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Recent work has demonstrated that it is important to constrain the dynamics of cosmological perturba-

tions, in addition to the evolution of the background, if wewant to distinguish among different models of the

dark sector. Especially the anisotropic stress of the (possibly effective) dark energy fluid has been shown

to be an important discriminator between modified gravity and dark energy models. In this paper we use

approximate analytical solutions of the perturbation equations in the presence of viscosity to study how the

anisotropic stress affects the weak lensing and galaxy power spectrum. We then forecast how sensitive the

photometric and spectroscopic Euclid surveys will be to both the speed of sound and the viscosity of our

effective dark energy fluid when using weak lensing tomography and the galaxy power spectrum. We find

that Euclid alone can only constrainmodels with a very small speed of sound and viscosity, while it will need

the help of other observables in order to give interesting constraints on models with a sound speed close to

one. This conclusion is also supported by the expected Bayes factor between models.
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I. INTRODUCTION

Since its discovery in 1998 by [1,2], the cause of cosmic
acceleration has not been understood, despite all the obser-
vational and theoretical efforts in this direction (see e.g.
[3–5] and references therein). Ironically, the best explana-
tion from the observational point of view, i.e. a cosmologi-
cal constant, is not very satisfactory from a theoretical
perspective [6]. Among the many alternative possible an-
swers, one proposal is to modify the Einstein equations,
either in four dimensions, as in scalar-tensor theories, or in
five dimensions, as e.g. in the Dvali-Gabadadze-Porrati
model [7], or even in six dimensions [8,9]. All these theo-
ries, if rewritten as ‘‘effective dark energy’’ models (simply
by moving the additional terms modifying Einstein equa-
tions from the geometry side to the matter side of the
equations) exhibit a difference with respect to ordinary
scalar field dark energy (DE): they possess anisotropic
stress.

For this reason, and also because we still do not know
what dark energy is really made of, in [10] some of us
studied an effective dark energy with anisotropic stress.
The latter was modeled as in [11] with the help of a
viscosity parameter, in addition to the speed of sound and

equation of state parameters. This parametrization was
used first in [12] in relation with dark energy. A further
work by [13] analyzed the model with data from the
cosmic microwave background (CMB) radiation, large
scale structure and type Ia supernovae, and showed that it
is hard to constrain both c2s and c2v and that future data
would not improve very much their measurement. In [10]
analytical equations describing the cosmological perturba-
tions for this imperfect fluid dark energy were derived,
following the lines of a previous paper [14], where the
same was done for a model with no viscosity. Other recent
work on anisotropic stress can be found in [15].
In this paper we will use these analytical expressions to

understand how well the galaxy clustering (GC) and weak
lensing (WL) measurements of the Euclid survey1 [16,17]
will be able to constrain the viscosity of the dark energy
fluid, together with its speed of sound.
The Euclid survey is a recently selected mission of the

ESA Cosmic Vision program, whose launch is planned for
2020. The reason it is particularly apt to constrain imper-
fect fluid DE (or alternatively modified gravity models) is
that it will perform both a photometric survey to measure
WL and a spectroscopic survey to measure the galaxy
power spectrum (and higher order functions). Both WL
and the galaxy power spectrum are able to constrain not
only the expansion history of the Universe, which depends*domenico.sapone@uam.es
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on the matter density and the equation of state of DE, but
also further observables like the growth of structure. From
these additional observables it is possible in principle to
measure the speed of sound and the viscosity parameter,
and to constrain the evolution of the perturbations. These
are precisely the distinctive features of such models.

In this work we will not only forecast the total errors on
the model parameters, by using the Fisher matrix formal-
ism, but also analyze separately the different contributions,
taking advantage of our analytical formulas. This will
allow us to understand better which are the aspects of the
WL and of the galaxy power spectrum that have the
strongest impact.

We will find that the Euclid survey is marginally able to
constrain the viscosity together with the speed of sound, as
errors are of the order of 100%. This is due to the complex-
ity of the model and to the smallness of the effects that we
wish to detect.

By evaluating the forecasted Bayes’ factor we will find
moreover that there is (strong) evidence in favor of viscous
dark energy, as compared to a dark energy model with the
same sound speed but no viscosity, only when the fiducial
viscosity and sound speed are very small (but not too
small) and when both weak lensing and galaxy clustering
are used. In the latter case, decisive evidence in favor of
viscous dark energy can be reached if we reduce the
maximum viscosity allowed by our flat prior to be less
than ’ 10�1; otherwise the Occam’s razor effect of the
Bayes’ factor dominates and disfavors the presence of
nonzero viscosity.

The plan of the paper is the following. In Sec. II we
briefly describe the model and give the basic equations
together with the main formulas found in [10]. We then
analyze the different observables and evaluate analytically
their sensitivity to the speed of sound and the viscosity
parameter in Sec. III. Section IV is devoted to the Fisher
matrix forecasts on the errors for our model from the
Euclid WL and GC surveys. We analyze our results taking
into account the results of the previous section. We forecast
the Bayesian evidence using our computed Fisher matrices
in Sec. V, and we finally conclude in Sec. VI.

II. APPROXIMATE SOLUTIONS AND
GENERAL BEHAVIORS

We start by describing the model we consider: an im-
perfect fluid dark energy with anisotropic stress. In this
section we give the basic equations, defining our notation
and presenting the approximate analytical solution to the
dark energy perturbation evolution found in [10] (for more
details please see the aforementioned paper).

A. Definitions

We consider scalar linear perturbations about a spatially
flat Friedmann-Lemaitre-Robertson-Walker Universe,
whose line element is, in conformal Newtonian gauge,

ds2 ¼ a2½�ð1þ 2c Þd�2 þ ð1� 2�Þdxidxi�; (1)

where a is the scale factor, � is the conformal time, xi are
the spatial coordinates and c and � are the metric pertur-
bations. We take an imperfect fluid dark energy, with
constant equation of state w, with speed of sound cs and
with an anisotropic stress component �. The first order
perturbation equations for this fluid are

�0 ¼ 3ð1þ wÞ�0 � V

Ha2
� 3

1

a

�
�p

�
� w�

�
; (2)

V0 ¼ �ð1� 3wÞV
a
þ k2

Ha2
�p

�
þ ð1þ wÞ k2

Ha2
c

� ð1þ wÞ k2

Ha2
�; (3)

where � and V are the density contrast and the velocity
perturbation, �p is the pressure perturbation, H is the
Hubble function, � is the dark energy density and the prime
refers to derivatives with respect to the scale factor a. For
the evolution of�, we consider the model proposed by [11]

�0 þ 3

a
� ¼ 8

3

c2v
ð1þ wÞ2

V

a2H
; (4)

which, for c2v ¼ 1=3, recovers the evolution of anisotropic
stress for radiation up to the quadrupole and reduces to the
case of a classical uncoupled scalar field, which has always
� ¼ 0, when the viscosity parameter c2v is set to zero.2

Pressure perturbations are parametrized as

�p ¼ c2s��þ 3aHðc2s � c2aÞ
k2

�V; (5)

where the adiabatic speed of sound c2a � _p= _� ¼ w for a
fluid with constant equation of state. Since we focus on late
cosmological times, we can approximate H with

H2 ¼ H2
0½�m;0a

�3 þ ð1��m;0Þa�3ð1þwÞ�; (6)

where �m;0 indicates the dark matter density parameter

and H0 is the Hubble parameter today.
To form a complete set of differential equations we add

the Poisson equation, derived from the first and second
Einstein equations,

k2� ¼ �4�Ga2
X
i

�i

�
�i þ 3aH

k2
Vi

�
¼ �4�Ga2

X
i

�i�i

(7)

(where �i � �i þ 3aHVi=k
2 is the gauge-invariant den-

sity perturbation of the ith fluid, the sum runs over all
clustering fluids and G is the Newton constant), and the
fourth Einstein equation,

2In the case where c2v ¼ 0 the viscosity decays as �� a�3

even if it is initially nonzero and vanishes indeed rapidly.
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k2ð�� c Þ ¼ 12�Ga2ð1þ wÞ�� (8)

¼ 9

2
H2

0ð1��m;0Þa�ð1þ3wÞð1þ wÞ�
� BðaÞ�: (9)

B. Analytical solutions for dark energy perturbations

In the aforementioned approximations and with assum-
ing matter domination we have found in [10] the following
analytical solutions for �, V and �:

� ¼ 3ð1þ wÞ2
3c2sð1þ wÞ þ 8ðc2s � wÞc2v

�0

k2
; (10)

V ¼ � 9ð1þ wÞ2ðc2s � wÞ
3c2sð1þ wÞ þ 8c2vðc2s � wÞH0

ffiffiffiffiffiffiffiffi
�m

p �0ffiffiffi
a

p
k2

;

¼ �3aHðc2s � wÞ�; (11)

� ¼ � 8c2vðc2s � wÞ
3c2sð1þ wÞ þ 8ðc2s � wÞc2v

�0

k2
; (12)

where the constant �0 is defined from the relation k2� ’
��0, which is valid strictly only during matter domination
and while neglecting dark energy perturbations.

As already shown in [10], modes above the sound hori-
zon at early times are effectively uncoupled from the
anisotropic stress, since the term on the right hand side
of Eq. (4) is small compared to the terms on the left hand
side. Here dark energy perturbations follow the standard
evolution for c2v ¼ 0, which was found in [14]

� ¼ ð1þ wÞ �0

c2sk
2
; (13)

V ¼ � 3ð1þ wÞðc2s � wÞH0

ffiffiffiffiffiffiffiffiffiffi
�m;0

p
c2sk

2
a�1=2; (14)

� ¼ 0: (15)

We remark that, as can be seen by comparing Eqs. (10) and
(13), the damping introduced by viscosity is stronger by a
factor (1þ w) with respect to the standard case of isotropic
dark energy. The Eqs. (10)–(12) can be rewritten in terms
of an effective sound speed [10]

c2eff ¼ c2s þ 8

3
c2v

c2s � w

1þ w
: (16)

This means that the important quantity determining the
growth of the dark energy perturbations is a combination of
the sound speed and the viscosity. These have a similar
damping effect on density and velocity perturbations.

We also point out that while normally the case w ¼ �1
represents a singularity for dark energy perturbations, the
situation is less clear when anisotropic stress is present.

In general it is enough to keep ð1þ wÞ� finite as w ! �1.
In addition, although the source term of Eq. (4) appears
singular in this limit, we can see from Eq. (11) that V
decays / ð1þ wÞ2 for our model and so the term does not
actually diverge.

III. OBSERVABLE EFFECTS OF VISCOSITY
ON GALAXY CLUSTERING AND

WEAK LENSING

Once we have shown the analytic expression of den-
sity and velocity perturbations and of the anisotropic
stress, let us see how these enter our observables. In
particular, in this section we evaluate the impact of
viscosity on galaxy clustering and weak lensing maps,
in order to understand what to expect from the error
forecasts. To do this we look at the derivatives of our
observables with respect to the parameters c2s and c2v.
These derivatives will appear in the Fisher matrix com-
putation: the larger the derivative, the stronger the
dependence of our observable from the analyzed parame-
ter, and the smaller the forecasted error. We analyze
separately each different component characterizing these
observables and evaluate analytically its impact in the
total derivative, with the help of the analytical parame-
ters introduced in [18]: the clustering parameter Q and
the anisotropy parameter �.

A. Parametrizing dark energy perturbations

First of all, we shortly describe our parameters, which
will help us understand the behavior of our observables in
the presence of a non-null c2v. The clustering parameter
Q � 1þ ��=ð�m�mÞ (where �, �m are gauge-invariant
comoving density perturbations), quantifying the size of
the dark energy perturbations compared to the matter
perturbations (and hence to the total perturbations, given
that dark energy perturbations are much smaller than
matter ones), parametrizes the deviation from a purely
matter-dominated Newtonian potential. In the presence of
viscosity we have obtained [10]

Q� 1 ¼ 1��m;0

�m;0

ð1þ wÞ a�3w

1� 3wþ 2k2a
3H2

0
�m;0

c2eff

¼ Q0

a�3w

1þ �a
; (17)

where � ¼ 2k2c2eff=½ð3H2
0�m;0Þð1� 3wÞ�, Q0¼ð1þwÞ�

ð1��m;0Þ=½�m;0ð1�3wÞ� and c2eff is given by Eq. (16).

Notice that, as explained in [10], Eq. (17) is valid also for
c2s ¼ c2v ¼ 0.
As regards the anisotropy parameter, this is defined as

� � c

�
� 1: (18)
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It is zero in the case of standard general relativity
with nonanisotropic fluids because then the two metric
perturbations � and c are equal. When anisotropic stress
is present instead, � and c are different. In our case � is
indeed non-null and given by

� ¼ � 9

2
H2

0ð1��m;0Þð1þ wÞ a
�1�3w

k2Q

�
1� c2s

c2eff

�
: (19)

Having established the dependence of Q and � on c2s and
c2v, we evaluate then how the main ‘‘ingredients’’ of the
WL power spectrum and galaxy power spectrum, i.e. the
matter power spectrum, the redshift space distortions and
the weak lensing potential, depend on Q and �, and hence
on the speed of sound and the viscosity parameter.

B. The dark matter power spectrum

The linear matter power spectrum Pmðk; aÞ can be
expressed as the product of today’s PmðkÞ and its redshift
evolution Gða; kÞ. Today’s matter power spectrum PmðkÞ is
affected by dark energy perturbations, and hence by c2s and
c2v, through a linear dependence on Q. This is because the
matter density contrast �m is sourced by the gravitational
potential�, which is in turn modified by the presence of �.
The Poisson equation (7) can indeed be expressed as

k2� ¼ �4�Ga2Q�m�m: (20)

Hence, we can try to assess how sensitive the matter power
spectrum today is to changes of the sound speed and
the viscosity, by computing the derivatives of Q with
respect to c2s and c2v:

@Q

@c2s
¼ � �a

1þ �a
ðQ� 1Þ c2eff � w

c2effðc2s � wÞ ; (21)

@Q

@c2v
¼ � �a

1þ �a
ðQ� 1Þ c

2
eff � c2s
c2effc

2
v

: (22)

The derivatives of Q with respect to c2s and c2v are shown in
Fig. 1 (red solid lines). In Fig. 2 we then show how the
derivatives of Q with respect to c2s vary when changing the
fiducial model: on the left panels we vary the fiducial c2s ,
which takes the values c2s ¼ 10�6, 10�5 and 10�4 and c2v is
fixed to 10�4, while on the right panels c2v ¼ 10�6, 10�5 and
10�4 and c2s ¼ 10�4 (we always use units where the speed of
light is c ¼ 1). Our first consideration looking at the figure is
that reducing the fiducial value of c2s or c2v improves the
sensitivity of Q to them, but not indefinitely: the smaller c2s
or c2v, the smaller the improvement. Second, we notice thatQ
is a factor of �10 more sensitive to c2v than c2s (compare
corresponding top and bottom panels). The reason for this
is to be found in the dependence of Q on c2s and c2v through
c2eff: in its expression a factor of�10multiplies c2v, so that the
sensitivity of c2eff to c

2
v is better by such a factor than that to c

2
s .

C. The growth factor

The growth factor, characterizing the change of the
matter power spectrum with respect to today’s shape and
amplitude, is given by

Gðk; aÞ ¼
Z a

a0

fða0; kÞ
a0

da0; (23)

where a0 is today’s scale factor, the growth rate f can be
expressed as

fða; kÞ ¼ �mðzÞ	ðk;zÞ; (24)

and the growth index 	ðk; zÞ can be written in terms of Q
and � [19]:
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FIG. 1 (color online). Here we show the sensitivity of the
parameters entering the WL and GC observables to the sound
speed c2s and the anisotropy parameter c2v. Plotted are the
derivatives of Qða; kÞ (red solid lines), �ða; kÞ (blue dot-dashed
lines), Gða; kÞ (cyan short-dashed lines), and fða; kÞ (brown
long-dashed lines) with respect to c2s (top panel) and to c2v
(bottom panel), as a function of the wave number k in units of
h=Mpc. The viscosity term is set to c2v ¼ 10�6 and the sound
speed to c2s ¼ 10�6. We can see that the most sensitive parame-
ters are � and Q and that these two parameters are degenerate
(i.e. have the same amplitude and shape) if k is larger than
�0:1h=Mpc.
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	 ¼ 3ð1� w� AðQ;�ÞÞ
5� 6w

; (25)

with

AðQ;�Þ ¼ ð1þ �ÞQ� 1

1��mðaÞ : (26)

Using Eqs. (25) and (26) we can compute the derivatives
@G=@c2s , @G=@c2v as follows:

@G

@c2s
¼ �G

3Q0

5� 6w

c2eff � c2s
c2effðc2s � wÞ

�
Z a

a0

�
3w

�
x�3w�2 þ �

c2eff � w

c2eff � c2s

x�3w

ð1þ �xÞ2
�
dx;

(27)

@G

@c2v
¼ �G

3Q0

5� 6w

c2eff � c2s
c2effc

2
v

�
Z a

a0

�
3c2s
�

x�3w�2 þ �
x�3w

ð1þ �xÞ2
�
dx: (28)

These are shown in Fig. 1 (cyan short-dashed line).
Comparing the derivatives with respect to c2s and c2v of G
with those of Q we notice that the former are smaller than
the latter, implying a smaller sensitivity of the latter to the
sound speed and the viscosity. As also explained in [20],
this is because G depends on the integral of Q: the growth
factor is not probing the deviation of Q from unity, but
rather how Q evolves with time.

D. The weak lensing potential

In WL experiments, the important quantity is the lensing
potential� ¼ �þ c . As regards �, the Poisson equation
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FIG. 2 (color online). Here we show how the sensitivity of Q to the sound speed c2s and the viscosity parameter c2v depend on the
amplitude of c2s (left panels) and c2v (right panel). We plot the derivative of the logarithm of Qða; kÞ with respect to the sound speed c2s
(top panels) and to the viscosity parameter c2v (bottom panels) as a function of the wave number k in units of h=Mpc. On the left panels,
we fix the viscosity term c2v ¼ 10�6 and the sound speed c2s takes values 10

�3, 10�4, 10�5 and 10�6, brown long dashed, cyan dot-
dashed, blue dashed and red solid lines, respectively. On the right panels, we fix the viscosity term c2s ¼ 10�6 and the sound speed c2v
takes values 10�3, 10�4, 10�5 and 10�6, brown long dashed, cyan dot-dashed, blue dashed and red solid lines, respectively. It can be
seen that reducing the value of c2s or c

2
v improves the sensitivity of Q to them, but the smaller c2s or c

2
v, the smaller the improvement.

We also see that Q is a factor of �10 more sensitive to c2v than c2s (compare corresponding top and bottom panels). This is because Q
depends on sound speed and viscosity through c2eff , in whose expression a factor of �10 multiplies c2v while c2s is multiplied by a

factor of 1.
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couples it to the dark energy contrast, and we expressed
the influence of the latter through the parameter Q; see
Eq. (20). The potential c instead is related to the aniso-
tropic stress, and the parameter connecting it to � is �, as
in Eq. (18). Hence, using Eqs. (20) and (18) we find the
following for �:

k2� ¼ �8�Ga2
�
1þ 1

2
�

�
Q�m�m: (29)

The resulting quantity is therefore a combination of the
anisotropic stress and the dark energy density contrast,

� ¼
�
1þ 1

2
�

�
Q; (30)

and it represents the deviation of the WL potential from the
standard case of no dark energy perturbations. We can
compute now the derivatives of�with respect to the sound
speed c2s and the viscosity term c2v:

@�

@c2s
¼ �ðQ� 1Þ

�
�a

1þ �a

1

c2eff

�
1þ 8

3

c2v
1þ w

�

þ 4
1þ �a

�a

c2v
c2eff

w

1þ w

�
(31)

@�

@c2v
¼ �ðQ� 1Þ4 c

2
s � w

1þ w

�
�a

1þ �a

1

c2eff

2

3
þ 1þ �a

�a

c2s
c2eff

�
;

(32)

and plot them in Fig. 1 together with the other derivatives.
We clearly see that at scales smaller than k� 0:01h=Mpc
the derivatives with respect to c2s or c

2
v of � have the same

amplitude and shape as those of Q. Looking at the
expression of @�=@c2s , @�=@c

2
v, Eqs. (31) and (32), this

means that� only plays a role at very large scales, while its
contribution is very small at all other scales. This can also
be seen in the expression for �, Eq. (19), which contains a
factor ðHa=kÞ2 relative to Q� 1, Eq. (17), and so is sup-
pressed on subhorizon scales. A confirmation of this can be
found in Fig. 3, which shows the evolution with k of the
derivatives of �, which are much smaller than those of Q.
We also notice, comparing the upper to the lower panel of
Fig. 1 that for small values of the speed of sound and the
viscosity (as those selected to produce the plot), the
derivatives with respect to c2s are identical in shape to those
with respect to c2v, if we consider smaller scales.

E. Redshift space distortions

Galaxy redshift surveys do not directly observe the total
matter distribution: they produce a three-dimensional (3D)
map of the galaxy distribution, where the information on
the radial distance to each galaxy is obtained through the
measured galaxy redshift. Because of the galaxy peculiar
velocities, the redshift map is distorted with respect to the
real space map. Such redshift space distortion (RSD) was

first described by [21], who modeled it through a factor
ð1þ ðfðk; zÞ=bÞ
2Þ2 multiplying the matter power spec-
trum, where f is the growth rate [see Eq. (24)], b is the bias
factor relating the amplitude of the galaxy power spectrum
to the matter power spectrum, and 
 is the cosine of the
component of k parallel to the line of sight.
For this reason, we evaluate here the sensitivity of f to

sound speed and viscosity parameter by computing the
derivatives of f with respect to c2s and c2v. These are given
by @f=@c2s ¼ f ln�mðaÞ@	=@c2s (and equivalently for c2v).
Since the main dependence on viscosity and speed of sound
will come from the term @	=@c2s (given that the term f will
be close to 1 during matter domination), we only show here
the analytical derivatives of 	:

@	

@c2s
¼ 3ðQ� 1Þ

ð5� 6wÞð1��mðaÞÞ
c2eff � c2s

c2effðc2s � wÞ

�
�
3w

1þ �a

�a
þ c2eff � w

c2eff � c2s

�a

1þ �a

�
; (33)

@	

@c2v
¼ 3ðQ� 1Þ

ð5� 6wÞð1��mðaÞÞ
c2eff � c2s
c2effc

2
v

�
�
3c2s

1þ �a

�a
þ �a

1þ �a

�
: (34)

The logarithm of the derivatives of the Kaiser term with
respect to c2s and c2v (integrated over the angle 
) are
shown as well in Fig. 1. Their shape is very similar to
that of the derivatives ofG and of� but they always have a
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FIG. 3 (color online). Here we show the sensitivity of the
anisotropy parameter � to the sound speed c2s and viscosity
parameter c2v. Derivatives of �ða; kÞ with respect to the sound
speed c2s (solid red line) and the viscosity parameter c2v (blue dot-
dashed line) are shown as a function of the wave number k in
units of h=Mpc. Here the fiducial viscosity term is c2v ¼ 10�6

and the fiducial sound speed is c2s ¼ 10�6. By comparing the
size of these derivatives to that of the corresponding derivatives
of Q of Fig. 1 we notice that the first are much smaller than the
second when k > 0:01h=Mpc, so that their contribution to the
derivatives of � (related to the WL potential) is very small at
smaller scales.
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smaller size than them, which means that the contribution
of the RSD in the detection of c2s and c

2
v should not be very

important.

F. Comparison of galaxy power spectrum
and weak lensing potential

We want now to identify exactly the quantities entering
the galaxy power spectrum and the WL power spectrum, in
order to understand which of them is more sensitive to the
sound speed and the viscosity parameter.

Let us start with the former: it will depend on the matter
power spectrum and on the RSD factor; hence the relevant
parameters for detecting DE perturbations will be Q [see
Eq. (20)] and the growth factor G, related to the matter
power spectrum today and its evolution with time, respec-
tively, and the growth rate f, detectable through the RSD
term. If we consider the WL power spectrum, this will
again depend on the matter power spectrum, hence on Q
and G, and also on the difference between the two gravi-
tational potentials, proportional to �, as from Eq. (29). We
see from Fig. 1 that the contribution from f is the smallest,
and that the sensitivity to variations in c2s and c2v of G is
slightly lower than that of � and Q. This means that in
principle WL surveys, measuring �, should be slightly
more sensitive than galaxy redshift surveys, which measure
f.3 However, other considerations have to be made.
Derivatives of � and Q differ in shape and amplitude
only in the region of very large scales. As this region is
not probed by WL measurements (because of the size of
the survey and of the projection on the sphere), constraints
to c2s and c2v will be degenerate: it will be very difficult to
separately measure them.

Moreover, the actual result will depend also importantly
on the properties of the single surveys, ‘‘weighted’’ by the
sensitivities discussed above.

IV. FORECASTS FOR THE EUCLID SURVEY

With the help of the sensitivity of our observables to c2s
and c2v that have evaluated analytically, we can now fore-
cast the actual precision with which the Euclid WL and GC
surveys will be able to measure these parameters. As al-
ready mentioned, Euclid [17] is a medium-size mission of
the ESA Cosmic Vision program, recently adopted for
implementation, whose launch is planned for 2020. It
will perform two surveys: a photometric survey in the
visible and in three near-infrared bands, to measure weak
gravitational lensing maps by imaging �1:5 billion gal-
axies, and a spectroscopic slitless survey of �65 million
galaxies. Both surveys will be able to constrain both the

expansion and growth history of the Universe and will
cover a total area of 15,000 square deg.
Our fiducial Euclid survey follows the specifications that

can be found in the Euclid Definition Study Report (also
called Red Book) [17], and corresponds to the most up-to-
date simulations of Euclid’s performance.
As a fiducial model for our Fisher analysis we choose the

WMAP-7 flat �CDM cosmology, as also used in the
Euclid Red Book [17], with the exception of the value of
w, which we set to w ¼ �0:8. This means that we have
�m;0h

2 ¼ 0:13, �b;0h
2 ¼ 0:0226, �� ¼ 1��m;0 ¼

0:73, H0 ¼ 71, ns ¼ 0:96 (where ns is the scalar spectral
index). The matter power spectrum was computed using
CAMB4 [23].

A. Weak lensing

We start by investigating the sensitivity of the Euclid
WL survey to the dark energy parameters. We proceed as in
[18,20], the only difference here being that we add the
contribution of the anisotropic stress.
Following Eqs. (29) and (30) we can evaluate the con-

vergence WL power spectrum (which in the linear regime
is equal to the ellipticity power spectrum): this is a linear
function of the matter power spectrum convoluted with the
lensing properties of space. For a�CDM cosmology it can
be written as

Pijð‘Þ ¼ H4
0

Z 1

0

dz

HðzÞWiðzÞWjðzÞPnl

�
Pl

�
H0‘

rðzÞ ; z
��

; (35)

where ‘ is the multipole number, Wi’s are the window
functions, and Pnl½Plðk; zÞ� is the nonlinear power spec-
trum at redshift z obtained correcting the linear matter
power spectrum Plðk; zÞ; see [18] for more details.
When dark energy perturbations come into play, the

former gets modified. There is no easy way to modify the
convergence power spectrum when we consider the non-
linear scales, because we need to evaluate the WL power
spectrum, i.e. h�2i, which only at linear scales is simply
proportional to �2h�2

mi. If we consider nonlinear scales,
the above expression is no longer strictly valid because� is
a first order quantity. In practice, we would need to con-
volute the modified linear matter power spectrum
Pnlð�2PðkÞÞ. We instead compute �2PnlðPðkÞÞ.5

3To be precise, as pointed out e.g. in [22], the quantities that
can really be observed are the combinations f=b and fþ f0=f
and not f itself. Since the sensitivity of f to c2s and c2v is very
small, and since b is of order unity, this does not change our
conclusions.

4http://camb.info.
5The reason for this is that to include the effect of dark energy

perturbations in the nonlinear power spectrum we cannot make
use of the analytic expression of Pnl, which is designed for the
case of absence of dark energy perturbations. So if we want to
take the latter into account, we need to solve the Boltzmann
equations, hence use CAMB, which does not, however, compute
Pnlð�2PlÞ but only PnlðPlÞ. Therefore we decided to make
the aforementioned approximation Pnlð�2PlÞ ��2PnlðPlÞ,
although it is unclear how large is the error we commit when
making it.

CAN DARK ENERGY VISCOSITY BE DETECTED WITH . . . PHYSICAL REVIEW D 88, 043503 (2013)

043503-7

http://camb.info


The modified convergence power spectrum is then

Pijð‘Þ¼H4
0

Z 1

0

dz

HðzÞWiðzÞWjðzÞ�2Pnl

�
Pl

�
H0‘

rðzÞ ;z
��

: (36)

The Fisher matrix for WL is then given by

F�� ¼ fsky
X
‘

ð2‘þ 1Þ�‘
2

@ðPijÞ;�C�1
jk @ðPkmÞ;�C�1

mi ; (37)

where fsky is the observed fraction of the sky, the partial

derivatives represent @=@��, the corresponding cosmologi-
cal parameters �� are shown in Table I and

Cjk ¼ Pjk þ �jk

h	1=2
int i
nj

; (38)

where 	int is the rms intrinsic shear (here we assume

h	1=2
int i ¼ 0:22 [24]) and nj is the number of galaxies per

steradians belonging to the jth bin.
We compute the Fisher matrix for three fiducial models:

the case where c2s ¼ c2v ¼ 10�6, c2s ¼ c2v ¼ 10�4 and
c2s ¼ 1, c2v ¼ 0. The remaining parameters that we allow
to vary here are �m;0h

2, �bh
2, ns, �m;0, w0.

In the WL survey the redshift range covered is 0< z <
2:5, which we divide into 10 bins chosen such as to contain
an approximately equal number of galaxies each.

Figure 4 shows the 1, 2 and 3� Fisher ellipses for the
parameters c2s and c2v. As we can see, the 1� errors are of
the order of 10,000% on c2s and of 1000% on c2v, but more
importantly we immediately notice that there is a very
strong degeneracy between c2s and c2v.

To explain it, we should first remember that the parame-
ters measured by WL are Q, � and G but as shown in
Fig. 1, the contribution of the growth factor G to the total
derivatives is small; hence the relevant parameters are Q
and �. Let us look at the derivative of the weak lensing
parameter � with respect to the viscosity term c2v, i.e.
Eq. (32), and rewrite it as

@�

@c2v
¼ �Q0a

�3w �a

ð1þ �aÞ2
1

c2eff

8

3

c2s � w

1þ w

þ 1þ �a

�a

c2s
c2eff

4
c2s � w

1þ w
; (39)

where the first term on the right hand side is simply the
derivative of Q with respect to c2v [see Eq. (22)], while the
second term is directly connected to the anisotropic stress,
and hence to �. It can be seen that for small enough values
of c2s and c

2
v, �a / k2a is always smaller than 1. In particu-

lar, when k tends to zero, the second term dominates and
grows, as can be seen from Figs. 1 and 3. Instead, when k
grows, and while ð1þ �aÞ � 1, the first term behaves like
k2 and the second like 1=k2, so that the first term dominates.
Therefore, when the sound speed and the viscosity terms

are small enough, for example when c2s ¼ c2v ¼ 10�6, then
the first term on the right hand side of Eq. (39) is the
dominant component—this is due to the relative increase
of the dark energy perturbations, which is measured by Q.
When we increase the value of c2s , the first term in Eq. (39)
starts to get smaller; as �a� 1, the two terms become
comparable in size, and they contribute equally to the total
derivative.
We can show this numerically: for modes below the

causal horizon with k ¼ 200H0, and assuming c2s ¼ c2v ¼
10�6, the first term in Eq. (39) is of the order of 104,
whereas the second term is of order unity. If we set
c2s ¼ 1 and c2v ¼ 0 instead, we have that both terms
become of the order of 10�4.
So if both values of c2s and c2v are very small, the largest

contribution in the derivative of � comes from the term
proportional to the derivative of Q. Since, as explained
earlier, the two parameters measured by WL that contrib-
ute most strongly to the determination of c2s and c2v are Q
and �, and since their derivatives with respect to c2s are
proportional to those with respect to c2v for small enough
scales, given that here they carry almost the same infor-
mation, these parameters will be almost degenerate. This is
reflected by the top panel (and more mildly by the middle
one) of Fig. 4 and by our WL Fisher matrix, which will be
almost singular (see also [25] on this topic).
Moreover, we can understand the degeneracy by looking

again at the first term on the right hand side of Eq. (39).
When c2s is very small, the term c2s � w ’ �w so that all
dependence on the speed of sound and viscosity parameter
comes from c2eff . The degeneracy direction will therefore

be that of constant c2eff , as can easily be verified from Fig. 4.

An important consequence of this is that the inversion of
the matrix will be unstable and the results will not be
reliable, and the reason is that our data are not able to
constrain the two parameters c2s and c

2
v at the same time but

only a combination of them. This implies that the top panel
of Fig. 4 cannot be considered a reliable result apart from
showing us the existence of a strong degeneracy between
viscosity and speed of sound. This is also confirmed by

TABLE I. Cosmological parameters (for the derivatives) for
galaxy power spectrum and WL survey.

Parameters PðkÞ WL

1 Total matter density �m0
h2 �m0

h2

2 Total baryon density �b0h
2 �b0h

2

3 Spectral index ns ns
4 Matter density today �m0

�m0

5 Equation of state parameter w0 w0

6 Sound speed c2s c2s
7 Viscosity parameter c2v c2v

For each redshift bin

8 Shot noise Ps
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comparing the elements of the relative Fisher matrix to the
corresponding one for galaxy clustering. The middle panel
is slightly closer to be reliable, while the bottom panel,
where the fiducial values are c2s ¼ 1 and c2v ¼ 0, is reliable
because c2s is large enough to break the degeneracy be-
tween c2s and c2v.

We summarize our results in Table II, where we indicate
the fully marginalized errors on c2s and c2v. Let us recall
again the caveat previously explained: errors associated

with the fiducial models c2s ¼ c2v ¼ 10�6 (c2s ¼ c2v ¼
10�4) are strongly (considerably) unreliable as they have
been computed from an almost degenerate Fisher matrix.
We list them here only for completeness.
Before closing this section, let us look again at Eq. (37).

The summation over ‘ has been stopped at the default ‘‘very
optimistic’’ ‘max ¼ 5000 used also in [17], which falls into
deeply nonlinear scales (but regards the matter power spec-
trum only and is considered to be more reliable in the
standard �CDM case). This amounts to believing that we
will have an adequate description of this regime for the
anisotropic stress model by the time the Euclid satellite will
be launched. Moreover, our results depend also on the
assumptions made to compute the nonlinear power spec-
trum (we use CAMB’s implementation of the halo model
and multiply it by � to get the final power spectrum). We
can now make two considerations: first, the nonlinear
PðkÞ computed with the halo model is certainly not
accurate at small scales; second � is computed assuming
linearity. Hence a more consistent approach would be to
limit ourselves to less nonlinear scales. We have therefore
built alternative WL Fisher matrices using kmax ¼
0:5h Mpc�1, which corresponds to ‘max ’ 30 and falls
less deeply into the nonlinear regime. The results are shown
in Fig. 5. Here, apart from realizing that the forecasted
errors become slightly larger (due to the fact that we use
less information), we notice something interesting: the de-
generacy has weakened considerably. The reason for this
can probably be found by looking again at Fig. 1: at larger
scales (corresponding to smaller ‘) the derivatives ofQwith
respect to c2s and c2v start to differ from those of �. Hence,
since for Fig. 1 we used a smaller number of the ‘s falling
into the interval where @�=@X ’ @Q=@X, the total result is
less degenerate. In particular, in this case we can fully trust
the results shown in the middle and lower panels of the
aforementioned figure. Looking at Fig. 1 we can also under-
stand another reason why removing so many ‘s from our
Fisher matrix calculation does not make errors on c2s and c

2
v

much larger, but they stay of the same order of magnitude
(apart from the case c2s ¼ c2v ¼ 10�6); compare Fig. 4 with
Fig. 5. We see from Fig. 1 that the scales most sensitive to c2s
and c2v (i.e. those where the derivatives have the largest
amplitude) are those around k� 0:01. Below k� 0:1 there
is little contribution, and this is due to the fact that dark
energy perturbations are suppressed on small scales.
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FIG. 4 (color online). Here we plot the forecasted errors on
sound speed c2s and viscosity parameter c2v from the Euclid WL
survey. Shown are the 1, 2 and 3� Fisher ellipses for the
parameters c2s and c2v. The top panel corresponds to the fiducial
c2s ¼ c2v ¼ 10�6, the central panel to c2s ¼ c2v ¼ 10�4 and the
bottom one to the case c2s ¼ 1 and c2v ¼ 10�6. In the case of the
top and central panels, a very strong degeneracy between c2s and
c2v can be seen. This is because when c2s and c2v are very small,
the contributions from � and Q are very similar and both
constrain c2eff rather than different combinations of c2s and c2v.

TABLE II. Relative errors on the parameters c2s and c2v from
the Euclid WL survey. For the case c2v ¼ 0 the absolute error �c2v

is given.

WL

c2s c2v �c2s
=c2s �c2v

=c2v

10�6 10�6 109 10.3

10�4 10�4 106 9.81

1 0 201 �c2v
¼ 1:55� 10�2
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It is fair to make a final important remark: all the results
we obtained depend on the parametrization we have used
where the effects of the sound speed and the viscosity
appear linearly in a unique expression, Eq. (16). This
implies in particular that it may be possible that a different
parametrization of the anisotropic stress removes the
aforementioned degeneracy problem.

B. Galaxy clustering

Let us now show and comment on the Fisher matrix
forecasts for the Euclid galaxy redshift survey, computed
for the same three fiducial models previously indicated
for the WL case, i.e. c2s ¼ c2v ¼ 10�6, c2s ¼ c2v ¼ 10�4

and c2s ¼ 1 c2v ¼ 0.
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FIG. 5 (color online). Same as Fig. 4 but using only scales
closer to linearity, with ‘max ¼ 30, which corresponds to kmax ¼
0:5h=Mpc�1. We notice that the degeneracy between c2s and c2v
of Fig. 4 is removed, strongly for the cases of the two lowest
panels. This is due to the fact that at larger scales the parameters
� and Q start carrying information on both c2s and c2v and not
only on a unique combination of them (c2eff). The worsening of

errors due to the use of a much smaller number of ‘s is not strong
due to the fact that at smaller scales our observable is less
sensitive to speed of sound and viscosity because here dark
energy perturbations are suppressed.
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FIG. 6 (color online). Errors on the sound speed and viscosity
parameter from the Euclid galaxy redshift survey: 1, 2 and 3�
Fisher ellipses for the parameters c2s and c2v. The top panel
corresponds to the fiducial c2s ¼ c2v ¼ 10�6, the central panel
to c2s ¼ c2v ¼ 10�4 and the bottom one to the case c2s ¼ 1 and
c2v ¼ 10�6. Here we can see that no degeneracy is present,
but errors are again very large, of the order of �100% in almost
all cases (exceptions are �c2v

� 10% for c2s ¼ c2v ¼ 10�6 and

�c2v
¼ 1000% for c2s ¼ 1, c2v ¼ 0).
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Following [26] we write the observed galaxy power
spectrum as

Pobsðz; krÞ ¼ D2
ArðzÞHðzÞ

D2
AðzÞHrðzÞ

G2ðzÞbðzÞ2ð1þ �
2Þ2P0rðkÞ

þ PshotðzÞ; (40)

where the subscript r refers to the values at which we
evaluate the Fisher matrix, i.e. the reference (or fiducial)
cosmological model. Here Pshot is a scale-independent
offset due to imperfect removal of shot noise, 
 is the
cosine of the angle of the wave mode with respect to the
line of sight, P0r is the fiducial matter power spectrum
evaluated at redshift zero, GðzÞ is the linear growth factor
of the matter perturbations, bðzÞ is the bias factor and
DAðzÞ is the angular diameter distance. The wave number
k has also to be written in terms of the fiducial cosmology
([26] and see also [27,28] for more details).

The spectroscopic survey covers a redshift range of
0:65< z < 2:05, which we divide into 14 bins of equal
width �z ¼ 0:1. As regards the bias, we assume it to be
scale independent, since this is a quite good approximation
for the large linear scales that we will use. Our fiducial bias
was derived by [29] using a semianalytical model of galaxy
formation, and it is the same bias function used for the
Euclid Red Book forecasts. The expected galaxy number
densities that we used can be found in [30] and were
computed by using a sophisticated simulation [17]. The
scalesR used are such that�2ðRÞ � 0:25, with an additional
cut at kmax ¼ 0:20h Mpc�1 to avoid nonlinearity problems.

In the computation of the GC Fisher matrix we do not
incur in the same degeneracy problem of the WL survey:
our matrices are far from being singular; hence we can
safely produce forecasts on the errors on c2s and c2v.

The results are shown in Fig. 6, where the 1, 2 and 3�
forecasted contours are shown for all the analyzed cases. In
the cases c2s ¼ c2v ¼ 10�6 and c2s ¼ c2v ¼ 10�4 we notice
that the errors on both parameters are best but still of the
order of 100% (the only exception is �c2v

� 10% for c2s ¼
c2v ¼ 10�6). In the case where c2s ¼ 1 and c2v ¼ 0 the error
on the sound speed is even larger, i.e. about 1000%.

For a more quantitative insight we list the fully
marginalized errors on c2s and c2v in Table III.

C. Combining weak lensing and galaxy clustering

As we have seen previously, it seems that WL data, if
one could remove their degeneracy, would provide quite
good constraints to speed of sound and viscosity (or at

TABLE III. Relative errors on the parameters c2s and c2v from
the Euclid galaxy redshift survey. For the case c2v ¼ 0 the
absolute error �c2v

is given.

GC

c2s c2v �c2s
=c2s �c2v

=c2v

10�6 10�6 1.10 0.37

10�4 10�4 0.615 0.271

1 0 11.3 �c2v
¼ 2:93� 10�4
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FIG. 7 (color online). Errors on sound speed and viscosity
parameter from GC (red solid ellipses), and from the combination
GC and WL data (blue dashed ellipses): 1� Fisher ellipses for the
parameters c2s and c2v. The top panel corresponds to the fiducial
c2s ¼ c2v ¼ 10�6, the central panel to c2s ¼ c2v ¼ 10�4 and the
bottom one to the case c2s ¼ 1 and c2v ¼ 10�6. The Fisher
matrices were produced by neglecting the covariance between
WL and GC observations. It can be seen that the addition of WL
data visibly improves the constraints, by mostly constraining c2v.
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least not much worse than GC does). Hence adding WL
data to GC observations should improve constraints on c2s
and c2v.

The simplest way to produce forecasts on our combined
data sets is to neglect the covariance between WL and
galaxy clustering observations. By doing so, we obtain
the forecasted error ellipses shown in Fig. 7, where we
also show the error ellipses from galaxy clustering only.
Here we see that WL observations reduce errors on the two
parameters, if not strongly at least visibly. We have already
explained earlier why WL observations give degenerate
constraints on c2s and c2v when these have very small
fiducial values, while the main parameters observed by
galaxy clustering areQ andG, which are not as degenerate
as Q and �. Nevertheless, the reason galaxy clustering
observations give the main contribution in constraining c2s
and c2v, as can be seen by noticing the relatively small
improvement in the combined errors in Fig. 7, probably
lies only in the properties of the survey, and most likely the
very small redshift error has a big role in this too.

When combining GC data to the more conservative WL
data (computed using kmax ¼ 0:5h=Mpc), the latter do not
improve constraints. For this reason it will be very impor-
tant in the future to build a reliable model for the nonlinear
regime, both for the standard �CDM model and for our
imperfect fluid model.

We summarize the result of joining WL and GC data on
the fully marginalized errors on c2s and c2v in Table IV.

A final remark to close this section: to produce a more
accurate forecast of how the combination of WL and GC
data will affect errors on c2s and c2v, we would need to
evaluate accurately the covariance between the two data
sets. Although the number of galaxies observed spectro-
scopically is only�1=4 of those observed photometrically,
and we do not expect covariance to be very large, it could
affect the estimate. This is left for future work.

V. MODEL COMPARISON

To understand more quantitatively whether Euclid will
be able to distinguish viscous dark energy from other less
exotic models, we estimate in this section the expected
Bayesian evidence, which gives a measure of the proba-
bility of one model with respect to the other.

The Bayes’ factor B12 of modelsM1 andM2 is defined
as the ratio of the model likelihoods through (see [31])

pðM1jdÞ
pðM2jdÞ

¼ �ðM1Þ
�ðM2ÞB12; (41)

where pðMijdÞ is the normalized posterior probability
distribution of Mi and �ðMiÞ is the prior probability
distribution for the model. If we do not have any reason
to prefer one model over the other before we see the data,
then �ðM1Þ ¼ �ðM2Þ ¼ 1=2 and

B12 ¼ pðM1jdÞ
pðM2jdÞ : (42)

In the case of nested models, i.e. whenM1 can be obtained
from M2 by fixing the parameter(s) ! to ! � , the ex-
pression of B12 can be simplified to give the Savage-
Dickey density ratio (SDDR); see e.g. [32]:

BSDDR
12 ¼ pð!jd;M2Þ

�ð!jM2Þ
��������!¼!�

; (43)

where pð!jd;M2Þ is the normalized posterior probability
distribution and �ð!jM2Þ is the prior probability distri-
bution for the parameter ! of model M2, marginalized
over all other parameters.
The ratio of the model probabilities can be interpreted as

‘‘betting odds,’’ and since we set the prior probabilities of
all models equal, the same is true for the Bayes factors
between models. It then makes sense to use the logarithm
of the Bayes factor, which we will call the Bayesian
evidence,

E ¼ lnB12: (44)

We will use the interpretation of E in terms of Jeffrey’s
scale [33] as given in [32]: The evidence of one model
against another one is denoted as not significant, substan-
tial, strong or decisive when jEj is <1, 1–2.5, 2.5–5 and
>5, respectively.
To understand whether a positive viscosity can be dis-

tinguished from no viscosity by our data, let us take as our
model M1 a k-essence fluid, i.e. a dark energy model
where the sound speed is a free parameter. Hence we will
have free c2s while having fixed c�2v to zero. Our model
M2 will be instead the full viscous dark energy model. For
M2’s extra parameter c2v, we choose a flat prior
�ðc2vjM2Þ in the range 0 � c2s � 1, and M1 is nested in
M2 at c2v ¼ 0. The motivation for choosing a positive
value for c2v is to avoid instabilities in the solution for the
anisotropic stress function (see [10] for a more detailed
explanation). As our likelihood function we take the one
forecasted with the Fisher matrix method: pðdjxi;M2Þ /
exp ½�1=2ðxi � �xiÞTFxixjðxj � �xjÞ�, where �xi is the fiducial

value of parameter xi. We marginalize the likelihood func-
tion pðdjxi;M2Þ over all possible values of c2s so that we
obtain

TABLE IV. Relative errors on the parameters c2s and c2v from
the Euclid survey, including WL and GC data and neglecting
correlations between them. For the case c2v ¼ 0 the absolute
error �c2v

is given.

WLþ GC

c2s c2v �c2s
=c2s �c2v

=c2v

10�6 10�6 1.08 0.28

10�4 10�4 0.604 0.197

1 0 11.3 �c2v
¼ 4:5� 10�5
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pðdjc2v;M2Þ ¼ 1

N
exp

�
� 1

2

�
c2v � �c2v
�c2v

�
2
�
; (45)

where �c2v
is estimated with the Fisher matrix:

�c2v
¼ ðF�1Þc2vc2v and the normalization constant of the

likelihood is N ¼ ffiffiffiffiffiffiffi
2�

p
�c2v

. Our posterior pðc2vjd;M2Þ /
pðdjc2v;M2Þ�ðc2vjM2Þ is hence nonzero only in the
interval 0 � c2v � 1, where it is given by

pðc2vjd;M2Þ ¼ 1

N0 exp
�
� 1

2

�
c2v � �c2v
�c2v

�
2
�
; (46)

where the normalization constant N0 is computed by inte-
grating pðc2vjd;M2Þ over the interval 0 � c2v � 1. The
Bayesian evidence is therefore

E � lnB12 ¼ ln
�c2v
N0 � 1

2

�
c�2v � �c2v

�c2v

�
2
; (47)

where �c2v is the interval in c
2
v allowed by the flat prior, so

that �c2v ¼ 1 in our case. Let us understand in detail the
meaning of this equation. A positive E will indicate evi-
dence in favor of M1, i.e. k-essence, while a negative E
will correspond to evidence in favor of M2, i.e. viscous
dark energy. jEj indicates the strength of this evidence and
can be compared to Jeffreys’ scale, as explained above.
The term �ð1=2Þðc�2v � �c2vÞ2=�2

c2v
measures the distance

between the model with posterior mean �c2v, in our case
the chosen fiducial c2v, and the simpler model, in our case
k-essence (c�2v ¼ 0). We see that this term is always nega-
tive, meaning that it contributes evidence in favor of model
M2. It accounts for the fact that the ‘‘true’’ (fiducial)
model is fitting the data better (by construction in our
case). The term ln�c2v=N

0 measures the ratio of the area
of the c2v parameter space allowed by the more complex
model to the area of the error ellipse. It represents therefore
the ‘‘Occam razor’’ term, disfavoring too complex models
that ‘‘waste’’ too much of the prior space. Since in our case
ln�c2v ¼ 0, we are left with the term � lnN0. This is the
only term that can push the evidence toward positive
values, in favor of model M1, i.e. k-essence. When the
simpler model is favored, it means that the improvement
gained by having a better fit to the data is not compensating
for the increased complexity of the model.

Our results are summarized in Table V. We notice that
the only case where there is (strong) evidence in favor of
viscous dark energy corresponds to the choice of posterior
mean �c2s ¼ �c2v ¼ 10�4 and to the use of both WL and GC.
In all the other cases the simpler k-essence is favored, so
Euclid data alone are not enough to allow a detection of
viscosity. An important reason for this result comes from
our choice of prior, which implies that we would have
expected to measure any c2v between 0 and 1 with equal
probability. When the data favor a c2v very close to zero,
then Occam’s razor indicates that exactly zero is the better
answer. Overcoming this effect then requires a highly

significant detection of c2v � 0. Of course in the case where
the fiducial model has zero viscosity necessarily the sim-
pler model is always favored, and having more data
strengthens its evidence.
The effect of the prior is shown in Fig. 8, where the black

thin (red thick) lines indicate the case where the fiducial
(true) model has �c2v ¼ �c2s ¼ 10�6 ( �c2v ¼ �c2s ¼ 10�4). Solid

TABLE V. Bayesian evidence, lnB12, for the models M1 and
M2, where M1 is a fluid k-essence model, with c2s allowed to
vary and no viscosity, whileM2 is a viscous dark energy model.
We compute lnB12 for different posterior means �c2s and �c2v.

Bayesian evidence E ¼ lnB12

M1: fluid k-essence (variable c2s , c
2
v ¼ 0)

�c2s ¼ 1 �c2v ¼ 0 �c2s ¼ �c2v ¼ 10�4 �c2s ¼ �c2v ¼ 10�6

GC 7.9 2.8 10.2

GCþWL 9.8 �3:0 7.8

10 7 10 6 10 5 10 4 10 3 10 2 10 1 1.

10

5

0

5

10

cv
2

ln
B

12

FIG. 8 (color online). Bayesian evidence, lnB12, for the mod-
els M1 (a k-essence fluid with arbitrary constant sound speed
c2s ) and M2 (viscous dark energy), as a function of c2v, i.e. the
range in c2v allowed by our (flat) prior: �c2v ¼ c2v;max � c2v;min ,

where we fix c2v;max to 0. The black thin (red thick) lines

represent the case where the fiducial model (also best fit of the
posterior) is �c2v ¼ �c2s ¼ 10�4 ( �c2v ¼ �c2s ¼ 10�6). The solid
(dashed) lines indicate the use of GC (GC and WL) data. The
darker (lighter) shaded regions correspond to decisive (strong)
evidence in favor of viscous DE (where lnB12 < 0) or k-essence
(where lnB12 > 0). We see that the evidence in favor of viscous
DE increases until the c2v;max of the prior reaches a value of the

order of the fiducial c2v considered, and then decreases as the log
of �c2v, reaching eventually evidence in favor of k-essence. In
the case of using only GC data, we see that when choosing �c2v ¼
�c2s ¼ 10�6, it is not possible to reach decisive but only strong
evidence, while when �c2v ¼ �c2s ¼ 10�4 decisive evidence is
reached when �c2v ’ 10�4. Adding WL data allows also decisive
evidence in favor of the model with �c2v ¼ �c2s ¼ 10�6 to be
reached (if �c2v ’ 10�6). Also, using joint GC and WL data,
decisive evidence in favor of the viscous DE model with
�c2v ¼ �c2s ¼ 10�4 is reached for any prior having �c2v between
2� 10�5 and 10�1.
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(dashed) lines represent the use of GC (GC and WL) data.
Here we notice that, as we expect, when the range of the
flat prior is of the order of the fiducial value of c2v, then we
obtain the maximal evidence in favor of the viscous DE
model. As soon as the interval allowed by the prior be-
comes much larger than the expected value for c2v, the more
complex model is disfavored as it wastes too much prior
space, and the evidence in favor of the simpler k-essence
model starts growing (as the log of�c2v) until the k-essence
model becomes favored. In particular we see that, when
using both GC and WL, the evidence in favor of viscous
DE becomes decisive in the case �c2v ¼ �c2s ¼ 10�4 if
the prior is 2� 10�5 & �c2v & 10�1, in the case �c2v ¼
�c2s ¼ 10�6 only in the narrower range 8� 10�7 & �c2v &
2� 10�6. We finally note that if the prior range is much
smaller than the fiducial value, then the posterior (which is
limited by the prior) becomes flatter and flatter so that the
Bayes factor converges toward unity for very small priors.

We could also have compared standard quintessence
(c2s ¼ 1 and c2v ¼ 0) to our viscous dark energy model.
However, for all cases with small sound speeds we would
have obtained a very decisive evidence in favor of viscous
dark energy—but the result would have been driven by the
detection of a sound speed different from the speed of light,
rather than by a nonzero viscosity: as shown in [20], it is
possible to clearly distinguish the true sound speed from
cs ¼ 1 for cs & 10�2 even in the absence of viscosity (at
least for our choice of w ¼ �0:8). The use of k-essence as
the comparison model allows one to focus exclusively on
the question whether a nonzero viscosity could be detected.

VI. CONCLUSIONS

In this work we have studied how well a viscous dark
energy model can be constrained by the Euclid weak
lensing and galaxy clustering surveys.

The model was first proposed by [11] to describe a fluid
with anisotropic stress due to viscosity. It can reproduce the
neutrino anisotropy up to the quadrupole, and setting the
anisotropy parameter c2v to zero reduces it to the standard
case of no viscosity. Our dark energy imperfect fluid is
hence parametrized by c2v, together with the speed of sound
and the background equation of state.

The Euclid survey is in principle particularly apt to
constrain our model because—through both its WL and
galaxy 3D power spectrum probes—it measures, together
with the background expansion, also the metric perturba-
tions, which is essential to constrain perturbation quantities
such as the viscosity and the speed of sound.

As regards WL, before forecasting the errors with the
Fisher matrix technique, we have analyzed the WL power
spectrum. We have found that it constrains the clustering
parameter Q, the WL potential � and the growth factor G.
Of these, the most sensitive to c2s and c2v are � and Q. For
very small values of the speed of sound and the viscosity,
their dependence on these parameters is identical at most

scales. This generates a problem for WL constraints, as
they will be almost completely degenerate. This is evident
once we compute the forecasted errors. We do this for three
fiducial models: c2s ¼ c2v ¼ 10�6, c2s ¼ c2v ¼ 10�4 and
c2s ¼ 1 c2v ¼ 0 but due to the degeneracy problem the
only reliable errors are those computed for the last case
and amount to �c2s

¼ 201, �c2v
¼ 1:55� 10�2. The pre-

vious results correspond to the optimistic case of having a
reliable model for the nonlinear modes up to ‘ ¼ 5000. If
we use the more realistic limiting ‘ ¼ 30, the degeneracy
is weakened—because fewer of the degenerate scales are
used—and we can also trust results for the case c2s ¼ c2v ¼
10�4, but the errors get even worse.
As regards the galaxy power spectrum, it constrains Q,

G and the growth rate f through redshift space distortions.
The most sensitive parameters to the speed of sound and
the viscosity are here Q and G, and, contrary to the WL
case, there is no degeneracy problem. Using the Fisher
matrix method, we forecast errors on our model’s parame-
ters. They are of the order of 100% for both c2s and c2v for
the fiducial models c2s ¼ c2v ¼ 10�6 and c2s ¼ c2v ¼ 10�4,
while they are of about 1000% on c2s for the fiducial case
c2s ¼ 1, c2v ¼ 0.
If we combine the optimistic WL forecast and GC con-

straints (assuming no covariance between these data), we
improve visibly our results, while when adding the more
pessimistic WL case to galaxy power spectrum constraints
are left almost unchanged.
To quantify the ability of Euclid to distinguish viscous

dark energy from models with no viscosity, we evaluate the
Bayesian evidence and find that for the fiducial model with
c2s ¼ c2v ¼ 10�4 the joint GC and WL survey will be able
to provide strong evidence in favor of viscosity, while in all
other cases the higher complexity of the model is not
compensated by a better fit to the data. This is partially
due to our choice of uniform prior on c2v in the range [0,1].
If we relax this assumption, we find that it is possible to
obtain decisive evidence in favor of viscous DE even with
GC data alone if the range of c2v allowed by the prior is of
the order of the fiducial c2v, and for a wider choice of prior
range when using both GC and WL data and for the case
�c2v ¼ �c2s ¼ 10�4.
Summarizing, future galaxy surveys like Euclid will be

only marginally able to constrain viscous dark energy
models. This statement depends of course on the model
being analyzed. Some modified gravity models have a
larger effective anisotropic stress than the viscous dark
energy models considered here, and Euclid may have a
better chance at detecting a nonzero � in this case.
Alternatively one could combine Euclid with other obser-
vations such as the cosmic microwave background, cluster
counts, data from type-Ia supernovae and measurements of
the integrated Sachs-Wolfe effect: all these observables
constrain themselves c2s and c2v and/or reduce the errors
on background parameters and therefore reduce also
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marginalized errors on perturbation quantities. These
interesting developments are left to future work.
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