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Avenida Rovisco Pais 1, 1049 Lisboa, Portugal

2Institute for Theory and Computation, Harvard-Smithsonian CfA, 60 Garden Street, Cambridge, Massachusetts 02138, USA
(Received 19 July 2013; published 8 August 2013)

We consider the imprint of super-radiant instabilities of nonevaporating primordial black holes (PBHs)

on the spectrum of the cosmic microwave background (CMB). In the radiation-dominated era, PBHs are

surrounded by a roughly homogeneous cosmic plasma which endows photons with an effective mass

through the plasma frequency. In this setting, spinning PBHs are unstable to a spontaneous spindown

through the well-known ‘‘black hole bomb’’ mechanism. At the linear level, the photon density is trapped

by the effective photon mass and grows exponentially in time due to super-radiance. As the plasma density

declines due to cosmic expansion, the associated energy around PBHs is released and dissipated in the

CMB. We evaluate the resulting spectral distortions of the CMB in the redshift range 103 & z & 2� 106.

Using the existing COBE/FIRAS bounds on CMB spectral distortions, we derive upper limits on the

fraction of dark matter that can be associated with spinning PBHs in the mass range 10�8M� & M &

0:2M�. For maximally spinning PBHs, our limits are much tighter than those derived from microlensing

or other methods. Future data from the proposed PIXIE mission could improve our limits by several orders

of magnitude.
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I. INTRODUCTION

Primordial black holes (PBHs) could have formed due to
large density fluctuations in the early Universe [1,2]. They
acquire the mass contained within the particle horizon at
the time they were formed, and PBHs formed in the first
few seconds would span a wide range of masses, 10�5 g<
M< 105M�. PBHs provide unique probes of early cos-
mology and high-energy physics; for example, PBH pro-
duction could have been enhanced during phase transitions
when the cosmic pressure suddenly declined [3], and it is
very sensitive to non-Gaussianity [4]. Since PBHs are
collisionless and nonrelativistic, they are natural dark
matter (DM) candidates.

PBHs with mass M & 10�18M� would have evaporated
by the present time through their emission of Hawking
radiation [5,6]. The lack of detected � rays from PBHs
withM & 10�18M� puts very stringent constraints on their
present density [7]. Hence, experimental and theoretical
attempts to constrain PBHs has focused on nonevaporating
PBHs with mass M> 10�18M�. Constraints on the DM
fraction in PBHs were derived in the range M> 10�7M�,
based on dynamical [8,9], microlensing [10–13] and astro-
physical [14–16] effects (see Ref. [1] for an overview). On
the other hand, the interval 10�18M� & M & 10�7M� is
still poorly constrained. In this mass range, light PBHs can
satisfy big bang nucleosynthesis and cosmic microwave
background (CMB) limits, and make up the DM. Although

more massive PBHs are ruled out as the sole DM constit-
uents, they might still play an important role in cosmology;
e.g. PBHs with M� 103M� might seed the growth of
supermassive BHs at redshift z * 6 due to accretion in
the matter-dominated era [15].
In this paper we point out that if PBHs are formed with a

nonvanishing spin, then a novel mechanism can be used to
derive very stringent theoretical bounds on their abundance
in the mass range 10�8M� & M & 0:2M�. All existing
constraints on PBHs have ignored their spin; while this
assumption is justified for evaporating PBHs (because spin
is radiated faster than the mass [17]), we will show here
that the spin of nonevaporating PBHs could affect dramati-
cally their impact on the CMB.
There is no fundamental reason to believe that PBHs are

formed with a vanishing angular momentum. In fact, all
mechanisms that were proposed for PBH formation in the
early Universe (e.g. bubble collisions, collapse of string
loops, or density fluctuations during inflation [18]) should
naturally produce nonzero PBH spin. Thus, it is particu-
larly important to understand how the inclusion of spin
would modify current constraints on the DM fraction in
PBHs.
An effect that comes into play when BHs possess non-

zero angular momentum is super-radiance [19]. A low-
frequency bosonic wave scattered off a spinning BH is
amplified when its frequency satisfies the super-radiant
condition !<m�H, where m is the azimuthal number
of the wave and �H is the angular velocity of the BH
horizon. In 1972, Press and Teukolsky proposed that if a
BH was surrounded by a reflecting surface, successive
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super-radiant amplifications would trigger an instability,
dubbed a ‘‘BH bomb’’ [20,21]. In this process, angular
momentum is extracted from the BH until the super-radiant
condition is saturated. A natural way to provide successive
reflections is when the BH interacts with a massive bosonic
field [22–24], since in this case the mass may confine
low-frequency perturbations within a region �1=!p.

Massive standard-model particles (e.g. pions) might trigger
super-radiant instabilities of isolated PBHs with mass
M & 10�18M� [23].

Interestingly, if the BH is not isolated but surrounded
by a hot plasma, even photons acquire an effective mass
given (in natural units G ¼ c ¼ ℏ ¼ 1) by the plasma
frequency [25,26]

!p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�e2n=me

q
; (1)

where n is the electron density and me and e are the
electron mass and charge, respectively. As shown below,
the interaction with the plasma spontaneously triggers a
super-radiant instability of spinning PBHs over a wide (and
presently poorly constrained) range of masses. Because the
mean density of the cosmic gas decreases as the Universe
expands, the instability of PBHs with different masses is
effective at different redshifts.

As a result of the instability, PBHs transfer part of their
angular momentum and mass to the electromagnetic (EM)
field, whose energy density grows exponentially in their
vicinity (see Ref. [27] for a similar discussion in the case
of axions around astrophysical BHs). As the gas density
declines during cosmic expansion, the associated energy is
dissipated into the CMB, potentially leading to spectral
distortions from a perfect blackbody spectrum [28]. Using
COBE/FIRAS data [29], we have estimated the upper

bounds on the DM fraction in spinning PBHs. Our results
are summarized in Fig. 1 and discussed in detail through
the rest of the paper.

II. PLASMA-TRIGGERED SUPER-RADIANT
INSTABILITIES

We consider a spinning BH surrounded by a plasma. If
the total mass of the surrounding matter is sufficiently
small, its gravitational backreaction is negligible and the
background spacetime is uniquely described by the Kerr
metric. The latter is defined by only two parameters, the
mass M and the dimensionless spin parameter ~a � J=M2,
where J is the BH angular momentum. Photons interacting
with the plasma acquire an effective mass given by Eq. (1)
[25]. As a consequence of the modified dispersion relation,
Maxwell equations within the plasma in flat spacetime read

r�F
�� ¼ !2

pA
�; (2)

where F�� ¼ @�A� � @�A�, and A� is the vector poten-

tial. The equation above is also valid in curved spacetime
as long as the background is slowly varying compared to
!�1

p and the density gradient is small compared to the

gravitational field [26].
Equation (2) has been studied in detail on a Kerr

background for !p ¼ const, when it coincides with the

well-known Proca equation governing the dynamics of a
massive spin-1 field in vacuum. The same equation governs
the dynamics of standard (massless) photons which
acquire an effective mass due to their interaction with a
homogeneous plasma.
For !p � 0, Eq. (2) does not admit separation of

variables in the Kerr background, and one has to resort to
approximate schemes in the frequency domain [30,31] or
to a time evolution [32]. As shown in Refs. [30,31], at
linear level the system develops a super-radiant instability,
similar to that occurring for a massive scalar field around
a Kerr BH [22–24,27,33]. The instability is regulated by
the dimensionless parameter M!p, and it is maximum

when M!p � 0:4 and for nearly extremal BHs [32].

It is particularly convenient to estimate the instability
time scale in the frequency domain. Fourier-decomposing

the fields as A�ðt; ~xÞ ¼
R
d!e�i!t ~A�ð!; ~xÞ, where ! ¼

!R þ i!I and using a slow-rotation framework, we can
estimate the frequency !R of the unstable modes and the
instability time scale �SR ¼ !�1

I in the smallM!p limit as

follows [31]:

!2
R �!2

p

�
1�

�
M!p

‘þ N þ Sþ 1

�
2
�
þOð!4

pÞ; (3)

M��1
SR � �S‘ð~am� 2rþ!pÞðM!pÞ4‘þ5þ2S; (4)

where rþ is the horizon radius, ‘ is the harmonic index of
the corresponding mode, N is an integer, S ¼ �1, 0 is the
mode polarization, and �S‘ is a numerical coefficient.
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FIG. 1 (color online). Upper limits on the mass fraction of DM
in PBHs with masses in the range 10�9M� <M< 102M�. The
solid blue curve is the theoretical constraint derived in this paper
using COBE/FIRAS data [29]. The dashed red line is the
expected limit from the proposed PIXIE experiment [39]. Our
limits are plotted for maximally spinning PBHs with h~ai ¼ 1 and
scale roughly as 1=h~ai (see text for details). The limits from other
methods are adopted from Ref. [1].
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Although the above results have been derived to second
order in ~a, numerical simulations in the near-extremal
(~a ¼ 0:99) regime agree with an extrapolation of the above
formulas to within a factor of 2 [32].

The time-averaged angular momentum flux _LH and
energy flux _EH across the BH horizon satisfy [27,34]

_LH ¼ m

!R

_EH / mð!R �m�HÞj�ðr; #Þj2; (5)

where �H ¼ ~a=ð2rþÞ and �ðr; #Þ are the angular and
radial components of the field amplitude in Fourier space,

whose time dependence is exponential, / et=�SR , in the
super-radiant regime. Equation (5) implies that if the
super-radiant condition is met, !R <m�H, the angular
momentum and energy fluxes across the horizon are
negative; i.e. the instability extracts energy from the BH
and transfers it to the EM field [27].

III. PRIMORDIAL BLACK HOLE BOMBS

PBHs formed in the early Universe are surrounded by a
mean cosmic electron density,

n ¼ n0ð1þ zÞ3 � 220 cm�3

�
1þ z

103

�
3
; (6)

as a function of redshift z, which translates to a time-
dependent plasma frequency through Eq. (1). If the cos-
mological evolution occurs on a much longer time scale
than the BH evolution, we can adopt an adiabatic approxi-
mation and treat n as constant during the energy extraction
phase at a given z. In the following, we assume that the
plasma density near the BH is constant, homogeneous
and given by Eq. (6) (see Sec. IV for a discussion).
Under these assumptions, we can directly apply the results
of Refs. [30–32] for a Proca field with mass !p around an

isolated Kerr BH.
In order for the super-radiance instability to be effective

at a given redshift z, the instability time scale must be much
shorter than the cosmological evolution time scale. By
comparing the time scale �SR in Eq. (4) (with l ¼ m ¼
1) with the age of the Universe �age as a function of

redshift, we show in Fig. 2 the Regge plane [27,30] for
PBHs with mass in the range 10�9M� <M<M� for three
representative redshift values. For the updated set of cos-
mological parameters [35], �age ¼ 4:3� 105 yr, 74.9 yr

and 0.19 yr at z ¼ 103, z ¼ 105 and z ¼ 2� 106, respec-
tively. At any plotted z, PBHs located above the corre-
sponding curve are unstable due to super-radiant instability
with �SR < �age. Figure 2 shows the fundamental polar

modes (which have the shortest instability time scale)
and the axial modes, for which an analytical expression
for the time scale in the M!p � 1 limit is available [31].

In both families, the rightmost part of each curve is per-
fectly described by ~a� 4M!p. This threshold marks the

portion of the Regge plane where super-radiant instability

starts becoming effective. Using Eqs. (1) and (6), we can
translate this condition into an upper bound on the mass:

M

M�
< 0:19~a

�
1þ z

103

��3=2
: (7)

Note that this result is very general and does not depend
on the details of the super-radiant spectrum, but only on the
super-radiant condition, !R <m�H, and on the fact that
the modes have a hydrogenic spectrum, !R �!p [31]. In

other words, a PBH with mass M and spin ~a satisfying the
relation above will pass through an epoch at redshift z
when the mean gas density is such that the super-radiant
instability is effective.

A. Energy and angular momentum extraction

As a result of the super-radiant instability, a spinning
PBH could lose most of its spin energy over a short time
scale. We note that the threshold curves shown in Fig. 2
are very steep functions of the dimensionless angular
momentum ~a and extend almost down to ~a ¼ 0; i.e. the
super-radiant instability is active even for very small (but
nonvanishing) BH spin. Thus, before super-radiance stops
being effective, a single PBH with initial dimensionless
angular momentum ~a will essentially lose all its angular
momentum, i.e. �ð~aÞ � ~a. Using this result and Eq. (5)
with m ¼ 1, we obtain

�M

M
� ~aM!R

1� 2~aM!R

� 10�3

�
1þ z

103

�
3=2

�
~aM

10�3M�

�
; (8)

where in the last step we assume ðM=M�Þ � 2� 105ð1þ
zÞ�3=2, a condition valid throughout the entire range
considered here. According to this estimate, in the linear
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FIG. 2 (color online). Contour plots in the BH Regge plane
[27,30] corresponding to an instability time scale shorter than the
age of the Universe at a given redshift, assuming a mean cosmic
gas density as in Eq. (6). Thick and thin curves correspond to
polar and axial modes, respectively [30]. In both families, the
rightmost part of each curve is described by ~a� 4M!p.

Roughly speaking, PBHs in the mass range 7� 10�9M� <M<
0:2M� go through a cosmic era (at some 103 < z < 2� 106)
when the super-radiant instability is effective.
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approximation the efficiency of the energy extraction at
z� 105 for M� 10�4M� is roughly ~a� 20%.

B. Dissipation

The extracted energy is transferred to the energy density
of the EM field, which grows exponentially near the BH on
a time scale �SR [27]. As long as the plasma frequency
is comparable to or higher than the mode wavelength,
!p * !R, the photon energy is trapped by the effective

potential well of the plasma. As the Universe expands, the
plasma density decreases according to Eq. (6). Once !p

becomes smaller than !R, the EM energy accumulated
through super-radiance is released. This argument assumes
that !R is not redshifted during the cosmic expansion. In
addition, energy can be released by photon outflow due to
the exponentially growing radiation pressure near the BH.

The released energy can be dissipated through various
channels. The most efficient process involves Coulomb
collisions, which yields a dissipation time scale [36]

�C ¼ 2

�ei

�
1þ k2

!2
p

�
(9)

for a transverse EM wave, where ~k is the wave vector,

�ei ¼ 2:91� 10�6 ðne=cm�3Þ ln� ðTe=eVÞ�3=2 s�1 is the
electron-ion collision frequency, ln� is the Coulomb loga-
rithm, and Te ¼ 2:726ð1þ zÞ K is the plasma temperature.
For k2 � !2

p (which is valid in the adiabatic regime),

Eq. (6) yields the dissipation time scale:

�C � 15:5

�
1þ z

103

��3=2
s; (10)

with log� � 23. This time scale is much shorter than the
cosmic expansion time at the relevant redshifts.

C. Spectral distortions and constraints

An injection of an energy density �U into the CMB at
redshifts z & 2� 106 cannot be fully thermalized and
results in observable distortions of the CMB spectrum
from a perfect blackbody shape (see, e.g. Ref. [37]).

For simplicity, we focus on �- and y-type distortions.
The former is produced by an energy injection �U at
105 < z < 2� 106, which introduces a chemical potential
�� 1:4�U=U to the Bose-Einstein spectrum, where U is
the unperturbed energy density of the CMB. At z < 105,
Compton scattering is unable to maintain a Bose-Einstein
spectrum, and � distortions cannot be created. In the
interval 103 < z < 105, the energy injection produces y
distortions with amplitude y ¼ �U=ð4UÞ. Other types of
spectral distortions, such as intermediate i-type distortions
occurring at 1:4� 104 < z < 105 can also be considered,
but computing their amplitude requires a case-by-case
analysis (see e.g. Ref. [38]). After recombination
(z < 103), the Universe is optically thick to Compton
scattering, and essentially all energy is absorbed by the

cosmic gas. Therefore, we are interested in the interval
103 & z & 2� 106. This is different from the case of
spectral distortions due to accretion onto PBHs [14]. In
the latter case, since accretion is negligible in the radiation-
dominated era, only the interval 3600 * z * 1000 is
relevant and only y-type distortions can be produced.
The energy [Eq. (8)] extracted from each spinning PBH is

injected into the CMB over a time scale much shorter than
the cosmological evolution time scale at 103 < z < 2�
106. Using Eqs. (1), (6), and (8) and U ¼ �T4

e , we obtain

�U

U
¼ h~aifPBHM�0

crit�DM

�T4
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�e2n0
me

s
ð1þ zÞ1=2; (11)

where � is the Stefan-Boltzmann constant, fPBH is the
present DM fraction in PBHs, �DM is the present-day DM
density in units of the critical density �0

crit ¼ 3H2
0=ð8�Þ,

H0 ¼ 100h km s�1 Mpc�1 is the Hubble constant, and

h~ai ¼
R
1
0 d~a ~a dN

d~aR
1
0 d~a

dN
d~a

(12)

is the average spin parameter weighted by the initial spin
distribution of PBHs, dN=d~a.
Given a bound on �U=U, Eq. (11) translates into a

constraint on the combination fPBHh~ai. The 95% confi-
dence level limits from COBE/FIRAS on the � and y
parameters are �< 9� 10�5 and y < 1:5� 10�5 [29]. It
follows that �U=U < 6� 10�5 at a 95% confidence level
in the entire interval 103 & z & 2� 106. Figure 1 shows
the upper limits on the present DM fraction in PBHs for
�DM � 0:12=h2, h ¼ 0:67 [35], h~ai ¼ 1 and z ¼ min ð2�
106; zlim Þ, with zlim being the value that saturates Eq. (7)
for a given M and ~a. The latter condition enforces the
fact that any energy injection at z * 2� 106 is fully
thermalized.
In addition to the term h~ai in Eqs. (11) and (7) introduces

a further dependence on ~a. It is easy to show that our
bounds are only mildly affected by the spin dependence
in Eq. (7) (at least when 0:1< ~a < 1), so that the bounds
on fPBH roughly scale as 1=h~ai.
The mass range in Fig. 1 is truncated atM� 0:2M� and

M� 7� 10�9M�. The upper cutoff corresponds to the
mass that saturates Eq. (7) at z ¼ 103 and ~a ¼ 1. If M *
0:2M�, the energy is released after recombination when the
Universe is optically thin to Thomson scattering and the
coupling to the CMB is weak. The lower cutoff corre-
sponds to the mass at which �SR � �age at z ¼ 2� 106.

If M & 7� 10�9M�, the instability time scale is long
compared to the age of the Universe at z ¼ 2� 106.

IV. DISCUSSION AND CONCLUSIONS

Figure 1 shows that super-radiant instabilities of PBHs
place very stringent bounds on the DM mass fraction
fPBH associated with maximally spinning PBHs, over a
mass range which was less severely constrained by other
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techniques such as microlensing. The solid blue line is the
bound on fPBH derived from the COBE/FIRAS data. The
proposed PIXIE experiment [39] can drastically improve
the limits on spectral distortions of the CMB. As recently
shown [39,40], such an experiment has the potential to
constrain � and y at the levels of 1:4� 10�8� and 1:2�
10�9�, respectively, where ��Oð1Þ is a parameter that
depends on the actual channel sensitivity of the experi-
ment. Adopting �� 1 and using the most conservative
of these constraints, a projected bound from a PIXIE-like
experiment is �U=U < 2� 10�8 at the 95% confidence
level. This translates to the constraint on fPBH shown by a
red dashed curve in Fig. 1. A PIXIE-like experiment can
potentially improve the limit coming from COBE data by
several orders of magnitude. In deriving the limits shown
in Fig. 1 we have assumed that any energy injection at
z > 2� 106 is fully thermalized.

The main limitation of the bounds derived through
super-radiant instabilities is their dependence on the BH
spin. All other upper limits shown in Fig. 1 (cf. Ref. [1]) are
derived for nonspinning PBHs, so they actually constrain
the quantity fPBH alone, and not the combination fPBHh~ai.
Nevertheless, our bounds can be considerably more strin-
gent than the MACHO/EROS microlensing limits [10,11]
in the interval 10�6M� to 0:1M� and remain competitive
even when h~ai � 0:01. As an example, for a normal distri-
bution centered at ~a ¼ 0:3with width� ¼ 0:1, the average
spin is h~ai � 0:3. Production of nonspinning PBHs in the
early Universe would require fine-tuned initial configura-
tions which are perfectly spherically symmetric.

Although not shown in Fig. 1, future experiments may
be able to place competitive upper limits in a regime which
partially overlaps with our theoretical bounds. The Kepler
mission can constrain the range 5� 10�10M� to 10�4M�
through a search for microlensing signals [41,42], and
future pulsar timing array facilities like the Square
Kilometer Array might be able to set a limit fPBH > 0:01
in the range 5� 10�12M� to 5� 10�6M� [43].
Constraints on PBHs in globular clusters [44] might also
be competitive, but they are weakened by the lack of
evidence for DM in these systems.

In our estimate we have neglected accretion onto PBHs.
While accretion is negligible in the radiation-dominated
era (z * 3:6� 103) [14], it has to be considered in the
interval 3:6� 103 * z * 103. Nonetheless, as shown in
Fig. 2, the time scale of super-radiant instabilities at
z� 103 is still much shorter than the accretion time
(� 4� 107 yr). Even if accretion can be safely neglected
at z > 103, local inhomogeneities of the plasma density can
in principle affect our limits. Strictly speaking, Eqs. (3) and
(4) are valid only when !p ¼ const. In a more realistic

situation, the plasma will have an inhomogeneous distri-
bution due to the local gravitational field near the BH.
In particular, the density is peaked at a few Schwarzschild
radii, whereas it is negligible near the horizon.

However, local density enhancements are weak during
the radiation-dominated era. The BH mass equals the

background mass at the radius R ¼ ð3�M�crit=4Þ1=3,
where �crit ¼ 3H2=ð8�Þ is the critical density at the cor-
responding redshift and H ¼ HðzÞ is the Hubble parame-
ter. The matter outside R feels a linear perturbation due to
the BH. Since linear perturbations grow only logarithmi-
cally with time during the radiation-dominated era, we
may ignore the density enhancement outside R.
Assuming Bondi accretion in the interior of R, the radius
of influence of the BH is Racc �M=c2s , where cs is the

speed of sound. In the radiation-dominated era, cs � 1=
ffiffiffi
3

p
,

so that Racc is of the order of the Schwarzschild radius.
This implies that the background cosmic density will only
be enhanced by a factor of order unity near the BH.
Although detailed matter-distribution models are neces-

sary for a quantitative assessment, using the methods
developed in Ref. [31], we have checked that the frequency
and the time scale of the instability are insensitive to local
inhomogeneities near the horizon, at least in theM!p � 1

limit which is relevant for our analysis. In fact, a detailed
numerical study shows that Eq. (4) provides an upper limit
for the instability time scale, and more realistic radial
distributions would trigger even stronger instabilities. We
note that if the local plasma density near the BH is larger
than the mean cosmic value by a factor �, the upper limit
on fPBHh~ai would scale roughly as ��1. Our estimate is
conservative, as we assume � ¼ 1.
While the assumption that the plasma frequency is con-

stant in time is well justified when �SR � �age, it would be

interesting to extend recent computations in the frequency
[45] and time domains [32] to obtain more precise esti-
mates for the instability time scale triggered by a weakly
inhomogeneous and time-dependent plasma distribution
around a PBH. Finally, fully numerical evolutions
[32,46] may give us a better understanding of the nonlinear
development and of the end state of the instability for
generic spin.
The novel upper limits shown in Fig. 1 imply that BH

spin effects, combined with a background plasma, can
dramatically affect the dynamics of nonevaporating
PBHs and should be carefully considered in future studies.
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