect experiment suggested by Okamoto
and Hu [31], Hu and Okamoto [40]. We used fg, = 0.90.

abeam U-T(MK - arc) O'P(/-LK - arc)
4.0/ 0.093 X 1076 0.13 X 107°
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FIG. 1 (color online). The CMB deflection field and its
quadratic estimator noises for the nearly ideal experiment (up)
and for Planck specifications (down).

Here we used four channels (100, 143, 217, and
353 GHz) of the Planck experiment, as can be seen from
Egs. (32) and (33).

In addition, N{¢ is the optimal quadratic estimator noise
of the deflection field (we consider only the TT quadratic
estimator noise for the planck experiment since it provides
the best estimator). For the nearly ideal experiment we
consider the minimum variance (MV) estimator noise

written as a combination of the noises TB, TT, TE, EE,
|
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and EB of the quadratic estimators (for a review in the
topic, see Okamoto and Hu [31], Hu and Okamoto [40]).
Figure 1 shows the quadratic estimator noises for our
fiducial model considering Planck and the nearly ideal
experiment.

B. Information from galaxy survey:
Baryonic acoustic oscillation

We show here how the baryonic acoustic oscillation
(BAO) information can be used to forecast errors in the
dark energy parameters using the Fisher formalism. It was
shown by [41] that the Hubble parameter H(z) and the
angular diameter distance Da(z) can be measured very
precisely by using the BAO information present in the
matter power spectrum. H(z) and Da(z) are expected to
be determined as a function of redshift by future galaxy
surveys. The goal is then to propagate the errors on H(z)
and Da(z) to the constraints of dark energy parameters.

We start defining the observed galaxy power spectrum in
a reference cosmology (in our case we use the ACDM
model), distinguished by the subscript “ref” (different
from the true spectrum, written with no subscript) that
will be used to derive the cosmological parameter
constraints using a galaxy survey that covers a wide range
of redshifts. Following [41],

Da(z)rzef X H(z)

Py (Kop 1y Kogl]) = ref 7 T2
obs( ef L efll) Da(z)2 XH(Z)ref

Pg(kref’ kref) + Pshot:

(34)

where the Hubble parameter H(z) in a flat Universe is
related to the dark energy parameters through

H(z) = HoyQ,(1 + 2 + Qe(l + 22050 exp (Bw,(a — 1)), (35)

and the angular diameter distance is defined as

c 2 dz

D,(z) = 1+zJoHQE)

(36)

P .o 1s the unknown Poisson shot noise.

The wave numbers across and along the line of sight are
denoted by k; and k. It is important to point out that the
wave numbers in the reference cosmology are related to the
ones in the true cosmology by

Da(z)
+ Da(z)ref

H re
refll = K b(,?z)f-

krefL = (37)

Moreover, we define the galaxy power spectrum, P,,
including the redshift distortions:

[
Pg(kreflr krcfll) = bZ(Z)(l + :8/1’2)2

2

% (%) Pmatter,ZZO(k)e_kz'Mzg%r (38)
where u = Kk - #/k, t being the unit vector along the line of
sight, and the linear matter power spectrum, P e .—o(k),
was generated using the CAMB software package [33] and
COBE normalized. The k,,,, is chosen in a way to exclude
information from the nonlinear regime where Eq. (34) is
inaccurate (see [41]). For an approach considering the
nonlinear regime see, for example, [42-45]. Moreover, for
the impact of precisely modeling systematic effects, such as
the nonlinear clustering and redshift space distortions, in the
evolution of BAO, see [46—48]. The exponential damping
factor is due to redshift uncertainties, where o, =
co./H(z). G(z), B(z), and b(z) are the growth function,
the linear redshift space distortion parameter, and the linear
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galaxy bias, respectively. We use a growth factor dependent
on the dark energy parameter and a massive neutrino effect
computed by [49]. The growth rate of perturbations is
defined as

dinG

fEdlna’

(39)

where the growth function G(z) is related to the density
of matter. In a matter dominated Universe f =~ (,,(z)*°,
with Q,,(z) = H}Q,,(1 + 2)3/H*(z). More generally, we
use f = v{},,(z)* with

a = g + al[l - Qm(z)]:

3
=5 (40)

1—w

3 (I=w)(—3w/2)
TI5 T (- 6w/5)

v is a numerical function dependent on {4, and f, =
Q,/Q,, (see Eq. (17) and Table 5 of [49]).

The linear redshift space distortion is also defined as a
function of the growth rate and the galaxy bias:

f

B(z) = b

(41)

1. Fisher formalism

The Fisher information matrix for the matter power
spectrum obtained from galaxy surveys is given by [50]

max 0 1N P(k ,u) d1n Pk, u)
f f P) Vere(k, p)
mm p./
2mk*dkdu
_— 42
2(2m7)3 (42)

The effective volume of the survey for a constant
comoving number density is given by

a(r)P,(k, p)

Veff(kr M) = [m] Vsurvey‘

(43)

We use the information from a Euclid-like survey with
an area of 20000 deg 2, redshift accuracy of o, /(1 + z) =
0.001, and a redshift range 0.5 = z = 2.1. Finally we
divided our forecast into 15 redshift slices of Az = 0.1
centered in z;. We chose the initial set of parameters P =
{n2Q,, i*Q., K*Q,, H(z;), Da(z;), G(z;), B(z;), Pi}. For
each redshift bin we use the specifications on Table III
(see [51,52] and references therein).

To obtain the constraints on our final set of parameters

= {n’Q,, K*Q., i*Q,, wy, w,}, first we marginalize our
ﬁrst Fisher matrix over G(z;), B(z;), P, and use this
submatrix to change into the desired variables as

PHYSICAL REVIEW D 88, 043505 (2013)

TABLE III. Values of k,,,, the galaxy bias, and the galaxy
density for each redshift bin.

Zi Kppax (hMpc™!) b(z) n(z) X 1073 (h/Mpc)?
0.55 0.144 1.0423 3.56
0.65 0.153 1.0668 3.56
0.75 0.163 1.1084 242
0.85 0.174 1.1145 242
0.95 0.185 1.1107 1.81
1.05 0.197 1.1652 1.81
1.15 0.2 1.2262 1.44
1.25 0.2 1.2769 1.44
1.35 0.2 1.2960 0.99
1.45 0.2 1.3159 0.99
1.55 0.2 1.4416 0.55
1.65 0.2 1.4915 0.55
1.75 0.2 1.4973 0.29
1.85 0.2 1.5332 0.29
1.95 0.2 1.5705 0.15
JP P
Fppii =Y —2psib— B 44
DE,ij ;IB an af an ( )

C. Information from galaxy survey: Weak lensing

In this subsection, we show how weak lensing (WL)
information can improve the constraints on cosmological
parameters, in our case especially for dark energy and
neutrino density parameters using the Fisher formalism.
The observable, in weak lensing surveys, is the conver-
gence power spectrum. In the analysis presented in this
paper, we use an extension of the CAMB software with the
Halofit approximation (recently updated according to [53])
to generate the convergence power spectra P;;, where the
subscripts i and j stand for the lensed galaxy redshift bins.
The Fisher matrix for weak lensing is then given by [54]

(21 +1) 6P, OP,,
fskyz ! :

The covariance matrix is defined as

Cix = Py + 8ulyion; !, (46)

(C D (45)

l)/k

Yine being the rms intrinsic shear and n; the number of
galaxies per steradian in the jth bin

180
n —3600d( ) fi; 47)
o

In the equation above, d is the number of galaxies
per square arc minute and fi; is the fraction of sources
belonging to a certain bin. We compute our calculations
considering a Euclid-like experiment following [55],
with fg, = 1/2, d =40, and (y%)"/? = 0.22. We take
the range 0.5 = z = 2.0 and divide it into four equal-
galaxy-number bins. We also consider 10 = / = 10000.
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hierarchy mass splitting (m, = 0.125 eV).
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TABLE IV. Marginalized errors for ACDM model with two massive neutrinos with identical mass and one massless in an inverted

Parameter Fiducial value Planck T + P Planck T + P + lens EUCLID (BAO + WL) Planck + EUCLID
hQ, 0.02219 0.00012 0.00012 0.00034 7.9 X 1079
Q. 0.01122 0.00080 0.00070 0.00011 8.2 X 107%
nQ, 0.0027 0.0036 0.0011 0.00035 0.00013

wo —0.95 0.084 0.042 0.0027 0.0015

w, 0 0.084 0.057 0.036 0.015

FOM s 8.21 25.81 732.97 2909.13
Relative FOM ? S 1 3.14 89.3 354.34

“Relative FOM with respect to Planck (T + P) without CMB lensing.

In this case, we tested the analysis for a maximum multipole
of 3000 and no significant change was found, confirming
that both larger and smaller multipoles do not give a signifi-
cant contribution to the results (see [18]). The photo-z error
is assumed to be normally distributed with variance o, =
0.005(1 + z). It is important to point out that non-Gaussian
errors can be significant in the measurements of weak
lensing, degrading the signal-to-noise ratio of the conver-
gence power spectrum [56] and therefore the marginalized
errors on individual parameters by a few percent [57].

IV. RESULTS

We performed the forecast for Planck alone, with and
without considering CMB lensing. Moreover, we intro-
duced the Euclid forecast, combining the results approxi-
mately as

Total __ rPlanck Euclid (BAO) Euclid (WL)
Fi = Fp + Fy + Fy . (48)
It was shown by Hollenstein ef al. [18] that the covari-

ance between the measurements of cosmic shear tomog-
raphy and the CMB lensing can be safely neglected since

-0.85
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£ 095F 2 0.00 —
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mQ,

FIG. 2 (color online). Fisher contours for our fiducial model.
The contours represent 95.4% C.L. for CMB (red outer ellipse),
for the Euclid galaxy survey (blue), and for the combination of
CMB + Euclid (filled green inner ellipse) (see Table IV).

the redshifts in which they are probed are quite distinct
from each other.

We found the best limits for the neutrino density, w
and w, in the combined Planck (with lensing) +
Euclid (BAO + WL). We have that 0.00244 < h?Q), <
0.00296, —0.953 <wy < —0.947, and —0.03<w, <
0.03 (95% C.L.) as can be inferred from column 6 of
Table IV. The figure of merit (FOM), described as the
reciprocal of the 95% confidence limit’s area of the error
ellipse from the plane wy-w, [58], of Euclid (BAO + WL),
is a factor of ~29 higher than the FOM for Planck alone,
even when CMB lensing is considered. Euclid will be able
to strongly constrain the late-Universe parameters. The
combined result Planck (with lensing) + Euclid (BAO +
WL) still improves the FOM with respect to Euclid
(BAO + WL) in a factor of ~3. In Fig. 2 we show the
two sigma Fisher contours.

In Table V we show how CMB lensing could affect the
parameter constraints for an almost ideal experiment. In
this case, we see a substantial improvement of about six
times in the FOM when CMB lensing is considered.
Comparing also with the Planck experiment, the nearly
ideal experiment improves the FOM by a factor of 5
without considering lensing information in any case. For
the neutrino parameter, we have that 4%2Q), < 0.005872
without lensing and #%Q),, < 0.003113 when CMB lensing
is considered. On the other hand, the use of the cross power
spectrum between the deflection angle and the E mode
polarization makes no significant impact on any cosmo-
logical parameter constraint. Figure 3 shows the Fisher
contours for the unlensed and lensed analysis. Note that
the two sigma contour obtained when we use C4¢ and C'?
power spectra overlaps the two sigma contour when we
also add the C¢? power spectrum.

V. DISCUSSION AND CONCLUSIONS

We are considering massive neutrinos and a time-
evolving equation of state in the ACDM model. Using
the Fisher formalism, we obtained the best constraints
possible for hzﬂ,,, wq, and w, considering the Planck
and Euclid surveys.

043505-6



NEUTRINOS AND DARK ENERGY CONSTRAINTS FROM ..

PHYSICAL REVIEW D 88, 043505 (2013)

TABLE V. Marginalized errors for ACDM model with two massive neutrinos with identical mass and one massless in an inverted
hierarchy mass splitting (m, = 0.125 eV) for a nearly perfect experiment.

Parameter Fiducial value T + P (unlensed) T + P + lens (C% and C'?) T + P lens (C%, C' and C¢9)
h2Q, 0.02219 2.4778 X 1079 2.2296 X 1079 2.2285 X 1079
Q. 0.01122 0.0004420 0.0003073 0.0003071

nQ, 0.0027 0.0015860 0.0002065 0.0002064

wo —0.95 0.0338432 0.0142514 0.0142416

w, 0 0.0338432 0.0238881 0.0238811

FOM 41.83 25543 255.63

Relative FOM R 1 6.106 6.111

One of the goals of this work has been to quantify the
influence of CMB lensing information in the constraints of
the parameters of interest, especially h?Q),, wy, and w,.
We saw on columns 3 and 4 from Table IV that we improve
the constraints in basically all the studied cosmological
parameters. The improvement found on h2(), for the
Planck one sigma error alone varied from approximately
133% to 40% from its fiducial value without using CMB
lensing and using CMB lensing information, respectively.
For wy the error is 4.4% smaller when CMB lensing is
taken into consideration. The two sigma constraint on w,
from Planck alone varies from —0.168 <w, <0.168
(without CMB lensing) and —0.114 <w, < 0.114.

When we add Euclid information to Planck information,
we get an impressive improvement of 128.2% on the 1
sigma error of h?(), considering the results from Planck
without lensing and Planck (+lensing) + Euclid (BAO +
WL). An improvement of approximately 9% in the error of
wo was found when including Euclid information to the
Planck forecast.

In the case of a nearly perfect CMB experiment, as
mentioned before, CMB lensing improved all the

0.90 005

£ 095 3 0.00F

-0.05

L B N B I

1 1 1
0.000 0.002 0.004 0.006
h’Qy
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2 0.00

bl |

-0.05

IRERRERRRRERRRE]

-0.10
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FIG. 3 (color online). Fisher contours with and without lensing
information in orange (inner ellipse) and purple (outer ellipse),
respectively. The contours represent 95.4% C.L. for CMB (see
Table V).

constraints of the tested parameters. It is clear from the
analysis that CMB lensing can play an important role in
constraining cosmological parameters in future CMB
experiments and must be taken into account. On the other
hand, the C¢¢ power spectra can be safely neglected in near
future CMB experiments since their contribution to the
parameters constraints is minimum.
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APPENDIX A: ELEMENTS OF THE UNLENSED
COVARIANCE MATRIX

The elements of the covariance matrix in the unlensed
case are

Errrr = (C]T + N[T)?, (AD)

Ereee = (CFE + NPP)2, (A2)

Egpes = (CBB + NPP)2, (A3)

Erere = (CTF)? + (CIT + NIT)(CFE + NJP),  (A4)
ETTEE = (CITE)Z’ (AS)

Errre = CIE(CIT + NJT), (A6)

Egere = C[E(CFE + N7P), (A7)

Erres = Eeess = Sress — 0. (A8)

APPENDIX B: ELEMENTS OF THE LENSED
COVARIANCE MATRIX

First of all, we make use of the effective )(2 defined in

Eq. (3.3) of [38]:

043505-7
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X =D 21+1)

l

where is our case D is defined to be

Il

D C
(—-l—lnu—

PHYSICAL REVIEW D 88, 043505 (2013)

3), B1)

IC|

D= CTTCEEcdchB + CTTCEECddCBB + CTTCEECddCBB + CTTCEECddCBB + 2(CTECEdCTdCBB
+ CTEéEdCTchB + CTEcEdCTdCBB + CTEcEdchéBB) _ CEd(CTTCBBCEd
+ CTICPBCE + 2CTTCBBCEY) — CTE(CHCBBCTE + C4ICPBCTE + 244 CBBCTF)
— CTd(CEECBB cTd + CEECBB(Td ZCEECBBCTd’

(B2)

and |C|, |C| are the determinants of the theoretical and observed data covariance matrices

|é| — CTTCEECddéBB + 2CTEéEdéTdéBB _ CTTCBB(éEd)Z _ éddéBB(CTE)Z _ (":EECBB(CTd)%

|C| — CTTcEEcdchB + 2cTEcEdchcBB _ CTTcBB(cEd)2 _ CdchB(cTE)Z _ CEEcBB(ch)2.

The theoretical covariance matrix M is given by

CTT

CTE

CTd
0

M

CTE
CEE
CE d

0 0

(B3)

(B4)

crd 0
ctd 0
ci 0

(B5)

CBB

The Fisher matrix information is then derived from the second order derivative of the likelihood function, L, from an

observing data set x given the real parameters py, ps, P3, - --, Pn:
2
Fy= _<a lnL>. (B6)
Ip;iop;l
Knowing that x%; = —21In L, we derived the new elements for the covariance matrix Eq. (9).
[1] A.G. Riess et al., Astrophys. J. 116, 1009 (1998). [15] K. Ichikawa and T. Takahashi, J. Cosmol. Astropart. Phys.
[2] L. Perlmutter et al., Astrophys. J. 517, 565 (1999). 2 (2008) 017.
[3] E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 [16] S. Joudaki and M. Kaplinghat, Phys. Rev. D 86, 023526
(2011). (2012).
[4] D. Larson et al., Astrophys. J. Suppl. Ser. 192, 16 (2011). [17] D.J.E. Marsh, E. Macaulay, M. Trebitsch, and P.G.
[5] I Zlatev, L. Wang, and P.J. Steinhardt, Phys. Rev. Lett. 82, Ferreira, Phys. Rev. D 85, 103514 (2012).
896 (1999). [18] L. Hollenstein, D. Sapone, R. Crittenden, and B.M.
[6] R.R. Caldwell, R. Dave, and P.J. Steinhardt, Phys. Rev. Schifer, J. Cosmol. Astropart. Phys. 4 (2009) 012.
Lett. 80, 1582 (1998). [19] T. Namikawa, S. Saito, and A. Taruya, J. Cosmol.
[7]1 E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003). Astropart. Phys. 12 (2010) 027.
[8] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, [20] S. Das, R. de Putter, E. V. Linder, and R. Nakajima,
213 (2001). J. Cosmol. Astropart. Phys. 11 (2012) O11.
[9] M.C. Gonzales-Garcia, M. Maltoni, J. Salvado, and [21] A.C. Hall and A. Challinor, Mon. Not. R. Astron. Soc.
T. Schwetz, J. High Energy Phys. 12 (2012) 123. 425, 1170 (2012).
[10] A. de Gouvea, arXiv:0902.4656. [22] J. Hamann, S. Hannestad, and Y. Y.Y. Wong, J. Cosmol.
[11] Planck Collaboration, arXiv:1303.5076. Astropart. Phys. 11 (2012) 052.
[12] S. Hannestad, Phys. Rev. Lett. 95, 221301 (2005). [23] K.M. Smith, O. Zahn, and O. Doré, Phys. Rev. D 76,
[13] C.Carbone, L. Verde, Y. Wang, and A. Cimatti, J. Cosmol. 043510 (2007).
Astropart. Phys. 3 (2011) 030. [24] S. Das et al., Phys. Rev. Lett. 107, 021301 (2011).
[14] J. Hamann, S. Hannestad, J. Lesgourgues, C. Rampf, and [25] A. van Engelen et al., Astrophys. J. 756, 142
Y.Y.Y. Wong, J. Cosmol. Astropart. Phys. 7 (2010) 022. (2012).

043505-8


http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1088/0067-0049/192/2/16
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1103/PhysRevLett.82.896
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.90.091301
http://dx.doi.org/10.1142/S0218271801000822
http://dx.doi.org/10.1142/S0218271801000822
http://dx.doi.org/10.1007/JHEP12(2012)123
http://arXiv.org/abs/0902.4656
http://arXiv.org/abs/1303.5076
http://dx.doi.org/10.1103/PhysRevLett.95.221301
http://dx.doi.org/10.1088/1475-7516/2011/03/030
http://dx.doi.org/10.1088/1475-7516/2011/03/030
http://dx.doi.org/10.1088/1475-7516/2010/07/022
http://dx.doi.org/10.1088/1475-7516/2008/02/017
http://dx.doi.org/10.1088/1475-7516/2008/02/017
http://dx.doi.org/10.1103/PhysRevD.86.023526
http://dx.doi.org/10.1103/PhysRevD.86.023526
http://dx.doi.org/10.1103/PhysRevD.85.103514
http://dx.doi.org/10.1088/1475-7516/2009/04/012
http://dx.doi.org/10.1088/1475-7516/2010/12/027
http://dx.doi.org/10.1088/1475-7516/2010/12/027
http://dx.doi.org/10.1088/1475-7516/2012/11/011
http://dx.doi.org/10.1111/j.1365-2966.2012.21493.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21493.x
http://dx.doi.org/10.1088/1475-7516/2012/11/052
http://dx.doi.org/10.1088/1475-7516/2012/11/052
http://dx.doi.org/10.1103/PhysRevD.76.043510
http://dx.doi.org/10.1103/PhysRevD.76.043510
http://dx.doi.org/10.1103/PhysRevLett.107.021301
http://dx.doi.org/10.1088/0004-637X/756/2/142
http://dx.doi.org/10.1088/0004-637X/756/2/142

NEUTRINOS AND DARK ENERGY CONSTRAINTS FROM ...

[26]
[27]
(28]
[29]
(30]
(31]
(32]
[33]
(34]
[35]
[36]
(37]
(38]
[39]

(40]
[41]

A. Lewis and A. Challinor, Phys. Rep. 429, 1 (2006).

P. Cabella and M. Kamionkowski, in The Polarization of
the Cosmic Microwave Background, Villa Mondragone
School of Gravitation and Cosmology, Rome, Italy, 2003.
M. Bucher, B. van Tent, and C. S. Carvalho, Mon. Not. R.
Astron. Soc. 407, 2193 (2010).

C.S. Carvalho and I. Tenero, Phys. Rev. D 84, 063001
(2011).

W. Hu, Astrophys. J. 557, L'79 (2001).

T. Okamoto and W. Hu, Phys. Rev. D 67, 083002 (2003).
K. M. Smith, D. Hanson, M. LoVerde, C. M. Hirata, and O.
Zahn, J. Cosmol. Astropart. Phys. 6 (2012) 014.

A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,
473 (2000).
http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-
SCI(2005)1_V2.pdf.

B. Audren, J. Lesgourgues, S. Bird, M. G. Haehnelt, and
M. Viel, J. Cosmol. Astropart. Phys. 1 (2013) 026.

M. Costanzi Alunno Cerbolini, B Sartoris, J.-Q. Xia, A
Biviano, S Borgani, and M. Viel, J. Cosmol. Astropart.
Phys. 6 (2013) 020.

M. Zaldarriaga and U. Seljak, Phys. Rev. D §5, 1830 (1997).
L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu, and
Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 10 (2006) 013.
D. Eisenstein, W. Hu, and M. Tegmark, Astrophys. J. 518,
2 (1999).

W. Hu and T. Okamoto, Astrophys. J. 574, 566 (2002).
H.-J. Seo and D.J. Eisenstein, Astrophys. J. 598, 720
(2003).

[42]
[43]

[44]
[45]
[46]
[47]
(48]
[49]
[50]
(51]
[52]
[53]
[54]
[55]

[56]

[57]

(58]

043505-9

PHYSICAL REVIEW D 88, 043505 (2013)

H.-J.Seoand D.J. Eisenstein, Astrophys. J. 633,575 (2005).
H.-J. Seo and D.J. Eisenstein, Astrophys. J. 665, 14
(2007).

Y. Wang, Mod. Phys. Lett. A 25, 3093 (2010).

Y. Wang, Mon. Not. R. Astron. Soc. 423, 3631 (2012).
M. Crocce and R. Scoccimarro, Phys. Rev. D 77, 023533
(2008).

A. Taruya, T. Nishimichi, S. Saito, and T. Hiramatsu,
Phys. Rev. D 80, 123503 (2009).

A. Taruya, T. Nishimichi, and S. Saito, Phys. Rev. D 82,
063522 (2010).

A. Kiakotou, @. Elgargy, and O. Laha, Phys. Rev. D 77,
063005 (2008).

M. Tegmark, Phys. Rev. Lett. 79, 3806 (1997).

A. Pavlov, L. Samushia, and B. Ratra, arXiv:1206.3123.
C. di Porto, L. Amendola, and E. Branchini, Mon. Not. R.
Astron. Soc. 419, 985 (2012).

R. Takahashi, M. Sato, T. Nishimichi, A. Taruya, and M.
Oguri, Astrophys. J. 761, 152 (2012).

W. Hu and M. Tegmark, Astrophys. J. Lett. 514, L65
(1999).
http://sci2.esa.int/cosmic-vision/cyclel/call_pl-study-
consortia/Euclid_Payload_Definition_Document.pdf.
M. Sato, T. Hamana, R. Takahashi, M. Takada, N. Yoshida,
T. Matsubara, and N. Sugiyama, Astrophys. J. 701, 945
(2009).

M. Takada and B. Jain, Mon. Not. R. Astron. Soc. 395,
2065 (2009).

A. Albrecht et al., arXiv:astro-ph/0609591.


http://dx.doi.org/10.1016/j.physrep.2006.03.002
http://dx.doi.org/10.1111/j.1365-2966.2010.17089.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17089.x
http://dx.doi.org/10.1103/PhysRevD.84.063001
http://dx.doi.org/10.1103/PhysRevD.84.063001
http://dx.doi.org/10.1086/323253
http://dx.doi.org/10.1103/PhysRevD.67.083002
http://dx.doi.org/10.1088/1475-7516/2012/06/014
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/309179
http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1_V2.pdf
http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1_V2.pdf
http://dx.doi.org/10.1088/1475-7516/2013/01/026
http://dx.doi.org/10.1088/1475-7516/2013/06/020
http://dx.doi.org/10.1088/1475-7516/2013/06/020
http://dx.doi.org/10.1103/PhysRevD.55.1830
http://dx.doi.org/10.1088/1475-7516/2006/10/013
http://dx.doi.org/10.1086/307261
http://dx.doi.org/10.1086/307261
http://dx.doi.org/10.1086/341110
http://dx.doi.org/10.1086/379122
http://dx.doi.org/10.1086/379122
http://dx.doi.org/10.1086/491599
http://dx.doi.org/10.1086/519549
http://dx.doi.org/10.1086/519549
http://dx.doi.org/10.1142/S0217732310034316
http://dx.doi.org/10.1111/j.1365-2966.2012.21170.x
http://dx.doi.org/10.1103/PhysRevD.77.023533
http://dx.doi.org/10.1103/PhysRevD.77.023533
http://dx.doi.org/10.1103/PhysRevD.80.123503
http://dx.doi.org/10.1103/PhysRevD.82.063522
http://dx.doi.org/10.1103/PhysRevD.82.063522
http://dx.doi.org/10.1103/PhysRevD.77.063005
http://dx.doi.org/10.1103/PhysRevD.77.063005
http://dx.doi.org/10.1103/PhysRevLett.79.3806
http://arXiv.org/abs/1206.3123
http://dx.doi.org/10.1111/j.1365-2966.2011.19755.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19755.x
http://dx.doi.org/10.1088/0004-637X/761/2/152
http://dx.doi.org/10.1086/311947
http://dx.doi.org/10.1086/311947
http://sci2.esa.int/cosmic-vision/cycle1/call_pl-study-consortia/Euclid_Payload_Definition_Document.pdf
http://sci2.esa.int/cosmic-vision/cycle1/call_pl-study-consortia/Euclid_Payload_Definition_Document.pdf
http://dx.doi.org/10.1088/0004-637X/701/2/945
http://dx.doi.org/10.1088/0004-637X/701/2/945
http://dx.doi.org/10.1111/j.1365-2966.2009.14504.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14504.x
http://arXiv.org/abs/astro-ph/0609591

