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2Facultad de Ciencias Fı́sico Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,
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Compactified Yang-Mills theories with one universal extra dimension were found [Phys. Rev. D 82,

116012 (2010)] to exhibit two types of gauge invariance: the standard gauge transformations (SGTs) and

the nonstandard gauge transformations (NSGTs). In the present work we show that these transformations

are not exclusive to compactified scenarios. Introducing a notion of hidden symmetry, based on the

fundamental concept of canonical transformation, we analyze three different gauge systems, each of

which is mapped to a certain effective theory that is invariant under the so-called SGTs and NSGTs. The

systems under discussion are (i) four-dimensional pure SUð3Þ Yang-Mills theory, (ii) four-dimensional

SUð3Þ Yang-Mills with spontaneous symmetry breaking, and (iii) pure Yang-Mills theory with one

universal compact extra dimension. The canonical transformation that induces the notion of hidden

symmetry maps objects with well-defined transformation laws under a gauge group G to well-defined

objects under a nontrivial subgroup H � G. In the case where spontaneous symmetry breaking is present,

the set of SGTs corresponds to the group into which the original gauge group is broken, whereas the

NSGTs are associated with the broken generators and can be used to define the unitary gauge. For system

(iii), the SGTs coincide with the gauge group SUðN;M4Þ, whereas the NSGTs do not form a group; in

this system the ‘‘fundamental’’ theory and the effective one are shown to be classically equivalent.
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I. INTRODUCTION

Recently, the ATLAS [1] and CMS [2] experiments at
the Large Hadron Collider reported the presence of a scalar
boson with mass in the range 125–126 GeV that is com-
patible with the Standard Model Higgs boson. If couplings
of this particle to pairs of W and Z weak gauge bosons are
found to coincide with those predicted by the Standard
Model in subsequent analysis of experimental data, the
Higgs mechanism [3] will be firmly established as a genu-
ine phenomenon of nature. Since the Higgs mechanism
endows gauge bosons with mass through absorption of
Goldstone bosons [4], resulting in spontaneous symmetry
breaking (SSB), experimental data would confirm that the
weak interaction is spontaneously broken. This in turn
would validate the existence of a degenerate vacuum as
the source of elementary particle masses and constitutes a
good motivation to investigate new mechanisms of mass
generation. In particular, it is interesting to study some
kind of source, alternative to spontaneous symmetry
breaking, that still allows the Higgs mechanism to
operate. In this direction, it is already known that gauge
theories formulated on spacetime manifolds with compact
extra dimensions [5] enable endowing with mass the

Kaluza-Klein gauge excitations in the absence of degener-
ate vacuum. Although in these theories there are pseudo-
Goldstone bosons, thus allowing the Higgs mechanism to
operate, they do not correspond to genuine Goldstone
bosons in the sense of spontaneous breakdown of a global
symmetry. The emergent pseudo-Goldstone bosons in
Kaluza-Klein theories are directly generated by compacti-
fication of the spatial extra dimensions.
In this work we clarify the gauge structure of pure Yang-

Mills theories formulated on spacetime manifolds with
compact spatial extra dimensions through a novel notion
of hidden symmetry. Some theoretical aspects of these
theories have already been studied in Refs. [6–9]. Also,
they have been the subject of important phenomenological
interest in the context of dark matter [10], neutrino physics
[11], Higgs physics [12], flavor physics [13], hadronic and
linear colliders [14], and electroweak gauge couplings [15].
In Ref. [6], some results in the context of a pure Yang-Mills
theory with one universal extra dimension (UED) were
presented. For instance, the necessity of explaining the
gauge structure of the compactified theory in order to
quantize it was emphasized. In particular, it was noticed
that as a consequence of compactification, the original
gauge transformations split into two classes: the standard
gauge transformations (SGTs) and the nonstandard gauge
transformations (NSGTs). In the following pages
these transformations are formulated, via a certain canonical
transformation, within the framework of hidden symmetry.
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The concept of hidden symmetry is usually associated
with theories in which SSB occurs; however, we will show
that it is not exclusive to theories of this kind. A symmetry,
encoded in a gauge groupG, can also be hidden if there is a
canonical transformation that maps well-defined objects
under the groupG to well-defined objects under a subgroup
H � G. As wewill see below, this transformation is crucial
to understanding a hidden symmetry in this context. It is at
the level of the remaining symmetry that SGTs and NSGTs
find a clear interpretation. The set of SGTs forms a group
which coincides with the subgroup H, whereas the set
of NSGTs does not form a group, as will be shown.
Nevertheless, the phenomenon of SSB can be fit into this
general scenario. When a scalar sector that leads to a
degenerate vacuum which is invariant under the subgroup
H is introduced, the NSGTs are associated with the broken
generators of the group G.

The novel point of view of hidden symmetry given in this
paper will be exemplified by studying in detail three gauge
models. The first of them shows that our notion of hidden
symmetry is not necessarily embedded either in a compac-
tification scheme from a higher-dimensional theory or in a
theory that presents SSB. Using the four-dimensional pure
SUð3Þ Yang-Mills theory, we explicitly construct a canoni-
cal transformation which maps gauge fields of SUð3Þ into
gauge fields, two doublets and a singlet with respect to
the subgroup SUð2Þ. In this case, the SUð3Þ symmetry is
hidden in the SGTs and NSGTs, which correspond to
transformations in SUð2Þ and transformations related
with the five remainder generators of SUð3Þ, respectively.

The second model under consideration is an SUð3Þ
Yang-Mills theory with a renormalizable scalar sector
that presents SSB; our canonical transformation will de-
compose the SUð3Þ Yang-Mills connection and the matter
scalar into well-defined objects with respect to SUð2Þ. The
new ingredients in the analysis of this model are twofold.
On one hand, these will help us to compare a hidden
symmetry arising from SSB with a hidden symmetry in
terms of the suitable canonical transformation. On the
other hand, they will provide a way to clarify the physical
meaning of the NSGTs by showing that the unitary gauge
corresponds to a particular transformation of this type.

The third system on which we focus our attention is an
effective theory that results from compactifying the spatial
extra dimension of a manifold M5 on which a pure
Yang-Mills theory is defined. The compactification scheme
is achieved along the same lines of Ref. [6]. The basic
fields of the higher-dimensional theory are gauge fields
under the gauge group SUðN;M5Þ—that is, the group
SUðNÞ with gauge parameters propagating in the bulk
M5. Defined on the Minkowski spacetime M4, the effec-
tive theory existing alongside carries the four-dimensional
Fourier modes of the five-dimensional gauge fields as basic
fields; we show that Fourier expansions in this case deter-
mine a canonical transformation which maps well-defined

objects under SUðN;M5Þ to well-defined objects under
SUðN;M4Þ. In our terminology, the gauge symmetry of
the higher-dimensional theory is just hidden in the lower-
dimensional theory—that is, SUðN;M5Þ is codified in the
SGTs and NSGTs, the former being represented by
SUðN;M4Þ. It is worth noticing that in the effective theory
there emerge massless scalar bosons which can be removed
by a specific NSGT; these correspond to pseudo-Goldstone
bosons which remarkably do not arise from an SSBmecha-
nism. In this scenario, compactification does not involve
broken generators; it entails a change in the support mani-
fold of the group parameters. The specific NSGT that
eliminates the pseudo-Goldstone bosons can hence be
interpreted as a unitary gauge [6].
The suitable canonical transformations found in these

systems, through which the original symmetry is hidden,
permeate at the the level of the Dirac algorithm for con-
strained systems. In each case, the primary Hamiltonian
and each generation of constraints, of the theory manifestly
invariant under the group G, are mapped onto the corre-
sponding primary Hamiltonian and generation of con-
straints, present in the theory invariant under SGTs and
NSGTs. Since every model we analyzed is a first-class
constraint system, this implies that the canonical trans-
formation for each case maps the gauge generator of the
group G onto the gauge generators of the SGTs and
NSGTs. This result is particularly interesting for the third
system, as it implies that the gauge structure of the higher-
dimensional theory is certainly rewritten in terms of SGTs
and NSGTs; by counting degrees of freedom, we will show
that the five-dimensional and the effective theories are
equivalent at the classical level.
The rest of the paper has been organized as follows: In

Sec. II, the pure SUð3Þ Yang-Mills theory is introduced,
and canonical analyses of the theory both before and after
considering a suitable canonical transformation are inde-
pendently achieved. It is shown that both frameworks lead
to the same theory, with the same number of physical
degrees of freedom and the same gauge transformations;
i.e., the canonical transformation simply recasts the sys-
tem. In Sec. III, a renormalizable scalar Higgs sector is
added to the model presented in Sec. II, and the corre-
sponding suitable canonical transformation is introduced.
We show that the presence of spontaneous breakdown
SUð3Þ ! SUð2Þ allows us to use a specific NSGT as the
unitary gauge. Section IV is devoted to the study of pure
SUðN;MÞ Yang-Mills theory in an arbitrary number of
dimensions; with the more tractable case of one UED, we
explicitly present the suitable canonical transformation and
compactification scheme that led us to the effective theory
invariant under SGTs and NSGTs. We argue that both
theories are equivalent, as they have the same gauge trans-
formations, simply written in different coordinates, and
contain the same number of physical degrees of freedom.
In Sec. V, a summary of our results is presented. Finally, in
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the Appendix, we collect the proof on the canonical nature
of the Fourier transform.

II. THE TOY MODEL: PURE SUð3Þ
YANG-MILLS THEORY

The purpose of this section is to illustrate the notion of
hidden symmetry within the context described in the
Introduction, for which we consider the situation where
G ¼ SUð3Þ and H ¼ SUð2Þ, and construct the desirable
canonical transformation. This system neither presents
SSB nor is involved in any compactification scheme.
This model has attracted important phenomenological in-
terest within the context of the so-called 331 models [16],
and it is useful for us because the SUð2Þ group is com-
pletely embedded in the SUð3Þ one. This feature allows us
to clearly illustrate all the peculiarities of the notion of
hidden symmetry that we are introducing in this paper.

A. The SUð3Þ perspective of the model

We consider the four-dimensional Yang-Mills theory
based on the SUð3Þ group with the well-known Lagrangian

LSUð3Þ ¼ � 1

4
Fa
��F

��
a ; �; � ¼ 0; 1; 2; 3; (2.1)

where the components of theYang-Mills curvature are given
in terms of the gauge fields Aa

� by

Fa
�� ¼ @�A

a
� � @�A

a
� þ gfabcAb

�A
c
�: (2.2)

In the special case of SUð3Þ, the completely antisymmetric
structure constants fabc have the following nonvanishing
values: f123 ¼ 1, f147 ¼ �f156 ¼ f246 ¼ f257 ¼ f345 ¼
�f367 ¼ 1

2 and f
458 ¼ f678 ¼

ffiffi
3

p
2 .

The Lagrangian [Eq. (2.1)] is invariant under gauge
transformations

�Aa
�ðxÞ ¼ Dab

� �bðxÞ; (2.3)

where �a are the gauge parameters of the group and
Dab

� ¼ �ab@� � gfabcAc
� is the covariant derivative in

the adjoint representation. The above gauge transforma-
tions imply that the components of the curvature transform
in the adjoint representation of the group:

�Fa
�� ¼ gfabcFb

���
c: (2.4)

As far as the Hamiltonian structure of the theory is
concerned, the canonical momenta are defined by

��
a � @LSUð3Þ

@ _Aa
�

¼ F�0
a ; (2.5)

where the dot over the fields denotes time derivative. This
expression immediately leads to the following primary
constraints:

�ð1Þ
a � �0

a � 0; (2.6)

where the symbol � denotes weakly zero [17]. The time
evolution along the motion of an arbitrary function on the
phase space is dictated by the primary Hamiltonian

H ð1Þ
SUð3Þ ¼ H SUð3Þ þ�a�ð1Þ

a ; (2.7)

where �a are Lagrange multipliers, and H SUð3Þ is the

canonical Hamiltonian. The latter is

H SUð3Þ ¼ 1

2
�i

a�
i
a þ 1

4
Fa
ijF

ij
a � Aa

0�
ð2Þ
a : (2.8)

Any physically allowed initial configuration of fields
and conjugate momenta must satisfy the primary con-
straints [Eq. (2.6)]; hence the constraints must be constant
in time. This consistency condition on the primary con-
straints leads to the following secondary constraints:

�ð2Þ
a � Dab

i �i
b � 0: (2.9)

Applying the consistency condition to the secondary con-
straints yields no new constraints. In this case, all the
constraints are of first-class type [17]; the Poisson brackets
among the constraints are linear combinations of the con-
straints themselves. The nonvanishing Poisson brackets
between first-class constraints are

f�ð2Þ
a ½u�; �ð2Þ

b ½v�gSUð3Þ ¼ gfabc�
ð2Þ
c ½uv�; (2.10)

where the smeared form �ð2Þ
a ½u� :¼ R

d3x uðxÞ�ð2Þ
a ðxÞ of

the constraints was used. The label SUð3Þ on the Poisson
bracket indicates that it is calculated with respect to the
canonical conjugate pairs ðAa

�; �
�
a Þ.

As is well known [18], the number of true degrees of
freedom in a theory with only first-class constraints corre-
sponds to the total number of canonical variables minus
twice the number of first-class constraints, all divided by 2.
Therefore, the number of true degrees of freedom is in this
case 16 per spatial point x of Minkowski spacetime M4.
In this system all first-class constraints generate

gauge transformations [Eq. (2.3)] through the gauge
generator [19]

G ¼ ðDab
0 �bÞ�ð1Þ

a � �a�ð2Þ
a (2.11)

via the Poisson bracket as follows:

�Aa
� ¼ fAa

�;GgSUð3Þ: (2.12)

We now turn to formulate the same theory but from the
perspective of SUð2Þ.

B. The SUð2Þ perspective of the model

The fundamental representation of SUð3Þ has dimension
3. A particular choice of this representation is given by the
well-known Gell-Mann matrices �a, being the correspond-
ing generators �a=2. Since matrices �3 and �8 commute
with each other, there are three independent SUð2Þ sub-
groups, whose generators are ð�1; �2; �Þ, ð�4; �5; �Þ and
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ð�6; �7; �Þ. For each case, � is a different linear combina-
tion (with real coefficients) of �3 and �8. In this work, we
will consider the subgroup determined by the set of gen-
erators ð�1; �2; �3Þ, and the corresponding values of the

structure constants will be denoted by f �a �b �c ¼ � �a �b �c, where
�a ¼ 1, 2, 3. We will also use the notation â ¼ 4, 5, 6, 7 so
that a ¼ 1; . . . ; 8 ¼ �a, â, 8. From the SUð2Þ perspective, �a
will label gauge fields, whereas â and 8 will label tensorial
representations of SUð2Þ; see Eq. (2.18).

In the configuration space, we consider the following
point transformation:

A �a
� ¼W �a

�; (2.13a)

A4
� ¼ 1ffiffiffi

2
p ðY�

�1 þ Y1
�Þ; A5

� ¼�iffiffiffi
2

p ðY�
�1 � Y1

�Þ; (2.13b)

A6
� ¼ 1ffiffiffi

2
p ðY�

�2 þ Y2
�Þ; A7

� ¼�iffiffiffi
2

p ðY�
�2 � Y2

�Þ; (2.13c)

A8
� ¼ Z�: (2.13d)

This mapping relates the coordinates of the SUð3Þ formu-
lation to the coordinates we will use in the SUð2Þ perspec-
tive. The inverse is conveniently arranged as follows:

W �a
�¼A �a

�; (2.14a)

Y�¼ Y1
�

Y2
�

 !
¼ 1ffiffiffi

2
p A4

�� iA5
�

A6
�� iA7

�

 !
; (2.14b)

Yy
�¼ðY�

�1 Y
�
�2Þ¼

1ffiffiffi
2

p ðA4
�þ iA5

� A6
�þ iA7

� Þ; (2.14c)

Z�¼A8
�: (2.14d)

As will be confirmed below [see Eq. (2.18)], fields Y� and

Yy
� transform as contravariant and covariant SUð2Þ

objects, respectively, whereas Z� becomes invariant under

this group.
Using the above point transformation, the Yang-Mills

curvature components [Eq. (2.2)] can be rearranged as
follows:

F �a
�� ¼ W �a

�� þ ig

�
Yy
�

	 �a

2
Y� � Yy

�
	 �a

2
Y�

�
; (2.15a)

Y�� ¼ D�Y� �D�Y� þ ig

ffiffiffi
3

p
2

ðY�Z� � Y�Z�Þ; (2.15b)

F8
�� ¼ Z�� þ ig

ffiffiffi
3

p
2

ðYy
�Y� � Yy

�Y�Þ: (2.15c)

In these equations, W �a
��¼@�W

�a
��@�W

�a
�þg� �a �b �cW

�b
�W

�c
�

are the components of the SUð2Þ-valued curvature, D� ¼
@� � ig 	 �a

2 W �a
� is the covariant derivative in the fundamen-

tal representation of SUð2Þ, and Z�� ¼ @�Z� � @�Z�. The

components Fâ
�� are encoded into Y��.

In terms of SUð2Þ objects, the Lagrangian [Eq. (2.1)]
becomes

LSUð2Þ ¼ � 1

4
F �a
��F

��
�a � 1

2
Yy
��Y�� � 1

4
F8
��F

��
8 ; (2.16)

and the gauge transformations [Eq. (2.3)] are mapped onto

�W �a
� ¼ D �a �b

� �
�b � ig

�

y	

�a

2
Y� � Yy

�

	 �a

2



�
; (2.17a)

�Y� ¼ ig
	 �a

2
� �aY� þ

�
D� � ig

ffiffiffi
3

p
2

Z�

�

þ ig

ffiffiffi
3

p
2

Y��Z;

(2.17b)

�Z� ¼ @��Z � ig

ffiffiffi
3

p
2

ð
yY� � Yy
�
Þ; (2.17c)

where 
y ¼ ð 1ffiffi
2

p ð�4 þ i�5Þ 1ffiffi
2

p ð�6 þ i�7ÞÞ. From the

SUð2Þ perspective, the eight parameters of SUð3Þ split
into three gauge parameters, � �a, two doublets, 
 and 
y,
and a singlet, �Z, of SUð2Þ. In Eq. (2.17a), the covariant

derivative of SUð2Þ, D �a �b
� ¼ � �a �b@� � g� �a �b �cW �c

� in its

adjoint representation, emerges.
The standard gauge transformations (SGTs) are defined

from the transformation laws [Eq. (2.17)] by setting the
parameters 
 and �Z equal to zero:

�sW
�a
� � D �a �b

� �
�b; (2.18a)

�sY� � ig
	 �a

2
� �aY�; (2.18b)

�sZ� � 0: (2.18c)

From these expressions, it is shown that W �a
� transform as

gauge fields, Y� as a doublet of SUð2Þ, and Z� as a scalar

under SUð2Þ. This means that the transformation defined
by Eq. (2.13) constitutes an admissible point transforma-
tion, as well-defined objects under SUð3Þ are mapped onto
well-defined objects under SUð2Þ. Moreover, Eqs. (2.18b)
and (2.18c) make manifest that Y� and Z� are matter fields.

In the context of this description, there arise nonstandard
gauge transformations (NSGTs), which are defined from
Eq. (2.17) by setting � �a ¼ 0:

�nsW
�a
� ¼ �ig

�

y 	

�a

2
Y� � Yy

�

	 �a

2



�
; (2.19a)

�nsY� ¼
�
D� � ig

ffiffiffi
3

p
2

Z�

�

þ ig

ffiffiffi
3

p
2

Y��Z; (2.19b)

�nsZ� ¼ @��Z � ig

ffiffiffi
3

p
2

ð
yY� � Yy
�
Þ: (2.19c)

These NSGTs tell us that there is a gauge symmetry larger
than SUð2Þ, in our case SUð3Þ. More precisely, the differ-
ence between SGTs and NSGTs in this model is that the
former are associated with generators that constitute a
group, whereas the latter have to do with generators that
do not share this property. We will discuss further on this
point at the end of this section. This differentiation is
crucial to quantizing the theory, as it requires incorporating
the gauge parameters as degrees of freedom from the
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beginning, so the use of only the SUð2Þ parameters or
the complete set of the SUð3Þ parameters would lead to
very different quantized theories. Of course, the theory
can be quantized using the SUð2Þ basis but taking into
account that Y� and Z� are also gauge fields, which means

that the 
 and �Z parameters must be recognized as
(ghost) degrees of freedom in the context of the BRST
symmetry [20,21].

In order to justify that the components of Eq. (2.17) are
actual gauge transformations, we wish to show the invari-
ance of the Lagrangian [Eq. (2.16)] under these variations.
Therefore, one may want to start exploring the behavior of
Eq. (2.15) under Eq. (2.17). After some algebra, one finds

�F �a
�� ¼ g� �a �b �cF

�b
���

�c þ ig

�
Yy
��

	 �a

2

� 
y	

�a

2
Y��

�
;

(2.20a)

�Y�� ¼ ig
	 �a

2
Y���

�a � igF �a
��

	 �a

2



þ ig

ffiffiffi
3

p
2

ðY���Z � F8
��
Þ; (2.20b)

�F8
�� ¼ ig

ffiffiffi
3

p
2

ðYy
��
� 
yY��Þ: (2.20c)

It can be shown that the Lagrangian in the SUð2Þ descrip-
tion [Eq. (2.16)] is invariant under these transformations.
Therefore it is also invariant under the transformations
in Eq. (2.17) that decompose into the sum of SGTs
and NSGTs.

We now make some technical comments. In the varia-
tion of Y�� [Eq. (2.20b)], the following extra term is

explicitly found:

B��¼�g2
��

Yy
�

	 �a

2
Y��Yy

�
	 �a

2
Y�

�
	 �a

2



þ3

4
ðYy

�Y��Yy
�Y�Þ
þ3

4
ð
yY��Yy

�
ÞY�

�3

4
ð
yY��Yy

�
ÞY�þ
�

y	

�a

2
Y��Yy

�

	 �a

2



�
	 �a

2
Y�

�
�

y	

�a

2
Y��Yy

�
	 �a

2



�
	 �a

2
Y�

�
:

It at first sight seems to be different from zero, but con-
sistency between the SUð2Þ and the SUð3Þ perspectives of
the same theory indicates that it must vanish. Indeed, using
the point transformation [Eq. (2.14)], the Eqs. (2.20a) to
(2.20c) can be rearranged to Eq. (2.4) as required. Also,
since B�� is linear in 
, its occurrence in the variation

of Y�� would spoil the invariance of the Lagrangian

[Eq. (2.16)] under the NSGTs [Eq. (2.19)]; however, one
can see that the rth SUð2Þ component (r ¼ 1, 2) of the
doublet B�� is of the form

Br
�� ¼ � 1

4
½ðTrs

pq � Trs
qpÞðY�

�sY�
q � Y�

�sY�
qÞ
p

� Trs
pqðY�

pY�
q � Y�

pY�
qÞ
s�;

where Trs
pq � ð	 �aÞrpð	 �aÞsq þ 3�r

p�
s
q. Using the explicit

values of the indices shows that Trs
pq is symmetric in p

and q, hence Br
�� � 0. A similar behavior is present when

proving the invariance of the effective four-dimensional
Yang-Mills Lagrangian obtained after compactification of
the fifth spatial extra dimension described in Sec. IV.
Finally, since Eqs. (2.20a) to (2.20c) are obtained from
Eq. (2.17), at the curvature level the SGTs and NSGTs
are induced; in particular, the SGTs of F �a

��, Y��, and

F8
�� are

�sF
�a
�� ¼ g� �a �b �cF

�b
���

�c; (2.21a)

�sY�� ¼ ig
	 �a

2
Y���

�a; (2.21b)

�sF
8
�� ¼ 0; (2.21c)

which imply the previously enunciated fact: F �a
��, Y��, and

F8
�� transform in the adjoint, fundamental, and trivial

representations of SUð2Þ, respectively.
It is interesting to note that one can fix the gauge for the

Y� fields in a covariant way under the SUð2Þ group. This is
particularly useful in practical phenomenological applica-
tions [22]. To do this, let

fâ ¼ ð�â b̂@� � gfâ b̂ �cA �c
�ÞA�

b̂
(2.22)

be the corresponding gauge-fixing functions. In the SUð2Þ
coordinates, these functions can be arranged in a doublet of
this group as follows:

fY ¼ D�Y
�; (2.23)

where D� is the covariant derivative in the fundamental

representation of SUð2Þ.
We now proceed to study the Hamiltonian structure of

the theory from the SUð2Þ point of view. So, to describe the
system in phase-space terms, the following conjugate
momenta are defined:

�W
�
�a ¼ @LSUð2Þ

@ _W �a
�

¼ F
�0
�a ; (2.24a)

�Y
�
r ¼ @LSUð2Þ

@ _Yr
�

¼ Y
� �0
r ; (2.24b)

�
� �r
Y ¼ @LSUð2Þ

@ _Y�
�r

¼ Y�0 r; (2.24c)

�Z
� ¼ @LSUð2Þ

@ _Z�

¼ F
�0
8 : (2.24d)

It is important to notice that �W
�
�a are not the canonical

momenta associated with the pure SUð2Þ theory, whose
Lagrangian is
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L ¼ � 1

4
W �a

��W
��
�a ; (2.25)

and which leads to the conjugate momenta

p
�
�a ¼ W

�0
�a : (2.26)

These momenta differ from those derived from the
Lagrangian in Eq. (2.16), which are explicitly given by

�W
�
�a ¼ p�

�a þ ig

�
Yy� 	 �a

2
Y0 � Yy0 	

�a

2
Y�

�
: (2.27)

The relations between the canonical momenta in the
SUð3Þ and the SUð2Þ descriptions are
�

�
�a ¼ �W

�
�a ; (2.28a)

�
�
4 ¼ 1ffiffiffi

2
p ð�Y

�
1 þ �

� �1
Y Þ; �

�
5 ¼ �iffiffiffi

2
p ð�Y

�
1 � �

� �1
Y Þ;
(2.28b)

�
�
6 ¼ 1ffiffiffi

2
p ð�Y

�
2 þ �

� �2
Y Þ; �

�
7 ¼ �iffiffiffi

2
p ð�Y

�
2 � �

� �2
Y Þ;
(2.28c)

��
8 ¼ �Z; (2.28d)

whose inverses are

�W
�
�a ¼ ��

�a ; (2.29a)

�Y
� ¼ ð�Y

�
1 �Y

�
2 Þ ¼

1ffiffiffi
2

p ð��
4 þ i��

5 ��
6 þ i��

7 Þ;
(2.29b)

�
y �
Y ¼ �

� �1
Y

�� �2
Y

 !
¼ 1ffiffiffi

2
p ��

4 � i��
5

�
�
6 � i�

�
7

 !
; (2.29c)

�Z
� ¼ ��

8 : (2.29d)

From the conjugate momentum expressions [Eq. (2.24)]
and using the notation [Eq. (2.29)], one can readily
recognize the primary constraints as

�ð1Þ
�a ¼ �W

0
�a � 0; (2.30a)

�ð1Þ
Y ¼ �Y

0 � 0; (2.30b)

�ð1Þy
Y ¼ �y 0

Y � 0; (2.30c)

�ð1Þ
Z ¼ �Z

0 � 0: (2.30d)

Notice that �ð1Þ
Y and �ð1Þy

Y are covariant and contravariant
SUð2Þ doublets, respectively. Since �W

�
�a do not coincide

with the conjugate momenta associated with the pure

SUð2Þ theory [Eq. (2.25)], the primary constraints �ð1Þ
�a

differ from the primary constraints p0
�a which emerge in

the canonical analysis of Eq. (2.25). The same observation
will apply for the secondary constraints.

The primary Hamiltonian, which governs the evolution
of the system, takes the form

H ð1Þ
SUð2Þ ¼H SUð2Þþ� �a�ð1Þ

�a þ�ð1Þ
Y �Y

þ�y
Y�

ð1Þy
Y þ�Z�

ð1Þ
Z : (2.31)

It corresponds to the sum of the canonical Hamiltonian,

H SUð2Þ ¼ 1

2
�W

i
�a�W

i
�a þ �Y

i�y i
Y þ 1

2
�Z

i�Z
i

þ 1

4
ðF �a

ijF
ij
�a þ 2Yy

ijY
ij þ F8

ijF
ij
8 Þ �W �a

0�
ð2Þ
�a

��ð2Þy
Y Y0 � Yy

0�
ð2Þ
Y � Z0�

ð2Þ
Z ; (2.32)

and a linear combination of the primary constraints

[Eq. (2.30)], where the Lagrange multipliers �Y , �
y
Y and

�Z are

�Y ¼ 1ffiffiffi
2

p �4 � i�5

�6 � i�7

 !
; (2.33a)

�y
Y ¼ 1ffiffiffi

2
p ð�4 þ i�5 �6 þ i�7 Þ; (2.33b)

�Z ¼ �8: (2.33c)

By using the primary Hamiltonian [Eq. (2.31)], the
consistency condition over the primary constraints
[Eq. (2.30)] yields the following secondary constraints:

�ð2Þ
�a ¼D �a �b

i �W
i
�b
�ig

�
�Y

i	
�a

2
Yi�Yy

i

	 �a

2
�y i

Y

�
�0;

(2.34a)

�ð2Þy
Y ¼�Y

i

�
D

*

iþig

ffiffiffi
3

p
2
Zi

�
�igYy

i

�
	 �a

2
�W

i
�aþ

ffiffiffi
3

p
2
�Z

i

�
�0;

(2.34b)

�ð2Þ
Y ¼

�
Di�ig

ffiffiffi
3

p
2
Zi

�
�yi

Y þig

�
	 �a

2
�W

i
�aþ

ffiffiffi
3

p
2
�Z

i

�
Yi�0;

(2.34c)

�ð2Þ
Z ¼@i�Z

i�ig

ffiffiffi
3

p
2
ð�Y

iYi�Yy
i �

yi
Y Þ�0; (2.34d)

where the action of D
*

� on a contravariant SUð2Þ doublet,
say�Y

�, is another contravariant SUð2Þ doublet defined by
�Y

�D
*

� � @��Y
� þ ig�Y

� 	 �a

2 W �a
�. The consistency con-

dition applied to each secondary constraint yields no new
constraints. It turns out that all primary and secondary
constraints do form a set of first-class constraints; in fact,
the relevant Poisson brackets between these first-class
constraints are
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f�ð2Þ
�a ½u�; �ð2Þ

�b
½v�gSUð2Þ ¼ g� �a �b �c�

ð2Þ
�c ½uv�; (2.35a)

f�ð2Þ
�a ½u�; �ð2Þr

Y ½v�gSUð2Þ ¼ ig
ð	 �aÞrs
2

�ð2Þs
Y ½uv�; (2.35b)

f�ð2Þr
Y ½u�; �ð2Þs

Y ½v�gSUð2Þ ¼ g2Trs
pq

Z
d3xðuvÞðxÞð�� iq

Y Yp
i � �� ip

Y Yq
i ÞðxÞ; (2.35c)

f�ð2Þr
Y ½u�; �ð2Þ�

Ys ½v�gSUð2Þ ¼ ig

�ð	 �aÞrs
2

�ð2Þ
�a ½uv� þ

ffiffiffi
3

p
2

�r
s�

ð2Þ
Z ½uv�

�
þ g2ðTrs

pq � Trs
qpÞ

Z
d3xðuvÞðxÞð�Ys

iYp
i � Y�

is�
� ip
Y ÞðxÞ;

(2.35d)

f�ð2Þr
Y ½u�; �ð2Þ

Z ½v�gSUð2Þ ¼ � ig
ffiffiffi
3

p
2

�ð2Þr
Y ½uv�; (2.35e)

where f�; �gSUð2Þ denotes the Poisson bracket that involves
the SUð2Þ phase-space coordinates. Due to the symmetries
present in the lower indices of Trs

pq, one finds that the terms
proportional to g2 on the right-hand side of Eqs. (2.35c)
and (2.35d) do not contribute to the occurrence of tertiary
constraints; instead these terms identically vanish, and the
Poisson brackets among all the constraints give a linear
combination of constraints themselves. A more elegant
argument to show that such terms must identically vanish
on the whole phase space is the following: Notice that
Eqs. (2.13) and (2.28) define a canonical transformation
in the ordinary sense [23], and hence f�; �gSUð3Þ ¼ f�; �gSUð2Þ.
Moreover, it is easy to see that this canonical trans-
formation maps the primary constraints of Eq. (2.6)
onto Eq. (2.30); hence the primary Hamiltonian in the
SUð3Þ phase-space coordinates [Eq. (2.7)] becomes the
corresponding Hamiltonian in the SUð2Þ coordinates
[Eq. (2.31)]. As a consequence, the set of secondary con-
straints in both formalisms must match under the canonical
transformation. Indeed, this can be proved by direct calcu-
lation. Since exclusively the primary Hamiltonian is
employed to evolve the constraints in time through the
Poisson bracket, one concludes that the Dirac algorithm

in the SUð2Þ formulation must lack tertiary constraints just
as it does in the SUð3Þ formulation; this fact rules out the
presence of the extra terms proportional to g2 in the gauge
algebra [Eq. (2.35)]. In conclusion, the canonical trans-
formation defined by Eqs. (2.13) and (2.28) maps each
stage of the Dirac algorithm in the SUð3Þ formulation to
the corresponding stage in the SUð2Þ one. Notice that the
number of physical degrees of freedom of the SUð2Þ
effective theory matches with the corresponding number
of the pure SUð3Þ Yang-Mills theory.
We end the Hamiltonian analysis from the SUð2Þ per-

spective by calculating the gauge generator G [19]. This
generator is linear in all first-class constraints [Eqs. (2.30)
and (2.34)] with coefficients of the primary ones related to
that of the secondary ones; the relation among the coef-
ficients is obtained by imposing the condition that the total
time derivative of G,

@G

@t
þ fG;H SUð2ÞgSUð2Þ;

must be a linear combination of the primary constraints
only [24]. As a consequence, one gets

G¼
�
D �a �b

0 �
�b � ig

�

y	

�a

2
Y0 � Yy

0

	 �a

2



��
�ð1Þ

�a þ�ð1Þ
Y

��
D0 � ig

ffiffiffi
3

p
2

Z0

�

þ ig

�
	 �a

2
� �a �

ffiffiffi
3

p
2

�Z

�
Y0

�

þ
�

y
�
D

*

0 þ ig

ffiffiffi
3

p
2

Z0

�
� igYy

0

�
	 �a

2
� �a �

ffiffiffi
3

p
2

�Z

��
�ð1Þy

Y þ ½@0�Z þ igð
Yy
0 �
yY0Þ��ð1Þ

Z

�� �a�ð2Þ
�a �
y�ð2Þ

Y ��ð2Þy
Y 
��Z�

ð2Þ
Z : (2.36)

This gauge generator is the sum of Gs � Gj
¼0;�Z¼0 and Gns � Gj� �a¼0, which independently generate the SGTs and
NSGTs [Eqs. (2.18) and (2.19), respectively] via the Poisson brackets

�sW
�a
� ¼ fW �a

�; GsgSUð2Þ; �sY� ¼ fY�;GsgSUð2Þ; �sZ� ¼ fZ�;GsgSUð2Þ; (2.37a)

�nsW
�a
� ¼ fW �a

�; GnsgSUð2Þ; �nsY� ¼ fY�;GnsgSUð2Þ; �nsZ� ¼ fZ�;GnsgSUð2Þ: (2.37b)

From these transformation laws and the constraint algebra [Eq. (2.35)], it is straightforward to see that on the constraint
surface, the Lie algebra among SGTs and NSGTs can be summarized as follows:

½SGT; SGT� ¼ SGT; ½SGT;NSGT� ¼ SGTþ NSGT; ½NSGT;NSGT� ¼ SGTþ NSGT; (2.38)
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where ½�; �� denotes a Lie product. The first of these rela-
tions closes with structure constants and specifically fol-
lows from the Lie subalgebra [Eq. (2.35a)]; therefore,
exponentiation of SGTs provides a Lie group which in
fact corresponds to SUð2Þ. Since the Lie product of
NSGTs does not close, they do not exponentiate into a
group. The complete transformations [Eq. (2.17)] are duly
reproduced by the addition � ¼ �s þ �ns. It is worth notic-
ing that the gauge generator of Eq. (2.36) is the image of
the gauge generator of Eq. (2.11) under the canonical
transformation defined by Eqs. (2.13) and (2.28).

To conclude this subsection, we would like to emphasize
the following: A hidden symmetry arises when an admis-
sible canonical transformation is introduced. The canoni-
cal transformation is admissible in the sense that it maps
well-defined objects under some group G to well-defined
objects of a subgroup H of G. The gauge symmetry, which
is manifest in G, is hidden in H. The gauge symmetries
with respect to the group G that appear hidden from the H
perspective are those associated with the generators of G
that do not generate H. This is true independently of
whether or not the G group is spontaneously broken
down into H. In our toy model G ¼ SUð3Þ and H ¼
SUð2Þ; after the canonical transformation, only the fields
W �a

� ¼ A �a
� explicitly continue being gauge fields under H.

The rest of the fields, Y�, Y
y
� and Z�, fulfill very different

transformation laws under H; nevertheless, the latter fields
can be mapped back with the canonical transformation
to gauge fields with respect to G. This result is crucial
for our study of passing from the SUðN;M5Þ gauge group
description to the SUðN;M4Þ one via compactification, as
in this case the phenomenon of spontaneous symmetry
breaking is not present. Note that in this subtler case
SUðN;M4Þ is a subgroup of SUðN;M5Þ not due to a
difference in the number of generators, which is the same
indeed, but because the gauge parameters of the group
SUðN;M5Þ are restricted to take values on the submani-
fold M4 of M5. We will show that there exists an admis-
sible canonical transformation in this case.

III. THE SUð3Þ YANG-MILLS THEORY
WITH SPONTANEOUS

SYMMETRY BREAKING

We now proceed to extend the study of the previous
section to the case when the SUð3Þ group is spontaneously
broken into the SUð2Þ in the usual sense. One of the two
main purposes is to contrast the notion of hidden symmetry
induced by a suitable canonical transformation with that
coming from SSB. The other is to show how a specific
NSGT can be used to define the unitary gauge. In this
scenario, we will be able to make a precise analogy of
this procedure with a similar one used in the context of
extra dimensions.

A. The SUð3Þ perspective of the model

To carry out the mentioned SSB, we add to the pure
SUð3Þ theory given by the Lagrangian in Eq. (2.1) a
renormalizable scalar sector L�, so that

LSUð3Þ;� ¼ LSUð3Þ þL�; (3.1)

where

L� ¼ ðD��ÞyðD��Þ � Vð�y;�Þ: (3.2)

In this expression, D� ¼ @� � ig �a

2 Aa
� is the covariant

derivative in the fundamental representation of SUð3Þ,1
and � is a complex contravariant Poincaré scalar triplet
of SUð3Þ. In addition, Vð�y;�Þ is the renormalizable
scalar potential given by

Vð�y;�Þ ¼ �2ð�y�Þ þ �ð�y�Þ2: (3.3)

It is straightforward to show that the Lagrangian in
Eq. (3.1) is simultaneously invariant under Eq. (2.3)
and the infinitesimal rotation of the triplet � in the
isospin space,

�� ¼ �i�a

�
�a

2
�

�
: (3.4)

The gauge symmetries of the Lagrangian in Eq. (3.1)
will be reflected in the occurrence of first-class constraints
in the Hamiltonian setting. In order to formulate the theory
in phase-space terms, in addition to the canonical pairs
ðAa

�; �
�
a Þ, cf. Eq. (2.5), the conjugate pairs ð�; �Þ and

ð�y; �yÞ must be introduced, where

� ¼ @L�

@ _�
¼ ðD0�Þy; (3.5a)

�y ¼ @L�

@ _�y ¼ D0�: (3.5b)

Note that � and �y correspond to covariant and contra-
variant SUð3Þ triplets, respectively. From Eq. (3.5), the

velocities _�y and _� are expressible in terms of phase-space
variables; therefore they do not give rise to more primary
constraints in addition to those defined in Eq. (2.6). To bring
uniformity into the present section, primary constraints will

be denoted by ’ð1Þ
a � �ð1Þ

a . The incorporation of the scalar
sector into the pure SUð3Þ Yang-Mills Lagrangian does not
have influence upon the primary constraints of the pure
theory alone.
The canonical Hamiltonian associated with Eq. (3.1)

will be the sum of Eq. (2.8) and the contribution from the
Higgs sector L�, namely

H SUð3Þ;� ¼ H SUð3Þ þH�; (3.6)

1We trust that no confusion will arise with the symbol D�

already used for the covariant derivative of SUð2Þ in its funda-
mental representation, as we think one can infer the nature of the
covariant derivative depending on which object this is acting on.
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where

H� ¼ ��y þ igAa
0

�
�
�a

2
���y �

a

2
�y

�
� ðDi�ÞyðDi�Þ þ Vð�;�yÞ: (3.7)

Notice that the term linear in Aa
0 will modify the secondary

constraints that are produced in the absence of the Higgs
sector. Indeed, the primary Hamiltonian

H ð1Þ
SUð3Þ;� ¼ H SUð3Þ;� þ�a’ð1Þ

a (3.8)

allows us to obtain the consistency condition on the
primary constraints [Eq. (2.6)], providing the following
secondary constraints:

’ð2Þ
a � �ð2Þ

a � ig

�
�
�a

2
���y �

a

2
�y

�
� 0; (3.9)

where �ð2Þ
a corresponds to the secondary constraints

[Eq. (2.9)] conveyed by the pure SUð3Þ Yang-Mills theory.

The consistency requirement on ’ð2Þ
a does not bring

more constraints, ending with the Dirac algorithm. The
primary and secondary constraints of the theory,
Eqs. (2.6) and (3.9), form a set of first-class constraints;
the nonvanishing Poisson brackets between the constraints
reveal the SUð3Þ symmetry of the theory,

f’ð2Þ
a ½u�; ’ð2Þ

b ½v�gSUð3Þ ¼ gfabc’
ð2Þ
c ½uv�; (3.10)

where f�; �gSUð3Þ is the Poisson bracket in the SUð3Þ for-
mulation which takes into account the conjugate pairs
ðAa

�; �
�
a Þ, ð�; �Þ and ð�y; �yÞ. Since only secondary con-

straints are modified by the Higgs sector, one expects that
once the SSB of SUð3Þ into SUð2Þ operates, the affected
constraints will only be the secondary ones.

Before going into the SUð2Þ formulation of the theory,
the gauge generator is presented. Linear in all first-class
constraints, this corresponds to

G ¼ ðDab
0 �bÞ’ð1Þ

a � �a’ð2Þ
a : (3.11)

Notice that the scalar contribution in the secondary
constraints [Eq. (3.9)] is responsible for the appropriate
transformation law that the scalar fields must follow,
cf. Eq. (3.4). In fact,

�Aa
� ¼ fAa

�;GgSUð3Þ; (3.12a)

�� ¼ f�; GgSUð3Þ (3.12b)

faithfully reproduce Eqs. (2.3) and (3.4)—that is, the sym-
metries of the theory.

B. SSB from the SUð3Þ perspective
In this subsection we revisit the SSB [4] from what we

have referred to as the SUð3Þ perspective. We consider the

case �2 < 0, in which the vacuum is infinitely degenerate,
so the theory presents SSB.
The extremum at � ¼ 0 is not considered. We may

presume that the expectation value of � in the vacuum
does not vanish. The energy of the system is minimal on all
the points of the spherical surface given by

�y
min�min ¼ ��2

2�
� v2: (3.13)

All points on this surface are physically equivalent because
they are connected through SUð3Þ transformations. To
break down SUð3Þ into SUð2Þ, one chooses a particular
direction �min such that

� �a

2
�min ¼ 0; (3.14a)

�â

2
�min � 0; (3.14b)

�8

2
�min � 0: (3.14c)

The isotropy group, the one corresponding to unbroken
symmetries, at �min is SUð2Þ. It is convenient to choose a

representative of the solutions to Eq. (3.13) as �y
min ¼

ð0 0 � Þ. This choice means that five generators of

SUð3Þ, namely �â

2 and �8

2 , are broken.

Within this formulation, two cases clearly arise
depending on the nature of the gauge parameters �a

[cf. Eq. (2.3)]. These are
(i) The Goldstone Theorem [4]. Assuming the parame-

ters�a to be constant functions onMinkowski space,
the invariant Lagrangian corresponds to

LSUð3Þ;H ¼ ð@��Þyð@��Þ � Vð�y;�Þ:

When the theory is subjected to the translation
� � ’ � ���min , there arise five real massless
scalars. These correspond to ’1, ’2 and the imagi-
nary part of ’3 denoted as�Z. In addition, a massive
scalar H emerges, identified as the real part of ’3,
that quantifies the normal excitations to the surface
of the minimal energy. Hence, associated with each
broken generator of SUð3Þ there is a massless scalar
or Goldstone boson.

(ii) The Higgs Mechanism [3]. Assuming the parame-
ters �a to be nonconstant functions on Minkowski
space, the invariant Lagrangian corresponds to
Eq. (2.1). In this case, besides the presence of five
pseudo-Goldstone bosons, five massive gauge bo-
sons (Aâ

� and A8
�) arise. This is the celebrated Higgs

mechanism. In this scenario, the pseudo-Goldstone
bosons represent spurious degrees of freedom, as
they can be removed from the theory in a special
gauge, known as unitary gauge. In the following
section, we will show that this mechanism has a
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natural description in the SUð2Þ coordinates, and
that the unitary gauge can be understood as the
action of fixing the parameters within what will be
defined as NSGTs on the scalar fields, Eq. (3.19b).

C. The SUð2Þ perspective of the model

In this subsection, the description of the field theory
[Eq. (3.1)] from the SUð2Þ perspective is achieved. The
pure SUð3Þ Yang-Mills sector LSUð3Þ is mapped, by means

of the point transformation [Eq. (2.13)], onto LSUð2Þ
[Eq. (2.16)], and the scalar sector L� is mapped onto L�

by decomposing the SUð3Þ triplet� into an SUð2Þ doublet
and a scalar,

�1

�2

 !
¼ �1

�2

 !
; (3.15a)

�3 ¼ �0: (3.15b)

Therefore, the Lagrangian in Eq. (3.1) is recast in terms of
well-defined objects under the action of SUð2Þ,

LSUð2Þ;� ¼ LSUð2Þ þL�; (3.16)

where the Higgs sector becomes

L� ¼ ðD��ÞyðD��Þj�!�

A�!W�;Y�;Yy�;Z�

þ Vð�;�yÞj�!�:

(3.17)

Gauge invariances of the theory in this formulation
correspond to Eq. (2.17) together with

�� ¼ �i

�
	 �a

2
� �a þ 1

2
ffiffiffi
3

p �Z

�
�� iffiffiffi

2
p �0
; (3.18a)

��0 ¼ � iffiffiffi
2

p 
y�þ iffiffiffi
3

p �Z�
0: (3.18b)

Notice that in the scalar sector of the theory, the SGTs and
NSGTs also naturally arise. Indeed,

�s� ¼ �i
	 �a

2
� �a�; �s�

0 ¼ 0; (3.19a)

�ns� ¼ � i

2

�
1ffiffiffi
3

p �Z�þ ffiffiffi
2

p
�0


�
;

�ns�
0 ¼ � iffiffiffi

2
p 
y�þ iffiffiffi

3
p �Z�

0: (3.19b)

We now proceed to the Hamiltonian formulation asso-
ciated with the singular Lagrangian [Eq. (3.16)]. Since the
scalar sector does not contain spacetime derivatives of
either gauge fieldsW �a

�, or SUð2Þ doublets Y�, or the scalar

Z�, the canonical conjugate momentum associated with

each of these fields coincides with those defined in
Sec. II B. Hence, the conjugate momenta in the SUð2Þ
formulation are given by Eq. (2.24) and

�� ¼ @L�

@ _�
¼ �y

�
D

*

0 þ ig

2
ffiffiffi
3

p Z0

�
þ igffiffiffi

2
p �0 �Yy

0 ; (3.20a)

�0 ¼
@L�

@ _�0
¼
�
@0 � igffiffiffi

3
p Z0

�
�0 � þ igffiffiffi

2
p �yY0; (3.20b)

�y
� ¼ @L�

@ _�y ¼
�
D0 � ig

2
ffiffiffi
3

p Z0

�
�� igffiffiffi

2
p �0Y0; (3.20c)

��
0 ¼

@L�

@ _�0 � ¼
�
@0 þ igffiffiffi

3
p Z0

�
�0 � igffiffiffi

2
p Yy

0�: (3.20d)

It is worth noticing that �� and �y
� are covariant and

contravariant SUð2Þ doublets, respectively, whereas �0

and its complex conjugate are SUð2Þ scalars. The relations
among conjugate momenta [Eq. (3.20)] and the corre-
sponding objects [Eq. (3.5)] are

�� ¼ ð�1
� �2

� Þ ¼ ð�1 �2 Þ; (3.21a)

�0 ¼ �3: (3.21b)

As expected, the scalar sector of the theory does not
bring additional constraints into the SUð2Þ formalism
either. Instead of going through the Dirac formalism using
the Poisson bracket f�; �gSUð2Þ, that in this case would

include also the canonical pairs ð�;��Þ, ð�0; �0Þ,
ð�y; �y

�Þ, and ð�0�; ��
0Þ, we will make use of the argu-

ments given after Eq. (2.35) in the following way: First,
notice that Eqs. (2.13), (2.28), (3.15), and (3.21) define a
canonical transformation from SUð3Þ to SUð2Þ coordi-
nates; therefore f�; �gSUð3Þ ¼ f�; �gSUð2Þ. Second, the canoni-
cal transformation maps the set of primary constraints

f’ð1Þ
a g onto the set of primary constraints f’ð1Þ

�a �
�ð1Þ

�a ; ’ðaÞ
Y � �ð1Þ

Y ; ’ð1Þ
Z � �ð1Þ

Z g; the transformation hence
recasts the primary Hamiltonian [Eq. (3.8)] in terms of
SUð2Þ variables as follows:

H ð1Þ
SUð2Þ;� ¼ H SUð2Þ þH � þ� �a’ð1Þ

�a þ ’ð1Þ
Y �Y

þ�y
Y’

ð1Þy
Y þ�Z’

ð1Þ
Z ; (3.22)

where H SUð2Þ is given by Eq. (2.32) and H � is the

Legendre transformation ofL�. As a consequence of these

two observations, the set of secondary constraints that
emerges in the SUð3Þ viewpoint must be faithfully mapped
onto the set of secondary constraints given in terms of the
SUð2Þ coordinates. These are
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’ð2Þ
�a ¼ �ð2Þ

�a � ig

�
��

	 �a

2
���y 	

�a

2
�y

�

�
� 0; (3.23a)

’ð2Þy
Y ¼ �ð2Þy

Y þ igffiffiffi
2

p ð��
0�

y ��0��Þ � 0; (3.23b)

’ð2Þ
Y ¼ �ð2Þ

Y � igffiffiffi
2

p ð�0���0 ��y
�Þ � 0; (3.23c)

’ð2Þ
Z ¼ �ð2Þ

Z � igffiffiffi
3

p
�
�0 ���

0 � �0�
0 þ 1

2
ð�����y�y

�Þ
�
� 0; (3.23d)

where �ð2Þ
�a , �ð2Þy

Y , �ð2Þ
Y and �ð2Þ

Z are given by Eq. (2.34). Indeed, this can be proved by direct calculation. Finally, the set of
equations that define the gauge algebra [Eq. (3.10)] can be expressed in terms of SUð2Þ variables using only the canonical
transformation. The nonvanishing Poisson brackets are

f’ð2Þ
�a ½u�; ’ð2Þ

�b
½v�gSUð2Þ ¼ g� �a �b �c’

ð2Þ
�c ½uv�; (3.24a)

f’ð2Þ
�a ½u�; ’ð2Þr

Y ½v�gSUð2Þ ¼ ig
ð	 �aÞrs
2

’ð2Þs
Y ½uv�; (3.24b)

f’ð2Þr
Y ½u�; ’ð2Þ�

Ys ½v�gSUð2Þ ¼ ig

�ð	 �aÞrs
2

’ð2Þ
�a ½uv� þ

ffiffiffi
3

p
2

�r
s’

ð2Þ
Z ½uv�

�
; (3.24c)

f’ð2Þr
Y ½u�; ’ð2Þ

Z ½v�gSUð2Þ ¼ � ig
ffiffiffi
3

p
2

’ð2Þr
Y ½uv�: (3.24d)

Since the canonical transformation connects the Dirac algorithm unfolded in the two different sets of coordinates at each
step, we have that the gauge generator [Eq. (3.11)] must be translated into the corresponding one in the SUð2Þ variables,
namely

G ¼
�
D �a �b

0 �
�b � ig

�

y	

�a

2
Y0 � Yy

0

	 �a

2



��
’ð1Þ

�a þ ’ð1Þ
Y

��
D0 � ig

ffiffiffi
3

p
2

Z0

�

þ ig

�
	 �a

2
� �a �

ffiffiffi
3

p
2

�Z

�
Y0

�

þ
�

y
�
D

*

0 þ ig

ffiffiffi
3

p
2

Z0

�
� igYy

0

�
	 �a

2
� �a �

ffiffiffi
3

p
2

�Z

��
’ð1Þy

Y

þ ½@0�Z þ igð
Yy
0 � 
yY0Þ�’ð1Þ

Z � � �a’ð2Þ
�a � 
y’ð2Þ

Y � ’ð2Þy
Y 
� �Z’

ð2Þ
Z ; (3.25)

from which the sectors that independently generate SGTs,
Gs � Gj
¼0;�Z¼0, and NSGTs, Gns � Gj� �a¼0, are easily
identified. Notice that it is due to the terms depending on
the Higgs sector in each secondary constraint that the
components of Eq. (3.19) are suitably recovered from the
following brackets:

�s�¼f�;GsgSUð2Þ; �s�
0¼f�0;GsgSUð2Þ; (3.26a)

�ns�¼f�;GnsgSUð2Þ; �ns�
0¼f�0;GnsgSUð2Þ: (3.26b)

The corresponding variations forW �a
�, Y� and Z� are given

in Eq. (2.37). Since the gauge algebra [Eq. (3.24)] is
isomorphic to Eq. (2.35), it follows that on the constraint
surface the algebra of SGTs and NSGTs also becomes that
of Eq. (2.38). The finite version of SGTs correspond to the
action of SUð2Þ, whereas the NSGTs are associated with
broken generators.

In this subsection, we have recast an SUð3Þ manifestly
invariant theory as an SUð2Þ manifestly invariant theory,
cf. Eqs. (3.1) and (3.16), via the admissible point trans-
formation, Eqs. (2.13) and (3.15). In the context of theories

with SSB, it is said that the SUð2Þ symmetry is exact,
whereas the SUð3Þ is hidden. We now turn to discuss the
SSB of the SUð3Þ group into the SUð2Þ one, from the
viewpoint of the latter.

D. SSB from the SUð2Þ perspective
We reconsider the case of infinite degeneracy of

vacuum, �2 < 0. Configurations with minimal energy

[Eq. (3.13)] lie on �y
min�min þ�0 �

min�
0
min ¼ v2. As we

have remarked, there is a natural separation of SUð3Þ
parameters into those parameters of the isotropy group,
� �a, and those associated with the broken part of the group,
�â and �8. In fact, this split is what determines the SGTs
and NSGTs previously defined. The functional form of the
Lagrangian [Eq. (3.16)], where the SUð2Þ sector of SUð3Þ
is manifest, suggests the study of the following cases:
(i) The Goldstone theorem. We assume the broken part

of SUð3Þ, generated by �â

2 and �8

2 , to be global—that

is, we allow �â and �8 to be spacetime independent.
In other words, assume that the NSGTs are global,
but not necessarily SGTs. In such a situation, the
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following Lagrangian is invariant under this class of
transformations:

Lg ¼ � 1

4
W �a

��W
��
�a þ ðD��ÞyðD��Þ

þ ð@��0�Þð@��0Þ þ Vj�!�;

where W �a
�� are the components of the SUð2Þ-valued

curvature and D� is the covariant derivative of

SUð2Þ in the fundamental representation. There arise
five massless scalars when the theory is developed
around the particular minimum �min , which is
decomposed into the doublet �min ¼ 0 and the
scalar �0

min ¼ v, by carrying out the shift �0 �
Hþ i�Z � �0 � v. These scalars do correspond
to �, �y and the singlet �Z, which are identified
with the so-called Goldstone bosons. The massive
field H survives. Hence, there is a massless scalar
associated with each independent NSGT.

(ii) The Higgs mechanism. Now assume the larger sym-
metry SUð3Þ—that is, that both the SGTs and
NSGTs are local. In this scenario, the theory devel-
oped around the particular minimum is character-
ized by the Lagrangian given in Eq. (3.16), with �0

replaced by (vþH þ i�Z). Five gauge fields, Y�,

Yy
�, and Z�, acquire mass, and simultaneously five

pseudo-Goldstone bosons appear, namely �, �y
and �Z. Notice that all the mass terms are invariant
under the SUð2Þ subgroup.

All pseudo-Goldstone bosons can be removed from the
theory through the so-called unitary gauge; the degrees of
freedom that they represent appear as the longitudinal
polarization states of the gauge bosons associated with
the broken generators. The implementation of the unitary
gauge can be understood in terms of the NSGTs. Indeed,
consider the NSGT [Eq. (3.19b)] with particular gauge
parameters


 ¼ � i
ffiffiffi
2

p
v

�; (3.27a)

�Z ¼ �
ffiffiffi
3

p
v

�Z; (3.27b)

which yields �0 ¼ 0 and �0
Z ¼ 0. Therefore, the unitary

gauge corresponds to a particular NSGT which maps the
pseudo-Goldstone bosons onto zero. In addition, from the
NSGTs given by Eq. (2.19), one finds

W 0 �a
� ¼ W �a

�; (3.28a)

Y0
� ¼ Y� � i

ffiffiffi
2

p
v

@��; (3.28b)

Z0
� ¼ Z� �

ffiffiffi
3

p
v

@��Z: (3.28c)

The incorporation of the pseudo-Goldstone bosons as the
longitudinal component of the massive gauge bosons Y0

�

and Z0
� is evident from these expressions. We will come

back to this later on, when discussing this mechanism in
the context of theories with compactified extra dimensions.
The unitary gauge can also be implemented via a

finite NSGT. Consider the nonlinear parametrization of
the triplet �,

�ðxÞ ¼ UðxÞ
0

0

vþH

0
BB@

1
CCA; (3.29)

with

UðxÞ¼ exp

�
i
�â

2
�âþ i

�8

2
�8

�

¼ exp

8<
:�

�
i

2v

�24i�4ð�1��1�Þ��5ð�1þ�1�Þ

þ i�6ð�2��2�Þ��7ð�2þ�2�Þþ
ffiffiffi
3

2

s
�8�Z

3
5
9=
;;
(3.30)

where the parameter values given in Eq. (3.27) were used.
The finite versions of the NSGTs [Eq. (3.19b)] are obtained
by acting with U�1ðxÞ as follows:

�0ðxÞ ¼ U�1ðxÞ� ¼
0

0

vþH

0
BB@

1
CCA: (3.31)

The components of Eq. (3.28) are recovered by entering the
particular element U�1ðxÞ 2 SUð3Þ into the finite gauge
transformation of the connection, A0

� ¼ UðxÞA�U
yðxÞ �

ið@�UÞUy, and keeping the analysis at first order.

IV. YANG-MILLS THEORIES WITH
COMPACTIFIED EXTRA DIMENSIONS

In this section, we introduce a pure higher-dimensional
Yang-Mills theory with an underlying gauge group
SUðN;MmÞ, whose parameters are allowed to propagate
in the spacetime manifold Mm ¼ M4 �N n. Gauge
fields Aa

M, defined on Mm, act as fundamental fields in
the m-dimensional theory, where a and M are gauge and
spacetime indices, respectively. We begin our discussion
by noticing that the transition from the SUðN;MmÞ gauge
group description to SUðN;M4Þ will simultaneously con-
vey a certain transformation that maps well-defined objects
under the Poincaré group ISOð1; m� 1Þ onto well-defined
objects under the standard ISOð1; 3Þ. We now proceed to
present a brief discussion on this issue.

A. The Poincaré group perspective

Let us consider the flat spacetime manifold Mm ¼
M4 �N n, with mostly minus metric gMN and n spatial
extra dimensions, with coordinates ðXMÞ ¼ ðx�; x ��Þ,
where � ¼ 0, 1, 2, 3 and �� ¼ 5; . . . ; m. We introduce
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gauge fields AMðXÞ ¼ Aa
MðXÞTa, where Ta are genera-

tors of the gauge group SUðN;MmÞ. In thism-dimensional
spacetime, the Poincaré group ISOð1; m� 1Þ is defined
through its 1

2mðmþ 1Þ generators. A number m of these

generators (PM) belong to the group of translations, and the
1
2mðm� 1Þ remainder (JMN) are associated with the

Lorentz group SOð1; m� 1Þ. These generators satisfy
the following Poincaré algebra:

½PM; PN� ¼ 0; (4.1)

½JMN; PR� ¼ iðgMRPN � gNRPMÞ; (4.2)

½JMN; JRS� ¼ iðgMRJNS � gMSJNR � gNRJMS þ gNSJMRÞ:
(4.3)

It is not difficult to see that in this algebra, there are two
subalgebras merged. One of these algebras generates the
Poincaré group ISOð1; 3Þ:

½P�; P�� ¼ 0; (4.4)

½J��; P�� ¼ iðg��P� � g��P�Þ; (4.5)

½J��; J�	� ¼ iðg��J�	 � g�	J�� � g��J�	 þ g�	J��Þ;
(4.6)

whereas the other one generates the inhomogeneous
orthogonal group in n dimensions ISOðnÞ:

½P ��; P ��� ¼ 0; (4.7)

½J �� ��; P ��� ¼ ið� �� ��P �� � � �� ��P ��Þ; (4.8)

½J �� ��;J �� �	�¼ ið� �� �	J �� ���� �� ��J �� �	�� �� �	J �� ��þ� �� ��J �� �	Þ:
(4.9)

An infinitesimal Poincaré transformation in Mm is
given by

�XM ¼ !MNXN þ �M; (4.10)

where!MN ¼ �!NM and �M are the infinitesimal parame-
ters of the group. This transformation induces the follow-
ing variation:

�AMðXÞ ¼ ½!MN þ gMNð!RSX
S þ �RÞ@R�ANðXÞ:

(4.11)

This relation can be naturally split into variations for
A�ðXÞ and A ��ðXÞ components as follows:

�A�ðXÞ ¼ ½!�� þ g��ð!�	x
	 þ ��Þ@��A�ðXÞ þ ½ð! �� �	x

�	 þ � ��Þ@ �� þ!� �	ðx �	@� � x�@ �	Þ�A�ðXÞ þ!� ��A ��ðXÞ;
(4.12a)

�A ��ðXÞ ¼ ½! �� �� þ g �� ��ð! �� �	x
�	 þ � ��Þ@ ���A ��ðXÞ þ ½ð!�	x

	 þ ��Þ@� þ!� �	ðx �	@� � x�@ �	Þ�A ��ðXÞ þ! ���A�ðXÞ:
(4.12b)

It can be seen from these expressions that A� and A ��

transform under the Lorentz group SOð1; 3Þ as a vector and
as a scalar, respectively, whereas they transform as a scalar
and as a vector under the orthogonal group SOðnÞ. This
means that before compactification, the m-dimensional
Yang-Mills action S½AM� [manifestly invariant under
ISOð1; m� 1Þ] can be written in terms of well-defined
objects under ISOð1; 3Þ and ISOðnÞ. Thus, we can recast
this theory in terms of the action S½A�;A ���. In the latter
formulation, the ISOð1; 3Þ and ISOðnÞ symmetries are
manifest, but the ISOð1; m� 1Þ is hidden. In complete
analogy with the ideas introduced in previous sections
for unitary gauge groups, we can define two types of
standard transformations, which correspond to the inho-
mogeneous subgroups ISOð1; 3Þ and ISOðnÞ. The former,
which we will call standard Poincaré transformations
(SPTs), are defined by setting ! �� �� ¼ !� �� ¼ � �� ¼ 0 in
Eq. (4.12):

�A�ðXÞ¼ ½!��þg��ð!�	x
	þ��Þ@��A�ðXÞ; (4.13a)

�A ��ðXÞ¼ ð!�	x
	þ��Þ@�A ��ðXÞ: (4.13b)

The latter ones, which we will call standard orthogonal
transformations (SOTs), arise when !��¼!� ��¼��¼0
in Eq. (4.12):

�A�ðXÞ ¼ ð! �� �	x
�	 þ � ��Þ@ ��A�ðXÞ; (4.14a)

�A ��ðXÞ ¼ ½! �� �� þ g �� ��ð! �� �	x
�	 þ � ��Þ@ ���A ��ðXÞ:

(4.14b)

The action S½A�;A ��� is manifestly invariant under

these standard spacetime transformations. However, this
action is not manifestly invariant under transformations
induced by the J� �� generators. These are nonstandard

Poincaré transformations (NSPTs), which are defined
from Eq. (4.12) by setting the parameters !� �� � 0 and

the remaining ones equal to zero:

�A�ðXÞ ¼ !� �	ðx �	@� � x�@ �	ÞA�ðXÞ þ!� ��A ��ðXÞ;
(4.15a)

�A ��ðXÞ ¼ !� �	ðx �	@� � x�@ �	ÞA ��ðXÞ þ! ���A�ðXÞ:
(4.15b)
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In the five-dimensional pure Yang-Mills theory with one
compact spatial extra dimension, there arise massless
bosons that are interpreted as pseudo-Goldstone bosons.
These fields can be removed via a particular NSGT which
is understood as a unitary gauge [6]. Although these
pseudo-Goldstone bosons are present, in the switch from
the gauge group SUðN;M5Þ to SUðN;M4Þ there is no
SSB involved, because the number of generators in both
groups is the same. So, in this class of theories, the pseudo-
Goldstone bosons needed to implement the Higgs mecha-
nism have nothing to do with the unitary gauge group
SUðN;M5Þ, but with the Poincaré group. The boson fields
arise by compactification of the spatial extra coordinates,
which leads to an explicit breaking of the ISOð1; 4Þ group
into ISOð1; 3Þ. This observation implies that the corre-
sponding effective theory, which depends on the KK fields,
is subject to satisfying only the SPTs. We expect a similar
behavior when considering compactification of higher-
dimensional pure SUðN;MmÞ Yang-Mills theories into
SUðN;M4Þ effective theories.

B. Pure SUðN;MmÞ Yang-Mills theory

The Lagrangian that describes pure SUðN;MmÞ
Yang-Mills theory is given by [cf. Eq. (2.1)]

LSUðN;MÞðx; yÞ ¼ � 1

4
F a

MNðx; yÞFMN
a ðx; yÞ; (4.16)

where in this subsection ðx; yÞ denotes the coordinates of
M4 �N n. The components F a

MN are regarded as func-
tions of gauge fieldsAa

Mðx; yÞ as in Eq. (2.2), except that in
this case the coupling constant is denoted by gm, whose

dimension is of ½mass�ð4�mÞ=2. Gauge invariances of this
theory are [cf. Eq. (2.3)]

�Aa
M ¼ Dab

M �b; (4.17)

where Dab
M ¼ �ab@M � gmf

abcAc
M and the gauge

parameters are allowed to propagate in the bulk. From
Eq. (4.17), the components of the curvature are transformed
in the adjoint representation �F a

MN ¼ gmf
abcF b

MN�
c.

The Hamiltonian description of the theory goes along
the same line as Sec. II A. The conjugate momentum to
Aa

M is denoted by �M
a . The canonical analysis yields the

following first-class constraints:

�ð1Þ
a ¼ �0

a � 0; (4.18a)

�ð2Þ
a ¼ Dab

I �I
b � 0; (4.18b)

where I labels all spatial components of Mm. Therefore,
the number of physical degrees of freedom is ðN2 � 1Þm�
2ðN2 � 1Þ ¼ ðN2 � 1Þðm� 2Þ per spatial point of Mm.

The corresponding gauge algebra has the structure of
Eq. (2.10) with the corresponding coupling constant gm:

f�ð2Þ
a ½u�; �ð2Þ

b ½v�gSUðN;MÞ ¼ gmfabc�
ð2Þ
c ½uv�; (4.19)

where the Poisson bracket f�; �gSUðN;MÞ is calculated in

terms of canonical conjugate pairs ðAa
M;�

M
a Þ. In the

same fashion, gauge transformations [Eq. (4.17)] can
be obtained via the corresponding gauge generator
[cf. Eq. (2.11)] as follows:

�Aa
M ¼ fAa

M;GgSUðN;MÞ: (4.20)

We now perform the transition from the SUðN;MmÞ
variables to the natural variables that arise in the effective
theory after compactification.

C. Compactified theory and the SUðN;M4Þ description
For the sake of simplicity, from now on we focus on the

case n ¼ 1; that is, the five-dimensional SUðN;M5ÞYang-
Mills theory. The notion of hidden symmetry induced by a
canonical transformation will be given in terms of Fourier
transformations and the identification of G as SUðN;M5Þ
and H as SUðN;M4Þ. In five dimensions, the theory
consists of 3ðN2 � 1Þ true degrees of freedom per spatial
point of M5.
The componentsAa

Mðx; yÞ of the connection find a natu-
ral split intoAa

�ðx; yÞ andAa
5ðx; yÞ, and following Ref. [6],

we assume the compact extra dimension homotopically
equivalent to the circle S1 of radius R. Fields Aa

�ðx; yÞ
and Aa

5ðx; yÞ are assumed to be periodic with respect to

the fifth coordinate, so they can be expressed as Fourier
series. In order to recover a pure four-dimensional Yang-
Mills sector within the effective theory, we introduce a
further symmetry in the compact extra dimension by replac-
ing it with S1=Z2, hence y is identified with�y. We assume
thatAa

�ðx; yÞ andAa
5ðx; yÞ are, respectively, even and odd

under the reflection y ! �y; these imply that curvature
components F a

��ðx; yÞ and F a
�5ðx; yÞ display even and

odd parity in the extra dimension, respectively. Under these
assumptions, the following Fourier expansions are allowed:

Aa
�ðx;yÞ ¼ 1ffiffiffiffi

R
p Að0Þa

� ðxÞþ
ffiffiffiffi
2

R

s X1
m¼1

AðmÞa
� ðxÞcos

�
2�

my

R

�
;

(4.21a)

Aa
5ðx;yÞ ¼

ffiffiffiffi
2

R

s X1
m¼1

AðmÞa
5 ðxÞ sin

�
2�

my

R

�
; (4.21b)

F a
��ðx;yÞ ¼ 1ffiffiffiffi

R
p F ð0Þa

�� ðxÞþ
ffiffiffiffi
2

R

s X1
m¼1

F ðmÞa
�� ðxÞcos

�
2�

my

R

�
;

(4.21c)

F a
�5ðx;yÞ ¼

ffiffiffiffi
2

R

s X1
m¼1

F ðmÞa
�5 ðxÞ sin

�
2�

my

R

�
: (4.21d)

In particular, it will be important to make the analogy
between Eqs. (4.21a) and (4.21b) and the point transforma-
tions in Eq. (2.13).
Following the compactification scheme introduced in

Ref. [6], one obtains the Fourier components of the curva-
ture in terms of the gauge field Fourier modes:
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F ð0Þa
�� ¼Fð0Þa

�� þgfabcAðmÞb
� AðmÞc

� ; (4.22a)

F ðmÞa
�� ¼Dð0Þab

� AðmÞb
� �Dð0Þab

� AðmÞb
�

þgfabc�mrnA
ðrÞb
� AðnÞc

� ; (4.22b)

F ðmÞa
�5 ¼Dð0Þab

� AðmÞb
5 þ2�m

R
AðmÞa
�

þgfabc�0
mnrA

ðrÞb
� AðnÞc

5 ; (4.22c)

whereDð0Þab
� ¼ �ab@� � gfabcAð0Þc

� , the coupling constant

g ¼ g5=
ffiffiffiffi
R

p
, and

Fð0Þa
�� ¼ @�A

ð0Þa
� � @�A

ð0Þa
� þ gfabcAð0Þb

� Að0Þc
� : (4.23)

In addition,

�mrn ¼ 1ffiffiffi
2

p ð�r;mþn þ �m;rþn þ �n;rþmÞ; (4.24a)

�0
mrn ¼ 1ffiffiffi

2
p ð�m;rþn þ �r;mþn � �n;rþmÞ: (4.24b)

Notice that there is a clear resemblance between
Eqs. (2.15) and (4.22). In the same fashion that the
SUð3Þ-valued curvature in our toy model was decomposed
into well-defined objects (F �a

��, Y��, and F8
��) under the

SUð2Þ subgroup, we will show that the components of
Eq. (4.22) represent the decomposition of the pure
SUðN;M5ÞYang-Mills curvature intowell-defined objects

(F ð0Þa
�� , F

ðmÞa
�� , and F ð0Þa

�5 ) under the subgroup SUðN;M4Þ.
In our toy model, such decomposition was performed by
means of the point transformation in Eq. (2.13); in the
present case we will take advantage of Eqs. (4.21a) and
(4.21b). Moreover, in the present theory, the curvature
decomposition is also a map from well-defined objects
under ISOð1; 4Þ onto well-defined objects under ISOð1; 3Þ.

Integrating out the extra dimension after Fourier-
expanding Eq. (4.16) yields the following effective
Lagrangian, cf. Eq. (2.16):

LSUðN;M4Þ ¼ � 1

4
ðF ð0Þa

�� F ð0Þa�� þF ðmÞa
�� F ðmÞa��

þ 2F ðmÞa
�5 F ðmÞa�5Þ: (4.25)

The analysis of the toy model in Sec. II suggests that
Fourier expansions of gauge fields, Eqs. (4.21a) and
(4.21b), can be treated as a point transformation
which connects the natural coordinates in the pure

five-dimensional Yang-Mills theory ðAa
MÞ and the built-

in coordinates ðAð0Þa
� , AðmÞa

� , and AðmÞa
5 ) of the effective

Lagrangian [Eq. (4.25)]. In this framework, gauge trans-
formations [Eq. (4.17)] are mapped by Eqs. (4.21a) and
(4.21b) onto

�Að0Þa
� ¼ Dð0Þab

� �ð0Þb þ gfabcAðmÞb
� �ðmÞc; (4.26a)

�AðmÞa
� ¼ gfabcAðmÞb

� �ð0Þc þDðmnÞab
� �ðnÞb; (4.26b)

�AðmÞa
5 ¼ gfabcAðmÞb

5 �ð0Þc þDðmnÞab
5 �ðnÞb (4.26c)

after the extra dimension is integrated out. The parameters

�ð0ÞaðxÞ and �ðmÞaðxÞ are the Fourier components in the
expansion of �aðx; yÞ ¼ �aðx;�yÞ. In Eq. (4.26), the
following quantities have been defined:

DðmnÞab
� ¼ �mnDð0Þab

� � gfabc�mrnA
ðrÞc
� ; (4.27a)

DðmnÞab
5 ¼ � 2�m

R
�mn�ab � gfabc�0

mrnA
ðrÞc
5 : (4.27b)

In analogy with Eqs. (2.18) and (2.19), the SGTs and
NSGTs are defined in this case. The SGTs correspond to

Eq. (4.26) after setting �ðnÞa ¼ 0:

�sA
ð0Þa
� ¼ Dð0Þab

� �ð0Þb; (4.28a)

�sA
ðmÞa
� ¼ gfabcAðmÞb

� �ð0Þc; (4.28b)

�sA
ðmÞa
5 ¼ gfabcAðmÞb

5 �ð0Þc: (4.28c)

In analogy with the gauge fields W �a
� under SUð2Þ

[Eq. (2.18a)], the Fourier component Að0Þa
� becomes a

gauge field with respect to SUðN;M4Þ. Similarly, the
matter field Y� is comparable with the excited KK modes

AðnÞa
� , which transform in the adjoint representation of

SUðN;M4Þ. In addition, AðnÞa
5 transform as matter fields

in the adjoint representation of SUðN;M4Þ. The NSGTs

are obtained from Eq. (4.26) by setting �ð0Þa � 0, that is
[cf. Eq. (2.19)],

�nsA
ð0Þa
� ¼ gfabcAðmÞb

� �ðmÞc; (4.29a)

�nsA
ðmÞa
� ¼ DðmnÞab

� �ðnÞb; (4.29b)

�nsA
ðmÞa
5 ¼ DðmnÞab

5 �ðnÞb: (4.29c)

Gauge invariance of Eq. (4.25) under Eq. (4.26) is guar-
anteed, since the latter imply the following variations at the
level of the Fourier components of the curvature:

�F ð0Þa
�� ¼gfabcðF ð0Þb

�� �ð0ÞcþF ðmÞb
�� �ðmÞcÞ; (4.30a)

�F ðmÞa
�� ¼gfabcðF ðmÞb

�� �ð0Þcþð�mnF
ð0Þb
�� þ�mrnF

ðrÞb
�� Þ�ðnÞcÞ; (4.30b)

�F ðmÞa
�5 ¼gfabcðF ðmÞb

�5 �ð0Þcþ�0
mrnF

ðrÞb
�5 �

ðnÞcÞ: (4.30c)

It is not difficult to see that the effective Lagrangian LSUðN;M4Þ is invariant under these transformations. Therefore, the
components of Eqs. (4.26) are genuine gauge transformations of the effective theory.
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It is worth noticing that the scalar fields AðmÞa
5 can be eliminated altogether via a particular NSGT. Consider a NSGT

with infinitesimal gauge parameters given by �ðmÞaðxÞ ¼ ðR=2�mÞAðmÞa
5 ðxÞ [6]. Then, from Eq. (4.29c), we can see that

AðmÞa
5 ! A0ðmÞa

5 ¼ 0 at first order. This result shows that the AðmÞa
5 ðxÞ scalar fields are in fact pseudo-Goldstone bosons.

It is important to stress that the invariance of the effective theory [Eq. (4.25)] under the transformations [Eq. (4.26)] is by
no means immediate. A direct calculation of the curvature variations [Eq. (4.30)] from Eq. (4.26) gives rise to the following
extra terms quadratic in g:

�ðmÞa
�� ¼ �g2½fabcfbdeð�pq�mn þ�rpq�rmnÞ þ fadbfbceð�nq�mp þ�rnq�rmpÞ

þ fabefbcdð�np�mq þ �rnp�rmqÞ�AðpÞd
� AðqÞe

� �ðnÞc; (4.31a)

~�ðmÞa
�5 ¼ �g2½fabcfbde�0

rqp�
0
rmn þ fadbfbce�

0
rqn�

0
rmp þ fabefbcdð�np�mq þ �npr�

0
mqrÞ�AðpÞd

� AðqÞe
5 �ðnÞc (4.31b)

in Eqs. (4.30b) and (4.30c), respectively. These terms, that
would destroy the invariance of the effective Lagrangian
LSUðN;M4Þ under Eq. (4.26), are necessarily zero by con-
sistency with the Fourier transformation in Eq. (4.21). The
variation of curvatures �F a

MN ¼ g5fabcF b
MN�

cðx; yÞ is
duly mapped onto Eq. (4.30) under the point transforma-
tion in Eq. (4.21). We will discuss further this point within
the Hamiltonian formalism of the theory.

The SGTs [Eq. (4.28)] induce the corresponding trans-
formations at the curvature level. From Eq. (4.30), all
Fourier components of F a

MN do covariantly transform
under the symmetry group of SGTs, SUðN;M4Þ:

�sF
ð0Þa
�� ¼ gfabcF ð0Þb

�� �ð0Þc; (4.32a)

�sF
ðmÞa
�� ¼ gfabcF ðmÞb

�� �ð0Þc; (4.32b)

�sF
ðmÞa
�5 ¼ gfabcF ðmÞb

�5 �ð0Þc: (4.32c)

The phase-space description of this theory allows us to
define the gauge generators associated with the so-called
SGTs and NSGTs defined above. The canonical analysis of
the effective Lagrangian [Eq. (4.25)] goes along the same
lines of reasoning as Sec. B2 of Ref. [6]. The conjugate
momenta are given by

�ð0Þ�
a ¼ F ð0Þ�0

a ; (4.33a)

�
ðnÞ�
a ¼ F ðnÞ�0

a ; (4.33b)

�ðnÞ5
a ¼ F ðnÞ50

a : (4.33c)

It is worth noticing, from Eqs. (4.28) and (4.32), that
canonical pairs are well-defined objects with respect to
SUðN;M4Þ. In addition, the Fourier expansions in
Eqs. (4.21c) and (4.21d) together with �M

a ¼ FM0
a allow

us to write

�
�
a ðx; yÞ ¼ 1ffiffiffiffi

R
p �

ð0Þ�
a ðxÞ þ

ffiffiffiffi
2

R

s X1
m¼1

�
ðmÞ�
a ðxÞ cos

�
2�

my

R

�
;

(4.34a)

�5
aðx; yÞ ¼

ffiffiffiffi
2

R

s X1
m¼1

�ðmÞ5
a ðxÞ sin

�
2�

my

R

�
: (4.34b)

These expressions relate the conjugate momenta inherent
in the pure SUðN;M5Þ Yang-Mills theory and those
present in the effective SUðN;M4Þ theory. Moreover,
they are analogous to Eq. (2.28).
The temporal components of Eqs. (4.33a) and (4.33b)

define the following primary constraints:

�ð1Þð0Þ
a ¼ �ð0Þ0

a � 0; (4.35a)

�ð1ÞðnÞ
a ¼ �ðnÞ0

a � 0: (4.35b)

The primary Hamiltonian takes the form [cf. Eq. (2.31)]

H ð1Þ
SUðN;M4Þ ¼ H SUðN;M4Þ þ�ð0Þa�ð1Þð0Þ

a þ�ðnÞa�ð1ÞðnÞ
a ;

(4.36)

where besides the linear combination of primary con-

straints, with the Lagrange multipliers �ð0Þa and �ðnÞa as
coefficients, the canonical Hamiltonian is [cf. Eq. (2.32)]

H SUðN;M4Þ ¼
1

2
ð�ð0Þi

a �ð0Þi
a þ �ðnÞi

a �ðnÞi
a þ �ðnÞ5

a �ðnÞ5
a Þ

þ 1

4
ðF ð0Þij

a F ð0Þa
ij þ 2F ðnÞi5

a F ðnÞa
i5 Þ

� Að0Þa
0 �ð2Þð0Þ

a � AðnÞa
0 �ð2ÞðnÞ

a ; (4.37)

where �ð2Þð0Þ
a and �ð2ÞðnÞ

a are functions of phase space that
will be specified after presenting a couple of key results
useful for the rest of the discussion.
Proposition IV.1. The Fourier expansion of gauge fields

and conjugate momenta, Eqs. (4.21a), (4.21b), and (4.34),
define a canonical transformation.
The proof of this proposition is collected in the

Appendix. This proposition ensures that f�; �gSUðN;MÞ ¼
f�; �gSUðN;M4Þ, where f�; �gSUðN;M4Þ indicates the Poisson

bracket with respect to ðAð0Þa
� ; �

ð0Þ�
a Þ, ðAðnÞa

� ; �
ðnÞ�
a Þ, and

ðAðnÞa
5 ;�ðnÞ5

a Þ. Because there exists a spacetime-independent

canonical transformation between the pure SUðN;M5Þ
Yang-Mills theory and the effective theory based on
SUðN;M4Þ, it immediately follows that both canonical
HamiltoniansH SUðN;MÞ andH SUðN;M4Þ are mapped onto

each other via such canonical transformation as can be
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proved by direct calculation. However, in a singular theory,
the time evolution is governed by the primary Hamiltonian
and not by the canonical one. An important observation is
the following: If in a general singular theory of fields there
is a spacetime-independent canonical transformationwhich
connects two primary Hamiltonians corresponding to two
different formulations of the same theory—that is, if such
transformation maps one set of primary constraints onto the
other one, then both formulations must have the same
number of generations of constraints (tertiary, quartic,
etc.). This is an immediate consequence of the relation
between the Poisson brackets in the two different formula-
tions. Another consequence is that the set of secondary
(tertiary, quartic, etc.) constraints in one of the formulations
is necessarily mapped onto the corresponding set of con-
straints in the other formulation via the canonical trans-
formation. The following result allows us to use these
observations within the current analysis.

Proposition IV.2. The set of primary constraints
[Eq. (4.18a)] of the five-dimensional pure SUðN;M5Þ
Yang-Mills theory is faithfully mapped into the set of
primary constraints [Eq. (4.35)] of the SUðN;M4Þ Yang-
Mills theory.

The proof of this proposition is straightforward from
Eq. (4.34a) and the linear independence of trigonometric
functions. Moreover, it can be extended to the case of
m-dimensional pure SUðN;MmÞ Yang-Mills theory and
its compactification down to four dimensions.

Propositions IV.1 and IV.2 ensure that the secondary
constraints

�ð2Þð0Þ
a ¼Dð0Þab

i �ð0Þi
b �gfabcðAðnÞc

i �ðnÞi
b þAðmÞc

5 �ðmÞ5
b Þ�0;

(4.38a)

�ð2ÞðnÞ
a ¼DðnmÞab

i �ðmÞi
b �DðnmÞab

5 �ðmÞ5
b

�gfabcAðnÞc
i �ð0Þi

b �0 (4.38b)

that emerge in the canonical Hamiltonian [Eq. (4.37)] can
also be calculated from Eq. (4.18b) via the canonical trans-
formation mentioned in Prop. IV.1. Less trivial outcomes
of the considerations above are the following: First, the
effective theory must not present either tertiary or higher
constraint generations. Second, the gauge algebra of the
effective theory can be obtained via the canonical trans-
formation from the gauge algebra [Eq. (4.19)] of the pure
five-dimensional Yang-Mills theory. In fact,

f�ð2Þð0Þ
a ½u�; �ð2Þð0Þ

b ½v�g ¼ gfabc�
ð2Þð0Þ
c ½uv�; (4.39a)

f�ð2Þð0Þ
a ½u�; �ð2ÞðnÞ

b ½v�g ¼ gfabc�
ð2ÞðnÞ
c ½uv�; (4.39b)

f�ð2ÞðmÞ
a ½u�; �ð2ÞðnÞ

b ½v�g ¼ gfabcð�mn�
ð2Þð0Þ
c ½uv�

þ �mnr�
ð2ÞðrÞ
c ½uv�Þ; (4.39c)

which coincides with Eqs. (68)–(70) of Ref. [6].
The gauge generator that reproduces the gauge trans-

formations in Eq. (4.26) is the sum of the SGT (Gs) plus the
NSGT (Gns) generators, where

Gs ¼ ðDð0Þab
0 �ð0ÞbÞ�ð1Þð0Þ

a þ gfabcA
ðnÞb
0 �ð0Þc�ð1ÞðnÞ

a

� �ð0Þa�ð2Þð0Þ
a ; (4.40a)

Gns ¼ gfabcA
ðmÞb
0 �ðmÞc�ð1Þð0Þ

a þ ðDðmnÞab�ðnÞbÞ�ð1ÞðmÞ
a

� �ðmÞa�ð2ÞðmÞ
a : (4.40b)

From the transformation laws generated by Gs and Gns,
together with the constraint algebra [Eq. (4.39)], one can
infer the Lie algebra [Eq. (2.38)] on the constraint surface
for the SGTs and NSGTs in this case. Due to the constraint
algebra [Eq. (4.39a)], the SGTs exponentiate into SUðNÞ,
and since in Gs the gauge parameters �ð0Þa are defined on
M4, we have that exponentiation of SGTs provide
SUðN;M4Þ; the algebra of NSGTs does not close, hence
these transformations do not exponentiate into a group.
The sum Gs þGns is the image under the canonical trans-
formation mentioned in Prop. IV.1 of the gauge generator
that reproduces gauge transformations [Eq. (4.17)] in the
five-dimensional case.
If a complete set of gauge transformations at the

Hamiltonian level can be found, then a complete set of
gauge transformations at the Lagrangian level can be
recovered [25]. This implies that there are no more gauge
invariances of the Lagrangian [Eq. (4.25)] than those alto-
gether generated by Eq. (4.40), which in turn correspond to
Eq. (4.26). Therefore, the effective Lagrangian [Eq. (4.25)]
must be invariant under these transformations, so that any
extra term in the calculation of �LSUðN;M4Þ must be either

identically zero or a surface term. In this regard we argue
that the extra terms [Eqs. (4.31a) and (4.31b)] must vanish
since they do not include any derivative, hence they cannot
be rewritten as a surface term.
We end this section with a heuristic counting of true

degrees of freedom in the effective theory. Let us take for
the moment ‘‘truncated Fourier expansions’’ up to some
order K, so that letting K ! 1 will precisely yield
ðAa

�ðx; yÞ; ��
a ðx; yÞÞ and ðAa

5ðx; yÞ; �5
aðx; yÞÞ in terms of

ðAð0Þa
� ðxÞ; �ð0Þ�

a ðxÞÞ, ðAðnÞa
� ðxÞ; �ðnÞ�

a ðxÞÞ, ðAðnÞa
5 ðxÞ; �ðnÞ5

a ðxÞÞ
and trigonometric functions. In other words, K quantifies
the contribution from the extra dimension in the ‘‘truncated
Fourier expansions.’’ The number of canonical pairs and
first-class constraints in the truncated version are
2�½4ðN2�1Þþ4KðN2�1ÞþKðN2�1Þ� and 2ðN2�1Þþ
2KðN2�1Þ, respectively. Thus, the number of true
degrees of freedom when K is large but finite is N0ðKÞ ¼
2ðN2 � 1Þ þ 3KðN2 � 1Þ per spatial point of M4.
Allowing K ! 1 causes this number of true degrees of
freedom to diverge, precisely because one is also counting
the continuum contribution of the extra dimension. In order
to obtain the number of true degrees of freedom per spatial
point of M5, one needs to take the ratio N0=K before
considering K ! 1. After this process is done, we have
that the number of true degrees of freedom per spatial point
ofM5 is 3ðN2 � 1Þ, which coincides with the correspond-
ing number in the pure SUðN;M5Þ Yang-Mills theory.

HIDDEN SYMMETRIES INDUCED BYA CANONICAL . . . PHYSICAL REVIEW D 88, 036015 (2013)

036015-17



V. FINAL REMARKS

In order to clarify the gauge structure of pure five-
dimensional Yang-Mills theories formulated on a space-
time manifold with a compact spatial extra dimension, a
notion of hidden symmetry based on the fundamental
concept of canonical transformation was introduced.
Although the idea of hidden symmetry is well known in
the context of theories with SSB, we have extended this
notion to include more general scenarios. The canonical
transformation under consideration maps well-defined ob-
jects under a gauge groupG to well-defined objects under a
nontrivial subgroup H � G. This transformation was con-
structed within two different categories depending whether
the subgroupH is generated (a) by an appropriate subset of
the generators of G, or (b) by the same set of generators of
G, with its gauge parameters being the parameters of G
restricted to a suitable submanifold. In both scenarios, all
canonical pairs ðqa; paÞ of the G-invariant theory are
assumed to have well-defined transformation laws under
the group G. For instance, among the fields qa one may
find gauge fields as well as matter fields; the canonical
transformation that will hide the G symmetry maps
ðqa; paÞ onto ðQa; PaÞ so that from the H perspective all
Q’s and P’s have well-defined transformation laws under
H. For instance, some Q’s transform as gauge fields while
the remainder arise in a tensorial representation of H.

In this paper we have analyzed two systems that fall into
the category (a) described above; these correspond to pure
SUð3Þ Yang-Mills theory, and SUð3Þ Yang-Mills theory
coupled to a Higgs sector with SSB. In both cases G ¼
SUð3Þ and H ¼ SUð2Þ. The former model allowed us to
clarify the meaning of a suitable canonical transformation
that leads us to the concept of hidden symmetry—such
transformation maps gauge fields of SUð3Þ into gauge
fields, two doublets and a singlet with respect to the
SUð2Þ subgroup. The latter model was useful in order to
formulate our notion of hidden symmetry within the con-
text of a well-known theory with SSB. The particular
scenario of SSB gave an insight into the interpretation of
NSGTs; a definite type of these transformations can be
seen as the unitary gauge. In both cases, the original
symmetry was hidden in the set of SGTs, which we showed
corresponds to the SUð2Þ group, and the NSGTs, which do
not form a group.

Pure Yang-Mills theory with one compactified UED
falls into the category (b) described above. This theory is
formulated to be invariant under the gauge group
SUðN;M5Þ, and the corresponding Poincaré group
ISOð1; 4Þ. Compactification maps the theory into an effec-
tive theory invariant under SUðN;M4Þ and ISOð1; 3Þ.
The suitable canonical transformation maps, in this case,

gauge fields Aa
M of SUðN;M5Þ onto gauge fields Að0Þa

�

and matter fields AðmÞa
M of SUðN;M4Þ. As Lie groups

SUðN;M5Þ and SUðN;M4Þ share the same number of
generators, so the map from one to the other cannot involve

SSB. However, SUðN;M4Þ is a subgroup of SUðN;M5Þ
in the following sense: The parameters defining
SUðN;M4Þ are the parameters defining SUðN;M5Þ
restricted to the submanifold M4. We conclude after
examination of the Lie algebra between SGTs and
NSGTs that in the effective theory the SGTs can be iden-
tified with the SUðN;M4Þ group, whereas the NSGTs do
not exponentiate into any group. It is important to notice
that since there are no broken generators in this scenario,
the Higgs mechanism does not operate in the conventional
sense; the pseudo-Goldstone bosons needed for this
mechanism are provided by an explicit breaking of the
Poincaré group ISOð1; 4Þ into ISOð1; 3Þ. Extension of
this analysis to theories with more than one compactified
UED will be reported elsewhere.
In the Hamiltonian analysis of these models, we found

that each canonical transformation translates all the rele-
vant quantities—such as the set of constraints and the
primary Hamiltonian—from the G-invariant theory to the
theory invariant under SGTs and NSGTs. Since each
model we analyzed is a first-class constraint system, each
canonical transformation maps the gauge generator of the
G symmetry onto gauge generators of the SGTs and
NSGTs. These results are particularly interesting for the
pure SUðN;M5Þ Yang-Mills theory with one compactified
UED and its effective theory; it implies that the gauge
structure of the higher-dimensional theory has certainly
been rewritten in terms of SGTs and NSGTs. Besides, by
arguing that the five-dimensional and the effective theory
have the same number of physical degrees of freedom, we
conclude that the fundamental and the effective theory are
equivalent at the classical level.
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APPENDIX: FOURIER EXPANSION AS
A CANONICAL TRANSFORMATION

In this Appendix, we will prove that Fourier expansion is
a canonical transformation by showing that it maps con-
jugate canonical pairs to conjugate canonical pairs. In
order to do that, we will explicitly calculate the nonvanish-

ing Poisson brackets between the zero modes ðAð0Þa
� ; �ð0Þ�

a Þ
and the m modes ðAðmÞa

� ; �
ðmÞ�
a Þ and ðAðmÞa

5 ; �ðmÞ5
a Þ as func-

tions of the canonical pairs ðAa
M;�

M
a Þ. We expect to find

that these Poisson brackets yield the components of the
canonical symplectic two-form, proving in this way
that the Fourier transformation is indeed a canonical
transformation.
We will make use of the following Poisson brackets

among the gauge fields and their canonical conjugate
momenta, at a fixed time:
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fAa
Mðx; yÞ; �N

b ðx0; y0ÞgSUðN;MÞ ¼ �a
b�

N
M�ðx� x0Þ�ðy� y0Þ;

fAa
Mðx; yÞ;Ab

Nðx0; y0ÞgSUðN;MÞ ¼ f�M
a ðx; yÞ; �N

b ðx0; y0ÞgSUðN;MÞ ¼ 0;

as well as the inverse Fourier transformations

Að0Þa
� ðxÞ ¼ 1ffiffiffiffi

R
p

Z
dyAa

�ðx; yÞ; AðmÞa
� ðxÞ ¼

ffiffiffiffi
2

R

s Z
dyAa

�ðx; yÞ cos
�
2�

my

R

�
;

AðmÞa
5 ðxÞ ¼

ffiffiffiffi
2

R

s Z
dyAa

5ðx; yÞ sin
�
2�

my

R

�
; �

ð0Þ�
a ðxÞ ¼ 1ffiffiffiffi

R
p

Z
dy�

�
a ðx; yÞ;

�
ðmÞ�
a ðxÞ ¼

ffiffiffiffi
2

R

s Z
dy�

�
a ðx; yÞ cos

�
2�

my

R

�
; �ðmÞ5

a ðxÞ ¼
ffiffiffiffi
2

R

s Z
dy�5

aðx; yÞ sin
�
2�

my

R

�
:

Also , in order to properly deal with the distributional character of the Poisson brackets, we will use smooth smearing
functions u and v defined on M4.

We proceed to calculate the Poisson bracket between the zero modes with four-dimensional spacetime labels:

fAð0Þa
� ½u�; �ð0Þ�

b ½v�gSUðN;M4Þ ¼
Z

d3xd3x0uðxÞvðx0ÞfAð0Þa
� ðxÞ; �ð0Þ�

b ðx0ÞgSUðN;M4Þ

¼
Z

d3xd3x0dydy0uðxÞvðx0Þ 1
R
fAa

�ðx; yÞ; ��
bðx0; y0ÞgSUðN;MÞ

¼
Z

d3xd3x0dydy0uðxÞvðx0Þ 1
R
�a
b�

�
��ðx� x0Þ�ðy� y0Þ ¼ �a

b�
�
�½uv�: (A1)

The corresponding calculation for the m modes with four-dimensional spacetime labels reads

fAðmÞa
� ½u�; �ðnÞ�

b ½v�gSUðN;M4Þ ¼
Z

d3xd3x0uðxÞvðx0ÞfAðmÞa
� ðxÞ; �ðnÞ�

b ðx0ÞgSUðN;M4Þ

¼
Z

d3xd3x0dydy0uðxÞvðx0Þ 2
R
cos

�
2�

my

R

�
cos

�
2�

ny0

R

�
fAa

�ðx; yÞ; ��
bðx0; y0ÞgSUðN;MÞ

¼ �a
b�

�
��

mn½uv�: (A2)

Finally, the Poisson bracket between the m modes of the fifth component

fAðmÞa
5 ½u�; �ðnÞ5

b ½v�gSUðN;M4Þ ¼
Z

d3xd3x0uðxÞvðx0ÞfAðmÞa
5 ðxÞ; �ðnÞ5

b ðx0ÞgSUðN;M4Þ

¼
Z

d3xd3x0dydy0uðxÞvðx0Þ 2
R
sin

�
2�

my

R

�
sin

�
2�

ny0

R

�
fAa

5ðx; yÞ; �5
bðx0; y0ÞgSUðN;MÞ

¼ �a
b�

mn½uv�: (A3)

As we can see from Eqs. (A1)–(A3), under the assumption that ðAa
M; �

M
a Þ are canonical pairs, one obtains that

ðAð0Þa
� ; �ð0Þ�

a Þ, ðAðmÞa
� ; �ðmÞ�

a Þ and ðAðmÞa
5 ; �ðmÞ5

a Þ are canonical pairs.
Conversely, assuming that ðAð0Þa

� ; �ð0Þ�
a Þ, ðAðmÞa

� ; �ðmÞ�
a Þ and ðAðmÞa

5 ; �ðmÞ5
a Þ are canonical pairs, one obtains that ðAa

M; �
M
a Þ

are canonical pairs. This is achieved by using the Fourier transform and smear functions u and v defined onM5, therefore
periodic in y. These functions will be asked to be even when calculating the Poisson brackets betweenAa

� and ��
b, so that

they can be expanded as follows:

uðx; yÞ ¼ 1ffiffiffiffi
R

p uð0ÞðxÞ þ
ffiffiffiffi
2

R

s X1
m¼1

uðmÞðxÞ cos
�
2�

my

R

�
; (A4)

and we will demand they be odd when calculating the Poisson brackets between Aa
5 and �5

b, and thus expanded as
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uðx; yÞ ¼
ffiffiffiffi
2

R

s X1
m¼1

uðmÞðxÞ sin
�
2�

my

R

�
: (A5)

In conclusion, from a set of conjugate pairs we obtain, via the Fourier transform, another set of conjugate pairs.
This proof can easily be extended in the presence of more extra dimensions, provided each field has suitable periodic

and parity properties on the extra dimensions.
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M.A. LÓPEZ-OSORIO et al. PHYSICAL REVIEW D 88, 036015 (2013)

036015-20

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRev.155.1554
http://dx.doi.org/10.1103/PhysRev.155.1554
http://dx.doi.org/10.1103/PhysRev.117.648
http://dx.doi.org/10.1007/BF02812722
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1016/0370-2693(90)90617-F
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://dx.doi.org/10.1103/PhysRevD.82.116012
http://dx.doi.org/10.1103/PhysRevD.82.116012
http://dx.doi.org/10.1103/PhysRevD.84.057901
http://dx.doi.org/10.1103/PhysRevD.84.057901
http://dx.doi.org/10.1103/PhysRevD.84.076010
http://dx.doi.org/10.1007/s12043-012-0501-4
http://dx.doi.org/10.1016/S0550-3213(98)00669-5
http://dx.doi.org/10.1016/S0550-3213(98)00669-5
http://dx.doi.org/10.1103/PhysRevD.65.085037
http://dx.doi.org/10.1103/PhysRevD.75.064014
http://dx.doi.org/10.1103/PhysRevD.75.064014
http://dx.doi.org/10.1016/S0370-2693(01)01435-6
http://dx.doi.org/10.1016/S0370-2693(02)03294-X
http://dx.doi.org/10.1088/1367-2630/4/1/399
http://dx.doi.org/10.1103/PhysRevLett.89.211301
http://dx.doi.org/10.1103/PhysRevLett.89.211301
http://dx.doi.org/10.1016/S0550-3213(02)01012-X
http://dx.doi.org/10.1088/1475-7516/2005/04/004
http://dx.doi.org/10.1088/1475-7516/2005/04/004
http://dx.doi.org/10.1088/1126-6708/2006/01/038
http://dx.doi.org/10.1016/j.physletb.2005.12.067
http://dx.doi.org/10.1016/j.physletb.2005.12.067
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.022
http://dx.doi.org/10.1103/PhysRevD.74.023504
http://dx.doi.org/10.1103/PhysRevD.74.023504
http://dx.doi.org/10.1103/PhysRevD.73.015001
http://dx.doi.org/10.1103/PhysRevD.73.015001
http://dx.doi.org/10.1103/PhysRevD.76.043528
http://dx.doi.org/10.1103/PhysRevD.75.036004
http://dx.doi.org/10.1103/PhysRevD.75.036004
http://dx.doi.org/10.1088/1475-7516/2010/01/018
http://dx.doi.org/10.1103/PhysRevD.85.043524
http://dx.doi.org/10.1103/PhysRevD.85.043524
http://dx.doi.org/10.1103/PhysRevD.76.043528
http://dx.doi.org/10.1016/j.physletb.2007.02.033
http://dx.doi.org/10.1016/j.physletb.2007.02.033
http://dx.doi.org/10.1007/JHEP04(2011)052
http://dx.doi.org/10.1088/1126-6708/2002/05/003
http://dx.doi.org/10.1103/PhysRevD.67.055002
http://dx.doi.org/10.1103/PhysRevD.67.055002
http://dx.doi.org/10.1007/JHEP03(2010)048
http://dx.doi.org/10.1016/j.physletb.2012.05.029
http://dx.doi.org/10.1016/j.physletb.2012.05.029
http://dx.doi.org/10.1103/PhysRevD.87.016008
http://dx.doi.org/10.1103/PhysRevD.87.016008
http://dx.doi.org/10.1016/S0550-3213(03)00250-5
http://dx.doi.org/10.1016/S0550-3213(03)00250-5
http://dx.doi.org/10.1016/j.nuclphysb.2003.11.010
http://dx.doi.org/10.1016/j.nuclphysb.2003.11.010
http://dx.doi.org/10.1088/1126-6708/2004/02/065
http://dx.doi.org/10.1088/1126-6708/2004/02/065
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.042
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.042
http://dx.doi.org/10.1103/PhysRevD.64.095010
http://dx.doi.org/10.1103/PhysRevD.66.056006
http://dx.doi.org/10.1103/PhysRevD.66.056006
http://dx.doi.org/10.1103/PhysRevD.66.015009
http://dx.doi.org/10.1016/j.physletb.2005.08.117
http://dx.doi.org/10.1016/j.physletb.2005.08.117
http://dx.doi.org/10.1088/1126-6708/2005/07/033
http://dx.doi.org/10.1088/1126-6708/2005/07/033
http://dx.doi.org/10.1016/j.physletb.2005.08.120
http://dx.doi.org/10.1016/j.physletb.2005.08.120
http://dx.doi.org/10.1016/j.physletb.2007.07.062
http://dx.doi.org/10.1016/j.physrep.2007.09.003
http://dx.doi.org/10.1103/PhysRevD.78.115005
http://dx.doi.org/10.1103/PhysRevD.78.115005
http://dx.doi.org/10.1088/1367-2630/11/10/105004
http://dx.doi.org/10.1103/PhysRevD.80.056006
http://dx.doi.org/10.1016/j.nuclphysb.2009.06.010
http://dx.doi.org/10.1016/j.nuclphysb.2009.06.010
http://dx.doi.org/10.1007/JHEP03(2010)048
http://dx.doi.org/10.1103/PhysRevD.81.035021
http://dx.doi.org/10.1007/JHEP08(2010)051
http://dx.doi.org/10.1103/PhysRevD.83.034003
http://dx.doi.org/10.1103/PhysRevD.83.034003
http://dx.doi.org/10.1016/j.physletb.2012.03.012
http://dx.doi.org/10.1016/j.physletb.2012.03.012
http://dx.doi.org/10.1103/PhysRevD.87.076002
http://dx.doi.org/10.1103/PhysRevD.86.117503
http://dx.doi.org/10.1103/PhysRevD.86.117503
http://dx.doi.org/10.1103/PhysRevD.83.016011
http://dx.doi.org/10.1103/PhysRevD.83.016011
http://dx.doi.org/10.1103/PhysRevD.46.410
http://dx.doi.org/10.1103/PhysRevLett.69.2889


[17] P. A.M. Dirac, Lectures on Quantum Mechanics (Belfer
Graduate School of Sciences, Yeshiva University,
New York, 1964).

[18] M. Henneaux and C. Teitelboim, Quantization of Gauge
Systems (Princeton University, Princeton, NJ, 1992).

[19] L. Castellani, Ann. Phys. (N.Y.) 143, 357 (1982).
[20] C. Becchi, A Rouet, and R. Stora, Commun. Math. Phys.

42, 127 (1975); Ann. Phys. (N.Y.) 98, 287 (1976); I. V.
Tyutin, FIAN P.N Lebedev Physical Institute of the USSR
Academy of Science, Report No. 39, 1975.

[21] For a review of the BRST symmetry at both the classical
and quantum levels within the context of the field-antifield

formalism, see J. Gomis, J. Paris, and S. Samuel, Phys.
Rep. 259, 1 (1995).

[22] J. Montaño, F. Ramı́rez-Zavaleta, G. Tavares-Velasco, and
J. J. Toscano, Phys. Rev. D 72, 055023 (2005); F. Ramı́rez-
Zavaleta, G. Tavares-Velasco, and J. J. Toscano, Phys.
Rev. D 75, 075008 (2007).

[23] H. Goldstein, Classical Mechanics (Addison-Wesley,
Reading, MA, 1980), 2nd ed.

[24] J.M. Pons, Stud. Hist. Phil. Mod. Phys. 36, 491
(2005).

[25] M. Henneaux, C. Teitelboim, and J. Zanelli, Nucl. Phys.
B332, 169 (1990).

HIDDEN SYMMETRIES INDUCED BYA CANONICAL . . . PHYSICAL REVIEW D 88, 036015 (2013)

036015-21

http://dx.doi.org/10.1016/0003-4916(82)90031-8
http://dx.doi.org/10.1007/BF01614158
http://dx.doi.org/10.1007/BF01614158
http://dx.doi.org/10.1016/0003-4916(76)90156-1
http://dx.doi.org/10.1016/0370-1573(94)00112-G
http://dx.doi.org/10.1016/0370-1573(94)00112-G
http://dx.doi.org/10.1103/PhysRevD.72.055023
http://dx.doi.org/10.1103/PhysRevD.75.075008
http://dx.doi.org/10.1103/PhysRevD.75.075008
http://dx.doi.org/10.1016/j.shpsb.2005.04.004
http://dx.doi.org/10.1016/j.shpsb.2005.04.004
http://dx.doi.org/10.1016/0550-3213(90)90034-B
http://dx.doi.org/10.1016/0550-3213(90)90034-B

