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We reexamine a recently proposed scenario where the deformed dispersion relations associated with a

flow of the spectral dimension to a UV value of 2 leads to a scale-invariant spectrum of cosmological

fluctuations, without the need for inflation. In that scenario Einstein gravity was assumed. The theory

displays a wavelength-dependent speed of light but by transforming to a suitable ‘‘rainbow frame’’ this

feature can be removed, at the expense of modifying gravity. We find that the ensuing rainbow gravity

theory is such that gravity switches off at high energy (or at least leads to a universal conformal coupling).

This explains why the fluctuations are scale invariant on all scales: there is no horizon scale as such. For

dispersion relations that do not lead to exact scale invariance we find instead esoteric inflation in the

rainbow frame. We argue that these results shed light on the behavior of gravity under the phenomenon of

dimensional reduction.
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I. INTRODUCTION

In a recent paper [1] we examined the spectrum of
cosmological fluctuations (scalar and tensor) expected
under the following modified dispersion relations (MDR):

E2 ¼ p2ð1þ ð�pÞ2�Þ: (1)

Our calculation assumed Einstein gravity and that these
MDR were realized within a higher order field theory with
higher than second order spatial derivatives only. With
these assumptions we found that � ¼ 2 leads to an
exactly scale-invariant spectrum without the need to
appeal to inflation. The fluctuations are produced by a
mechanism analogous to that of varying speed of light/
sound models [2–4].

This is very interesting because that particular disper-
sion relation (� ¼ 2) is associated with a running of the
spectral dimension to dS ¼ 2 in the UV (see for example
[5,6]). There is mounting evidence, from a variety of
fields, supporting the presence of such UV dimensional
reduction [5–18]. More generally,

dS ¼ 1þ D

1þ �
(2)

(we shall assume throughout that the number of spatial
dimensions D is 3). For � ¼ 2 scale invariance is realized
universally, regardless of the background equation of
state [1]. The scale invariance is also present while the
modes are inside the horizon, being preserved as they leave
it. It is important to understand better the origin of this
pervasive scale invariance, and how it depends on the
various assumptions made in the calculation.

If these MDR are valid, then we have a frequency-
dependent speed of light. However, we can undo the effect
by redefining the units, for example by changing the unit of
time used at a given energy scale, or by changing the units

of momentum. As usual, such redefinitions merely shift
the nontrivial effects elsewhere. Sometimes the ensuing
picture is awkward enough to justify sticking to the origi-
nal choice of units. Other times the equivalent picture
brings new insights into the phenomenon under study,
presenting a useful ‘‘dual’’ description, as we hope will
be the case in this paper.
The purpose of this paper is to transform the calculations

in [1] into a system of units in which c becomes constant.
This is the so-called rainbowmetric frame [19]. In so doing
we no longer have Einstein gravity (valid in the original
units, the ‘‘Einstein frame’’). The proposed operation is
very similar to transforming from the Einstein frame (with
a varying G) to the Jordan frame (with a constant G) in
Brans-Dicke theory. Our purpose is to characterize gravity
in the rainbow metric frame, hoping to gain intuition into
the results obtained in [1], and more generally into the
phenomenon of dimensional reduction at high energies. As
we will see dS ¼ 2 is once again very strongly singled out.

II. RAINBOW GRAVITYAND
LINEARIZING VARIABLES

‘‘Linearizing variables’’ or ‘‘linearizing units’’ are those
that render the dispersion relations trivial. Usually they
shift the nontrivial effects to the interactions (which are
only ‘‘minimal’’ in the original units). A simple way to
change variables so as to obtain nondeformed MDR is to
change the time variable. Given the invariance of x�p�

under such changes of units we can infer that this is
equivalent to choosing a new unit for the energy [20].
Specifically, since x�p� ¼ Et� p � x, a ‘‘linearizing

time’’ (leaving x unchanged) must correspond to rearrang-
ing Eq. (1) as E2f2ðEÞ ¼ p2, and then defining new units
~E ¼ EfðEÞ and ~t ¼ t=fðEÞ. In the UV, ~E ¼ ðE=�2Þ1=3.
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The new time unit is energy dependent, signaling the
appearance of a rainbow metric.

In the context of bimetric theories (where there is a light
cone for matter and another for gravity) such a change of
time variable is equivalent to transforming from the
‘‘Einstein’’ to the ‘‘matter’’ frame. The trick was used
in [21,22] to derive the cubic action for theories with a
varying speed of sound [2,3] and their non-Gaussianities.
The idea is to replace the standard conformal time � by a
‘‘fixed-c’’ time �, such that d� ¼ csð�Þd�. This is a dis-
formal transformation and in the new units the tachyonic
mass term describing the Jean’s instability carries the
information which was previously present in the speed of
sound profile.

The same thing can be done here, but with a couple of
crucial differences. Most importantly the matter frame is
now momentum/energy dependent. Indeed the light cone
of matter, as seen in the Einstein frame, depends on its
frequency. This sets up a rainbow metric, as proposed in
[19]. Since modes are labeled by a comoving k (so that the
physical momentum is p ¼ k=a) the rainbow metric is
both k and time dependent. At high energies (�p � 1)

c �
�
�k

a

�
�
: (3)

Therefore by changing the time unit so as to make c
constant, we are necessarily disformally transforming not
to a single frame, but to a class of frames labeled by k.

Furthermore a direct application of [21,22] would
suggest d� ¼ cd�. Since c ¼ cðk; �Þ this is a nonclosed
form (d2� � 0) and so the coordinate � would not exist.
We can either live with this (i.e. work with a noncoordinate
basis) or define instead

� ¼
Z

cðk; �Þd� (4)

so that

d� ¼ cd�þ
�Z @c

@k
d�

�
dk: (5)

The full Jacobian of the transformation should then be
considered in all calculations.

We note that setting up a rainbow metric may have its
problems. One may ask, for example, with respect to which
momentum is the metric to be defined? There are a variety
of answers to this question, but we note that these potential
ambiguities are not present in the context of our paper. We
are working within the framework of linearized cosmo-
logical perturbation theory, so it is completely clear what
the wave number k means when we define the rainbow
metric.

III. THE QUADRATIC ACTION
IN THE RAINBOW FRAME

We now examine the linearized fluctuations’ dynamics,
including gravity, as seen in the new frame. Let � be the

curvature fluctuation, so that the quadratic action in the
Einstein frame (i.e. using �-time) is

S2 ¼
Z

d3kd�a2½� 02 þ c2k2�2�: (6)

This leads to the dynamical equation

v00 þ
�
c2k2 � a00

a

�
v ¼ 0; (7)

with � ¼ �v=a (notice that the usual variable z here is just
the expansion factor a). The action for v is the standard
Minkowski action when the modes are ‘‘inside the hori-
zon’’ [i.e. when the first term in v in (7) dominates], and it
is in terms of v that we should proceed with second
quantization and evaluate the vacuum fluctuations.
We can write the action for curvature perturbations in

terms of the new time variable � taking into account the full
Jacobian of the transformation (which however boils down
to a single derivative anyway). The result is

S2 ¼
Z

d3kd�y2
��

d�

d�

�
2 þ k2�2

�
(8)

with

y ¼ a
ffiffiffi
c

p
: (9)

The equation of motion is now

d2v

d�2
þ

�
k2 � 1

y

d2y

d�2

�
v ¼ 0 (10)

with

� ¼ �v

y
: (11)

Also here, the action for v is the standardMinkowski action
when the modes are inside the horizon, and the calculations
of the vacuum fluctuations in that regime follow through as
before. But we stress that the relation between � and v has
also changed by changing to the new frame.

IV. SCALE INVARIANCE AND CONFORMAL
INVARIANCE FOR �¼ 2

In the rainbow frame we obtain a remarkable insight into
the � ¼ 2 case, and why it leads to scale invariance inside
and outside the horizon, and for all equations of state [1].
We find that for all equations of state, when �p � 1,
we have

y ¼ a
ffiffiffi
c

p � �k; (12)

since c ¼ ð�k=aÞ2 [cf. Eq. (3)]. This means that the
variable y controlling Jean’s instability becomes time
independent, so that the usual mass term, y00=y, disappears.
The perturbation equation in the rainbow frame for all
equations of state becomes the free harmonic oscillator
equation:
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d2v

d�2
þ k2v ¼ 0; (13)

i.e. the theory does not know about expansion and so does
not care about horizons.

This is actually what happens in the standard (Einstein)
theory for radiation (by which we mean undeformed
radiation) as a result of its conformal invariance. Then
a / � and so the mass term vanishes:

z00

z
¼ a00

a
¼ 0; (14)

signaling the conformal invariance of radiation. But for
� ¼ 2, as seen in the rainbow frame, this happens for
all equations of state. Everything seems to be confor-
mally invariant in the rainbow frame, and so fails to feel
the effects of gravity in a flat Friedmann model (which is
conformal to Minkowski space-time). Why this is the case
remains to be better understood, but it could be an impor-
tant insight into gravity subject to dimensional reduction,
with UV spectral dimension 2.

Why do we end up with a scale-invariant spectrum? This
may seem surprising because for undeformed radiation it
does not happen. With undeformed radiation and Einstein

gravity, for all modes v is normalized as 1=
ffiffiffi
k

p
, and so we

end up with ns ¼ �1. The situation is different here due to
a remarkable property. Although y is time independent, it is
still k dependent. Therefore,

� ¼ � v

�k
; (15)

i.e. the field redefinition which takes us from � to v (and a
Minkowski-like action in the right limit) is k dependent.
Consequently, even though

v ¼ e�ik�ffiffiffiffiffi
2k

p (16)

we have

� ¼ e�ik�ffiffiffi
2

p
�k3=2

; (17)

i.e. a scale-invariant spectrum,

� ¼ 1ffiffiffi
2

p
�k3=2

(18)

in the regime k� � 1.
Our findings explain the pervasive scale invariance

found for � ¼ 2. Firstly, it is found inside and outside
the horizon because in the UV (when fluctuations are
produced) there are no horizons, since gravity drops out
of the picture. Secondly, the transformation relating the
observable � and the variable v (subject to standard second
quantization) becomes nonlocal in the rainbow frame.
Specifically the action for � is

S2 ¼
Z

d3kd�ð�kÞ2
��

d�

d�

�
2 þ k2�2

�
; (19)

which becomes

S2 ¼
Z

d3kd�

��
dv

d�

�
2 þ k2v2

�
(20)

via (15). However this field ‘‘redefiniton’’ is k dependent,
i.e. it involves gradients:

v� �r� (21)

unlike in the usual case. This brings about scale invariance
in � , which is now a nonlocal field theory (as opposed to v).

V. DUAL ‘‘INFLATION’’ FOR � � 2

The main objective of Ref. [1] was to expose a strong
link between the choice � ¼ 2, representative of quantum-
gravity scenarios with running of spectral dimensions to
dS ¼ 2 in the UV, and scale invariance. But it is now firmly
established [23] that the spectrum cannot be exactly scale
invariant, so we need some departures from the � ¼ 2
picture. A particularly simple and perhaps appealing pos-
sibility for producing such departures from exact scale
invariance is to have� slightly lower than 2, and dS slightly
higher than 2 (as examined in [1]). It is then interesting to
ask how � � 2 would manifest itself in the rainbow frame.
As explained in [1], when � � 2 we solve the horizon

problem in the Einstein frame with a varying speed of light
as long as

� 1

3
<w<

2�� 1

3
: (22)

It is then obvious that under this condition something
unusual must happen to gravity in the rainbow frame, since
the physical results cannot have changed, and so gravity
must be taking care of the horizon problem. For � ¼ 2 the
answer is that gravity simply dropped out of the picture,
and so the problem is resolved just like in Minkowski
space-time. For � � 2 we find that for all equations of
state satisfying (22) we have inflation in the dual frame.
This is easy to see explicitly. Since

a / �
1

��1 (23)

with � ¼ 3
2 ð1þ wÞ, where w ¼ p=� is the equation of

state, we have that

�� / ð�kÞ��1� �
��1; (24)

noting that if (22) is satisfied, then the transformation
changes the sign of the time variable. Therefore the expan-
sion factor is

a / ð��Þ 1
��1�� (25)

and we generally have accelerated expansion, but without
an inflationary equation of state.
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Indeed by comparing (23) with (25) it appears that in the
rainbow frame we feel an ‘‘effective’’ equation of state
given by

~w ¼ w� 2

3
�; (26)

in the sense that the universe expands as if it were under
Einstein gravity, but with this matter content. This formula
is completely general, but in the observationally relevant
case of � slightly smaller than 2 we find ~w � w� 4

3 . As we

see w< 1 is necessary to generate effective inflation in
the rainbow frame ( ~w<�1=3). It is curious that radiation
(w ¼ 1=3) leads to effective de Sitter expansion ( ~w ¼ �1)
in the rainbow frame.

This ‘‘esoteric’’ inflation in the rainbow frame is not new
in the literature [24]. Its most interesting feature is that it
may be realized purely by rainbow gravity, rather than
violations of the standard energy conditions. Its existence
could lead to a whole new set of questions, namely why is it
that MDRs do solve the flatness problem? This is far from
obvious in the Einstein frame, yet it is evident in the
rainbow frame.

We add that (1) is the most general MDR generating a
power-law speed of light profile in the Einstein frame, and
constant-w inflation in the dual frame. MDRs that do not
fall under (1) can lead, in the dual frame, to inflation with a
varying equation of state, such as intermediate or grad-
uated inflation [25–27]. A straightforward adaptation of the
argument above shows that if E2 � p2g2ðpÞ in the UV, we
obtain an effective equation of state in the rainbow frame:

~w ¼ w� 2

3

g;pp

g
: (27)

This generalizes (26), but if gðpÞ is not a power law the
second term is not a constant (and it depends on � via a,
and on a via p ¼ k=a), leading to ~w ¼ ~wð�Þ. We defer to a
future publication a more thorough investigation of these
scenarios.

VI. CONCLUSIONS

In this paper we have obtained interesting insights into
gravity’s behavior under UV dimensional reduction.
Our insights were obtained on the basis of a specific

cosmological calculation, and therefore are a hint based
on a test case, rather than proof. Yet, the suggestion seems
to be that UV running to ds ¼ 2 leaves all matter confor-
mally coupled and/or blind to the effects of gravity, in the
framewhere the dispersion relations are rendered trivial. In
fact this applies to gravitons as well (see the discussion
in [1]), so these also do not feel the background expansion
in the rainbow frame. How general this result is remains to
be investigated.
The discovery that matter is always conformally coupled

to gravity in the dual frame sheds light on our results in
[1], where we found scale invariance inside and outside
the horizon, without the usual transfer function (such as in
inflation, where the spectrum goes from ns¼�1 to ns ¼ 1
as it leaves the horizon). The spectra inside and outside the
horizon are the same because the theory is conformally flat
and so there is no horizon. However, in the standard case
where this happens (undeformed radiation with Einstein
gravity), this leaves us with the wrong spectrum, ns ¼ �1.
Not so here, because the transformation between the
observable � and the variable v subject to standard second
quantization is k dependent in the UV, and so nonlocal. The
k dependence is such that it leaves the spectrum in � scale
invariant, even if that of v is not.
When � is not exactly 2 the situation is different. As we

pointed out in [1], the observed departures from scale
invariance [23] could be explained by a very long UV
transient to the asymptotic value of 2. But it could also
be that the UV asymptotic value of dS is slightly higher
than 2, with � slightly smaller than 2. Then, as we showed
in Section V, we find that we have accelerated expansion in
the rainbow frame even without an inflationary equation of
state. Furthermore we are able to produce a near scale-
invariant spectrum even without being near a deSitter
phase.
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