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We derive a kinetic equation for chiral matter at nonzero chemical potential that governs the response of

the parity-odd part of the distribution function to perturbations of the Robertson-Walker metric. The

derivation is based on a recent evaluation of the gravitational polarization tensor at nonzero chemical

potential. We also provide the equations for gravity waves that follow from the anisotropic stress tensor

describing the lepton asymmetry. These equations can be used to assess the effects that a nonzero neutrino

chemical potential would have on the evolution of cosmological perturbations.
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The implications of the existence of gauge and gravita-
tional anomalies for relativistic hydrodynamics are currently
being systematically explored (see e.g. Refs. [1,2] and refer-
ences therein). Most of the work has focused on the new odd
susceptibilities and transport coefficients related to the parity
anomaly, and it has been realized that some of these quanti-
ties may be obtained from the variation of the equilibrium
partition function in the presence of a time-independent
background of themetric and gauge fields [3,4]. On the other
hand, the study of time-dependent processes requires the
evaluation of the appropriate Green’s functions at nonzero
frequency or, alternatively, the use of Boltzmann equations
describing the evolution of distribution functions in momen-
tum space. By considering the response to a background
electromagnetic field, the authors of Ref. [5] have obtained
a kinetic equation including the effects of triangle anomalies
and have also discussed the interplay between the kinetic and
field-theoretical approaches (see also Ref. [6]). As their
analysis does not include the gravitational response, in
order to complete the description it would be necessary to
consider the gravitational correlation function between
energy-momentum tensors.

The study of the thermal gravitational correlation func-
tion at nonzero frequency was performed some time ago by
Rebhan [7]. At very small momenta Q� ¼ ðq0; qÞ com-
pared to the temperature, he showed that this quantity is
proportional to the thermal energy density and has a uni-
versal tensorial structure that obeys the gravitational Ward
identities for diffeomorphism and conformal transforma-
tions [7]. Later, in Refs. [8,9] these field-theoretical results
were used to work out the evolution of cosmological
perturbations, showing that they provide an equivalent
description to that obtained from the kinetic approach
based on the Vlasov equation. More recently, the authors
of Ref. [10] have studied the parity-violating part of the
gravitational response of an ideal gas of Weyl fermions
at nonzero chemical potential �. This next-to-leading
contribution, which also satisfies the Ward identities, is

simply proportional to the net number density of chiral
fermions. At zero frequency its form may be used to deter-
mine the modifications of the constitutive relations of hy-
drodynamics that give rise to macroscopic parity-violating
effects, such as the chiral vortical effect. But, as far as we
know, the implications of the parity-odd contributions for
time-dependent gravitational perturbations have not been
much explored. Previous studies have only focused on the
effects of lepton asymmetry related to the dependence of
the anisotropic inertia on even powers of the chemical
potential [11], or at most have introduced effective inter-
actions generating cosmological birefringence [12].
In this work we will use the knowledge of the parity-odd

correlation function, denoted by �����
� ðq0; qÞ, to derive

the Boltzmann equation that governs the evolution of the
�-dependent part of the chiral fermion distribution. The
kinetic equation thus obtained turns out to be surprisingly
simple. It includes a source term proportional to the chemi-
cal potential. In this way, we complete the treatment in
Ref. [5]. Once adapted to the Robertson-Walker metric,
these results could be used to assess the effects of neutrino
asymmetry in the evolution of cosmological perturbations.
We first present the results of the thermal field-

theoretical calculation of �
����
� ðq0; qÞ in flat space-time.

The amount of the neutrino asymmetry for a given species
is described by the degeneracy parameter, defined by the

ratio of the chemical potential to the temperature �� ¼
�ð0Þ

� =T0, which is assumed to be small j��j � 1. In terms
of the Fermi-Dirac distribution functions

�n�ðpÞ � 1

ð2�Þ3
�
exp

�
p

T0

� ��

�
þ 1

��1
; (1)

the net unperturbed neutrino number density reads

�n�� �� �
Z 1

0
4�p2ð �nþðpÞ � �n�ðpÞÞdp ¼ T3

0

6

�
�� þ �3

�

�2

�

� T3
0��

6
: (2)

Here T0 is any arbitrary reference temperature, which in
the cosmological setting will be related to the equilibrium*manuel.valle@ehu.es
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temperature at the present time �Tðt0Þ through T0 ¼
�Tðt0Þaðt0Þ, with aðtÞ the Robertson-Walker scale factor.
The Fourier components of the perturbations to the
energy-momentum tensor are connected with metric per-
turbations h��ðt; xÞ ¼ g��ðt; xÞ � ���

1 by

	hT��ðQÞi ¼ � 1

2
�����ðq0; qÞh��ðQÞ; (3)

where the retarded graviton self-energy has been
defined by

�����ðx� yÞ � �i�ðx0 � y0Þh½T��ðxÞ; T��ðyÞ�i

� 2

�
	ð ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp

T��ðxÞÞ
	g��ðyÞ

��������g¼�

�
: (4)

The calculation from thermal field theory shows that the
thermal part of this response function receives a parity-
violating contribution proportional to the totally antisym-
metric symbol �. This contribution is tied to the helicity
of the equilibrium thermal state [13], and for Q � j��j,
T, it is suppressed by a factor ��Q=T with respect
to the leading-order temperature contribution proportional
to the energy density ���þ �� � 7�2T4=120. Because the
one-point function hT��i does not have any odd-parity
contribution, the graviton self-energy tensor verifies the
Ward identity Q��

����ðQÞ ¼ 0. Its explicit form is

given by

�����ðq0;qÞ¼ icVðq0;qÞ Q2

ðu �QÞ2þQ2
u
Q�½�
���P��

V

þ�
���P��
V þð�$�Þ�

þ icTðq0;qÞu
Q�½�
���P��
T þ�
���P��

T

þð�$�Þ�; (5)

where u� ¼ 	�
0 is the velocity of the plasma, and PL;T are

two projectors given by

P��
T ¼ ��� � 1

ðu �QÞ2 þQ2
½u �Qðu�Q� þ u�Q�Þ

þQ�Q� �Q2u�u��;
P
��
V ¼ ��� �Q�Q�

Q2
� P

��
T :

(6)

The two scalar functions cVðq0; qÞ and cTðq0; qÞ are

cVðq0; qÞ ¼ �n�� ��

�
3

10
Q1ðq0=qÞ � 3

10
Q3ðq0=qÞ

�
; (7)

cTðq0; qÞ ¼ �n�� ��

q0

q

�
� 1

10
Q0ðq0=qÞ þ 1

7
Q2ðq0=qÞ

� 3

70
Q4ðq0=qÞ

�
; (8)

where QjðxÞ are Legendre functions of the second kind.2

The functions above turn out to be the coefficients of the
gauge-invariant combinations of vector and tensor metric
perturbations in Eq. (3). In particular, for vector perturba-
tions, the asymmetry gives a nonzero contribution to the
energy-momentum tensor,

	hT0ii¼cVðq0;qÞi�ijkqjðGkþiq0CkÞ;
	hTiji¼cVðq0;qÞiq0ð�imnq̂mq̂jþ�jmnq̂mq̂iÞðGnþiq0CnÞ;

(9)

where q̂j ¼ qj=q, while for tensor perturbations the
induced contribution takes the form

	hTiji ¼ �cTðq0; qÞ�ilm	jniqlDmn þ ði $ jÞ: (10)

In these expressions we have followed the notation of
Ref. [14] for metric perturbations

h0i ¼ Gi; hij ¼ @Ci

@xj
þ @Cj

@xi
þDij; (11)

where Gjðt; xÞ and Cjðt; xÞ are solenoidal vector fields

describing the vector perturbation, and the traceless field
Dijðt; xÞ satisfying @iDij ¼ 0 describes the tensor

perturbation.
In order to obtain a kinetic formulation of these results, it

is necessary to introduce the distribution function in mo-
mentum space and then derive the Boltzmann equation that
governs it. The possible contributions to the perturbed
energy-momentum tensor from the neutrino asymmetry
may be written as

	T��ðt; xÞ ¼
Z d3p

p
	n�� ��ðx;p; tÞp�p�; (12)

where 	n�� ��ðt; x;pÞ is the perturbation to the equilibrium
neutrino distribution given by

n�� ��ðt; x;pÞ ¼ �nþðpÞ � �n�ðpÞ þ 	n�� ��ðt; x;pÞ; (13)

and p� ¼ pð1; p̂Þ. A comparison with Eq. (3) suggests
that the integral over p in the Fourier transform of Eq. (12)
may be viewed as the one-loop integral defining
� 1

2�
����ðQÞh��ðQÞ. The thermal field theory computa-

tion shows that, forQ � j�j,T, the corresponding integrand
is proportional to ðq0 � p̂ � qÞ�1. Thus, if in view of Eq. (12)
we identify it with 	n�� ��ðQ;pÞ; then we are left with
ð�iq0 þ ip̂ � qÞ	n�� ��ðQ;pÞ ¼ S��ðQ;pÞh��ðQÞ; (14)

where the functionS��ðQ;pÞ is determined by the numerator
of the one-loop integrand defining cV and cT . This relation is
indeed the Fourier transform of a kinetic equation of the
Vlasov type in flat space-time. It may be worth pointing

1��� ¼ diagð�1; 1; 1; 1Þ, �0123 ¼ 1.

2In Ref. [10] the expressions of cV and cT were written in
terms of Q1ðq0=qÞ solely, but for our purposes it is advantageous
to use this equivalent form.

MANUEL VALLE PHYSICAL REVIEW D 88, 041304(R) (2013)

RAPID COMMUNICATIONS

041304-2



out that this connection between the kinetic and thermal-field
treatments is quite common within the hard-thermal-loop
approximation.

Let us now derive the specific form of the kinetic equa-
tion corresponding to Eq. (14). As all the dependence of
the perturbation 	n�� ��ðQ;pÞ on p is contained in the
factor ð �n0þðpÞ � �n0�ðpÞÞ, the radial integration over p, in-
cluding the factor p�p�=p / p, produces the unperturbed
distribution �n�� �� of Eqs. (7) and (8). Thus, using a notation
similar to that of Ref. [14], it is convenient to define a
direction-dependent intensity3 KðQ; p̂Þ through

�n�� ��KðQ; p̂Þ �
Z 1

0
	n�� ��ðQ;pÞ4�p3dp: (15)

In view of Eq. (12), it follows in particular that KðQ; p̂Þ
must satisfy

�n�� ��

Z d2p̂

4�
KðQ; p̂Þp̂j ¼ 	T0

jðQÞ; (16)

�n�� ��

Z d2p̂

4�
KðQ; p̂Þp̂ip̂j ¼ 	Ti

jðQÞ; (17)

where 	T�
j ¼ 	T�j are given by Eqs. (9) and (10).4

To find the kinetic equation for KðQ; p̂Þ, we note that the
integral

Z d2p̂

4�
p̂ip̂n

p̂ � q
q0 � p̂ � qþ i0þ

¼ A2	in þ B2q̂iq̂n (18)

has the property that the coefficient A2 is exactly propor-
tional to the one-loop angular integral that yields the
coefficient cVðq0; qÞ,

A2 ¼ q

2

Z d2p̂

4�

ð1� p̂ � q̂2Þp̂ � q̂
q0 � p̂ � qþ i0þ

¼ 1

5
Q1ðq0=qÞ � 1

5
Q3ðq0=qÞ: (19)

Hence, the multiplication of Eq. (18) by �njkqjð�ak þ
iq0FkÞ yields the same structure proportional to T0i in
Eq. (9). Therefore, we may identify the contribution
to KðQ; p̂Þ that reproduces the effect from the vector
perturbation,

ð�iq0þip̂ �qÞKðQ;p̂Þ¼3

2
p̂ �qp̂n�njkqjðGkðQÞþiq0CkðQÞÞ:

(20)

It can be checked that, upon integration with p̂ip̂j, this

form of KðQ;pÞ reproduces the correct 	hTiji for the
vector perturbation in Eq. (9).

We can use a similar argument to find the contribution to
K from tensor perturbations. Now the integral

Z d2p̂

4�
p̂ip̂jp̂lp̂m

q

q0� p̂ �qþ i0þ

¼A4ð	ij	lmþ two similarÞþB4ð	ijq̂lq̂mþ five similarÞ
þC4q̂iq̂jq̂lq̂m (21)

has the coefficient A4 proportional to cTðq0; qÞ,

A4 ¼ q

8

Z d2p̂

4�

ð1� p̂ � q̂2Þ2
q0 � p̂ � qþ i0þ

¼ 1

15
Q0ðq0=qÞ � 2

21
Q2ðq0=qÞ þ 1

35
Q4ðq0=qÞ; (22)

while the others will not contribute to the contraction with
�q, because of the (anti)symmetry in the indices and the
transversality property qkDkn ¼ 0. Including the prefactor
q0=q of Eq. (8) and using Eq. (17), one obtains the kinetic
equation for the intensity perturbation that reproduces the
parity-violating effects from tensor fluctuations,

ð�iq0 þ ip̂ � qÞKðQ; p̂Þ ¼ 3

2
q0p̂i�imnqmp̂jDnjðQÞ: (23)

The extension of these results to perturbations of the
Robertson-Walker metric can be made by exploiting the
invariance under conformal transformations. The graviton
self-energy is defined by

�����ðx; yÞ ¼ �4
	�

	g��ðxÞ	g��ðyÞ
��������g¼ �g

¼ �2
	

	g��ðxÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

�gðyÞ
q

hT��ðyÞi
���������g¼ �g

;

(24)

where �g is a background metric. Since the thermal contri-
bution to the underlying effective action �½g��� is confor-
mally invariant, the graviton self-energy for a conformally
flat background g��ðxÞ ¼ �2ðxÞ��� reads

�����ðx;x0Þ¼��2ðxÞ�����ðx�x0Þjg¼��
�2ðx0Þ: (25)

As a consequence, the combination
ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp

	T�
�ðxÞ is

conformally invariant, and may be evaluated from the al-
ready computed 	T�

�ðxÞjg¼�. Therefore, it is convenient

to write the perturbed metric of the expanding universe as

ds2 ¼ �2ð�Þð��� þ h��ð�; xÞÞdx�dx�; (26)

where � ¼ R
dta�1ðtÞ is the conformal time, and �ð�Þ ¼

aðtÞ. By making the replacements�iq0 ¼ @� ! aðtÞ@t and
iqj ! @j, we are left with the kinetic equation for the

intensity perturbation Kðt; x; p̂Þ,

3The leading perturbation 	n�þ ��ðQ;pÞ depends on p through
the combination pð �n0þðpÞ þ �n0�ðpÞÞ, and the radial integral of
	n�þ ��ðQ;pÞp3 yields a factor proportional to the unperturbed
energy density ���þ ��.

4The spatial indices may be lowered with 	jk, so that p̂i ¼ p̂i.
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@Kðt; x; p̂Þ
@t

þ p̂i

aðtÞ
@Kðt; x; p̂Þ

@xi

¼ 3

2
p̂ip̂j�imn

@

@xm

�
@Djn

@t
þ @2Cn

@xj@t
� 1

aðtÞ
@Gn

@xj

�
: (27)

By assuming that the degeneracy parameter �� is preserved
in the cosmic expansion, the relation (15) between the
intensity Kðt; x; p̂Þ with dimensions of energy and 	n�� ��

may be written as

a3ðtÞ �n�� ��ðtÞKðt;x;p̂Þ¼
Z 1

0
	n�� ��ðt;x;pÞ4�p3dp; (28)

where the fermion asymmetry �n�� ��ðtÞ � �T3ðtÞ��=6 has
now been expressed in terms of the equilibrium tempera-
ture �TðtÞ ¼ T0=aðtÞ in the comoving system. With this
relation and Eq. (27), one obtains the Boltzmann equation
for the perturbation 	n�� ��ðt; x;pÞ,

@	n�� ��ðt; x;pÞ
@t

þ p̂i

aðtÞ
@	n�� ��ðt; x;pÞ

@xi

¼ � 1

2
ð �n0þðpÞ � �n0�ðpÞÞp̂ip̂j�imn

@

@xm

	
�
@Djn

@t
þ @2Cn

@xj@t
� 1

aðtÞ
@Gn

@xj

�
: (29)

To determine the components 	T0
jðt; xÞ and 	Ti

jðt; xÞ in
the usual comoving coordinates, we can use the relations

�4ð�Þ	T�
jð�;xÞ¼a3ðtÞ	T0

jðt;xÞ¼	T�
jð�;xÞjg¼�; (30)

�4ð�Þ	Ti
jð�;xÞ¼a4ðtÞ	Ti

jðt;xÞ¼	Ti
jð�;xÞjg¼�; (31)

which lead to

	T0
jðt; xÞ ¼ �n�� ��ðtÞ

Z d2p̂

4�
Kðt; x; p̂Þp̂j; (32)

	Ti
jðt; xÞ ¼

�n�� ��ðtÞ
aðtÞ

Z d2p̂

4�
Kðt; x; p̂Þp̂ip̂j: (33)

The simplicity of the source terms in Eq. (27) or Eq. (29)
is remarkable. A nice feature of this result is that, in the
absence ofGn, the effect of the coefficients cV and cT in the
kinetic equation enter through the single combination of
vector and tensor quantities corresponding to the spatial
perturbation of the metric, a�2	gij ¼ Dij þ @jCi þ @iCj.

This is similar to what happens in the Boltzmann equation
[9,15] for the leading even-parity density perturbation
	n�þ ��ðt; x;pÞ,
@	n�þ ��ðt; x;pÞ

@t
þ p̂i

aðtÞ
@	n�þ ��ðt; x;pÞ

@xi

¼ 1

2
pð �n0þðpÞ þ �n0�ðpÞÞp̂jp̂n

@

@t

�
Djn þ @Cn

@xj
þ @Cj

@xn

�
:

(34)

The relation between the field theory approach and the one
based on kinetic theory has been recently established in
Ref. [5], where the authors have considered the effects of
triangle anomalies without any metric perturbation. The
previous treatment completes the derivation of the kinetic
equation by including parity-violation effects from chiral
matter in the presence of a weak time-dependent gravita-
tional field.
It is instructive to write the explicit form of the odd-

parity corrections to the anisotropic inertia and to compare
them with the leading contributions proportional to the
energy density ���þ ��ðtÞ. Here we reproduce for conve-
nience the governing equations for these quantities [14],

@Jðt; x; p̂Þ
@t

þ p̂i

aðtÞ
@Jðt; x; p̂Þ

@xi

¼ �2p̂jp̂n

�
@Djn

@t
� 2

aðtÞ
@ ~Gj

@xn

�
; (35)

	T0
jðt; xÞ ¼ aðtÞ ���þ ��ðtÞ

Z d2p̂

4�
Jðt; x; p̂Þp̂j; (36)

	Ti
jðt; xÞ ¼ ���þ ��ðtÞ

Z d2p̂

4�
Jðt; x; p̂Þp̂ip̂j; (37)

where ~Gj � Gj � a@tCj. In order to find the time depen-

dence of 	T�
�, we could use Eqs. (9) and (10), and

evaluate the inverse Fourier transforms. But it is better to
integrate the Vlasov equations, and then compute Eqs. (32)
and (36), because the initial conditions are more clearly
introduced in this way. With the standard expansion in
plane waves eiq�x, this procedure yields the time depen-
dence of Kðt; q; p̂Þ and Jðt; q; p̂Þ, which upon evaluation of
the integrals in Eqs. (32) and (36) for a vector perturbation
yields

	T0
jðt;qÞ¼ ~gjðt;qÞþ4aðtÞ ���þ ��ðtÞ

Z u

0

j2ðu�u0Þ
u�u0

~Gjðt0;qÞdu0

�3

2
�n�� ��ðtÞq

Z u

0

j2ðu�u0Þ
u�u0

�jmniq̂m ~Gnðt0;qÞdu0;
(38)

where u is proportional to the conformal time,

u ¼ q
Z t

t1

dt0

aðt0Þ ; (39)

and ~giðt; qÞ is any arbitrary invariant contribution satisfying
qj~gj ¼ 0. This may be traced to the solution of the Vlasov

equation in the absence of sources for a specific initial
condition Jðt1; q; p̂Þ,

~g iðt; qÞ ¼ aðtÞ
Z d2p̂

4�
exp

�
�ip̂ � q

Z t

t1

dt0

aðt0Þ
�
Jðt1; q; p̂Þp̂i:

(40)

In the case of tensor modes the total contribution to 	Tk
j

reads

MANUEL VALLE PHYSICAL REVIEW D 88, 041304(R) (2013)

RAPID COMMUNICATIONS

041304-4



	Tk
jðt;qÞ¼ ~dkjðt;qÞ�4 ���þ ��ðtÞ

Z u

0

j2ðu�u0Þ
ðu�u0Þ2

@Dkjðt0;qÞ
@t0

dt0 þ3

2

�n�� ��ðtÞq
aðtÞ

Z u

0

j2ðu�u0Þ
ðu�u0Þ2

�
�kmniq̂m

@Djnðt0;qÞ
@t0

þðk$ jÞ
�
dt0;

(41)

where the traceless divergenceless part ~dkjðt; qÞ plays the
same role as before. The kernels with spherical Bessel
functions arise from the integrals

Z d2p̂

4�
e�ip̂�q̂up̂� q̂p̂ip̂j¼�i

j2ðuÞ
u

	ijþ���;
Z d2p̂

4�
e�ip̂�q̂up̂ip̂jp̂lp̂m¼j2ðuÞ

u2
ð	ij	lmþ twosimilarÞþ���;

(42)

and, as expected, they exactly agree with the inverse
Fourier transform of cV and cT ,

Z 1þi0þ

�1þi0þ

dq0

2�
e�iq0�

�
3

10
Q1ðq0=qÞ � 3

10
Q3ðq0=qÞ

�

¼ � 3

2

j2ðq�Þ
�

�ð�Þ;
Z 1þi0þ

�1þi0þ

dq0

2�
e�iq0�

�
� 1

10
Q0ðq0=qÞ þ 1

7
Q2ðq0=qÞ

� 3

70
Q4ðq0=qÞ

�
¼ 3i

2q

j2ðq�Þ
�2

�ð�Þ: (43)

To conclude, let us consider in more detail the equation
for the tensor modes. If we choose the polarization tensors
ejnðq̂; 
Þ to be the ones produced by the rotation which

takes ẑ ! q̂, where

ejnðẑ; 
 ¼ �2Þ ¼
1ffiffi
2

p i

2
ffiffi
2

p 0

i

2
ffiffi
2

p � 1ffiffi
2

p 0

0 0 0

0
BBB@

1
CCCA; (44)

one can easily check the identity

�kmniq̂mejnðq; 
Þ þ �jmniq̂meknðq; 
Þ ¼ 
ekjðq; 
Þ: (45)

Thus the decomposition of the tensor modes according to

Djnðt; qÞ ¼
X



ejnðq; 
ÞDðt; q; 
Þ (46)

leads to decoupled equations for the quantities Dðt; q; 
Þ.
In the absence of ~djn, the Einstein equations adopt the form

16�G

�
�4 ���þ ��ðtÞ þ 3


2

�n�� ��ðtÞq
aðtÞ

�Z u

0

j2ðu� u0Þ
ðu� u0Þ2

	 @Dðt0; q; 
Þ
@t0

dt0 ¼ @2D
@t2

þ 3 _aðtÞ
aðtÞ

@D
@t

þ q2

a2
D: (47)

Due to the nonzero net neutrino number, these equations
are no longer independent of the helicity 
, but for each
helicity the equation has the same previously known form
[15], and the same techniques may be used to find solutions
[16]. The main effect of �n�� �� is to produce birefringence or
a splitting of the two helicities, which increases linearly
with q. The relative size of this correction is therefore
wave-number dependent, �n�� ��q= ��a
 ��q= �Ta. Whether
this has a non-negligible impact on the spectrum of pri-
mordial gravity waves is an issue to be further considered.
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