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Fierz identities follow from permutations of quark indices and thus determine which chiral multiplets of

baryon fields are Pauli allowed and which are not. In a previous paper we investigate the Fierz identities of

baryon fields with two light flavors and find that all bilocal fields that can be constructed from three quarks

are Pauli allowed. That does not mean that all possible chiral multiplets exist; however, some chiral

multiplets do not appear among structures with a given spin in the local limit, say J ¼ 1=2. One such

chiral multiplet is the [ð6; 3Þ � ð3; 6Þ], which is necessary for a successful chiral mixing phenomenology.

In the present paper we extend those methods to three light flavors, i.e., to SUFð3Þ symmetry and explicitly

construct all three necessary chiral SULð3Þ � SURð3Þ multiplets, viz. [ð6; 3Þ � ð3; 6Þ], ½ð3; �3Þ � ð�3; 3Þ�, and
[ð�3; 3Þ � ð3; �3Þ] that are necessary for a phenomenologically successful chiral mixing. We complete this

analysis by considering some bilocal baryon fields that are sufficient for the construction of the ‘‘missing’’

spin-1=2 baryon interpolating fields. Bilocal baryon fields have definite total angular momentum only in

the local limit. The physical significance of these results lies in the fact that they show that there is no

need for higher Fock space components, such as the q4 �q, in the baryon chiral mixing framework, for the

purpose of fitting the observed axial couplings and magnetic moments: all of the sufficient ‘‘mirror

components’’ exist as bilocal fields.
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I. INTRODUCTION

It is by now fairly well known that the SULð3Þ � SURð3Þ
chiral symmetry multiplets’ mixing successfully describes
several basic properties of JP ¼ ð12Þþ baryons, including

their Abelian and non-Abelian axial couplings, and their
magnetic moments [1–4]. For the phenomenological mix-
ing to work one only needs a few (three, to be precise) out
of (five ‘‘naive’’ plus five ‘‘mirror’’ ¼) ten possible chiral
multiplets built from three-quark interpolating fields. Not
all ten chiral multiplets exist in the local triquark baryon
field limit [1,5,6], however, due (a) to the fact that some
chiral structures are not associated with all values of spin
and (b) to the Pauli exclusion principle implemented by
way of Fierz identities that annihilate certain (local) inter-
polators corresponding to Pauli-forbidden states. As one
relaxes the restriction from strictly local fields [1,5,6], to
bilocal [7], and finally trilocal fields [8], one may use the
additional spatial degree of freedom to antisymmetrize
with, and thus one finds that some previously Pauli-
forbidden two-flavor chiral multiplets are allowed in the
nonlocal case. In this manner we found that all chiral
structures available for a particular ‘‘value of spin’’ are
Pauli allowed in the bilocal two-flavor baryon sector.
Strictly speaking, rather than the spin it is the Lorentz
group representation (LGR) that is important here, as for

spins higher than 1=2, there is usually more than one LGR
that corresponds to that particular value of spin, Ref. [9].
Moreover, some chiral multiplets appear more than once

in the nonlocal case, whereas in the local limit, they were
explicitly shown as identical by way of Fierz identities.
And yet, it is not always possible to construct all of the
‘‘naive,’’ or ‘‘mirror’’ multiplets from three nonlocal quark
fields, although generally this can be accomplished using
five-quark, i.e., q4 �q fields. Now, some of the ‘‘missing
multiplets’’ can be obtained as by-products of unphysical
(spin) degrees of freedom from higher-spin fields’ ‘‘pro-
jecting out’’ procedure. For example, as a by-product of
projecting out the spin-3=2 component from the Rarita-
Schwinger (RS) [LGR ð1; 1=2Þ] fields, one obtains a
spin-1=2 field component with chiral properties that are
‘‘opposite’’/mirror to those of the spin-3=2 component.
This provides the (phenomenologically absolutely neces-
sary) chiral [ð1; 12Þ � ð12 ; 1Þ] multiplet in the JP ¼ ð12Þþ
baryon sector, whereas the nonlocal fields provide only
the ‘‘mirror’’ chiral [ð12 ; 1Þ � ð1; 12Þ] multiplet.

With three light flavors there is a bigger variety of both
flavor and chiral multiplets than with two. For this reason
one cannot readily generalize our two-flavor results to
three flavors. So, the question remains if all of the phe-
nomenologically necessary SULð3Þ � SURð3Þ chiral mul-
tiplets exist in the three-quark nonlocal case. In particular
the question of the so-called ‘‘mirror’’ multiplets’ exis-
tence is important, as they can be (easily) constructed from
(3qþmeson) fields but not necessarily from three quarks.
If such ‘‘mirror’’ fields exist only in the (3qþmeson)
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form, then that would be the first indication of a nonexotic
‘‘pentaquark’’ Fock component in the nucleon’s wave
function. In the present paper we answer that question
for JP ¼ ð12Þþ baryons; higher spin objects will not be dealt

with here systematically, except for the explicit purpose of
providing spin-1=2 components.

In a series of previous papers, Refs. [5–8], we have
investigated the Fierz identities and chiral SULð2Þ �
SURð2Þ transformation properties of bilocal baryon fields
with two light flavors. In the present paper we extend those
methods and results to three light flavors, i.e., to SUð3ÞF
symmetry.

We note here that this extension to three flavors
introduces only a mathematical change to the analogous
two-flavor analysis, Refs. [4,10]: the fact that the SUð3ÞF
symmetry is explicitly broken does not play a role here,
because the quark mass difference does not enter into
considerations of the permutation symmetry. Rather, it is
the very existence of the third flavor that makes the differ-
ence. Needless to say, the most remarkable consequences
are in the flavor-singlet channel that does not exist with two
flavors. Another place where the difference between two
and three flavors is pronounced is the flavor-octet chiral
multiplets [ð8; 1Þ � ð1; 8Þ] and [ð3; �3Þ � ð�3; 3Þ], both of
which are ‘‘reduced to’’ the two-flavor chiral multiplet
[ð12 ; 0Þ � ð0; 12Þ].

Whereas the SUð3Þ algebra is considerably more com-
plicated than the SUð2Þ one, the physical results are largely
determined by the overall permutation symmetry properties
(i.e., the Fierz identities) of the baryon operators, which, in
turn, are determined by the chiral SULð3Þ � SURð3Þ or
SULð2Þ � SURð2Þ multiplets. As the SULð3Þ � SURð3Þ
multiplets contain (several smaller) SULð2Þ � SURð2Þmul-
tiplets within them that have already been examined in
Refs. [7,8], it should come as no surprise that the SULð3Þ �
SURð3Þ ‘‘completions’’ of chiral SULð2Þ � SURð2Þmultip-
lets exist as well. Indeed, one may adopt a chiral multiplet
nomenclature based on the Young diagrams/tableaux, see

Table I, rather than the actual dimensionality of the multi-
plet, that shows the full analogy of chiral multiplets with
different flavor numbers. There is (only) one exception to
this SUð3Þ completion ‘‘rule’’: the flavor-singlet [ð1; 1Þ], �
hyperon that is antisymmetric in flavor space and does not
exist with two flavors. It can either belong to a chiral
[ð3; �3Þ � ð�3; 3Þ] multiplet or to a chiral singlet.
The primary question is then: which chiral multiplets do

these (‘‘new’’) bilocal operators belong to? We investigate
all cases and classify the bilocal three-flavor baryon
interpolators according to their chiral transformations.
Before doing that, we would like to note that the bilocal
or trilocal fields have components overlapping with more
than one orbital angular momentum L states. To project out
definite-J components from these fields, one needs to spec-
ify the three-body dynamics. For example, if one wishes to
use such fields on the lattice, one can use the Euclidean
space version, and the corresponding spin projection meth-
ods, such as that in Ref. [11]. However, these operators have
definite total angular momentum only in the limit of local
fields, and sowe shall assume our nonlocal fields have spins
J ¼ 1=2 or J ¼ 3=2 in the following analysis.
We find three new spin-1=2 chiral multiplets that do not

exist in the local-operator limit: one [ð6; 3Þ � ð3; 6Þ],
one [ð10; 1Þ � ð1; 10Þ], and one [ð1; 1Þ], and several other
multiplets that used to be related (‘‘identical’’) by Fierz
identities to others, that are independent in the nonlocal
case. The chiral transformations do not depend on the
(non)locality of the operator but the Fierz identities
do. For this reason we concentrate only on the latter in
this paper—the SULð3Þ � SURð3Þ chiral transformations
have been worked out in some detail in Ref. [1] and are
briefly reviewed in the Appendix. The physical signifi-
cance of our results is that they show an absence of need
for q4 �q components when fitting the observed axial cou-
plings and magnetic moments in the chiral mixing frame-
work: all of the ‘‘mirror components’’ exist as bilocal
fields.

TABLE I. Structure of all three-quark baryon fields in the local limit, together with their LGR, spin, Young diagram,
chiral SUð2Þ and SUð3Þ representations, axial Uð1ÞA charge g0A, and their Fierz transformation equivalent fields or vanishing for

Pauli-forbidden fields.

Lorentz Spin Young diagram for chiral rep. Chiral SUð2Þ Chiral SUð3Þ g0A Fields Fierz and local lim.

ð12 ; 0Þ � ð0; 12Þ 1=2

ð½111�; � � �Þ � ð� � � ; ½111�Þ

ð12 ; 0Þ � ð0; 12Þ

ð1; 1Þ 3 �1 þ�2 0

ð½21�; � � �Þ � ð� � � ; ½21�Þ ð8; 1Þ � ð1; 8Þ 3
N1 þ N2 N1 þ N2M5

ð½1�; ½11�Þ � ð½11�; ½1�Þ ð3; �3Þ � ð�3; 3Þ �1
(�1 ��2, N1 � N2) (�1, N1 � N2)(�3, N3 �M4)

ð½1�; ½2�Þ � ð½2�; ½1�Þ ð12 ; 1Þ � ð1; 12Þ ð3; 6Þ � ð6; 3Þ �1 (N3 þ 1
3M4, �4) 0

ð½3�; � � �Þ � ð� � � ; ½3�Þ ð32 ; 0Þ � ð0; 32Þ ð10; 1Þ � ð1; 10Þ 3 �5 0

ð12 ; 1Þ � ð1; 12Þ 1=2 & 3=2
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5 0
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This paper consists of four sections and is organized as
follows. After the (present) Introduction in Sec. II, we
firstly define all possible ‘‘straightforward bilocal exten-
sions’’ of local baryon operators. There we classify the
baryon operators according to the representations of the
Lorentz and the flavor groups, viz. the Dirac, the RS, and
the antisymmetric tensor (AST) Bargmann-Wigner (BW)
fields. Then in Sec. III, we define the ‘‘nonstraightforward
bilocal extensions’’ of local baryon operators, such as the
derivative-contracted RS and AST fields that appear as
by-products of spin-3=2 projecting out. The final Sec. IV
is a summary and an outlook to possible future extensions
and applications. The Appendix, we define the Abelian
and non-Abelian chiral transformations of the baryon op-
erators as functions of the quarks’ chiral transformation
parameters.

II. STRAIGHTFORWARD THREE-FLAVOR
BILOCAL THREE-QUARK FIELDS

Three-quark baryon interpolating fields in QCD have
well-defined SULð3Þ � SURð3Þ and UAð1Þ chiral transfor-
mation properties, see Table I,

½ð3;1Þ�ð1;3Þ�3�½ð1;1Þ��½ð8;1Þ�ð1;8Þ��½ð10;1Þ�ð1;10Þ�
�½ð6;3Þ�ð3;6Þ��½ð3; �3Þ�ð�3;3Þ�; (1)

viz. [ð6; 3Þ � ð3; 6Þ], [ð3; �3Þ�ð�3;3Þ], [ð1; 1Þ], [ð8; 1Þ � ð1; 8Þ],
[ð10; 1Þ � ð1; 10Þ], and their ‘‘mirror’’ images, Ref. [1]. It
has been shown (phenomenologically) in Ref. [2] that
mixing of the [ð6; 3Þ � ð3; 6Þ] chiral multiplet with one
ordinary (‘‘naive’’) [ð3; �3Þ � ð�3; 3Þ] and one ‘‘mirror’’ field
[ð�3; 3Þ � ð3; �3Þ] multiplet can be used to fit the values of the

isovector (gð3ÞA ) and the flavor-singlet (isoscalar) axial cou-

pling (gð0ÞA ) of the nucleon and then predict the axial F and

D coefficients, or vice versa, in reasonable agreement with
the experiment. Moreover, this mixing can be reproduced
by a chirally symmetric interaction Lagrangian with ob-
served baryon masses used as the input for unknown
coupling constants, Ref. [3], and the anomalous magnetic
moments of baryons can be introduced in accordance with
chiral symmetry and experimental observations, Ref. [4].
For this reason it is vital that all three of these chiral
multiplets are not forbidden by the Pauli principle in the
three-quark interpolators. Yet, the original analysis of local
three-quark fields, Ref. [1], allowed only one out of three:
the (‘‘naive’’) [ð3; �3Þ � ð�3; 3Þ]. In the following we shall
explicitly construct the other two interpolators. For that
purpose we shall need both the straightforward and the
not-so-straightforward extensions of local fields, as the
straightforward method yields only the ‘‘mirror’’ field
[ð�3; 3Þ � ð3; �3Þ], whereas the [ð6; 3Þ � ð3; 6Þ] chiral multi-
plet appears only as a remnant of the spin-projection
procedure in Rarita-Schwinger fields.

Before doing that, we would like to note that the bilocal
or trilocal fields contain in general (infinitely many)

components overlapping with more than one orbital
angular momentum L state. Consequently, these operators
have definite total angular momentum J only in the limit of
local fields, though individual J components might be
extracted by a suitable spin projection. Such a spin-
projection technique has been devised for three-quark
fields on a Euclidean lattice space-time, Ref. [11], though
in a continuum Minkowski space-time, one is better suited
by projecting out good-J states in matrix elements, e.g.,
using the Jacob-Wick formalism, rather than in operators
themselves. In order to project out the good-J operators
and thus address this ‘‘theoretical uncertainty,’’ one has to
specify the three-body dynamics explicitly, which is well
beyond the scope of this paper.
At any rate, such a total angular momentum projection

would not change the Dirac structure of the composite
fields, and their chiral properties would remain unchanged
as well. Moreover, the existence of the two lowest values
(J ¼ 1=2 or J ¼ 3=2) of the total angular momentum J
components in our nonlocal fields is beyond doubt anyway.

A. Dirac fields

In this section we investigate independent baryon fields
for each LGR which is formed by three quarks. The
Clebsch-Gordan series for the irreducible decomposition
of the direct product of three ð1

2 ; 0Þ � ð0; 12Þ representations
of the Lorentz group (the three-quark Dirac fields) is��

1
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where we have ignored the different multiplicities of the
representations on the right-hand side. Three LGRs
(ð12 ; 0Þ � ð0; 12Þ), (ð1; 12Þ � ð12 ; 1Þ), (ð32 ; 0Þ � ð0; 32Þ) describe

the Dirac spinor field, the Rarita-Schwinger’s vector-
spinor field, and the antisymmetric-tensor-spinor field,
respectively. In order to establish independent fields we
employ the Fierz transformations for the color, flavor, and
Lorentz (spin) degrees of freedom, which is essentially
equivalent to the Pauli principle for three quarks. Here
we demonstrate the essential idea for the simplest case of
the Dirac spinor, ð12 ; 0Þ � ð0; 12Þ.
It is convenient to introduce a ‘‘tilde-transposed’’ quark

field ~q as follows:

~q ¼ qTC�5; (3)

where C ¼ i�2�0 is the Dirac field charge conjugation
operator.

1. Flavor singlet baryon

Let us start by writing down five trilocal baryon fields
that contain a ‘‘diquark’’ operator formed by one of
five sets of (products of) Dirac matrices, 1, �5, ��,

���5, and ���,
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�1ðx; y; zÞ ¼ �abc�
ABCð~qaAðxÞqbBðyÞÞqcCðzÞ;

�2ðx; y; zÞ ¼ �abc�
ABCð~qaAðxÞ�5q

b
BðyÞÞ�5q

c
CðzÞ;

�3ðx; y; zÞ ¼ �abc�
ABCð~qaAðxÞ��q

b
BðyÞÞ��qcCðzÞ;

�4ðx; y; zÞ ¼ �abc�
ABCð~qaAðxÞ���5q

b
BðyÞÞ���5q

c
CðzÞ;

�5ðx; y; zÞ ¼ �abc�
ABCð~qaAðxÞ���q

b
BðyÞÞ���q

c
CðzÞ:

(4)

Here and in the following we use the notation and con-
ventions of Sec. II in Ref. [1], where the capital roman
letter indices, e.g., A, B, C ¼ 1, 2, 3 denote the SUð3Þ
flavor degrees of freedom of a quark, and �ABC is the
(Levy-Cività) totally AST. The AST in color space �abc
ensures that the baryons are color singlets. Our results
are not affected by taking nonlocal baryon operators with
path-ordered phase factors

Bðx1; x2; x3Þ � �abcð~qa0 ðx1Þqb0 ðx2ÞÞqb0 ðx3Þ
�

�
P exp

�
ig

Z z

x1

A�ðy1Þdy�1
��

a0a

�
�
P exp

�
ig

Z z

x2

A�ðy2Þdy�2
��

b0b

�
�
P exp

�
ig

Z z

x3

A�ðy3Þdy�3
��

c0c
(5)

that ensure local SUð3Þ color invariance, cf. Ref. [12],
instead of the straightforward ones, such as those in
Eq. (4). As these factors are always assumed to be present,
we shall omit them from now on, but we note that they give
an extra minus sign when performing a color SUð3Þ Fierz
transformation.

Due to the nonlocality of these operators, the Pauli
principle does not forbid any one of these a priori. For
each one of the five trilocal operators �iðx; y; zÞ in Eq. (4),
there are three possible fields with bilocal (functions of two
position four-vectors x and y) operators:

�iðx; x; yÞ; �iðx; y; xÞ; �iðy; x; xÞ: (6)

The latter two sets can be related to each other by simply
interchanging the positions of the first and second quark
fields, for example,

qaTA ðxÞ�5q
b
BðyÞ ¼ �qbTB ðyÞ�5q

a
AðxÞ: (7)

The last two are also related to the first set through the
Fierz transformation:

�jðx; y; xÞ ¼ TS1
ij �iðx; x; yÞ; (8)

where the transition matrix TS1 is

TS1 ¼ 1

4

�1 �1 �1 �1 1
2

�1 �1 1 1 1
2

�4 4 2 �2 0

4 �4 2 �2 0

�12 �12 0 0 �2

0
BBBBBBBB@

1
CCCCCCCCA
: (9)

The Pauli principle does eliminate some local diquarks,
however, and one quickly finds that

�4ðx; x; yÞ ¼ �5ðx; x; yÞ ¼ 0: (10)

Therefore, only three of the original 15 operators are inde-
pendent. They are �1ðx;x;yÞ, �2ðx;x;yÞ, and �3ðx; x; yÞ.

2. The flavor-decuplet baryons

There are also five decuplet baryon fields formed from
five different combinations of � matrices:

�P
1 ¼ SABCP ð~qAqBÞqC;

�P
2 ¼ SABCP ð~qA�5qBÞ�5qC;

�P
3 ¼ SABCP ð~qA��qBÞ��qC;

�P
4 ¼ SABCP ð~qA���5qBÞ���5qC;

�P
5 ¼ SABCP ð~qA���qBÞ���qC:

(11)

Here SABCP is the totally symmetric SUð3Þ tensor with
components listed in Table II. Index P ¼ 1; . . . ; 10 denotes
the SUð3Þ flavor label of a decuplet state. Here also we
have three sets of bilocal fields that are related to each other
by Fierz identities:

�P
i ðy; x; xÞ $ �P

j ðx; y; xÞ;
�P

j ðx; y; xÞ ¼ TD1
ij �P

i ðx; x; yÞ;
where the flavor-decuplet matrix TD1 is identical to the
flavor-singlet matrix TS1 given in Eq. (9),

TD1 ¼ TS1: (12)

Due to the Pauli principle, we find that

�P
1 ðx; x; yÞ ¼ �P

2 ðx; x; yÞ ¼ �P
3 ðx; x; yÞ ¼ 0: (13)

Therefore, only two of the original 15 bilocal � operators
are independent. They are �P

4 ðx; x; yÞ and �P
5 ðx; x; yÞ.

TABLE II. Nonzero components of SABCP .

P 1 2 3 4 5 6 7 8 9 10

ABC 111 112 122 222 113 123 223 133 233 333

Baryons �þþ �þ �0 �� ��þ ��0 ��� ��0 ��� ��
Normalization 1 1ffiffi

3
p 1ffiffi

3
p 1 1ffiffi

3
p

ffiffiffi
6

p
1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p 1
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3. The flavor-octet baryon fields

We start once again with five trilocal fields

NN
1 ¼ �ABD�N

DCð~qAqBÞqC; NN
2 ¼ �ABD�N

DCð~qA�5qBÞ�5qC; NN
3 ¼ �ABD�N

DCð~qA��qBÞ��qC;

NN
4 ¼ �ABD�N

DCð~qA���5qBÞ���5qC; NN
5 ¼ �ABD�N

DCð~qA���qBÞ���qC:
(14)

The index N ¼ 1; . . . ; 8 labels the flavor SUð3Þ states in an octet. Here �N
DC is the Dth column, Cth row component of the

Nth Gell-Mann matrix. There are, however, two other kinds of baryon octet fields with the flavor SUð3Þ structures
�BCD�N

DA and �CAD�N
DB:

NN
6 ¼ �BCD�N

DAð~qAqBÞqC; NN
7 ¼ �BCD�N

DAð~qA�5qBÞ�5qC; NN
8 ¼ �BCD�N

DAð~qA��qBÞ��qC;

NN
9 ¼ �BCD�N

DAð~qA���5qBÞ���5qC; NN
10 ¼ �BCD�N

DAð~qA���qBÞ���qC; NN
11 ¼ �CAD�N

DBð~qAqBÞqC;
NN

12 ¼ �CAD�N
DBð~qA�5qBÞ�5qC; NN

13 ¼ �CAD�N
DBð~qA��qBÞ��qC; NN

14 ¼ �CAD�N
DBð~qA���5qBÞ���5qC;

NN
15 ¼ �CAD�N

DBð~qA���qBÞ���qC:

(15)

We have to consider all three sets of bilocal fields; they are related through the Fierz relation:

NN
i ðy; x; xÞ $ NN

i ðx; y; xÞ; NN
i ðx; y; xÞ ¼ TO1

ij NN
i ðx; x; yÞ;

where the transition matrix TO1 is obtained from the Fierz transformation

TO1 ¼ 1

4

0 0 0 0 0 �1 �1 �1 �1 1
2 0 0 0 0 0

0 0 0 0 0 �1 �1 1 1 1
2 0 0 0 0 0

0 0 0 0 0 �4 4 2 �2 0 0 0 0 0 0

0 0 0 0 0 4 �4 2 �2 0 0 0 0 0 0

0 0 0 0 0 �12 �12 0 0 �2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 �1 �1 �1 �1 1
2

0 0 0 0 0 0 0 0 0 0 �1 �1 1 1 1
2

0 0 0 0 0 0 0 0 0 0 �4 4 2 �2 0

0 0 0 0 0 0 0 0 0 0 4 �4 2 �2 0

0 0 0 0 0 0 0 0 0 0 �12 �12 0 0 �2

�1 �1 �1 �1 1
2 0 0 0 0 0 0 0 0 0 0

�1 �1 1 1 1
2 0 0 0 0 0 0 0 0 0 0

�4 4 2 �2 0 0 0 0 0 0 0 0 0 0 0

4 �4 2 �2 0 0 0 0 0 0 0 0 0 0 0

�12 �12 0 0 �2 0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (16)

Together with the Jacobi-type identity

�ABD�N
DC þ �BCD�N

DA þ �CAD�N
DB ¼ 0; (17)

and the Pauli principle, we obtain (only) five of the original 15 operators that are independent. Here we choose them as
N1ðx; x; yÞ, N2ðx; x; yÞ, N3ðx; x; yÞ, and

M4ðx; x; yÞ ¼ N9ðx; x; yÞ � N14ðx; x; yÞ; (18)

M5ðx; x; yÞ ¼ N10ðx; x; yÞ � N15ðx; x; yÞ: (19)

Other octet baryons can be related to these five; here we only show the equations for N6ðx; x; yÞ,N7ðx; x; yÞ, andN8ðx; x; yÞ:
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N6ðx; x; yÞ ¼ � 1

2
N1ðx; x; yÞ; (20)

N7ðx; x; yÞ ¼ � 1

2
N2ðx; x; yÞ; (21)

N8ðx; x; yÞ ¼ � 1

2
N3ðx; x; yÞ: (22)

B. Rarita-Schwinger fields

1. Flavor-singlet baryon

We start by writing down three trilocal baryon fields

�3� ¼ �ABCð~qA��qBÞ���
3=2�5qC;

�4� ¼ �ABCð~qA���5qBÞ���
3=2qC;

�5� ¼ �ABCð~qA���qBÞ���
3=2�

��5qC

(23)

that contain diquarks formed from three sets of Dirac
matrices, ��, ���5, and ���. Here �

��
3=2 is the projection

operator for the Rarita-Schwinger fields:

���
3=2 ¼ g�� � 1

4
����: (24)

Here, again, we have three sets of bilocal fields that are
related to each other through the Fierz transformation:

�i�ðy; x; xÞ $ �j�ðx; y; xÞ;
�i�ðx; y; xÞ ¼ TS2

ij �j�ðx; x; yÞ;

where the transition matrix TS2 is

TS2 ¼ 1

2

�1 1 1

�1 1 �1

�2 �2 0

0
BB@

1
CCA: (25)

Due to the Pauli principle, we find vanishing of two
fields

�4�ðx; x; yÞ ¼ �5�ðx; x; yÞ ¼ 0; (26)

leaving the �3�ðx; x; yÞ as the only nonvanishing bilocal

��ðx; x; yÞ field. Therefore, only one of the original nine

operators is independent.

2. The flavor-decuplet baryons

Let us start by writing down three baryon fields which
contain a diquark formed by three sets of Dirac matrices,
��, ���5, and ���,

�P
3� ¼ SABCP ð~qA��qBÞ���

3=2�5qC;

�P
4� ¼ SABCP ð~qA���5qBÞ���

3=2qC;

�P
5� ¼ SABCP ð~qA���qBÞ���

3=2�
��5qC:

(27)

We have also three sets of bilocal fields that are related
through the Fierz transformation:

�P
i�ðy; x; xÞ $ �P

j�ðx; y; xÞ;
�P

i�ðx; y; xÞ ¼ TD2
ij �P

j�ðx; x; yÞ;

where the flavor-decuplet Fierz matrix TD2 is identical to
the flavor-singlet Fierz matrix, Eq. (25)

TD2 ¼ TS2: (28)

Due to the Pauli principle, we immediately find

�P
3�ðx; x; yÞ ¼ 0: (29)

Therefore, only two [�P
4�ðx; x; yÞ and �P

5�ðx; x; yÞ] of the
original nine operators are independent.

3. The flavor-octet baryon fields

Again, we start by writing down three trilocal baryon
fields

NN
3� ¼ �ABD�N

DCð~qA��qBÞ���
3=2�5qC;

NN
4� ¼ �ABD�N

DCð~qA���5qBÞ���
3=2qC;

NN
5� ¼ �ABD�N

DCð~qA���qBÞ���
3=2�

��5qC

(30)

that contain a diquark formed with one of three sets of
Dirac matrices, ��, ���5, and ���. There are, however,

two other kinds of octet baryons with the flavor structures
�BCD�N

DA and �CAD�N
DB:

NN
8� ¼ �BCD�N

DAð~qA��qBÞ���
3=2�5qC;

NN
9� ¼ �BCD�N

DAð~qA���5qBÞ���
3=2qC;

NN
10� ¼ �BCD�N

DAð~qA���qBÞ���
3=2�

��5qC;

NN
13� ¼ �CAD�N

DBð~qA��qBÞ���
3=2�5qC;

NN
14� ¼ �CAD�N

DBð~qA���5qBÞ���
3=2qC;

NN
15� ¼ �CAD�N

DBð~qA���qBÞ���
3=2�

��5qC:

(31)

Considering all three sets of bilocal fields, we find that they
are related through the Fierz transformation:

NN
i�ðy; x; xÞ $ NN

i�ðx; y; xÞ;
NN

i ðx; y; xÞ ¼ TO2
ij NN

i ðx; x; yÞ;

where the flavor-octet Fierz matrix TO2 is
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T O2 ¼ 1

4

0 0 0 �1 1 1 0 0 0
0 0 0 �1 1 �1 0 0 0
0 0 0 �2 �2 0 0 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 0 0 0 �1 1 �1
0 0 0 0 0 0 �2 �2 0
�1 1 1 0 0 0 0 0 0
�1 1 �1 0 0 0 0 0 0
�2 �2 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: (32)

Together with the identity Eq. (17) and the Pauli principle
we find that two fields vanish identically:

NN
4�ðx; x; yÞ ¼ NN

5�ðx; x; yÞ ¼ 0: (33)

Therefore, only three of the original 15 operators are
independent. Here we choose them as NN

3�ðx; x; yÞ and
M4�ðx; x; yÞ ¼ N9�ðx; x; yÞ � N14�ðx; x; yÞ; (34)

M5�ðx; x; yÞ ¼ N10�ðx; x; yÞ � N15�ðx; x; yÞ: (35)

Other bilocal octet baryons can be related to these three;
here we only show the representative equation for
N8�ðx; x; yÞ:

N8�ðx; x; yÞ ¼ � 1

2
N3�ðx; x; yÞ: (36)

C. Antisymmetric tensor (Bargmann-Wigner) fields

1. Flavor-singlet baryon

We start by writing down the trilocal baryon field

�5�� ¼ �ABCð~qA���qBÞ�����
3=2 qC; (37)

which contains a diquark formed with the AST matrices
���. Here ����� is the Bargmann-Wigner projection

operator defined as

�����¼
�
g��g���1

2
g������þ1

2
g������þ1

6
������

�
:

(38)

We have also three sets of bilocal fields that are related
through the Fierz transformation:

�5��ðy; x; xÞ $ �5��ðx; y; xÞ;
�5�ðx; y; xÞ ¼ TS2

ij �5��ðx; x; yÞ;
where the flavor-singlet Fierz (1� 1matrix) number TS3 is
unity

TS3 ¼ 1: (39)

The Pauli principle leads immediately to

�5��ðx; x; yÞ ¼ 0: (40)

Thus, we have obtained the result that all flavor-singlet
bilocal AST fields vanish due to the Pauli principle.

2. The flavor-decuplet baryons

Let us start with writing down the baryon field which
contain a diquark formed by the Dirac matrices ���:

�P
5�� ¼ SABCP ð~qA���qBÞ�����

3=2 qC: (41)

We have also three sets of bilocal fields, and they are
related to each other through the Fierz transformation:

�5��ðy; x; xÞ $ �5��ðx; y; xÞ;
�5��ðx; y; xÞ ¼ TD3

ij �5��ðx; x; yÞ;
where the flavor-decuplet Fierz (1� 1) matrix TD3 is
equivalent to the flavor-singlet Eq. (39)

T D3 ¼ 1: (42)

Therefore, the only original operator is Pauli allowed.

3. The flavor-octet baryon fields

Start by writing down the flavor-octet trilocal baryon
field

NN
5�� ¼ �ABD�N

DCð~qA���qBÞ�����
3=2 qC; (43)

which contains a diquark formed by the ��� matrices.

There are, however, also two other kinds of octet baryons
with the flavor structures �BCD�N

DA and �CAD�N
DB:

NN
10�� ¼ �BCD�N

DAð~qA���qBÞ�����
3=2 qC;

NN
15�� ¼ �CAD�N

DBð~qA���qBÞ�����
3=2 qC:

(44)

Considering all three sets of bilocal fields that are related
through the Fierz transformation:

NN
i��ðy; x; xÞ $ NN

i��ðx; y; xÞ;
NN

i��ðx; y; xÞ ¼ TO3
ij NN

i��ðx; x; yÞ;
where the flavor-octet Fierz matrix TO3 is

TO3 ¼
0 1 0

0 0 1

1 0 0

0
BB@

1
CCA; (45)
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together with the relation Eq. (17) and the Pauli principle
we find

NN
5��ðx; x; yÞ ¼ 0: (46)

Therefore, only one of the original three flavor-octet
operators is independent. Here we choose it as
MN

5��ðx; x; yÞ ¼ NN
10��ðx; x; yÞ � NN

15��ðx; x; yÞ.

D. Summary of straightforward bilocal fields

We have investigated the chiral multiplets consisting of
bilocal three-quark baryon operators, where we took into
account the Pauli principle by way of the Fierz transfor-
mation. All spin-1=2 and -3=2 baryon operators were
classified according to their Lorentz and isospin group
representations, where spin and flavor projection operators
were employed in Table I. We have derived the nontrivial
Fierz relations among various baryon operators and
thus found the independent baryon fields, see Tables III,
IV, and V.

Thus, for example, in the spin-1=2 sector, three flavor-
singlet fields (‘‘�’s’’), five octet fields (‘‘nucleons’’), and
two decimet fields (‘‘�’s’’) are independent in the bilocal
limit, in stark contrast to the local limit where there are
(only) two nucleons and no �, see Ref. [6]. We see in

Table III, that five out of 12 entries in Table I vanish in the
local-operator limit x ! y, and other Fierz identities re-
duce the number of independent chiral multiplets from
seven to four. The baryon fields (�1 ��2, N1 � N2) and
(�3, N3 �M4) form two independent [ð3; �3Þ � ð�3; 3Þ]
chiral multiplets; N1 þ N2 and M5 form two independent
[ð8; 1Þ � ð1; 8Þ] chiral multiplets; (N3 þ 1

3M4,�4) form one

[ð3; 6Þ � ð6; 3Þ] chiral multiplet; �5 also forms a separate
[ð10; 1Þ � ð1; 10Þ] chiral multiplet.
In the spin- 32 sector, the Rarita-Schwinger fields

(��
3 , N�

3 �M�
4 ) form an independent [ð�3; 3Þ � ð3; �3Þ]

chiral multiplet, and (N
�
3 þ 1

3M
�
4 , �

�
4 ) and ðM�

5 ;�
�
5 Þ

form two [ð6; 3Þ � ð3; 6Þ] chiral multiplets, see Table IV.
Similarly, Lorentz representation ( 32 , 0) Bargmann-Wigner

fields M��
5 2 ½ð8; 1Þ � ð1; 8Þ�, ���

5 2 ½ð10; 1Þ � ð1; 10Þ�
are also independent, see Table V. This is again in contrast
with the local limit where there is only one independent
nucleon field and two independent �’s, [6].
This exhausts all chiral multiplets obtained from

straightforward three-quark interpolators, so that relaxing
the bilocal limit and going to the trilocal case would not
yield new chiral multiplets. Note, however, that some
chiral multiplets are repeated (doubled), whereas their
mirror image(s) do not appear: why? The answer to this

TABLE IV. The Abelian and the non-Abelian axial charges and the non-Abelian chiral
multiplets of spin- 32 , Lorentz representation (1, 1

2 ) nucleon, and � fields. All of the fields are

independent and Fierz invariant. In the last column we show the Fierz-equivalent/identical field
in the local limit (x ! y).

UAð1Þ SUð3ÞF SULð3Þ � SURð3Þ Fierzðx ! yÞlocallim:

�
�
3 þ1 1 ð�3; 3Þ � ð3; �3Þ 0

N
�
3 �M

�
4 þ1 8 ð�3; 3Þ � ð3; �3Þ 0

N
�
3 þ 1

3M
�
4 þ1 8 ð6; 3Þ � ð3; 6Þ N

�
5

�
�
4 þ1 10 ð6; 3Þ � ð3; 6Þ �

�
5

M�
5 þ1 8 ð6; 3Þ � ð3; 6Þ N�

3 þ 1
3N

�
4

��
5 þ1 10 ð6; 3Þ � ð3; 6Þ ��

4

TABLE III. The Abelian and the non-Abelian axial charges (þ sign indicates ‘‘naive,’’� sign
indicates ‘‘mirror’’ transformation properties) and the non-Abelian chiral multiplets of spin- 12 ,

Lorentz representation ( 12 , 0) nucleon N, delta resonance �, and � hyperon fields. All fields are

independent and Fierz invariant. In the last column we show the Fierz-equivalent/identical field
in the local limit (x ! y).

UAð1Þ SUð3ÞF SULð3Þ � SURð3Þ Fierzðx ! yÞlocallim:

�1 ��2 �1 1 ð3; �3Þ � ð�3; 3Þ �3

�3 �1 1 ð3; �3Þ � ð�3; 3Þ �1 ��2

N1 � N2 �1 8 ð3; �3Þ � ð�3; 3Þ N3 �M4

N3 �M4 �1 8 ð3; �3Þ � ð�3; 3Þ N1 � N2

N3 þ 1
3M4 �1 8 ð3; 6Þ � ð6; 3Þ 0

�4 �1 10 ð3; 6Þ � ð6; 3Þ 0

�1 þ�2 þ3 1 ð1; 1Þ 0

N1 þ N2 þ3 8 ð8; 1Þ � ð1; 8Þ M5

M5 þ3 8 ð8; 1Þ � ð1; 8Þ N1 þ N2

�5 þ3 10 ð10; 1Þ � ð1; 10Þ 0
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question has to do with the number (even/odd) of Dirac �
matrices that appear in the field itself. With one new four-
vector [the ðx� yÞ�] available, this problem is (very)

easily solved: contracting the spin- 32 fields with this four-

vector yields new spin- 12 fields.

III. NONSTRAIGHTFORWARD THREE-FLAVOR
BILOCAL THREE-QUARK FIELDS

Thus far we have straightforwardly extended the local
field analysis to the bilocal case and thus ignored new, less
straightforward possibilities: besides the (center-of-mass
variable x) derivative @�, we have one new four-vector [the

ðx� yÞ�] available. Contracting the various spin- 32 fields

with these four-vectors yields new spin- 12 fields.

Once again we would like to note that the bilocal fields
constructed in this section may have components overlap-
ping with more than one angular momentum J state. Their
chiral properties are independent of the exact value of J,
however.

A. Derivative-contracted fields

Contraction with the [center-of-mass variable x in the
local limit, or 13 ð2xþ yÞ in the bilocal case] derivative @� is

obligatory, as the true Rarita-Schwinger fields must satisfy
the auxiliary condition @��� ¼ 0, which is not automati-

cally satisfied by Ioffe’s three-quark interpolators with one
Lorentz index � [13,14]. Thus, one must subtract the
(generally nonvanishing) @�@

�B�
1

@�@
� from the original

(unsubtracted) Ioffe fields B� in order to obtain genuine
Rarita-Schwinger fields

�� ¼ B� � @�
@�B�

@�@
� : (47)

That leaves us with � ’ i@�B� as a new Dirac field inter-
polator. One look at Table VII reveals that these new fields
have precisely the ‘‘mirror’’ properties to those of the
‘‘usual’’ or ‘‘naive’’ Dirac field interpolators in Table VI.
Note, however, that the chiral multiplets [ð1; 1Þ], [ð8; 1Þ �
ð1; 8Þ], and [ð10; 1Þ � ð1; 10Þ] and their ‘‘mirror fields’’ are
still missing from this list of Rarita-Schwinger fields.
The same holds for Rarita-Schwinger fields obtained

from the (local) Bargmann-Wigner fields [15] by contrac-
tion with one derivative @�:

�� ¼ @�B��: (48)

This takes care of the [ð8; 1Þ � ð1; 8Þ] and [ð10; 1Þ � ð1; 10Þ]
chiral multiplets by way of Bargmann-Wigner fields
@�M

��
5 2 ½ð8; 1Þ � ð1; 8Þ�, @��

��
5 2½ð10;1Þ�ð1;10Þ�, but

not of their mirror images, which are still missing
from this list of Rarita-Schwinger fields, as is the [ð1; 1Þ]
field. Moreover, this procedure does not produce new
Bargmann-Wigner fields with chiral properties not seen
thus far, see Table VI. We also note that one cannot obtain
new Dirac field interpolators from Bargmann-Wigner
fields due to the identity @�@�B�� ¼ @�@�B�� ¼ 0.

In a short summary, the derivative-contracted fields
produce new Dirac fields ð@���

3 ;@�ðN�
3 �M�

4 ÞÞ2½ð�3;3Þ�

TABLE V. The Abelian and the non-Abelian axial charges and
the non-Abelian chiral multiplets of spin- 32 , Lorentz representa-

tion ( 32 , 0) nucleon, and� fields. All of the fields are independent

and Fierz invariant. In the last column we show the Fierz-
equivalent/identical field in the local limit (x ! y).

UAð1Þ SUð3ÞF SULð3Þ � SURð3Þ Fierzðx ! yÞlocallim:

M��
5 þ3 8 ð8; 1Þ � ð1; 8Þ 0

�
��
5 þ3 10 ð10; 1Þ � ð1; 10Þ �

��
5

TABLE VI. The Abelian and the non-Abelian axial charges and the non-Abelian chiral
multiplets of spin- 12 , Lorentz representation ( 12 , 0), nonstraightforward ‘‘nucleon’’ N octet,

delta resonance � decuplet, and � hyperon singlet fields. All fields are independent and Fierz
invariant.

UAð1Þ SUð3ÞF SULð3Þ � SURð3Þ Fierzðx ! yÞlocallim:

@��
�
3 þ1 1 ð�3; 3Þ � ð3; �3Þ 0

@�ðN�
3 �M�

4 Þ þ1 8 ð�3; 3Þ � ð3; �3Þ 0

@�ðN�
3 þ 1

3M
�
4 Þ þ1 8 ð6; 3Þ � ð3; 6Þ @�M

�
5

@��
�
4 þ1 10 ð6; 3Þ � ð3; 6Þ @��

�
5

@�M
�
5 þ1 8 ð6; 3Þ � ð3; 6Þ @�ðN�

3 þ 1
3M

�
4 Þ

@��
�
5 þ1 10 ð6; 3Þ � ð3; 6Þ @��

�
4

ðx� yÞ���
3 þ1 1 ð�3; 3Þ � ð3; �3Þ 0

ðx� yÞ�ðN�
3 �M

�
4 Þ þ1 8 ð�3; 3Þ � ð3; �3Þ 0

ðx� yÞ�ðN�
3 þ 1

3M
�
4 Þ þ1 8 ð6; 3Þ � ð3; 6Þ 0

ðx� yÞ���
4 þ1 10 ð6; 3Þ � ð3; 6Þ 0

ðx� yÞ�M�
5 þ1 8 ð6; 3Þ � ð3; 6Þ 0

ðx� yÞ���
5 þ1 10 ð6; 3Þ � ð3; 6Þ 0

ðx� yÞ�@�M��
5 þ3 8 ð8; 1Þ � ð1; 8Þ 0

ðx� yÞ�@����
5 þ3 10 ð10; 1Þ � ð1; 10Þ 0
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ð3; �3Þ�, ð@�ðN�
3 þ1

3M
�
4 Þ;@���

4 Þ2½ð6;3Þ�ð3;6Þ�, and

ð@�M�
5 ;@��

�
5 Þ2½ð6;3Þ�ð3;6Þ�, and new Rarita-Schwinger

fields @�M
��
5 2 ½ð8; 1Þ � ð1; 8Þ� and @��

��
5 2 ½ð10; 1Þ �

ð1; 10Þ�, which do not vanish, see Tables VI and VII.

B. Nonderivative-contracted fields

Similarly to the previous subsection, we can contract
Rarita-Schwinger fields with the four-vector ðx� yÞ� to

obtain new Dirac fields,

� ¼ ðx� yÞ�B�: (49)

We can also contract Bargmann-Wigner fields with the
four-vector ðx� yÞ� to obtain new Rarita-Schwinger

fields,

�� ¼ ðx� yÞ�B��: (50)

Again we cannot obtain new Dirac field interpolators from
Bargmann-Wigner fields due to ðx� yÞ�ðx� yÞ�B�� ¼
ðx� yÞ�ðx� yÞ�B�� ¼ 0.

In a short summary, the nonderivative-contracted fields
produce new Dirac fields (ðx� yÞ���

3 , ðx� yÞ� �
ðN�

3 �M�
4 Þ), (ðx� yÞ�ðN�

3 þ 1
3M

�
4 Þ, ðx� yÞ���

4 ), and

(ðx� yÞ�M�
5 , ðx� yÞ���

5 ), and new Rarita-Schwinger

fields ðx� yÞ�M��
5 and ðx� yÞ����

5 , see Tables VI and

VII. The chiral representations of these fields are the same
as the corresponding derivative-contracted fields. Fierz
identities show that all of these fields vanish in the local
limit x ! y.

C. Mixed-contracted fields

Together with the derivative and the four-vector
ðx� yÞ�, we obtain new Dirac fields from Bargmann-

Wigner fields

� ¼ ðx� yÞ�@�B��: (51)

The other three ðx� yÞ�@�B��, @�ðx� yÞ�B��, and

@�ðx� yÞ�B�� can be related to this one, and so this is

the only independent field. Therefore, the mixed-
contracted fields only produce the Dirac fields ðx�
yÞ�@�M��

5 2½ð8;1Þ�ð1;8Þ� and ðx�yÞ�@����
5 2½ð10;1Þ�

ð1;10Þ�, all of which vanish in the local limit x ! y, see
Table VI.

IV. SUMMARYAND CONCLUSIONS

We have investigated the chiral multiplets consisting of
bilocal three-quark baryon operators, where we took into
account the Pauli principle by way of the Fierz transfor-
mation. All spin- 12 and some - 32 baryon operators were

classified in Tables III, IV, V, VI, and VII according to
their Lorentz and flavor symmetry group representations.
Again we would like to note that these baryon fields have
definite total angular momentum only in the local limit. We
have employed the standard flavor SUð3Þ formalism in-
stead of the explicit expressions in terms of different
flavored quarks in the flavor components of the baryon
fields that are commonplace in this line of work.
In doing so, we have been able to systematically derive

the Fierz identities and chiral transformations of the baryon
fields. More specifically, we have derived all nontrivial
Fierz relations among various baryon bilocal operators
and thus found the independent bilocal baryon fields. We
have shown that the Fierz transformation connects only
those bilocal baryon interpolating fields with identical
chiral group-theoretical properties, i.e., those belonging
to the same chiral multiplet, just as in the case of local
baryon operators.
For example, in the spin- 12 sector, five flavor-singlet

fields (‘‘�’s’’), 12 octet fields (‘‘nucleons’’), and seven
decimet fields (‘‘�’s’’) were independent in the bilocal
limit, in stark contrast to the local limit where there was
(only) one �, two nucleons, and no �’s, Ref. [6]. One can
see that 14 out of 24 entries in the Tables III and VI
vanished in the local-operator limit x ! y, and another
three Fierz identities reduced the number of independent
fields from ten to five.
The (�1 þ�2) formed one independent [ð1; 1Þ] chiral

multiplet, (�1 ��2, N1 � N2) and (�3, N3 �M4) formed
two independent [ð3; �3Þ � ð�3; 3Þ] chiral multiplets, (N1 þ
N2) andM5 formed two independent [ð8; 1Þ � ð1; 8Þ] chiral
multiplets, (N3 þ 1

3M4, �4) formed one [ð3; 6Þ � ð6; 3Þ]
chiral multiplet, and the independent field �5 also formed
a separate [ð10; 1Þ � ð1; 10Þ] chiral multiplet.
The derivative-contracted fields produced new nonvan-

ishing Dirac fields ð@���
3 ; @�ðN�

3 �M
�
4 ÞÞ 2 ½ð�3; 3Þ �

ð3; �3Þ�, ð@�ðN�
3 þ 1

3M
�
4 Þ; @���

4 Þ 2 ½ð6; 3Þ � ð3; 6Þ�, and

ð@�M�
5 ; @��

�
5 Þ 2 ½ð6; 3Þ � ð3; 6Þ�. The nonderivative-

contracted fields produced (ðx�yÞ���
3 , ðx� yÞ� �

ðN�
3 �M�

4 Þ), (ðx� yÞ�ðN�
3 þ 1

3M
�
4 Þ, ðx� yÞ���

4 ), and

(ðx� yÞ�M�
5 , ðx� yÞ���

5 ), and the mixed-contracted

fields produced ðx� yÞ�@�M��
5 2 ½ð8; 1Þ � ð1; 8Þ� and

ðx� yÞ�@����
5 2 ½ð10; 1Þ � ð1; 10Þ�, see Table VI.

In the spin- 32 sector, the (�
�
3 , N

�
3 �M

�
4 ) formed an

independent [ð3; �3Þ � ð�3; 3Þ] chiral multiplet, whereas
ðN�

3 þ1
3M

�
4 ;�

�
4 Þ2½ð6;3Þ�ð3;6Þ� and ðM�

5 ;�
�
5 Þ 2 ½ð6; 3Þ �

ð3; 6Þ� were also independent, again in contrast with the local
limit where there was only one independent nucleon field
and two independent �’s, [6]. The derivative-contracted

TABLE VII. The Abelian and the non-Abelian axial charges
and the non-Abelian chiral multiplets of spin- 32 , Lorentz repre-

sentation (1, 12 ) ‘‘nucleon’’ octet, and ‘‘�’’ decuplet nonstraight-

forward fields.

UAð1Þ SUð3ÞF SULð3Þ � SURð3Þ Fierzðx ! yÞlocallim:

@�M
��
5 þ3 8 ð8; 1Þ � ð1; 8Þ 0

@��
��
5 þ3 10 ð10; 1Þ � ð1; 10Þ @��

��
5

ðx� yÞ�M��
5 þ3 8 ð8; 1Þ � ð1; 8Þ 0

ðx� yÞ����
5 þ3 10 ð10; 1Þ � ð1; 10Þ 0
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fields produced new Rarita-Schwinger fields @�M
��
5 2

½ð8; 1Þ � ð1; 8Þ� and @��
��
5 2 ½ð10; 1Þ � ð1; 10Þ�. The

nonderivative-contracted fields produced ðx� yÞ�M��
5

and ðx� yÞ����
5 , see Table VII.

This increase of the number of independent fields was in
line with expectations based on the nonrelativistic quark
model, where the number of Pauli-allowed three-quark
states in the LP ¼ 1� shell sharply rose from the corre-
sponding number in the ground state. Indeed, there was a
deep analogy between the Pauli principle acting in the
nonrelativistic quantum formalism, where the flavor-spin
group SUð6ÞFS played the role of the chiral symmetry
group SULð3Þ � SURð3Þ in the relativistic formalism. Of
course, the chiral symmetry group SULð3Þ � SURð3Þwas a
subgroup of some (‘‘bigger’’) SUð6Þ, but that was not the
flavor-spin group SUð6ÞFS [16]. This analogy is at the
present still (only) empirical: we do not have a set of clear
and simple rules that determine the allowed chiral multip-
lets in this relativistic approach that would correspond to
the rules leading to the allowed SUFSð6Þ multiplets in the
nonrelativistic approach. Rather, we had to rely on the
(rather involved) present analysis.

The physical significance of our present work was that it
showed that there was no need to introduce q �q components
in addition to the three-quark ‘‘core,’’ so as to agree with
the observed axial couplings and magnetic moments: the
phenomenologically necessary [ð6; 3Þ � ð3; 6Þ] chiral com-
ponent and the [ð3; �3Þ � ð�3; 3Þ] ‘‘mirror’’ component existed
as bilocal fields [23]. Thus, we have shown that there is no
need for ‘‘meson cloud’’ or (nonexotic) ‘‘pentaquark’’ com-
ponents in the Fock expansion of the baryon wave function
to explain (at least) the axial currents and magnetic mo-
ments, contrary to established opinion, Ref. [24]. This goes
to show that the algebraic complexity of three Dirac quark
fields is such that it can mimic the presence of q �q pairs, at
least in certain observables. For us this was a surprise.

The framework presented here holds in standard ap-
proaches to QCD, such as the QCD sum rules [13,14]
and lattice QCD [11], under the proviso that chiral symme-
try is observed by the approximation used. There is another
(sub)field of QCD where it ought to make an impact: in the
class of fully relativistic three-body models, such as those
based on the three-body Salpeter, Refs. [25–27] or Bethe-
Salpeter equation approaches to chiral quark models
Refs. [28–31]. One potential application of our results is
to classify various components in the Salpeter or Bethe-
Salpeter amplitudes (wave functions), instead of the non-
relativistic SUð6ÞFS multiplets that have been used so far,
and thus to try and determine the baryons’ chiral mixing
coefficients (angles), Refs. [2,3,32,33], starting from an
underlying chiral model. Model calculations like that could
give one insight into structural questions that cannot be
(reasonably) expected to be answered by lattice QCD. For
example, why do certain chiral multiplets not appear in the
baryons?
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APPENDIX: CHIRAL TRANSFORMATIONS

Here, we briefly review the SULð3Þ � SURð3Þ chiral
transformations of three-quark baryon operators, which
are determined by their Dirac matrix structure, see
Ref. [1]. Under the UVð1Þ ¼ UBð1Þ (baryon number),
UAð1Þ (axial baryon number), SUVð3Þ ¼ SUFð3Þ [flavor
SUð3Þ], and SUAð3Þ [axial flavor SUð3Þ] transformations,
the quark field q ¼ qL þ qR transforms as

UVð1Þ: q ! exp ðia0Þq ¼ qþ 	q;

SUVð3Þ: q ! exp ði ~� � ~aÞq ¼ qþ 	~aq;

UAð1Þ: q ! exp ði�5b
0Þq ¼ qþ 	5q;

SUAð3Þ: q ! exp ði�5
~� � ~bÞq ¼ qþ 	

~b
5q;

(A1)

where ~� are the eight Gell-Mann matrices, a0 is the infini-
tesimal parameter for theUVð1Þ ‘‘vector’’ transformation, ~a
are the octet of SUVð3Þ group parameters, b0 is the infini-

tesimal parameter for the UAð1Þ �5 transformation, and ~b
are the octet of SUAð3Þ �5 transformation parameters.
The UVð1Þ baryon number (‘‘vector’’) transformation is

simple, while the SUVð3Þ flavor-symmetry (vector) trans-
formations are also well known:
(1) for any singlet baryon field �, we have

	~a� ¼ 0; (A2)

(2) for any octet baryon field NM, we have

	~aNM ¼ 2aNfNMON
O; (A3)

(3) for any decuplet baryon field �P, we have

	~a�P ¼ 2iaNFN
PQ�

Q; (A4)

where the coefficients dNMO and fNMO are the standard
symmetric and antisymmetric structure constants of

SUð3Þ; the transition matrices FN
PQ as well as TyN

PM in the

following subsections are listed in Ref. [2].

1. Dirac fields (spin 1
2 )

Under the Abelian chiral transformation the rule,
we have
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	5ð�1 þ�2Þ ¼ 3ib�5ð�1 þ�2Þ; (A5)

	5ð�1 ��2Þ ¼ �ib�5ð�1 ��2Þ; (A6)

	5�3 ¼ �ib�5�3; (A7)

and

	5�
P
4 ¼ �ib�5�

P
4 ; (A8)

	5�
P
5 ¼ 3ib�5�

P
5 ; (A9)

and

	5ðNN
1 þ NN

2 Þ ¼ 3ib�5ðNN
1 þ NN

2 Þ; (A10)

	5ðNN
1 � NN

2 Þ ¼ �ib�5ðNN
1 � NN

2 Þ; (A11)

	5N
N
3 ¼ �ib�5N

N
3 ; (A12)

	5M
N
4 ¼ �ib�5M

N
4 ; (A13)

	5M
N
5 ¼ 3ib�5M

N
5 : (A14)

Under the SUAð3Þ chiral transformation the rule, we
have

	
~b
5ð�1 þ�2Þ ¼ 0; (A15)

	
~b
5ð�1 ��2Þ ¼ 2ibN�5ðNN

1 � NN
2 Þ; (A16)

	
~b
5�3 ¼ �ibN�5ðNN

3 �MN
4 Þ; (A17)

and

	
~b
5�

P
4 ¼ ibN�5T

yN
PM

�
NM

3 þ1

3
MM

4

�
�2

3
ibN�5F

N
PQ�

Q
4 ; (A18)

	
~b
5�

P
5 ¼ 2ibN�5F

N
PQ�

Q
5 ; (A19)

and

	
~b
5ðNM

1 þ NM
2 Þ ¼ 2bN�5f

NMOðNO
1 þ NO

2 Þ; (A20)

	
~b
5ðNM

1 � NM
2 Þ ¼ 4

3
ibN�5ð�1 ��2Þ

þ 2ibN�5d
NMOðNO

1 � NO
2 Þ; (A21)

	
~b
5

�
NM

3 þ 1

3
MM

4

�
¼ 16

3
ibN�5T

N
MP�

P
4

þ ibN�5

�
�2dNMO þ 4

3
ifNMO

�

�
�
NO

3 þ 1

3
MO

4

�
; (A22)

	
~b
5ðNM

3 �MM
4 Þ¼�8

3
ibN�5�3þ2ibN�5d

NMOðNO
3 �MO

4 Þ;
(A23)

	
~b
5M

M
5 ¼ 2bN�5f

NMOMO
5 : (A24)

2. Rarita-Schwinger fields (spin 1
2 and

3
2 )

Under the Abelian chiral transformation, we have

	5�3� ¼ ib�5�3�; (A25)

and

	5�
P
4� ¼ ib�5�

P
4�; (A26)

	5�
P
5� ¼ ib�5�

P
5�; (A27)

and

	5N
N
3� ¼ ib�5N

N
3�; (A28)

	5M
N
4� ¼ ib�5M

N
4�; (A29)

	5M
N
5� ¼ ib�5M

N
5�: (A30)

Under the SUAð3Þ chiral transformations, we have

	
~b
5�3� ¼ ibN�5ðNN

3� �MN
4�Þ; (A31)

and

	
~b
5�

P
4� ¼�ibN�5T

yN
PM

�
NM

3� þ 1

3
MM

4�

�
þ 2

3
ibN�5F

N
PQ�

Q
4�;

(A32)

	
~b
5�

P
5� ¼ 2

3
ibN�5T

yN
PMM

M
5� þ 2

3
ibN�5F

N
PQ�

Q
5�; (A33)

and

	
~b
5

�
NM

3� þ 1

3
MM

4�

�

¼ � 16

3
ibN�5T

N
MP�

P
4� þ ibN�5

�
2dNMO � 4

3
ifNMO

�

�
�
NO

3� þ 1

3
MO

4�

�
; (A34)

	
~b
5ðNM

3��MM
4�Þ¼

8

3
ibN�5�3��2ibN�5d

NMOðNO
3��MO

4�Þ;
(A35)

	
~b
5M

M
5� ¼ 8ibN�5T

N
MP�

P
5� þ ibN�5

�
2dNMO � 4

3
ifNMO

�

�
�
NO

3� þ 1

3
MO

4�

�
: (A36)
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3. Antisymmetric tensor fields (spin 3
2 )

Under the Abelian chiral transformation, we have

	5�
P
5�� ¼ 3ib�5�

P
5��; (A37)

and

	5M
N
5�� ¼ 3ib�5M

N
5��: (A38)

Under the SUAð3Þ chiral transformations, we have

	
~b
5�

P
5�� ¼ ibN�5F

N
PQ�

Q
5��; (A39)

and

	
~b
5M

M
5�� ¼ 2bN�5f

NMOMO
5��: (A40)
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